Purpose/Context:
Apply R's "sentimentr" package to initial batch of transcribed protection order text in order to get a sense of what analysis is doable and interesting.
For each Protection Order, produce a word count, a sentiment score and corresponding standard deviation (e.g. the variability of positive & negative emotions in a single protection order).
| PO ref # | Word Count | Std. Dev. | Average Sentiment |
|---|---|---|---|
| 1 | 248 | 0.3919165 | -0.2896926 |
| 6 | 323 | 0.2565173 | -0.1678728 |
| 3 | 116 | 0.3297618 | -0.1260139 |
| 2 | 764 | 0.2835390 | -0.0646693 |
| 4 | 366 | 0.1243202 | -0.0063708 |
| 7 | 0 | NA | 0.0000000 |
| 5 | 139 | 0.1532549 | 0.0544215 |
Show the distribution of positive and negative emotions for every sentence across the whole dataset.
##
## Call:
## density.default(x = senti$sentiment)
##
## Data: senti$sentiment (73 obs.); Bandwidth 'bw' = 0.1168
##
## x y
## Min. :-1.4659 Min. :0.0005279
## 1st Qu.:-0.8260 1st Qu.:0.0525892
## Median :-0.1862 Median :0.2437542
## Mean :-0.1862 Mean :0.3903267
## 3rd Qu.: 0.4536 3rd Qu.:0.6740276
## Max. : 1.0935 Max. :1.1708733
Plot the most common emotions across the whole dataset.
## # A tibble: 14 × 2
## emotion_type ave_emotion
## <fct> <dbl>
## 1 anger 0.0188
## 2 anger_negated 0.00246
## 3 anticipation 0.0190
## 4 anticipation_negated 0.00227
## 5 disgust 0.00592
## 6 fear 0.0237
## 7 fear_negated 0.00337
## 8 joy 0.00953
## 9 sadness 0.0173
## 10 sadness_negated 0.00205
## 11 surprise 0.00519
## 12 surprise_negated 0.000825
## 13 trust 0.0214
## 14 trust_negated 0.00263