Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jurusan : Teknik Informatika

Data Inflow dan Outflow Wilayah di Pulau Sumatera

library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2

Data Inflow

datainflow <- read_excel(path = "C:/Users/User/Documents/SEMESTER 2/LINEAR ALGEBRA/inflowsumatera.xlsx")
datainflow
## # A tibble: 11 x 12
##    Keterangan Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##         <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>
##  1       2011   57900.  2308.           23238.            9385.  3012.
##  2       2012   65911.  2620.           25981.           11192.  4447.
##  3       2013   98369. 36337.           18120.           14056.  8933.
##  4       2014   86024.  4567.           30503.           14103.  6358.
##  5       2015   86549.  4710.           30254.           13309.  7156.
##  6       2016   97764.  5775.           34427.           14078.  8211.
##  7       2017  103748.  5514.           35617.           15312.  8553.
##  8       2018  117495.  5799.           41769.           15058. 10730.
##  9       2019  133762.  7509.           47112.           14750. 10915.
## 10       2020  109345.  6641.           36609.           10696.  9148.
## 11       2021   89270.  3702.           31840.           10748.  7769.
## # ... with 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>

Data Outflow

dataoutflow <- read_excel(path = "C:/Users/User/Documents/SEMESTER 2/LINEAR ALGEBRA/outflowsumatera.xlsx")
dataoutflow
## # A tibble: 11 x 12
##    Keterangan Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##         <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>
##  1       2011   80092.  6338.           22176.            5300. 12434.
##  2       2012   85235.  6378.           22495.            6434. 13014.
##  3       2013  103288. 23278.           19235.            6511. 15460.
##  4       2014  102338.  8630.           26391.            7060. 15158.
##  5       2015  109186.  9637.           27877.            7471. 15789.
##  6       2016  121992. 11311.           31959.            9198. 17645.
##  7       2017  133606. 11760.           35243.           10754. 18128.
##  8       2018  135676. 11450.           36908.            8447. 17926.
##  9       2019  153484. 13087.           44051.            9465. 19277.
## 10       2020  140589. 12874.           39758.            8763. 19139.
## 11       2021   86627.  5770.           23453.            5941. 12631.
## # ... with 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>

1. Visualisasi Prediksi Data Inflow Uang Kartal Bengkulu pada Setiap Periode

datainsumatera <- datainflow$`Bengkulu`
plot(datainsumatera,type = "l", col= "blue")

2. Visualisasi Prediksi Data Outflow Uang Kartal Bengkulu pada Setiap Periode

dataoutsuamtera <- dataoutflow$`Bengkulu`
plot(dataoutsuamtera, type = "l", col = "red")

3. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Bengkulu Setiap Periode

plot(datainflow$`Bengkulu`, type = "l", col = "blue")
lines(dataoutflow$`Bengkulu`, type = "l", col = "red")
legend("top",c("Inflow","Outflow"),fill=c("blue","red"))

4. Visualisasi Prediksi Data Inflow-Outflow Uang Kartal di Bengkulu Setiap Bulan

Data Inflow Setiap Bulan

datainflowperbulan <- read_excel(path = "C:/Users/User/Documents/SEMESTER 2/LINEAR ALGEBRA/inflowsumateraperbulan.xlsx")
datainflowperbulan
## # A tibble: 128 x 12
##    Keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`   Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl>  <dbl>
##  1 2011-01-01 00:00:00    4164.  124.            2068.             545.   94.2
##  2 2011-02-01 00:00:00    3338.  115.            1826.             450.   96.4
##  3 2011-03-01 00:00:00    4878.  154.            2028.             849.  288. 
##  4 2011-04-01 00:00:00    3157.  122.            1429.             539.  160. 
##  5 2011-05-01 00:00:00    3821.  123.            1539.             692.  195. 
##  6 2011-06-01 00:00:00    3686.  151.            1637.             592.  101. 
##  7 2011-07-01 00:00:00    4370.  107.            1791.             800.  143. 
##  8 2011-08-01 00:00:00    3668.  184.            1256.             586.  134. 
##  9 2011-09-01 00:00:00   12875.  606.            4172.            2176. 1014. 
## 10 2011-10-01 00:00:00    4777.  158.            1941.             787.  341. 
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>

