Alpha Calculation
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:GGally':
##
## nasa
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Dinh.huong.1 <- select(my_data,1,2,3)
Niem.tin.1 <- select(my_data,4,5,6,7,8)
Chutrong.KH.CL.1 <- select(my_data,9,10)
Tontrong.Ghinhan.1 <- select(my_data, 11, 12)
Cohoi.Phattrien.1 <- select(my_data,13,14,15,16)
Chinhsach.phucloi.1 <- select(my_data,17,18,19,20,21,22)
Dongluc.lamviec.1 <- select(my_data,23,24,25)
Quanly.congviec.1 <- select(my_data,26,27,28)
Traoquyen.1 <- select(my_data,29,30)
Hotro.1 <- select(my_data,31,32)
Daotao.1 <- select(my_data,33,34)
Sucongtac.1 <- select(my_data,35,36,37,38)
Congviec.Cocau.Quytrinh.1 <- select(my_data,39,40,41)
library(psych)
library(psych)
# To do the reliability analysis, you’ll need to load the psych package and use the alpha function. However, ggplot2 also has a function called alpha. If you’ve loaded ggplot2, the alpha function in ggplot2 will be called instead. If that happens (Error in grDevices::col2rgb(colour, TRUE) : invalid color name)), you can specify the package using psych::alpha() (instead of alpha(x) only).
psych::alpha(Dinh.huong.1)
##
## Reliability analysis
## Call: psych::alpha(x = Dinh.huong.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.92 0.92 0.89 0.79 11 0.002 4.3 0.69 0.78
##
## lower alpha upper 95% confidence boundaries
## 0.91 0.92 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## DH1 0.91 0.91 0.84 0.84 10.2 0.0025 NA 0.84
## DH2 0.86 0.86 0.75 0.75 6.1 0.0040 NA 0.75
## DH3 0.88 0.88 0.78 0.78 7.2 0.0035 NA 0.78
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## DH1 4978 0.91 0.91 0.83 0.80 4.3 0.78
## DH2 4978 0.94 0.94 0.90 0.86 4.2 0.74
## DH3 4978 0.93 0.93 0.88 0.84 4.2 0.73
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## DH1 0.02 0 0.05 0.53 0.39 0
## DH2 0.02 0 0.06 0.56 0.36 0
## DH3 0.02 0 0.05 0.57 0.36 0
##
## Reliability analysis
## Call: psych::alpha(x = Niem.tin.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.94 0.94 0.93 0.75 15 0.0014 4.1 0.71 0.76
##
## lower alpha upper 95% confidence boundaries
## 0.93 0.94 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## NT1 0.92 0.92 0.91 0.75 12 0.0018 0.0058 0.74
## NT2 0.94 0.94 0.92 0.79 15 0.0014 0.0012 0.79
## NT3 0.92 0.92 0.90 0.73 11 0.0020 0.0024 0.73
## NT4 0.92 0.92 0.90 0.74 11 0.0019 0.0026 0.73
## NT5 0.92 0.92 0.91 0.75 12 0.0019 0.0044 0.74
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## NT1 4978 0.90 0.90 0.86 0.84 4.1 0.78
## NT2 4978 0.84 0.84 0.77 0.75 4.0 0.82
## NT3 4978 0.92 0.92 0.91 0.87 4.1 0.78
## NT4 4978 0.91 0.91 0.89 0.86 4.1 0.77
## NT5 4978 0.90 0.90 0.87 0.84 4.1 0.81
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## NT1 0.02 0.02 0.11 0.58 0.27 0
## NT2 0.02 0.03 0.13 0.56 0.26 0
## NT3 0.02 0.02 0.10 0.58 0.29 0
## NT4 0.02 0.02 0.11 0.60 0.26 0
## NT5 0.02 0.03 0.11 0.57 0.28 0
psych::alpha(Chutrong.KH.CL.1)
