Universitas : UIN MAULANA MALIK IBRAHIM MALANG
Jurusan : Teknik Informatika
Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.
Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara sesama dan non-residen perusahaan, jika orang tua pengendali utama adalah penduduk. Investasi langsung keluar juga disebut investasi langsung di luar negeri.
library(readxl)
datainflow <- read_excel(path = "InflowTahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 12
## Keterangan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara T~`
## <dbl> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 NA NA NA NA NA NA
## 2 2011 NA 10322. 6394. 1803. 2125.
## 3 2012 NA 14613. 8202. 3676. 2735.
## 4 2013 NA 17512. 5066. 7024. 5422.
## 5 2014 NA 20807. 11590. 5704. 3512.
## 6 2015 NA 23008. 13072. 6285. 3651.
## 7 2016 NA 30965. 17914. 8842. 4210.
## 8 2017 NA 30797. 16962. 8383. 5452.
## 9 2018 NA 33866. 18610. 9140. 6116.
## 10 2019 NA 38116. 21422. 9614. 7080.
## 11 2020 NA 29400. 14735. 8007. 6657.
## 12 2021 NA 18892. 7505. 5888. 5498.
## # ... with 6 more variables: Kalimantan <dbl>, `Kalimantan Barat` <dbl>,
## # `Kalimantan Tengah` <dbl>, `Kalimantan Selatan` <dbl>,
## # `Kalimantan Timur` <dbl>, `Kalimantan Utara` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "OutflowTahun.xlsx")
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflow$Keterangan,datainflow$`Kalimantan Selatan`,type = "l", col= "steelblue")
plot(dataoutflow$Tahun,dataoutflow$`Kalimantan Selatan`,type = "l", col= "red")
plot(datainflow$Keterangan,datainflow$`Kalimantan Selatan`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Kalimantan Selatan`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("green","steelblue"))
library(readxl)
datainflowperbulan <- read_excel(path = "InflowBulan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan <- read_excel(path = "OutflowBulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 11
## Bulan `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara~`
## <dttm> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 423. 177. 194. 51.9
## 2 2011-02-01 00:00:00 482. 353. 40.9 87.6
## 3 2011-03-01 00:00:00 989. 581. 273. 136.
## 4 2011-04-01 00:00:00 1207. 662. 343. 202.
## 5 2011-05-01 00:00:00 1168. 652. 279. 237.
## 6 2011-06-01 00:00:00 1476. 852. 351. 273.
## 7 2011-07-01 00:00:00 1536. 746. 319. 471.
## 8 2011-08-01 00:00:00 3084. 1888. 796. 400.
## 9 2011-09-01 00:00:00 926. 458. 293. 175.
## 10 2011-10-01 00:00:00 1321. 609. 399. 313.
## # ... with 118 more rows, and 6 more variables: Kalimantan <dbl>,
## # `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflowperbulan$`Kalimantan Selatan`, type = "l", col = "steelblue")
lines(dataoutflowperbulan$`Kalimantan Selatan`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
KalimantanSelatantimeseries <- datainflowperbulan$`Kalimantan Selatan`
plot.ts(KalimantanSelatantimeseries , type = "l", col = "steelblue")
logKalimantanSelatan <- log(datainflowperbulan$`Kalimantan Selatan`)
plot.ts(logKalimantanSelatan)
KalimantanSelataninflowtimeseries <- ts(datainflowperbulan$`Kalimantan Selatan`, frequency=12, start=c(2011,1))
KalimantanSelataninflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 435.9231 233.8043 499.1192 248.6236 364.1507 377.7424 420.8614
## 2012 1017.1029 608.9991 502.1998 501.0070 532.5363 436.0847 746.8760
## 2013 385.6956 152.3648 125.1875 206.8840 241.2505 135.5587 101.2874
## 2014 1193.4702 861.6307 610.4029 649.3939 577.0691 654.3690 347.4679
## 2015 1308.3016 767.8238 573.1010 654.6699 655.6017 717.3519 1168.0129
## 2016 1593.7013 811.7151 648.9879 600.8379 675.1654 460.3656 1721.9711
## 2017 1633.8799 784.1231 924.8374 796.4793 1040.5450 527.4119 2185.9746
## 2018 1833.8394 905.8473 816.1826 971.0926 918.5270 1682.4910 1645.6342
## 2019 2024.0948 940.1100 847.3525 1042.6128 854.3608 2298.3272 1287.2827
## 2020 2201.9387 1037.8126 748.4777 650.9558 518.9551 1606.9733 869.4647
## 2021 1899.2428 1204.1107 1051.9514 741.4424 1492.9044 1309.8859 993.5095
## Aug Sep Oct Nov Dec
## 2011 268.3844 1200.0811 453.6909 557.9203 308.8282
## 2012 815.5548 819.9235 443.2733 584.2660 303.1428
## 2013 644.3126 587.7729 697.8160 591.7549 355.9105
## 2014 1923.4446 848.8139 832.9910 690.0823 424.7200
## 2015 1072.7254 637.9209 755.9631 746.8524 500.1152
## 2016 839.9792 925.0320 841.6619 762.6505 927.4038
## 2017 1053.9624 1011.0828 948.0112 865.3617 643.7222
## 2018 1099.2699 1133.8923 1016.7645 909.7523 670.4089
## 2019 1210.2265 1140.6141 1280.9129 1049.5325 486.2793
## 2020 784.0645 1152.7185 626.4177 1254.8229 300.2835
## 2021 962.0976
KalimantanSelatanoutflowtimeseries <- ts(dataoutflowperbulan$`Kalimantan Selatan`, frequency=12, start=c(2011,1))
KalimantanSelatanoutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 30.92676 217.58423 331.32386 349.56174 338.01996 442.51594
