Universitas : UIN MAULANA MALIK IBRAHIM MALANG

Jurusan : Teknik Informatika

Pengertian Inflow dan Outflow pada Uang Kartal

Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.

Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara sesama dan non-residen perusahaan, jika orang tua pengendali utama adalah penduduk. Investasi langsung keluar juga disebut investasi langsung di luar negeri.

library(readxl)
datainflow <- read_excel(path = "InflowTahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 12
##    Keterangan ...2  `Bali Nusra`   Bali `Nusa Tenggara Barat` `Nusa Tenggara T~`
##         <dbl> <lgl>        <dbl>  <dbl>                 <dbl>              <dbl>
##  1         NA NA             NA     NA                    NA                 NA 
##  2       2011 NA          10322.  6394.                 1803.              2125.
##  3       2012 NA          14613.  8202.                 3676.              2735.
##  4       2013 NA          17512.  5066.                 7024.              5422.
##  5       2014 NA          20807. 11590.                 5704.              3512.
##  6       2015 NA          23008. 13072.                 6285.              3651.
##  7       2016 NA          30965. 17914.                 8842.              4210.
##  8       2017 NA          30797. 16962.                 8383.              5452.
##  9       2018 NA          33866. 18610.                 9140.              6116.
## 10       2019 NA          38116. 21422.                 9614.              7080.
## 11       2020 NA          29400. 14735.                 8007.              6657.
## 12       2021 NA          18892.  7505.                 5888.              5498.
## # ... with 6 more variables: Kalimantan <dbl>, `Kalimantan Barat` <dbl>,
## #   `Kalimantan Tengah` <dbl>, `Kalimantan Selatan` <dbl>,
## #   `Kalimantan Timur` <dbl>, `Kalimantan Utara` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "OutflowTahun.xlsx")
dataoutflow
## # A tibble: 11 x 10
##    Tahun   Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
##    <dbl>  <dbl>               <dbl>            <dbl>      <dbl>            <dbl>
##  1  2011  8912.               3819.            3693.     29535.            5221.
##  2  2012 10782.               4379.            4260.     33444.            5698.
##  3  2013  7248.              10628.           11524.     44929.            6011.
##  4  2014 13104.               5620.            4668.     38772.            6764.
##  5  2015 14471.               6728.            5530.     41945.            8486.
##  6  2016 18140.               8149.            5652.     42179.            9402.
##  7  2017 17822.               8770.            7569.     50404.           11132.
##  8  2018 20434.               9271.            7555.     53989.           12278.
##  9  2019 20654.              10288.            7738.     57579.           13768.
## 10  2020 14323.               8546.            8356.     52060.           13501.
## 11  2021  6531.               5222.            3472.     30291.            6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>
dataoutflow
## # A tibble: 11 x 10
##    Tahun   Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
##    <dbl>  <dbl>               <dbl>            <dbl>      <dbl>            <dbl>
##  1  2011  8912.               3819.            3693.     29535.            5221.
##  2  2012 10782.               4379.            4260.     33444.            5698.
##  3  2013  7248.              10628.           11524.     44929.            6011.
##  4  2014 13104.               5620.            4668.     38772.            6764.
##  5  2015 14471.               6728.            5530.     41945.            8486.
##  6  2016 18140.               8149.            5652.     42179.            9402.
##  7  2017 17822.               8770.            7569.     50404.           11132.
##  8  2018 20434.               9271.            7555.     53989.           12278.
##  9  2019 20654.              10288.            7738.     57579.           13768.
## 10  2020 14323.               8546.            8356.     52060.           13501.
## 11  2021  6531.               5222.            3472.     30291.            6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>

1. Visualisasi Prediksi Data Inflow Uang Kartal Kalimantan Tengah setiap periode

plot(datainflow$Keterangan,datainflow$`Kalimantan Tengah`,type = "l", col= "steelblue")

2. Visualisasi Prediksi Data outflow Uang Kartal Kalimantan Tengah setiap periode

plot(dataoutflow$Tahun,dataoutflow$`Kalimantan Tengah`,type = "l", col= "red")

3. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Kalimantan Tengah Setiap Periode

