Universitas : UIN MAULANA MALIK IBRAHIM MALANG
Jurusan : Teknik Informatika
Inflow, disebut investasi sebagai langsung dalam ekonomi pelaporan, termasuk semua kewajiban dan aset yang ditransfer antara perusahaan investasi langsung penduduk dan investor langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara perusahaan yang bertempat tinggal dan yang tidak residen, jika orang tua pengendali utama adalah bukan penduduk.
Outflow, disebut sebagai investasi langsung di luar negeri, termasuk aset dan kewajiban yang ditransfer antara investor langsung penduduk dan perusahaan investasi langsung mereka. Ini juga mencakup transfer aset dan kewajiban antara sesama dan non-residen perusahaan, jika orang tua pengendali utama adalah penduduk. Investasi langsung keluar juga disebut investasi langsung di luar negeri.
library(readxl)
datainflow <- read_excel(path = "InflowTahun.xlsx")
## New names:
## * `` -> ...2
datainflow
## # A tibble: 12 x 12
## Keterangan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara T~`
## <dbl> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 NA NA NA NA NA NA
## 2 2011 NA 10322. 6394. 1803. 2125.
## 3 2012 NA 14613. 8202. 3676. 2735.
## 4 2013 NA 17512. 5066. 7024. 5422.
## 5 2014 NA 20807. 11590. 5704. 3512.
## 6 2015 NA 23008. 13072. 6285. 3651.
## 7 2016 NA 30965. 17914. 8842. 4210.
## 8 2017 NA 30797. 16962. 8383. 5452.
## 9 2018 NA 33866. 18610. 9140. 6116.
## 10 2019 NA 38116. 21422. 9614. 7080.
## 11 2020 NA 29400. 14735. 8007. 6657.
## 12 2021 NA 18892. 7505. 5888. 5498.
## # ... with 6 more variables: Kalimantan <dbl>, `Kalimantan Barat` <dbl>,
## # `Kalimantan Tengah` <dbl>, `Kalimantan Selatan` <dbl>,
## # `Kalimantan Timur` <dbl>, `Kalimantan Utara` <dbl>
library (readxl)
dataoutflow <- read_excel(path = "OutflowTahun.xlsx")
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflow
## # A tibble: 11 x 10
## Tahun Bali `Nusa Tenggara Ba~` `Nusa Tenggara~` Kalimantan `Kalimantan Ba~`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 8912. 3819. 3693. 29535. 5221.
## 2 2012 10782. 4379. 4260. 33444. 5698.
## 3 2013 7248. 10628. 11524. 44929. 6011.
## 4 2014 13104. 5620. 4668. 38772. 6764.
## 5 2015 14471. 6728. 5530. 41945. 8486.
## 6 2016 18140. 8149. 5652. 42179. 9402.
## 7 2017 17822. 8770. 7569. 50404. 11132.
## 8 2018 20434. 9271. 7555. 53989. 12278.
## 9 2019 20654. 10288. 7738. 57579. 13768.
## 10 2020 14323. 8546. 8356. 52060. 13501.
## 11 2021 6531. 5222. 3472. 30291. 6958.
## # ... with 4 more variables: `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflow$Keterangan,datainflow$`Kalimantan Timur`,type = "l", col= "steelblue")
plot(dataoutflow$Tahun,dataoutflow$`Kalimantan Timur`,type = "l", col= "red")
plot(datainflow$Keterangan,datainflow$`Kalimantan Timur`,type = "l", col= "steelblue")
lines(dataoutflow$Tahun,dataoutflow$`Kalimantan Timur`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("green","steelblue"))
library(readxl)
datainflowperbulan <- read_excel(path = "InflowBulan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan <- read_excel(path = "OutflowBulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