Data Outflow Setiap Bulan

dataoutflowperbulan <- read_excel(path = "C:/Users/User/Documents/SEMESTER 2/LINEAR ALGEBRA/outflowsumateraperbulan.xlsx")
dataoutflowperbulan
## # A tibble: 128 x 12
##    Keterangan          Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`  Riau
##    <dttm>                 <dbl> <dbl>            <dbl>            <dbl> <dbl>
##  1 2011-01-01 00:00:00    3442.  350.             941.             307.  478.
##  2 2011-02-01 00:00:00    3989.  193.             990.             228.  400.
##  3 2011-03-01 00:00:00    4229.  230.            1209.             347.  621.
##  4 2011-04-01 00:00:00    6721.  529.            1653.             336. 1006.
##  5 2011-05-01 00:00:00    5787.  523.            1465.             328. 1000.
##  6 2011-06-01 00:00:00    7395.  406.            2167.             399. 1366.
##  7 2011-07-01 00:00:00    7154.  958.            1695.             449.  815.
##  8 2011-08-01 00:00:00   16043. 1046.            4104.            1376. 2729.
##  9 2011-09-01 00:00:00    1915.  124.             824.             148.  154.
## 10 2011-10-01 00:00:00    5174.  634.            1392.             299.  830.
## # ... with 118 more rows, and 6 more variables: Kep. Riau <dbl>, Jambi <dbl>,
## #   Sumatera Selatan <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   Kep. Bangka Belitung <dbl>

Visualisasi dan Prediksi Inflow-Outflow

plot(datainflowperbulan$`Bengkulu`, type = "l", col = "purple")
lines(dataoutflowperbulan$`Bengkulu`,col="pink")
legend("top",c("Inflow","Outflow"),fill=c("purple","pink"))

5. Time Series dan Log di Bengkulu

bengkulutimeseries <- datainflowperbulan$`Bengkulu`
plot.ts(bengkulutimeseries , type = "l", col = "maroon")

logbengkulu <- log(datainflowperbulan$`Bengkulu`)
plot.ts(logbengkulu)

6. Visualisasi dan Prediksi Data Inflow-Outflow Time Series Uang Kartal di Bengkulu

Data Inflow

bengkuluinflowtimeseries <- ts(datainflowperbulan$`Bengkulu`, frequency=12, start=c(2011,1))
bengkuluinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  122.17640   42.56978   56.79831   27.06372   33.27979   25.84131
## 2012  229.63010  125.41615   65.93120   27.71178   17.46938   17.46938
## 2013  225.33676  240.39147  247.97928  232.80433  158.28819   99.59913
## 2014  708.02522  269.13089  173.04810  221.13003  102.52019  131.58252
## 2015  644.62293  221.83713  163.04665  105.55613   96.35064   84.34825
## 2016  702.39709  293.29774  185.31632   73.73894  119.25824   76.02947
## 2017  705.34454  296.38089  218.07302  108.20777  124.26259   38.37514
## 2018  885.45535  277.07756  207.05547  156.74029  120.71976  669.85657
## 2019  902.06334  384.59633  283.98631  340.23492  256.59610 1294.68991
## 2020  983.83714  517.87037  322.68228  295.68625  330.78731  594.49286
## 2021 1134.14469  507.34820  410.99660  309.79568  798.17998  293.65593
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011   98.70596   64.44523  430.67254  100.84602  111.67560   39.03351
## 2012   74.43659  207.95245  172.87088  104.67443  134.41372   23.27873
## 2013  135.59282  392.32979  166.69236  194.90184  165.05959  118.56169
## 2014   83.35252  899.76893  204.79900  245.78856  146.50267   75.86238
## 2015  662.75459  223.16428  168.84114  212.90720  127.31721   80.51677
## 2016  661.14587  110.45568  243.85150  175.18164  136.70141  111.48900
## 2017  919.91900  300.75244  296.76196  275.01659  201.18931  135.31315
## 2018  423.32742  286.78781  368.53402  286.96586  286.34575  181.12197
## 2019  381.33964  428.71096  432.36290  498.97557  330.91527  254.67978
## 2020  289.77418  409.26120  438.92378  281.96995  320.24937  185.53660
## 2021  350.87090  355.37500
plot.ts(bengkuluinflowtimeseries)