## Warning in matrix(unlist(drop.item), ncol = 10, byrow = TRUE): data length [16]
## is not a sub-multiple or multiple of the number of columns [10]
##
## Reliability analysis
## Call: psych::alpha(x = Chutrong.KH.CL.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.83 0.83 0.72 0.72 5 0.0047 4 0.73 0.72
##
## lower alpha upper 95% confidence boundaries
## 0.82 0.83 0.84
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## KH1 0.72 0.72 0.51 0.72 NA NA 0.72 0.72
## KH2 0.51 0.72 NA NA NA NA 0.51 0.72
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## KH1 4978 0.93 0.93 0.78 0.72 4 0.80
## KH2 4978 0.92 0.93 0.78 0.72 4 0.78
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## KH1 0.02 0.02 0.15 0.59 0.22 0
## KH2 0.01 0.03 0.15 0.59 0.22 0
psych::alpha(Tontrong.Ghinhan.1)
## Warning in matrix(unlist(drop.item), ncol = 10, byrow = TRUE): data length [16]
## is not a sub-multiple or multiple of the number of columns [10]
##
## Reliability analysis
## Call: psych::alpha(x = Tontrong.Ghinhan.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.86 0.86 0.75 0.75 6 0.0041 4 0.72 0.75
##
## lower alpha upper 95% confidence boundaries
## 0.85 0.86 0.86
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## TT1 0.75 0.75 0.56 0.75 NA NA 0.75 0.75
## TT2 0.56 0.75 NA NA NA NA 0.56 0.75
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## TT1 4978 0.93 0.94 0.81 0.75 4 0.75
## TT2 4978 0.94 0.94 0.81 0.75 4 0.80
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## TT1 0.02 0.02 0.14 0.61 0.21 0
## TT2 0.02 0.03 0.13 0.59 0.23 0
psych::alpha(Cohoi.Phattrien.1)
##
## Reliability analysis
## Call: psych::alpha(x = Cohoi.Phattrien.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.9 0.9 0.87 0.69 8.8 0.0024 4 0.66 0.69
##
## lower alpha upper 95% confidence boundaries
## 0.89 0.9 0.9
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CH1 0.87 0.87 0.82 0.69 6.6 0.0033 0.00317 0.69
## CH2 0.87 0.87 0.82 0.70 6.8 0.0032 0.00227 0.70
## CH3 0.87 0.87 0.82 0.70 7.0 0.0031 0.00024 0.70
## CH4 0.86 0.86 0.80 0.66 5.9 0.0035 0.00208 0.65
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CH1 4978 0.88 0.87 0.82 0.77 4.0 0.79
## CH2 4978 0.87 0.87 0.80 0.76 4.0 0.79
## CH3 4978 0.85 0.86 0.80 0.75 4.1 0.70
## CH4 4978 0.89 0.89 0.85 0.80 4.0 0.74
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## CH1 0.02 0.03 0.13 0.59 0.23 0
## CH2 0.02 0.03 0.14 0.59 0.22 0
## CH3 0.01 0.01 0.10 0.64 0.24 0
## CH4 0.01 0.01 0.14 0.62 0.22 0
psych::alpha(Chinhsach.phucloi.1)
##
## Reliability analysis
## Call: psych::alpha(x = Chinhsach.phucloi.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.94 0.94 0.93 0.72 15 0.0013 3.9 0.71 0.73
##
## lower alpha upper 95% confidence boundaries
## 0.94 0.94 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CS1 0.94 0.94 0.93 0.76 15 0.0014 0.0014 0.76
## CS2 0.93 0.93 0.92 0.72 13 0.0016 0.0062 0.76
## CS3 0.93 0.93 0.91 0.71 12 0.0017 0.0042 0.71
## CS4 0.92 0.92 0.91 0.71 12 0.0017 0.0041 0.72
## CS5 0.92 0.92 0.91 0.71 12 0.0017 0.0042 0.72
## CS6 0.92 0.92 0.91 0.71 12 0.0017 0.0032 0.71
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CS1 4978 0.80 0.81 0.75 0.72 4.0 0.76