## Bulan ...2 `Bali Nusra` Bali `Nusa Tenggara Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 912. 463. 93.8
## 2 2011-02-01 00:00:00 NA 591. 401. 82.1
## 3 2011-03-01 00:00:00 NA 869. 532. 125.
## 4 2011-04-01 00:00:00 NA 709. 431. 124.
## 5 2011-05-01 00:00:00 NA 754. 474. 113.
## 6 2011-06-01 00:00:00 NA 633. 393. 105.
## 7 2011-07-01 00:00:00 NA 856. 585. 137.
## 8 2011-08-01 00:00:00 NA 607. 328. 136.
## 9 2011-09-01 00:00:00 NA 1965. 1434. 292.
## 10 2011-10-01 00:00:00 NA 874. 522. 184.
## # ... with 118 more rows, and 7 more variables: `Nusa Tenggara Timur` <dbl>,
## # Kalimantan <dbl>, `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 11
## Bulan `Bali Nusra` Bali `Nusa Tenggara Barat` `Nusa Tenggara~`
## <dttm> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 423. 177. 194. 51.9
## 2 2011-02-01 00:00:00 482. 353. 40.9 87.6
## 3 2011-03-01 00:00:00 989. 581. 273. 136.
## 4 2011-04-01 00:00:00 1207. 662. 343. 202.
## 5 2011-05-01 00:00:00 1168. 652. 279. 237.
## 6 2011-06-01 00:00:00 1476. 852. 351. 273.
## 7 2011-07-01 00:00:00 1536. 746. 319. 471.
## 8 2011-08-01 00:00:00 3084. 1888. 796. 400.
## 9 2011-09-01 00:00:00 926. 458. 293. 175.
## 10 2011-10-01 00:00:00 1321. 609. 399. 313.
## # ... with 118 more rows, and 6 more variables: Kalimantan <dbl>,
## # `Kalimantan Barat` <dbl>, `Kalimantan Tengah` <dbl>,
## # `Kalimantan Selatan` <dbl>, `Kalimantan Timur` <dbl>,
## # `Kalimantan Utara` <dbl>
plot(datainflowperbulan$`Kalimantan Timur`, type = "l", col = "steelblue")
lines(dataoutflowperbulan$`Kalimantan Timur`,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
KalimantanTimurtimeseries <- datainflowperbulan$`Kalimantan Timur`
plot.ts(KalimantanTimurtimeseries , type = "l", col = "steelblue")
logKalimantanTimur <- log(datainflowperbulan$`Kalimantan Timur`)
plot.ts(logKalimantanTimur)
KalimantanTimurinflowtimeseries <- ts(datainflowperbulan$`Kalimantan Timur`, frequency=12, start=c(2011,1))
KalimantanTimurinflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 386.8959 156.0572 327.5300 227.3215 259.4598 241.0772 209.0709
## 2012 813.4070 500.6319 350.5007 374.4735 419.0225 314.0501 404.2772
## 2013 1481.9062 748.0774 702.4110 603.9930 566.9668 577.5010 535.8822
## 2014 1324.2797 769.0908 609.2509 715.5751 480.4685 572.7389 317.5474
## 2015 1787.6819 846.2909 774.7626 654.3524 571.1234 613.4639 1590.8039
## 2016 1446.7594 957.0854 783.1885 678.5723 876.6097 536.9560 2079.3739
## 2017 1354.7299 891.1119 817.4353 726.6774 793.2949 355.3978 2179.7522
## 2018 1280.5636 789.4093 764.6919 881.9106 843.8006 2424.6150 1234.0321
## 2019 1516.7540 936.3101 861.4164 1115.6047 773.2035 2978.5227 1220.8372
## 2020 1631.3523 909.6022 646.9720 716.2299 807.6215 1658.0662 870.7932
## 2021 1943.7774 958.3480 905.2772 852.9136 1746.3150 1007.1073 786.9856
## Aug Sep Oct Nov Dec
## 2011 234.6546 1380.6184 296.2488 379.3212 194.9991
## 2012 1084.6745 579.8222 248.0938 371.1188 283.1429
## 2013 3112.1327 519.8297 494.8781 470.7488 300.4810
## 2014 1872.0443 611.8721 671.9655 576.6264 414.1527
## 2015 758.9619 618.2369 576.8371 466.6612 386.8918
## 2016 886.1318 775.5502 609.4078 665.2391 608.3375
## 2017 921.8936 902.6810 770.3086 709.0181 510.3760
## 2018 891.9402 833.8232 976.6633 743.6479 639.7601
## 2019 1108.3736 975.5682 1035.1930 861.6003 607.9922
## 2020 786.0973 859.7558 578.4327 780.0292 367.3676
## 2021 713.3462
KalimantanTimuroutflowtimeseries <- ts(dataoutflowperbulan$`Kalimantan Timur`, frequency=12, start=c(2011,1))
KalimantanTimuroutflowtimeseries
## Jan Feb Mar Apr May Jun Jul
## 2011 105.9584 183.1731 709.0119 861.9188 850.8895 893.8170 978.8524
## 2012 141.2637 447.3704 871.3136 950.4211 1144.6693 1172.7716 1263.9854
## 2013 458.9434 592.9759 1098.7873 975.5426 1260.1516 1273.3499 3482.4698
## 2014 476.5567 490.5591 1245.1557 1120.4022 1199.6649 1162.3492 3927.0262
## 2015 295.5754 623.2929 973.2470 1348.7651 1142.1460 1678.3206 3409.1998
## 2016 264.0031 749.6513 735.6124 1139.1516 1410.0316 3186.7023 1144.4938
## 2017 689.1725 862.2065 1291.8852 1238.8607 1352.2792 3801.5073 465.3724
## 2018 334.8694 925.5199 1365.6305 1244.3834 2516.1295 3018.9876 909.1610
## 2019 575.9478 978.4527 1253.5146 1618.2094 4740.3074 328.8598 1280.6878
## 2020 575.0570 770.9608 1165.8999 