Universitas : UIN MAULANA MALIK IBRAHIM MALANG

Jurusan : Teknik Informatika

Pengertian Inflow dan Outflow pada Uang Kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara sesama dan non-residen perusahaan, jika orang tua pengendali utama adalah penduduk. Investasi langsung keluar juga disebut investasi langsung di luar negeri.

library(readxl)
datainflow <- read_excel(path = "InflowTahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 12
##    Keterangan ...2  `Bali Nusra`   Bali `Nusa Tenggara Barat` `Nusa Tenggara T~`
##         <dbl> <lgl>        <dbl>  <dbl>                 <dbl>              <dbl>
##  1         NA NA             NA     NA                    NA                 NA 
##  2       2011 NA          10322.  6394.                 1803.              2125.
##  3       2012 NA          14613.  8202.                 3676.              2735.
##  4       2013 NA          17512.  5066.                 7024.              5422.
##  5       2014 NA          20807. 11590.                 5704.              3512.
##  6       2015 NA          23008. 13072.                 6285.              3651.
##  7       2016 NA          30965. 17914.                 8842.              4210.
##  8       2017 NA          30797. 16962.                 8383.              5452.
##  9       2018 NA          33866. 18610.                 9140.              6116.
## 10       2019 NA          38116. 21422.                 9614.              7080.
## 11       2020 NA          29400. 14735.                 8007.              6657.
## 12       2021 NA          18892.  7505.                 5888.              5498.
## # ... with 6 more variables: Kalimantan <dbl>, `Kalimantan Barat` <dbl>,
## #   `Kalimantan Tengah` <dbl>, `Kalimantan Selatan` <dbl>,
## #   `Kalimantan Timur` <dbl>, `Kalimantan Utara` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "OutflowTahun.xlsx")
dataoutflow
## # A tibble: 11 x 10
##    Tahun   Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
##    <dbl>  <dbl>               <dbl>            <dbl>      <dbl>            <dbl>
##  1  2011  8912.               3819.            3693.     29535.            5221.
##  2  2012 10782.               4379.            4260.     33444.            5698.
##  3  2013  7248.              10628.           11524.     44929.            6011.
##  4  2014 13104.               5620.            4668.     38772.            6764.
##  5  2015 14471.               6728.            5530.     41945.            8486.
##  6  2016 18140.               8149.            5652.     42179.            9402.
##  7  2017 17822.               8770.            7569.     50404.           11132.
##  8  2018 20434.               9271.            7555.     53989.           12278.
##  9  2019 20654.              10288.            7738.     57579.           13768.
## 10  2020 14323.               8546.            8356.     52060.           13501.
## 11  2021  6531.               5222.            3472.     30291.            6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>
dataoutflow
## # A tibble: 11 x 10
##    Tahun   Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
##    <dbl>  <dbl>               <dbl>            <dbl>      <dbl>            <dbl>
##  1  2011  8912.               3819.            3693.     29535.            5221.
##  2  2012 10782.               4379.            4260.     33444.            5698.
##  3  2013  7248.              10628.           11524.     44929.            6011.
##  4  2014 13104.               5620.            4668.     38772.            6764.
##  5  2015 14471.               6728.            5530.     41945.            8486.
##  6  2016 18140.               8149.            5652.     42179.            9402.
##  7  2017 17822.               8770.            7569.     50404.           11132.
##  8  2018 20434.               9271.            7555.     53989.           12278.
##  9  2019 20654.              10288.            7738.     57579.           13768.
## 10  2020 14323.               8546.            8356.     52060.           13501.
## 11  2021  6531.               5222.            3472.     30291.            6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>

1. Visualisasi Prediksi Data Inflow Uang Kartal Nusa Tenggara Barat setiap periode

plot(datainflow$Keterangan,datainflow$`Nusa Tenggara Barat`,type = "l", col= "steelblue")

2. Visualisasi Prediksi Data outflow Uang Kartal Nusa Tenggara Barat setiap periode

plot(dataoutflow$Tahun,dataoutflow$`Nusa Tenggara Barat`,type = "l", col= "red")

3. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Nusa Tenggara Barat Setiap Periode

plot(datainflow$Keterangan,datainflow$`Nusa Tenggara Barat`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Nusa Tenggara Barat`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("green","steelblue"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Nusa Tenggara Barat Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "InflowBulan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 12
##    Bulan               ...2  `Bali Nusra`  Bali `Nusa Tenggara Barat`
##    <dttm>              <lgl>        <dbl> <dbl>                 <dbl>
##  1 2011-01-01 00:00:00 NA            912.  463.                  93.8
##  2 2011-02-01 00:00:00 NA            591.  401.                  82.1
##  3 2011-03-01 00:00:00 NA            869.  532.                 125. 
##  4 2011-04-01 00:00:00 NA            709.  431.                 124. 
##  5 2011-05-01 00:00:00 NA            754.  474.                 113. 
##  6 2011-06-01 00:00:00 NA            633.  393.                 105. 
##  7 2011-07-01 00:00:00 NA            856.  585.                 137. 
##  8 2011-08-01 00:00:00 NA            607.  328.                 136. 
##  9 2011-09-01 00:00:00 NA           1965. 1434.                 292. 
## 10 2011-10-01 00:00:00 NA            874.  522.                 184. 
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## #   Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>
dataoutflowperbulan <- read_excel(path = "OutflowBulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    Bulan               ...2  `Bali Nusra`  Bali `Nusa Tenggara Barat`
##    <dttm>              <lgl>        <dbl> <dbl>                 <dbl>
##  1 2011-01-01 00:00:00 NA            912.  463.                  93.8
##  2 2011-02-01 00:00:00 NA            591.  401.                  82.1
##  3 2011-03-01 00:00:00 NA            869.  532.                 125. 
##  4 2011-04-01 00:00:00 NA            709.  431.                 124. 
##  5 2011-05-01 00:00:00 NA            754.  474.                 113. 
##  6 2011-06-01 00:00:00 NA            633.  393.                 105. 
##  7 2011-07-01 00:00:00 NA            856.  585.                 137. 
##  8 2011-08-01 00:00:00 NA            607.  328.                 136. 
##  9 2011-09-01 00:00:00 NA           1965. 1434.                 292. 
## 10 2011-10-01 00:00:00 NA            874.  522.                 184. 
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## #   Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 11
##    Bulan               `Bali Nusra`  Bali `Nusa Tenggara Barat` `Nusa Tenggara~`
##    <dttm>                     <dbl> <dbl>                 <dbl>            <dbl>
##  1 2011-01-01 00:00:00         423.  177.                 194.              51.9
##  2 2011-02-01 00:00:00         482.  353.                  40.9             87.6
##  3 2011-03-01 00:00:00         989.  581.                 273.             136. 
##  4 2011-04-01 00:00:00        1207.  662.                 343.             202. 
##  5 2011-05-01 00:00:00        1168.  652.                 279.             237. 
##  6 2011-06-01 00:00:00        1476.  852.                 351.             273. 
##  7 2011-07-01 00:00:00        1536.  746.                 319.             471. 
##  8 2011-08-01 00:00:00        3084. 1888.                 796.             400. 
##  9 2011-09-01 00:00:00         926.  458.                 293.             175. 
## 10 2011-10-01 00:00:00        1321.  609.                 399.             313. 
## # ... with 118 more rows, and 6 more variables: Kalimantan <dbl>,
## #   `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>
plot(datainflowperbulan$`Nusa Tenggara Barat`, type = "l", col = "steelblue")
lines(dataoutflowperbulan$`Nusa Tenggara Barat`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

NusaTenggaraBarattimeseries <- datainflowperbulan$`Nusa Tenggara Barat`
plot.ts(NusaTenggaraBarattimeseries , type = "l", col = "steelblue")

logNusaTenggaraBarat <- log(datainflowperbulan$`Nusa Tenggara Barat`)
plot.ts(logNusaTenggaraBarat)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Nusa Tenggara Barat