## CS2 4978 0.87 0.87 0.84 0.81 3.9 0.80
## CS3 4978 0.89 0.89 0.86 0.84 3.8 0.88
## CS4 4978 0.89 0.90 0.88 0.85 3.9 0.78
## CS5 4978 0.89 0.89 0.87 0.84 3.9 0.81
## CS6 4978 0.90 0.90 0.88 0.85 3.8 0.85
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## CS1 0.02 0.02 0.11 0.62 0.23 0
## CS2 0.02 0.04 0.15 0.60 0.19 0
## CS3 0.02 0.06 0.21 0.54 0.17 0
## CS4 0.01 0.04 0.18 0.60 0.17 0
## CS5 0.02 0.04 0.18 0.58 0.18 0
## CS6 0.02 0.06 0.21 0.55 0.16 0
psych::alpha(Dongluc.lamviec.1)
##
## Reliability analysis
## Call: psych::alpha(x = Dongluc.lamviec.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.84 0.84 0.79 0.64 5.4 0.0039 4 0.65 0.67
##
## lower alpha upper 95% confidence boundaries
## 0.83 0.84 0.85
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## DL1 0.80 0.80 0.67 0.67 4.1 0.0056 NA 0.67
## DL2 0.73 0.73 0.58 0.58 2.7 0.0076 NA 0.58
## DL3 0.80 0.81 0.68 0.68 4.2 0.0055 NA 0.68
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## DL1 4978 0.87 0.86 0.75 0.68 4 0.78
## DL2 4978 0.89 0.90 0.83 0.76 4 0.72
## DL3 4978 0.86 0.86 0.74 0.68 4 0.75
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## DL1 0.02 0.03 0.14 0.60 0.22 0
## DL2 0.01 0.01 0.11 0.64 0.22 0
## DL3 0.02 0.02 0.11 0.62 0.24 0
psych::alpha(Quanly.congviec.1)
##
## Reliability analysis
## Call: psych::alpha(x = Quanly.congviec.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.88 0.77 10 0.0022 4 0.7 0.77
##
## lower alpha upper 95% confidence boundaries
## 0.91 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## QL1 0.87 0.87 0.77 0.77 6.8 0.0036 NA 0.77
## QL2 0.84 0.84 0.72 0.72 5.2 0.0046 NA 0.72
## QL3 0.91 0.91 0.83 0.83 9.7 0.0027 NA 0.83
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## QL1 4978 0.92 0.92 0.87 0.82 4.0 0.74
## QL2 4978 0.94 0.94 0.91 0.86 4.0 0.77
## QL3 4978 0.90 0.90 0.82 0.78 3.9 0.77
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## QL1 0.01 0.02 0.13 0.63 0.21 0
## QL2 0.01 0.03 0.14 0.60 0.21 0
## QL3 0.02 0.03 0.15 0.62 0.19 0
psych::alpha(Traoquyen.1)
## Warning in matrix(unlist(drop.item), ncol = 10, byrow = TRUE): data length [16]
## is not a sub-multiple or multiple of the number of columns [10]
##
## Reliability analysis
## Call: psych::alpha(x = Traoquyen.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.8 0.8 7.8 0.0032 4 0.66 0.8
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.89 0.89
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## QH1 0.80 0.8 0.63 0.8 NA NA 0.80 0.8
## QH2 0.63 0.8 NA NA NA NA 0.63 0.8
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## QH1 4978 0.95 0.95 0.85 0.8 4 0.71
