Universitas : UIN MAULANA MALIK IBRAHIM MALANG
Jurusan : Teknik Informatika
Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.
Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara sesama dan non-residen perusahaan, jika orang tua pengendali utama adalah penduduk. Investasi langsung keluar juga disebut investasi langsung di luar negeri.
library(readxl)
datainflow <- read_excel(path = "InflowTahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 12
## Keterangan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara T~`
## <dbl> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 NA NA NA NA NA NA
## 2 2011 NA 10322. 6394. 1803. 2125.
## 3 2012 NA 14613. 8202. 3676. 2735.
## 4 2013 NA 17512. 5066. 7024. 5422.
## 5 2014 NA 20807. 11590. 5704. 3512.
## 6 2015 NA 23008. 13072. 6285. 3651.
## 7 2016 NA 30965. 17914. 8842. 4210.
## 8 2017 NA 30797. 16962. 8383. 5452.
## 9 2018 NA 33866. 18610. 9140. 6116.
## 10 2019 NA 38116. 21422. 9614. 7080.
## 11 2020 NA 29400. 14735. 8007. 6657.
## 12 2021 NA 18892. 7505. 5888. 5498.
## # ... with 6 more variables: Kalimantan <dbl>, `Kalimantan Barat` <dbl>,
## # `Kalimantan Tengah` <dbl>, `Kalimantan Selatan` <dbl>,
## # `Kalimantan Timur` <dbl>, `Kalimantan Utara` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "OutflowTahun.xlsx")
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflow$Keterangan,datainflow$`Kalimantan Utara`,type = "l", col= "steelblue")
plot(dataoutflow$Tahun,dataoutflow$`Kalimantan Utara`,type = "l", col= "red")
plot(datainflow$Keterangan,datainflow$`Kalimantan Utara`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Kalimantan Utara`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("green","steelblue"))
library(readxl)
datainflowperbulan <- read_excel(path = "InflowBulan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan <- read_excel(path = "OutflowBulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 11
## Bulan `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara~`
## <dttm> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 423. 177. 194. 51.9
## 2 2011-02-01 00:00:00 482. 353. 40.9 87.6
## 3 2011-03-01 00:00:00 989. 581. 273. 136.
## 4 2011-04-01 00:00:00 1207. 662. 343. 202.
## 5 2011-05-01 00:00:00 1168. 652. 279. 237.
## 6 2011-06-01 00:00:00 1476. 852. 351. 273.
## 7 2011-07-01 00:00:00 1536. 746. 319. 471.
## 8 2011-08-01 00:00:00 3084. 1888. 796. 400.
## 9 2011-09-01 00:00:00 926. 458. 293. 175.
## 10 2011-10-01 00:00:00 1321. 609. 399. 313.
## # ... with 118 more rows, and 6 more variables: Kalimantan <dbl>,
## # `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflowperbulan$`Kalimantan Utara`, type = "l", col = "steelblue")
lines(dataoutflowperbulan$`Kalimantan Utara`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
KalimantanUtaratimeseries <- datainflowperbulan$`Kalimantan Utara`
plot.ts(KalimantanUtaratimeseries , type = "l", col = "steelblue")
logKalimantanUtara <- log(datainflowperbulan$`Kalimantan Utara`)
plot.ts(logKalimantanUtara)
KalimantanUtarainflowtimeseries <- ts(datainflowperbulan$`Kalimantan Utara`, frequency=12, start=c(2011,1))
KalimantanUtarainflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## 2012 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## 2013 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## 2014 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## 2015 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## 2016 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## 2017 0.00000 0.00000 0.00000 0.00000 17.96158 13.75579 95.91541
## 2018 174.11300 64.84647 70.92668 52.60056 46.62695 187.39100 122.33860
## 2019 162.42994 62.96498 44.90811 59.05614 44.72298 286.68414 67.74340
## 2020 285.54912 107.13178 72.02208 32.30300 94.25600 179.66090 103.53773
## 2021 409.60604 170.38744 146.70954 148.67880 286.59420 204.94956 163.06608
## Aug Sep Oct Nov Dec
## 2011 0.00000 0.00000 0.00000 0.00000 0.00000
## 2012 0.00000 0.00000 0.00000 0.00000 0.00000
## 2013 0.00000 0.00000 0.00000 0.00000 0.00000
## 2014 0.00000 0.00000 0.00000 0.00000 0.00000
## 2015 0.00000 0.00000 0.00000 0.00000 0.00000
## 2016 0.00000 0.00000 0.00000 0.00000 0.00000
## 2017 30.00940 56.64839 46.61159 52.03657 28.46708
## 2018 51.54898 41.82854 36.46858 44.38170 23.59408
## 2019 82.03860 170.07789 179.30134 175.09017 137.20712
## 2020 124.19961 123.39072 61.11577 135.42532 43.31592
## 2021 140.69873
KalimantanUtaraoutflowtimeseries <- ts(dataoutflowperbulan$`Kalimantan Utara`, frequency=12, start=c(2011,1))
KalimantanUtaraoutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2012 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2013 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2014 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2015 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2016 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2017 0.000000 0.000000 0.000000 0.000000 5.119011 246.156049
## 2018 21.008828 60.034740 138.021099 153.807490 259.968737 569.053524
## 2019 77.085773 78.330023 106.801568 248.832003 613.235229 29.209710
## 2020 95.351840 106.628715 173.244679 277.200492 383.823708 104.266497
## 2021 112.712430 124.489211 204.121347 342.138231 416.753104 202.968069
## Jul Aug Sep Oct Nov Dec
## 2011 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2012 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2013 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2014 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2015 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2016 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2017 18.682123 154.628033 114.952701 199.262928 205.099541 563.191658
## 2018 104.045686 163.751548 114.203237 190.138457 239.338260 457.640197
## 2019 169.896454 186.931547 253.272651 296.507943 382.803226 652.686582
## 2020 210.914225 226.039764 193.439557 264.907849 234.822526 555.828067
## 2021 289.305556 267.027266
plot.ts(KalimantanUtarainflowtimeseries)
plot.ts(KalimantanUtaraoutflowtimeseries)
KalimantanUtaraintimeseriescomponents <- decompose(KalimantanUtarainflowtimeseries)
KalimantanUtaraintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2012 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2013 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2014 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2015 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2016 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2017 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2018 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2019 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2020 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## 2021 57.015598 -6.886833 -14.207666 -19.939325 -14.226147 36.493493
## Jul Aug Sep Oct Nov Dec
## 2011 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2012 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2013 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2014 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2015 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2016 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2017 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2018 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2019 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2020 3.163097 -9.427396 -0.333739 -8.409349 -1.879339 -21.362394
## 2021 3.163097 -9.427396
KalimantanUtaraouttimeseriescomponents <- decompose(KalimantanUtaraoutflowtimeseries)
KalimantanUtaraouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2012 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2013 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2014 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2015 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2016 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2017 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2018 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2019 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2020 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## 2021 -64.346941 -60.332613 -34.109851 -7.145981 55.241197 16.751788
## Jul Aug Sep Oct Nov Dec
## 2011 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2012 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2013 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2014 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2015 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2016 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2017 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2018 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2019 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2020 -32.179988 -10.387088 -17.304573 7.914248 15.876839 130.022962
## 2021 -32.179988 -10.387088
plot(KalimantanUtaraintimeseriescomponents$seasonal,type = "l", col = "steelblue")
lines(KalimantanUtaraouttimeseriescomponents$seasonal,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
plot(KalimantanUtaraintimeseriescomponents$trend,type = "l", col = "green")
lines(KalimantanUtaraouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(KalimantanUtaraintimeseriescomponents$random ,type = "l", col = "green")
lines(KalimantanUtaraouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(KalimantanUtaraintimeseriescomponents$figure ,type = "l", col = "green")
lines(KalimantanUtaraouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))