Data Outflow

bengkuluoutflowtimeseries <- ts(dataoutflowperbulan$`Bengkulu`, frequency=12, start=c(2011,1))
bengkuluoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   43.00021   82.23542  143.53922  246.22066  202.80478  265.84634
## 2012   77.67069  136.45409  214.08931  230.04005  343.95133  343.95133
## 2013  150.23670  309.92998  431.93072  314.02314  742.58906  664.43864
## 2014  184.84757  233.07711  359.39862  524.14915  447.54582  377.69263
## 2015  103.40197  176.91637  236.82757  435.72702  510.20743  474.21976
## 2016   59.75611  134.50325  206.17499  355.34003  506.32330 1581.42961
## 2017  156.75645  191.46206  341.51406  410.43977  612.92546 1597.77779
## 2018  104.78294  200.91583  399.37190  498.39520  866.36789 1137.64484
## 2019  136.77104  354.05007  432.66657  755.79629 1646.68269  168.74806
## 2020  256.84547  331.85653  442.42736  531.24172  969.68490  209.58637
## 2021   95.04035  340.25426  457.19172  920.71828 1096.04779  629.30605
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  263.31558  497.98805   73.97831  188.67118  175.22115  377.68102
## 2012  205.01716  360.89097  153.25346  209.32113  202.05658  482.63553
## 2013 1563.65149  783.20289  262.44591  260.53121  382.27823  624.35333
## 2014  949.04614  161.37331  247.44909  317.04213  292.98312  488.31758
## 2015 1085.06420  246.35914  274.35432  250.71305  309.02593  748.71687
## 2016  212.21523  567.18382  238.44064  187.43127  384.85065  729.08792
## 2017  110.49356  216.10078  248.63583  249.51486  472.84165  838.28091
## 2018  233.48894  261.42442  225.52806  344.89425  470.11011  752.32699
## 2019  653.94175  479.32908  380.83854  386.78029  650.26438  795.78060
## 2020  680.85829  483.37874  506.16610  625.26947  575.95459  950.75046
## 2021  676.14611  466.14904
plot.ts(bengkuluoutflowtimeseries)

7. Visualisasi dan Prediksi Data Inflow-Outflow Time Series Komponen Uang Kartal di Bengkulu

bengkuluintimeseriescomponents <- decompose(bengkuluinflowtimeseries)
bengkuluintimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2012  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2013  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2014  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2015  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2016  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2017  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2018  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2019  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2020  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
## 2021  415.814816   14.800879  -75.680615 -110.480486 -138.457757   46.586240
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2012   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2013   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2014   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2015   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2016   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2017   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2018   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2019   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2020   99.818044   52.992951    9.648678  -47.713440  -93.764349 -173.564960
## 2021   99.818044   52.992951
bengkuluouttimeseriescomponents <- decompose(bengkuluoutflowtimeseries)
bengkuluouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2012 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2013 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2014 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2015 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2016 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2017 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2018 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2019 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2020 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
## 2021 -316.47206 -209.72850  -93.99434   12.06698  296.09328  281.49728
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2012  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2013  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2014  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2015  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2016  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2017  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2018  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2019  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2020  169.42047  -21.85756 -168.85362 -132.06305  -49.05355  232.94467
## 2021  169.42047  -21.85756
plot(bengkuluintimeseriescomponents$seasonal,type = "l", col = "orange")
lines(bengkuluouttimeseriescomponents$seasonal,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(bengkuluintimeseriescomponents$trend,type = "l", col = "orange")
lines(bengkuluouttimeseriescomponents$trend,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(bengkuluintimeseriescomponents$random ,type = "l", col = "orange")
lines(bengkuluouttimeseriescomponents$random,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))

plot(bengkuluintimeseriescomponents$figure ,type = "l", col = "orange")
lines(bengkuluouttimeseriescomponents$figure,col="grey")
legend("top",c("Inflow","Outflow"),fill=c("orange","grey"))


Sumber :

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx
https://rpubs.com/suhartono-uinmaliki/861286


summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00