## QH2 4978 0.95 0.95 0.85 0.8 4 0.68
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## QH1 0.01 0.02 0.12 0.65 0.20 0
## QH2 0.01 0.01 0.11 0.66 0.21 0
## Warning in matrix(unlist(drop.item), ncol = 10, byrow = TRUE): data length [16]
## is not a sub-multiple or multiple of the number of columns [10]
##
## Reliability analysis
## Call: psych::alpha(x = Hotro.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.81 0.81 0.68 0.68 4.3 0.0054 4 0.69 0.68
##
## lower alpha upper 95% confidence boundaries
## 0.8 0.81 0.82
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## HT1 0.68 0.68 0.47 0.68 NA NA 0.68 0.68
## HT2 0.47 0.68 NA NA NA NA 0.47 0.68
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## HT1 4978 0.92 0.92 0.76 0.68 3.9 0.76
## HT2 4978 0.91 0.92 0.76 0.68 4.1 0.73
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## HT1 0.02 0.03 0.14 0.62 0.19 0
## HT2 0.02 0.01 0.09 0.61 0.27 0
## Warning in matrix(unlist(drop.item), ncol = 10, byrow = TRUE): data length [16]
## is not a sub-multiple or multiple of the number of columns [10]
##
## Reliability analysis
## Call: psych::alpha(x = Daotao.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.86 0.86 0.75 0.75 6.1 0.004 4 0.69 0.75
##
## lower alpha upper 95% confidence boundaries
## 0.85 0.86 0.87
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## DT1 0.75 0.75 0.57 0.75 NA NA 0.75 0.75
## DT2 0.57 0.75 NA NA NA NA 0.57 0.75
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## DT1 4978 0.93 0.94 0.81 0.75 4 0.72
## DT2 4978 0.94 0.94 0.81 0.75 4 0.76
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## DT1 0.01 0.02 0.11 0.64 0.22 0
## DT2 0.01 0.03 0.13 0.61 0.22 0
psych::alpha(Sucongtac.1)
##
## Reliability analysis
## Call: psych::alpha(x = Sucongtac.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.9 0.9 0.88 0.7 9.3 0.0023 4 0.67 0.7
##
## lower alpha upper 95% confidence boundaries
## 0.9 0.9 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CT1 0.88 0.88 0.84 0.71 7.5 0.0030 0.00126 0.73
## CT2 0.88 0.88 0.83 0.71 7.4 0.0029 0.00046 0.71
## CT3 0.87 0.87 0.82 0.70 6.9 0.0032 0.00130 0.69
## CT4 0.86 0.86 0.81 0.68 6.4 0.0034 0.00057 0.67
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CT1 4978 0.87 0.87 0.80 0.76 4.0 0.75
## CT2 4978 0.88 0.87 0.81 0.77 3.8 0.83
## CT3 4978 0.88 0.88 0.83 0.79 4.0 0.74
## CT4 4978 0.89 0.90 0.86 0.81 4.0 0.71
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## CT1 0.01 0.03 0.14 0.62 0.21 0
## CT2 0.02 0.04 0.18 0.58 0.17 0
## CT3 0.01 0.02 0.11 0.63 0.23 0
## CT4 0.01 0.01 0.13 0.65 0.20 0
psych::alpha(Congviec.Cocau.Quytrinh.1)
##
## Reliability analysis
## Call: psych::alpha(x = Congviec.Cocau.Quytrinh.1)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.88 0.88 0.84 0.7 7.1 0.003 4.1 0.65 0.64
##
## lower alpha upper 95% confidence boundaries
## 0.87 0.88 0.88
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CV1 0.91 0.91 0.84 0.84 10.3 0.0025 NA 0.84