plot(datainflow$Keterangan,datainflow$`Kalimantan Tengah`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Kalimantan Tengah`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("green","steelblue"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Kalimantan Tengah Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "InflowBulan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 12
##    Bulan               ...2  `Bali Nusra`  Bali `Nusa Tenggara Barat`
##    <dttm>              <lgl>        <dbl> <dbl>                 <dbl>
##  1 2011-01-01 00:00:00 NA            912.  463.                  93.8
##  2 2011-02-01 00:00:00 NA            591.  401.                  82.1
##  3 2011-03-01 00:00:00 NA            869.  532.                 125. 
##  4 2011-04-01 00:00:00 NA            709.  431.                 124. 
##  5 2011-05-01 00:00:00 NA            754.  474.                 113. 
##  6 2011-06-01 00:00:00 NA            633.  393.                 105. 
##  7 2011-07-01 00:00:00 NA            856.  585.                 137. 
##  8 2011-08-01 00:00:00 NA            607.  328.                 136. 
##  9 2011-09-01 00:00:00 NA           1965. 1434.                 292. 
## 10 2011-10-01 00:00:00 NA            874.  522.                 184. 
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## #   Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>
dataoutflowperbulan <- read_excel(path = "OutflowBulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    Bulan               ...2  `Bali Nusra`  Bali `Nusa Tenggara Barat`
##    <dttm>              <lgl>        <dbl> <dbl>                 <dbl>
##  1 2011-01-01 00:00:00 NA            912.  463.                  93.8
##  2 2011-02-01 00:00:00 NA            591.  401.                  82.1
##  3 2011-03-01 00:00:00 NA            869.  532.                 125. 
##  4 2011-04-01 00:00:00 NA            709.  431.                 124. 
##  5 2011-05-01 00:00:00 NA            754.  474.                 113. 
##  6 2011-06-01 00:00:00 NA            633.  393.                 105. 
##  7 2011-07-01 00:00:00 NA            856.  585.                 137. 
##  8 2011-08-01 00:00:00 NA            607.  328.                 136. 
##  9 2011-09-01 00:00:00 NA           1965. 1434.                 292. 
## 10 2011-10-01 00:00:00 NA            874.  522.                 184. 
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## #   Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 11
##    Bulan               `Bali Nusra`  Bali `Nusa Tenggara Barat` `Nusa Tenggara~`
##    <dttm>                     <dbl> <dbl>                 <dbl>            <dbl>
##  1 2011-01-01 00:00:00         423.  177.                 194.              51.9
##  2 2011-02-01 00:00:00         482.  353.                  40.9             87.6
##  3 2011-03-01 00:00:00         989.  581.                 273.             136. 
##  4 2011-04-01 00:00:00        1207.  662.                 343.             202. 
##  5 2011-05-01 00:00:00        1168.  652.                 279.             237. 
##  6 2011-06-01 00:00:00        1476.  852.                 351.             273. 
##  7 2011-07-01 00:00:00        1536.  746.                 319.             471. 
##  8 2011-08-01 00:00:00        3084. 1888.                 796.             400. 
##  9 2011-09-01 00:00:00         926.  458.                 293.             175. 
## 10 2011-10-01 00:00:00        1321.  609.                 399.             313. 
## # ... with 118 more rows, and 6 more variables: Kalimantan <dbl>,
## #   `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## #   `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## #   `Kalimantan Utara` <dbl>
plot(datainflowperbulan$`Kalimantan Tengah`, type = "l", col = "steelblue")
lines(dataoutflowperbulan$`Kalimantan Tengah`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

KalimantanTengahtimeseries <- datainflowperbulan$`Kalimantan Tengah`
plot.ts(KalimantanTengahtimeseries , type = "l", col = "steelblue")

logKalimantanTengah <- log(datainflowperbulan$`Kalimantan Tengah`)
plot.ts(logKalimantanTengah)

