install.packages("https://cran.rstudio.com/bin/windows/contrib/4.1/faraway_1.0.7.zip", repos = NULL)
## 將程式套件安載入 'C:/Users/user/Documents/R/win-library/4.1'
## (因為 'lib' 沒有被指定)
## package 'faraway' successfully unpacked and MD5 sums checked
library("faraway")
## Warning: 套件 'faraway' 是用 R 版本 4.1.2 來建造的
install.packages("https://cran.rstudio.com/bin/windows/contrib/4.1/moments_0.14.zip", repos= NULL)
## 將程式套件安載入 'C:/Users/user/Documents/R/win-library/4.1'
## (因為 'lib' 沒有被指定)
## package 'moments' successfully unpacked and MD5 sums checked
library("moments")
## Warning: 套件 'moments' 是用 R 版本 4.1.1 來建造的
data("hsb")
#顯示前6筆
head(hsb)
## id gender race ses schtyp prog read write math science socst
## 1 70 male white low public general 57 52 41 47 57
## 2 121 female white middle public vocation 68 59 53 63 61
## 3 86 male white high public general 44 33 54 58 31
## 4 141 male white high public vocation 63 44 47 53 56
## 5 172 male white middle public academic 47 52 57 53 61
## 6 113 male white middle public academic 44 52 51 63 61
#資料結構
str(hsb)
## 'data.frame': 200 obs. of 11 variables:
## $ id : int 70 121 86 141 172 113 50 11 84 48 ...
## $ gender : Factor w/ 2 levels "female","male": 2 1 2 2 2 2 2 2 2 2 ...
## $ race : Factor w/ 4 levels "african-amer",..: 4 4 4 4 4 4 1 3 4 1 ...
## $ ses : Factor w/ 3 levels "high","low","middle": 2 3 1 1 3 3 3 3 3 3 ...
## $ schtyp : Factor w/ 2 levels "private","public": 2 2 2 2 2 2 2 2 2 2 ...
## $ prog : Factor w/ 3 levels "academic","general",..: 2 3 2 3 1 1 2 1 2 1 ...
## $ read : int 57 68 44 63 47 44 50 34 63 57 ...
## $ write : int 52 59 33 44 52 52 59 46 57 55 ...
## $ math : int 41 53 54 47 57 51 42 45 54 52 ...
## $ science: int 47 63 58 53 53 63 53 39 58 50 ...
## $ socst : int 57 61 31 56 61 61 61 36 51 51 ...
#資料摘要
summary(hsb)
## id gender race ses schtyp
## Min. : 1.00 female:109 african-amer: 20 high :58 private: 32
## 1st Qu.: 50.75 male : 91 asian : 11 low :47 public :168
## Median :100.50 hispanic : 24 middle:95
## Mean :100.50 white :145
## 3rd Qu.:150.25
## Max. :200.00
## prog read write math science
## academic:105 Min. :28.00 Min. :31.00 Min. :33.00 Min. :26.00
## general : 45 1st Qu.:44.00 1st Qu.:45.75 1st Qu.:45.00 1st Qu.:44.00
## vocation: 50 Median :50.00 Median :54.00 Median :52.00 Median :53.00
## Mean :52.23 Mean :52.77 Mean :52.65 Mean :51.85
## 3rd Qu.:60.00 3rd Qu.:60.00 3rd Qu.:59.00 3rd Qu.:58.00
## Max. :76.00 Max. :67.00 Max. :75.00 Max. :74.00
## socst
## Min. :26.00
## 1st Qu.:46.00
## Median :52.00
## Mean :52.41
## 3rd Qu.:61.00
## Max. :71.00
計算不同性別的平均數
with(hsb, aggregate(hsb[, 7:11], by = list(gender), FUN = mean))
## Group.1 read write math science socst
## 1 female 51.73394 54.99083 52.39450 50.69725 52.91743
## 2 male 52.82418 50.12088 52.94505 53.23077 51.79121
計算不同性別的標準差
with(hsb, aggregate(hsb[, 7:11], by = list(gender), FUN = sd))
## Group.1 read write math science socst
## 1 female 10.05783 8.133715 9.151015 9.038503 10.23441
## 2 male 10.50671 10.305161 9.664784 10.732171 11.33384
計算不同性別的偏態
with(hsb, aggregate(hsb[, 7:11], by = list(gender), FUN = skewness))
## Group.1 read write math science socst
## 1 female 0.32341745 -0.5899993 0.2346739 -0.130718 -0.3532812
## 2 male 0.04674873 -0.1798980 0.3256960 -0.345221 -0.3713532
計算不同性別的峰度
with(hsb, aggregate(hsb[, 7:11], by = list(gender), FUN = kurtosis))
## Group.1 read write math science socst
## 1 female 2.500028 2.544105 2.284784 2.510875 2.519207
## 2 male 2.262737 1.872877 2.356806 2.371868 2.335229
計算不同族群的平均數
with(hsb, aggregate(hsb[, 7:11], by = list(race), FUN = mean))
## Group.1 read write math science socst
## 1 african-amer 46.80000 48.20000 46.75000 42.80000 49.45000
## 2 asian 51.90909 58.00000 57.27273 51.45455 51.00000
## 3 hispanic 46.66667 46.45833 47.41667 45.37500 47.79167
## 4 white 53.92414 54.05517 53.97241 54.20000 53.68276
計算不同族群的標準差
with(hsb, aggregate(hsb[, 7:11], by = list(race), FUN = sd))
## Group.1 read write math science socst
## 1 african-amer 7.120024 9.322299 6.487843 9.445690 10.850540
## 2 asian 7.660999 7.899367 10.120187 9.490665 9.746794
## 3 hispanic 10.239169 8.272422 6.983936 8.218815 9.250049
## 4 white 10.276783 9.172558 9.383011 9.094870 10.813253
計算不同族群的偏態
with(hsb, aggregate(hsb[, 7:11], by = list(race), FUN = skewness))
## Group.1 read write math science socst
## 1 african-amer 0.56341685 0.2445555 1.5769616 0.1618054 -0.3779222
## 2 asian -0.14903573 -0.8732263 -0.2921502 -0.3239360 0.3398069
## 3 hispanic 0.64286691 0.3420989 0.1538455 0.2121507 0.1741367
## 4 white 0.05686143 -0.7452076 0.1120681 -0.2394562 -0.5568882
計算不同族群的峰度
with(hsb, aggregate(hsb[, 7:11], by = list(race), FUN = kurtosis))
## Group.1 read write math science socst
## 1 african-amer 4.394131 2.069851 5.739716 1.833490 2.553280
## 2 asian 2.457166 2.518799 1.843283 2.240411 2.849030
## 3 hispanic 3.381917 2.777992 2.494265 3.361737 2.218556
## 4 white 2.203770 2.710911 2.351510 2.506333 2.641000