## CV2 0.77 0.77 0.63 0.63 3.4 0.0065 NA 0.63
## CV3 0.78 0.78 0.64 0.64 3.6 0.0062 NA 0.64
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CV1 4978 0.83 0.85 0.69 0.66 4.2 0.66
## CV2 4978 0.93 0.92 0.89 0.83 4.0 0.75
## CV3 4978 0.93 0.92 0.88 0.82 4.0 0.76
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## CV1 0.01 0.00 0.05 0.63 0.30 0
## CV2 0.01 0.02 0.14 0.62 0.20 0
## CV3 0.01 0.02 0.14 0.61 0.21 0
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
## Warning in cor.smooth(R): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
##
## Reliability analysis
## Call: psych::alpha(x = my_data)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.99 0.99 0.99 0.61 86 0.00024 4 0.59 0.6
##
## lower alpha upper 95% confidence boundaries
## 0.99 0.99 0.99
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## DH1 0.99 0.99 0.99 0.62 86 0.00024 0.0083 0.61
## DH2 0.99 0.99 0.99 0.62 86 0.00024 0.0088 0.61
## DH3 0.99 0.99 0.99 0.62 85 0.00024 0.0088 0.61
## NT1 0.99 0.99 0.99 0.61 85 0.00025 0.0091 0.60
## NT2 0.99 0.99 0.99 0.62 85 0.00025 0.0092 0.60
## NT3 0.99 0.99 0.99 0.61 85 0.00025 0.0090 0.60
## NT4 0.99 0.99 0.99 0.61 85 0.00025 0.0090 0.60
## NT5 0.99 0.99 0.99 0.61 84 0.00025 0.0090 0.60
## KH1 0.99 0.99 0.99 0.62 85 0.00024 0.0091 0.61
## KH2 0.99 0.99 0.99 0.62 85 0.00024 0.0091 0.61
## TT1 0.99 0.99 0.99 0.61 84 0.00025 0.0092 0.60
## TT2 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## CH1 0.99 0.99 0.99 0.61 84 0.00025 0.0092 0.60
## CH2 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## CH3 0.99 0.99 0.99 0.62 85 0.00025 0.0092 0.60
## CH4 0.99 0.99 0.99 0.61 84 0.00025 0.0092 0.60
## CS1 0.99 0.99 0.99 0.62 85 0.00024 0.0092 0.61
## CS2 0.99 0.99 0.99 0.62 85 0.00024 0.0091 0.61
## CS3 0.99 0.99 0.99 0.62 85 0.00024 0.0089 0.61
## CS4 0.99 0.99 0.99 0.62 85 0.00024 0.0090 0.60
## CS5 0.99 0.99 0.99 0.62 85 0.00024 0.0090 0.61
## CS6 0.99 0.99 0.99 0.62 85 0.00024 0.0088 0.61
## DL1 0.99 0.99 0.99 0.61 84 0.00025 0.0090 0.60
## DL2 0.99 0.99 0.99 0.61 84 0.00025 0.0092 0.60
## DL3 0.99 0.99 0.99 0.62 85 0.00024 0.0092 0.60
## QL1 0.99 0.99 0.99 0.61 84 0.00025 0.0090 0.60
## QL2 0.99 0.99 0.99 0.61 84 0.00025 0.0089 0.60
## QL3 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## QH1 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## QH2 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## HT1 0.99 0.99 0.99 0.61 85 0.00025 0.0091 0.60
## HT2 0.99 0.99 0.99 0.62 85 0.00025 0.0091 0.60
## DT1 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## DT2 0.99 0.99 0.99 0.61 84 0.00025 0.0090 0.60
## CT1 0.99 0.99 0.99 0.61 84 0.00025 0.0090 0.60
## CT2 0.99 0.99 0.99 0.61 85 0.00025 0.0091 0.60
## CT3 0.99 0.99 0.99 0.61 85 0.00025 0.0091 0.60
## CT4 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## CV1 0.99 0.99 0.99 0.62 85 0.00024 0.0091 0.60
## CV2 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## CV3 