NusaTenggaraBaratinflowtimeseries <- ts(datainflowperbulan$`Nusa Tenggara Barat`, frequency=12, start=c(2011,1))
NusaTenggaraBaratinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   93.78277   82.11118  125.36647  124.05719  113.43034  105.25732
## 2012  550.63456  411.79246  244.91073  156.88303  263.80686  229.52634
## 2013 1113.47969  490.64519  357.22831  524.96469  378.32824  508.82852
## 2014  808.77394  531.51918  420.48442  354.48788  240.38495  414.09391
## 2015  962.09142  573.02164  450.75598  276.87117  375.99704  464.42822
## 2016 1123.09366  754.94601  676.78011  423.79516  486.91743  649.09273
## 2017 1108.70834  809.60080  644.85628  565.73828  617.42817  336.05230
## 2018 1351.53986  821.34930  444.08895  494.15633  532.57910 1549.84028
## 2019 1514.34160  804.55588  601.67056  549.64819  385.70710 1622.40191
## 2020 1840.24133  929.05494  598.86543  423.56340  394.49640  692.23920
## 2021 1609.07920  738.30793  543.76915  325.09127  881.09583  645.78836
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  136.73890  136.40946  291.55112  183.60560  220.86671  189.44302
## 2012  389.53902  473.19342  215.60404  233.79147  347.46184  158.55025
## 2013  479.12111 1935.84521  263.64276  381.05598  370.11745  220.57360
## 2014  326.42429  986.00397  365.68409  437.38306  391.70022  427.42686
## 2015 1021.47948  599.02950  307.26066  462.71723  508.13725  283.23353
## 2016 1477.17878  742.81404  550.50921  574.05571  672.28981  710.26876
## 2017 1685.20463  622.68154  393.99464  558.70249  591.17135  449.34352
## 2018 1141.90311  826.88137  395.66821  530.38019  715.52211  336.12099
## 2019  805.56379  748.76408  608.81277  712.49160  750.21398  510.10587
## 2020  721.18810  567.66903  635.64928  317.05116  625.17567  261.94790
## 2021  452.45260  692.84977
NusaTenggaraBaratoutflowtimeseries <- ts(dataoutflowperbulan$`Nusa Tenggara Barat`, frequency=12, start=c(2011,1))
NusaTenggaraBaratoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  193.55380   40.88791  272.56833  343.42689  279.02851  350.64136
## 2012  274.80607  138.55052  270.81908  454.44237  290.99300  512.02921
## 2013  498.78734  820.48116 1020.66984  693.31859 1081.19483  876.62028
## 2014  215.66256  259.41935  358.25391  513.89463  601.15931  486.22217
## 2015  300.40186  270.34695  346.92749  783.92348  553.87002  620.72835
## 2016  378.55925  204.05382  458.25515  723.65922  805.05191 1781.28338
## 2017  252.45080  337.24735  710.17852  808.51428 1109.96304 1998.07503
## 2018  206.83369  398.28054  812.67400  898.95897 1370.61853 1794.47538
## 2019  121.33645  523.76697  710.95053 1467.19223 2777.37767  234.92824
## 2020  291.35553  303.87264  631.37940  931.78677 1720.36178  532.73791
## 2021   92.33143  168.91659  512.21525 1778.40357 1560.96801  323.56386
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  319.46650  795.68413  292.95300  399.00086  228.58627  302.92930
## 2012  284.94519  639.09306  352.80700  448.71892  346.30646  365.62585
## 2013 2363.60890 1335.85715  503.83641  494.21692  347.26947  591.72633
## 2014  940.35037  340.44524  518.43573  557.55377  447.41898  380.69617
## 2015 1270.05493  366.60595  618.53536  468.11892  510.33991  618.05357
## 2016  542.60450  483.29275  767.97220  639.89517  673.35602  691.18240
## 2017  253.63960  837.52854  663.29932  398.54667  642.18566  758.30636
## 2018  363.05172  472.68561  701.58368  620.38579  718.15401  913.58197
## 2019  511.45829  574.14392  656.62323  815.34692  612.29106 1282.30868
## 2020  486.22795  668.97329  581.70800 1251.01957  400.11484  746.25085
## 2021  498.85536  286.36848
plot.ts(NusaTenggaraBaratinflowtimeseries)

plot.ts(NusaTenggaraBaratoutflowtimeseries)

NusaTenggaraBaratintimeseriescomponents <- decompose(NusaTenggaraBaratinflowtimeseries)
NusaTenggaraBaratintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2012  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2013  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2014  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2015  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2016  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2017  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2018  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2019  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2020  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
## 2021  591.59992   76.24692 -117.30139 -193.90475 -206.89023  100.99765
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2012  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2013  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2014  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2015  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2016  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2017  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2018  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2019  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2020  240.99680  177.44396 -188.12502 -154.42024  -78.31430 -248.32933
## 2021  240.99680  177.44396
NusaTenggaraBaratouttimeseriescomponents <- decompose(NusaTenggaraBaratoutflowtimeseries)
NusaTenggaraBaratouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2012 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2013 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2014 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2015 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2016 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2017 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2018 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2019 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2020 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
## 2021 -398.703916 -318.088130  -65.725125  146.280474  478.752890  312.185235
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2012   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2013   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2014   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2015   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2016   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2017   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2018   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2019   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2020   97.389362   15.167839  -72.019715  -35.492355 -163.490922    3.744364
## 2021   97.389362   15.167839
plot(NusaTenggaraBaratintimeseriescomponents$seasonal,type = "l", col = "steelblue")
lines(NusaTenggaraBaratouttimeseriescomponents$seasonal,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

plot(NusaTenggaraBaratintimeseriescomponents$trend,type = "l", col = "green")
lines(NusaTenggaraBaratouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))

plot(NusaTenggaraBaratintimeseriescomponents$random ,type = "l", col = "green")
lines(NusaTenggaraBaratouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))

plot(NusaTenggaraBaratintimeseriescomponents$figure ,type = "l", col = "green")
lines(NusaTenggaraBaratouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8