library(mlbench)
library(car)
## Loading required package: carData
pacman::p_load(tidyverse,janitor,DataExplorer,knitr,arsenal,kableExtra,car,geoR,caret,
               psych,gridExtra,DMwR2,lmtest,pscl,MKmisc,ROCR,survey,stats,rstatix,Rcpp,
               corrplot,forecast,cowplot)

library(mice)
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
data(Glass)
str(Glass)
## 'data.frame':    214 obs. of  10 variables:
##  $ RI  : num  1.52 1.52 1.52 1.52 1.52 ...
##  $ Na  : num  13.6 13.9 13.5 13.2 13.3 ...
##  $ Mg  : num  4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...
##  $ Al  : num  1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...
##  $ Si  : num  71.8 72.7 73 72.6 73.1 ...
##  $ K   : num  0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...
##  $ Ca  : num  8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...
##  $ Ba  : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Fe  : num  0 0 0 0 0 0.26 0 0 0 0.11 ...
##  $ Type: Factor w/ 6 levels "1","2","3","5",..: 1 1 1 1 1 1 1 1 1 1 ...
column_names = colnames(Glass)


plot_str(Glass)
plot_density(Glass)

plot_boxplot(Glass,by="Type")

plot_missing(Glass)

plot_correlation(Glass)

plot_histogram(Glass)

pairs(Glass)

3.1.b) Based on the density plot and histogram, predictors Ba, Fe, K, and MG exhibit extreme skewness.Not data is missing in the existing dataset so it is not a matter of censored or purposefully missing data.The presence of collinearity also exists between predictors RI and Ca when referencing the correlation matrix. A number of outliers exist when examining the histogram plot relative to factor types.

3.1.c) A box-cox model permitting for negative and zero value would be most suitable to transform the predictor variables. Though given the distribution of the data set and relevant unique factors across predictors it may not affect the distribution of Ba, Ca, Fe, and K drastically.

Examining the lambda values of the log transformations would be the most appropriate for Ba, K, Fe, RI. A square root transformation would be the most appropriate for Ca. The remaining predictors do not require transformations.

p_transform_vals = Glass %>% select(-Type) %>% powerTransform(family="yjPower")

summary(p_transform_vals)$result[,2]
##     RI     Na     Mg     Al     Si      K     Ca     Ba     Fe 
## -25.09   1.00   2.00   1.00  10.95   0.00   0.50  -6.86 -14.92
data(Soybean)