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## DH 0.99 0.99 0.99 0.62 85 0.00024 0.0088 0.61
## NT 0.99 0.99 0.99 0.61 84 0.00025 0.0088 0.60
## KH 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## TT 0.99 0.99 0.99 0.61 84 0.00025 0.0090 0.60
## CH 0.99 0.99 0.99 0.61 83 0.00025 0.0089 0.60
## CS 0.99 0.99 0.99 0.61 84 0.00025 0.0089 0.60
## DL 0.99 0.99 0.99 0.61 83 0.00025 0.0088 0.60
## QL 0.99 0.99 0.99 0.61 83 0.00025 0.0087 0.60
## QH 0.99 0.99 0.99 0.61 83 0.00025 0.0088 0.60
## HT 0.99 0.99 0.99 0.61 84 0.00025 0.0091 0.60
## DT 0.99 0.99 0.99 0.61 84 0.00025 0.0089 0.60
## CT 0.99 0.99 0.99 0.61 83 0.00025 0.0087 0.60
## CV 0.99 0.99 0.99 0.61 83 0.00025 0.0089 0.60
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## DH1 4978 0.62 0.62 0.62 0.60 4.3 0.78
## DH2 4978 0.68 0.68 0.68 0.67 4.2 0.74
## DH3 4978 0.69 0.69 0.69 0.68 4.2 0.73
## NT1 4978 0.77 0.77 0.76 0.76 4.1 0.78
## NT2 4978 0.76 0.76 0.75 0.75 4.0 0.82
## NT3 4978 0.78 0.78 0.78 0.77 4.1 0.78
## NT4 4978 0.77 0.77 0.77 0.76 4.1 0.77
## NT5 4978 0.78 0.78 0.78 0.77 4.1 0.81
## KH1 4978 0.73 0.73 0.72 0.72 4.0 0.80
## KH2 4978 0.75 0.74 0.74 0.73 4.0 0.78
## TT1 4978 0.81 0.81 0.81 0.81 4.0 0.75
## TT2 4978 0.79 0.79 0.79 0.78 4.0 0.80
## CH1 4978 0.78 0.78 0.78 0.77 4.0 0.79
## CH2 4978 0.81 0.81 0.81 0.80 4.0 0.79
## CH3 4978 0.75 0.75 0.75 0.74 4.1 0.70
## CH4 4978 0.80 0.80 0.79 0.79 4.0 0.74
## CS1 4978 0.74 0.74 0.74 0.73 4.0 0.76
## CS2 4978 0.75 0.74 0.74 0.73 3.9 0.80
## CS3 4978 0.73 0.72 0.72 0.71 3.8 0.88
## CS4 4978 0.75 0.75 0.75 0.74 3.9 0.78
## CS5 4978 0.74 0.74 0.74 0.73 3.9 0.81
## CS6 4978 0.72 0.71 0.71 0.71 3.8 0.85
## DL1 4978 0.79 0.79 0.79 0.78 4.0 0.78
## DL2 4978 0.79 0.79 0.79 0.78 4.0 0.72
## DL3 4978 0.75 0.75 0.74 0.74 4.0 0.75
## QL1 4978 0.82 0.82 0.82 0.81 4.0 0.74
## QL2 4978 0.81 0.81 0.81 0.80 4.0 0.77
## QL3 4978 0.82 0.82 0.81 0.81 3.9 0.77
## QH1 4978 0.79 0.80 0.79 0.78 4.0 0.71
## QH2 4978 0.78 0.78 0.78 0.77 4.0 0.68
## HT1 4978 0.77 0.77 0.77 0.76 3.9 0.76
## HT2 4978 0.75 0.75 0.75 0.74 4.1 0.73
## DT1 4978 0.80 0.80 0.80 0.79 4.0 0.72
## DT2 4978 0.81 0.81 0.81 0.80 4.0 0.76
## CT1 4978 0.81 0.81 0.81 0.80 4.0 0.75
## CT2 4978 0.77 0.77 0.77 0.76 3.8 0.83
## CT3 4978 0.77 0.78 0.77 0.76 4.0 0.74
## CT4 4978 0.82 0.82 0.82 0.81 4.0 0.71
## CV1 4978 0.73 0.74 0.73 0.72 4.2 0.66
## CV2 4978 0.80 0.80 0.80 0.79 4.0 0.75
## CV3 4978 0.80 0.80 0.80 0.79 4.0 0.76
## DH 4978 0.71 0.72 0.70 0.70 4.3 0.69
## NT 4978 0.86 0.86 0.84 0.86 4.1 0.71
## KH 4978 0.80 0.79 0.78 0.79 4.0 0.73
## TT 4978 0.86 0.86 0.84 0.85 4.0 0.72
## CH 4978 0.90 0.90 0.88 0.89 4.0 0.66
## CS 4978 0.84 0.84 0.82 0.83 3.9 0.71
## DL 4978 0.89 0.89 0.88 0.89 4.0 0.65
## QL 4978 0.88 0.88 0.87 0.88 4.0 0.70
## QH 4978 0.89 0.89 0.88 0.89 4.0 0.65
## HT 4978 0.83 0.83 0.81 0.82 4.0 0.69
## DT 4978 0.86 0.86 0.84 0.85 4.0 0.69
## CT 4978 0.90 0.90 0.89 0.90 4.0 0.67
## CV 4978 0.87 0.87 0.85 0.86 4.1 0.65