## 2012 78.01497 251.83107 418.87169 320.11813 425.22442 617.59797
## 2013 53.28767 173.17133 229.16928 159.83154 564.48615 283.19700
## 2014 205.72818 297.56403 516.77520 462.29009 382.51735 459.45448
## 2015 145.86699 280.42443 375.57112 524.22672 390.50958 765.86225
## 2016 119.98024 321.23994 292.72978 483.17704 707.14356 1745.73473
## 2017 220.74825 470.94490 677.64512 803.43306 894.74852 2335.48989
## 2018 119.70985 411.30635 858.73024 569.53375 1311.73154 1745.23677
## 2019 156.83052 402.14036 735.27418 1026.22248 2307.99246 152.81024
## 2020 224.29025 440.09690 646.45724 823.77876 1415.65499 193.26948
## 2021 190.78066 225.12346 535.54389 1199.73199 1406.42748 434.94900
## Jul Aug Sep Oct Nov Dec
## 2011 448.01446 1334.56541 92.18066 396.73570 385.87217 758.37575
## 2012 445.67986 1000.58272 261.36103 475.96294 392.40476 892.19571
## 2013 651.41614 444.49077 318.61750 503.10060 633.13997 1032.20846
## 2014 1415.42457 330.56652 349.73945 507.07185 479.52777 858.19636
## 2015 1404.93564 267.48039 458.42324 540.49000 665.82226 935.00464
## 2016 600.40955 310.76644 397.14109 478.93165 692.11655 1274.95161
## 2017 274.67225 722.23003 431.55757 688.71465 823.43364 1200.64251
## 2018 343.85731 554.01268 415.87756 561.26903 631.11928 953.91478
## 2019 825.93749 641.39639 462.88459 710.51746 804.34719 1001.84450
## 2020 682.30480 352.21086 694.37750 939.31635 760.47623 1049.55259
## 2021 730.85906 468.65727
plot.ts(KalimantanSelataninflowtimeseries)
plot.ts(KalimantanSelatanoutflowtimeseries)
KalimantanSelatanintimeseriescomponents <- decompose(KalimantanSelataninflowtimeseries)
KalimantanSelatanintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2012 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2013 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2014 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2015 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2016 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2017 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2018 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2019 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2020 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## 2021 635.61778 -71.33172 -215.18486 -184.96482 -195.64892 79.48896
## Jul Aug Sep Oct Nov Dec
## 2011 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2012 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2013 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2014 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2015 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2016 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2017 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2018 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2019 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2020 218.43137 130.00039 98.24674 -62.14508 -57.35231 -375.15753
## 2021 218.43137 130.00039
KalimantanSelatanouttimeseriescomponents <- decompose(KalimantanSelatanoutflowtimeseries)
KalimantanSelatanouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2012 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2013 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2014 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2015 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2016 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2017 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2018 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2019 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2020 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## 2021 -468.949094 -290.659144 -77.279644 -35.758681 318.594760 304.250690
## Jul Aug Sep Oct Nov Dec
## 2011 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2012 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2013 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2014 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2015 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2016 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2017 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2018 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2019 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2020 108.326682 -5.805776 -214.302308 -26.700598 11.920287 376.362827
## 2021 108.326682 -5.805776
plot(KalimantanSelatanintimeseriescomponents$seasonal,type = "l", col = "steelblue")
lines(KalimantanSelatanouttimeseriescomponents$seasonal,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
plot(KalimantanSelatanintimeseriescomponents$trend,type = "l", col = "green")
lines(KalimantanSelatanouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(KalimantanSelatanintimeseriescomponents$random ,type = "l", col = "green")
lines(KalimantanSelatanouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(KalimantanSelatanintimeseriescomponents$figure ,type = "l", col = "green")
lines(KalimantanSelatanouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))