5. Visualisasi Prediksi Data Inflow-Outflow Time Series Uang Kartal di Kalimantan Tengah

KalimantanTengahinflowtimeseries <- ts(datainflowperbulan$`Kalimantan Tengah`, frequency=12, start=c(2011,1))
KalimantanTengahinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  104.71966   55.78300   64.28767   45.19356   45.99100   74.64779
## 2012  200.06448  102.71009   62.69569   85.78396   71.78199   74.40131
## 2013 3260.09114 1844.80157 1692.10915 1863.09219 1682.08817 1470.77087
## 2014  343.58319  113.46686   91.14619   67.97726  101.82439  109.95170
## 2015  505.84765  247.81308  227.75714  166.65411  224.50076  290.86845
## 2016  615.48752  248.94332  301.05825  179.74887  227.53505  163.75339
## 2017  615.64887  290.03319  287.84964  285.12107  269.17047   59.70408
## 2018  614.70999  265.27654  218.92177  218.32437  175.13672  706.46821
## 2019  704.79912  293.79454  334.74767  338.00939  101.96037  694.81639
## 2020  599.16605  334.57580  265.92791  295.41042  242.40389  555.35972
## 2021  897.47547  385.60604  342.62656  195.70149  703.86907  369.18861
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   34.20407   24.01165  212.53945   29.67208   73.33386   14.43373
## 2012   89.07459  123.79065   72.76016  120.00007  102.77912   28.99388
## 2013 1516.74876 5562.79685  136.50999  143.26117  103.04464   52.61722
## 2014   43.70730  432.68781  176.28005  178.22549  149.29007   79.26257
## 2015  661.93813  281.15367  324.12220  245.39273  243.58708  127.26031
## 2016  718.34960  256.10090  250.35439  260.45869  239.35862  233.14767
## 2017  559.23596  335.15250  291.21939  318.95467  243.93971   99.16539
## 2018  377.91376  292.09641  408.36407  341.38267  291.04323  173.49785
## 2019  344.57313  343.42400  395.30119  356.28819  298.37122  179.15194
## 2020  380.22179  428.16861  280.71102  308.13016  322.66512  165.52683
## 2021  285.83449  353.90169
KalimantanTengahoutflowtimeseries <- ts(dataoutflowperbulan$`Kalimantan Tengah`, frequency=12, start=c(2011,1))
KalimantanTengahoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  166.96487  317.69003  374.58505  590.86801  558.62426  656.83822
## 2012  188.36824  521.86580  606.59282  645.35250  621.03955  736.53471
## 2013  334.06309  934.95441 1176.79359  749.13655 1669.93701 1504.56359
## 2014   50.59388  418.40019  509.53716  615.06420  674.04111  716.05013
## 2015  103.78520  457.98418  542.72339  943.54883  863.42877  966.28878
## 2016  248.09937  490.99534  641.79237  825.50731  902.54396 1685.00615
## 2017  279.33173  662.17443  824.17579  761.64649 1062.90541 1953.69290
## 2018  208.48642  694.31397  879.66655 1090.97217 1410.88233 1894.72089
## 2019  179.86746  829.42215  978.14046 1086.41005 2344.68346  267.78383
## 2020  300.85870  802.71495 1056.72309 1245.36253 1475.81216  527.43374
## 2021  171.52657  517.41353  792.10084 1268.27183 1706.75174  830.40995
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  680.86214 1030.23400  174.92215  598.40555  609.19326 1090.75135
## 2012  586.90198  888.35905  338.94427  687.60373  729.47190 1189.55864
## 2013 3436.60987 1926.60961  567.89163  685.52417  858.43876 1576.44228
## 2014 1441.03987  222.64601  630.01354  902.81476  643.41887 1522.21460
## 2015 1492.04480  589.26756  857.11664  810.90558  970.77420 1592.32174
## 2016  600.50628  673.40108  734.64722  809.09298 1001.78663 1517.83930
## 2017  410.52740  955.58965  728.82953  972.18298 1183.97556 1900.39704
## 2018  862.30857  966.64112  906.45189 1113.90573 1100.21645 1911.32636
## 2019 1168.81399  970.44119  821.55275 1034.17156 1133.60516 2076.32208
## 2020  947.76957  901.80664  879.88716 1256.29582  969.59546 2154.03518
## 2021  942.66711  841.68594
plot.ts(KalimantanTengahinflowtimeseries)

plot.ts(KalimantanTengahoutflowtimeseries)

KalimantanTengahintimeseriescomponents <- decompose(KalimantanTengahinflowtimeseries)
KalimantanTengahintimeseriescomponents$seasonal
##               Jan          Feb          Mar          Apr          May
## 2011  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2012  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2013  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2014  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2015  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2016  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2017  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2018  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2019  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2020  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
## 2021  424.6520534   -0.7561956  -31.6108601  -31.2258212  -78.5270515
##               Jun          Jul          Aug          Sep          Oct
## 2011   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2012   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2013   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2014   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2015   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2016   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2017   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2018   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2019   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2020   34.0293887   80.1720969  410.8362816 -144.8198416 -171.2463046
## 2021   34.0293887   80.1720969  410.8362816                          
##               Nov          Dec
## 2011 -198.0499023 -293.4538435
## 2012 -198.0499023 -293.4538435
## 2013 -198.0499023 -293.4538435
## 2014 -198.0499023 -293.4538435
## 2015 -198.0499023 -293.4538435
## 2016 -198.0499023 -293.4538435
## 2017 -198.0499023 -293.4538435
## 2018 -198.0499023 -293.4538435
## 2019 -198.0499023 -293.4538435
## 2020 -198.0499023 -293.4538435
## 2021
KalimantanTengahouttimeseriescomponents <- decompose(KalimantanTengahoutflowtimeseries)
KalimantanTengahouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2012 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2013 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2014 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2015 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2016 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2017 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2018 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2019 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2020 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
## 2021 -724.799230 -298.578641 -121.371284  -44.696866  290.841388  198.339245
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2012  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2013  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2014  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2015  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2016  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2017  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2018  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2019  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2020  254.353864    3.263818 -247.781924  -29.279481   -3.928521  723.637631
## 2021  254.353864    3.263818
plot(KalimantanTengahintimeseriescomponents$seasonal,type = "l", col = "steelblue")
lines(KalimantanTengahouttimeseriescomponents$seasonal,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))

plot(KalimantanTengahintimeseriescomponents$trend,type = "l", col = "green")
lines(KalimantanTengahouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))

plot(KalimantanTengahintimeseriescomponents$random ,type = "l", col = "green")
lines(KalimantanTengahouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))

plot(KalimantanTengahintimeseriescomponents$figure ,type = "l", col = "green")
lines(KalimantanTengahouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))

Daftar Pustaka

https://ejurnal.its.ac.id/index.php/sains_seni/article/download/12401/2433#

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/pengelolaan-rupiah/default.aspx8