1376.6102 2521.2020 396.3374 1099.4440
## 2021 117.3321 751.8656 870.9665 1952.6925 2309.5234 1037.9313 1119.2996
## Aug Sep Oct Nov Dec
## 2011 2853.7373 258.1347 962.8278 1111.9943 2567.1792
## 2012 2345.2061 420.0458 1324.9692 1410.1386 2933.5597
## 2013 1668.2297 964.4201 1417.6193 1661.6678 3596.7990
## 2014 224.3035 1069.6359 1667.7380 1287.4784 3526.7232
## 2015 408.7450 1046.2819 1227.4938 1492.9202 2868.4423
## 2016 871.6023 1270.6361 979.0426 1258.9000 2211.3448
## 2017 1418.9076 874.2134 1055.7755 1577.8654 1896.5708
## 2018 1369.8084 988.0312 1232.0343 1567.7647 2251.9540
## 2019 1439.7870 1067.5958 1207.9468 1591.9049 2513.1615
## 2020 873.2943 818.7630 1534.5310 1295.0360 2566.1166
## 2021 950.6085
plot.ts(KalimantanTimurinflowtimeseries)
plot.ts(KalimantanTimuroutflowtimeseries)
KalimantanTimurintimeseriescomponents <- decompose(KalimantanTimurinflowtimeseries)
KalimantanTimurintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2012 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2013 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2014 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2015 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2016 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2017 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2018 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2019 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2020 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## 2021 594.35193 -37.57596 -156.71537 -138.19263 -178.60724 251.98410
## Jul Aug Sep Oct Nov Dec
## 2011 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2012 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2013 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2014 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2015 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2016 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2017 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2018 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2019 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2020 244.85041 336.47397 -29.19087 -214.17769 -246.38132 -426.81935
## 2021 244.85041 336.47397
KalimantanTimurouttimeseriescomponents <- decompose(KalimantanTimuroutflowtimeseries)
KalimantanTimurouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2012 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2013 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2014 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2015 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2016 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2017 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2018 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2019 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2020 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## 2021 -994.70574 -660.94783 -273.49778 -166.37337 527.26967 385.60544
## Jul Aug Sep Oct Nov Dec
## 2011 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2012 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2013 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2014 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2015 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2016 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2017 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2018 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2019 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2020 437.65875 -13.46535 -486.09602 -108.09369 45.85300 1306.79293
## 2021 437.65875 -13.46535
plot(KalimantanTimurintimeseriescomponents$seasonal,type = "l", col = "steelblue")
lines(KalimantanTimurouttimeseriescomponents$seasonal,col="red")
legend("top",c("Inflow","Outflow"),fill=c("steelblue","red"))
plot(KalimantanTimurintimeseriescomponents$trend,type = "l", col = "green")
lines(KalimantanTimurouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(KalimantanTimurintimeseriescomponents$random ,type = "l", col = "green")
lines(KalimantanTimurouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))
plot(KalimantanTimurintimeseriescomponents$figure ,type = "l", col = "green")
lines(KalimantanTimurouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("green","grey"))