str(Soybean)
## 'data.frame':    683 obs. of  36 variables:
##  $ Class          : Factor w/ 19 levels "2-4-d-injury",..: 11 11 11 11 11 11 11 11 11 11 ...
##  $ date           : Factor w/ 7 levels "0","1","2","3",..: 7 5 4 4 7 6 6 5 7 5 ...
##  $ plant.stand    : Ord.factor w/ 2 levels "0"<"1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ precip         : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
##  $ temp           : Ord.factor w/ 3 levels "0"<"1"<"2": 2 2 2 2 2 2 2 2 2 2 ...
##  $ hail           : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...
##  $ crop.hist      : Factor w/ 4 levels "0","1","2","3": 2 3 2 2 3 4 3 2 4 3 ...
##  $ area.dam       : Factor w/ 4 levels "0","1","2","3": 2 1 1 1 1 1 1 1 1 1 ...
##  $ sever          : Factor w/ 3 levels "0","1","2": 2 3 3 3 2 2 2 2 2 3 ...
##  $ seed.tmt       : Factor w/ 3 levels "0","1","2": 1 2 2 1 1 1 2 1 2 1 ...
##  $ germ           : Ord.factor w/ 3 levels "0"<"1"<"2": 1 2 3 2 3 2 1 3 2 3 ...
##  $ plant.growth   : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ leaves         : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ leaf.halo      : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ leaf.marg      : Factor w/ 3 levels "0","1","2": 3 3 3 3 3 3 3 3 3 3 ...
##  $ leaf.size      : Ord.factor w/ 3 levels "0"<"1"<"2": 3 3 3 3 3 3 3 3 3 3 ...
##  $ leaf.shread    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ leaf.malf      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ leaf.mild      : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ stem           : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ lodging        : Factor w/ 2 levels "0","1": 2 1 1 1 1 1 2 1 1 1 ...
##  $ stem.cankers   : Factor w/ 4 levels "0","1","2","3": 4 4 4 4 4 4 4 4 4 4 ...
##  $ canker.lesion  : Factor w/ 4 levels "0","1","2","3": 2 2 1 1 2 1 2 2 2 2 ...
##  $ fruiting.bodies: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ ext.decay      : Factor w/ 3 levels "0","1","2": 2 2 2 2 2 2 2 2 2 2 ...
##  $ mycelium       : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ int.discolor   : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ sclerotia      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ fruit.pods     : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ fruit.spots    : Factor w/ 4 levels "0","1","2","4": 4 4 4 4 4 4 4 4 4 4 ...
##  $ seed           : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ mold.growth    : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ seed.discolor  : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ seed.size      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ shriveling     : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ roots          : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
summary(Soybean)
##                  Class          date     plant.stand  precip      temp    
##  brown-spot         : 92   5      :149   0   :354    0   : 74   0   : 80  
##  alternarialeaf-spot: 91   4      :131   1   :293    1   :112   1   :374  
##  frog-eye-leaf-spot : 91   3      :118   NA's: 36    2   :459   2   :199  
##  phytophthora-rot   : 88   2      : 93               NA's: 38   NA's: 30  
##  anthracnose        : 44   6      : 90                                    
##  brown-stem-rot     : 44   (Other):101                                    
##  (Other)            :233   NA's   :  1                                    
##    hail     crop.hist  area.dam    sever     seed.tmt     germ     plant.growth
##  0   :435   0   : 65   0   :123   0   :195   0   :305   0   :165   0   :441    
##  1   :127   1   :165   1   :227   1   :322   1   :222   1   :213   1   :226    
##  NA's:121   2   :219   2   :145   2   : 45   2   : 35   2   :193   NA's: 16    
##             3   :218   3   :187   NA's:121   NA's:121   NA's:112               
##             NA's: 16   NA's:  1                                                
##                                                                                
##                                                                                
##  leaves  leaf.halo  leaf.marg  leaf.size  leaf.shread leaf.malf  leaf.mild 
##  0: 77   0   :221   0   :357   0   : 51   0   :487    0   :554   0   :535  
##  1:606   1   : 36   1   : 21   1   :327   1   : 96    1   : 45   1   : 20  
##          2   :342   2   :221   2   :221   NA's:100    NA's: 84   2   : 20  
##          NA's: 84   NA's: 84   NA's: 84                          NA's:108  
##                                                                            
##                                                                            
##                                                                            
##    stem     lodging    stem.cankers canker.lesion fruiting.bodies ext.decay 
##  0   :296   0   :520   0   :379     0   :320      0   :473        0   :497  
##  1   :371   1   : 42   1   : 39     1   : 83      1   :104        1   :135  
##  NA's: 16   NA's:121   2   : 36     2   :177      NA's:106        2   : 13  
##                        3   :191     3   : 65                      NA's: 38  
##                        NA's: 38     NA's: 38                                
##                                                                             
##                                                                             
##  mycelium   int.discolor sclerotia  fruit.pods fruit.spots   seed    
##  0   :639   0   :581     0   :625   0   :407   0   :345    0   :476  
##  1   :  6   1   : 44     1   : 20   1   :130   1   : 75    1   :115  
##  NA's: 38   2   : 20     NA's: 38   2   : 14   2   : 57    NA's: 92  
##             NA's: 38                3   : 48   4   :100              
##                                     NA's: 84   NA's:106              
##                                                                      
##                                                                      
##  mold.growth seed.discolor seed.size  shriveling  roots    
##  0   :524    0   :513      0   :532   0   :539   0   :551  
##  1   : 67    1   : 64      1   : 59   1   : 38   1   : 86  
##  NA's: 92    NA's:106      NA's: 92   NA's:106   2   : 15  
##                                                  NA's: 31  
##                                                            
##                                                            
## 
plot_str(Soybean)

plot_missing(Soybean)

soybean_cols = colnames(Soybean)

par(mfrow=c(3,6))

for (col in soybean_cols){
  barplot(table(Soybean[col]),main=col)}

for (col in soybean_cols){
  smoothScatter(Soybean[col],ylab=col)}

nearZeroVar(Soybean, names = TRUE, saveMetrics=T)
##                  freqRatio percentUnique zeroVar   nzv
## Class             1.010989     2.7818448   FALSE FALSE
## date              1.137405     1.0248902   FALSE FALSE
## plant.stand       1.208191     0.2928258   FALSE FALSE
## precip            4.098214     0.4392387   FALSE FALSE
## temp              1.879397     0.4392387   FALSE FALSE
## hail              3.425197     0.2928258   FALSE FALSE
## crop.hist         1.004587     0.5856515   FALSE FALSE
## area.dam          1.213904     0.5856515   FALSE FALSE
## sever             1.651282     0.4392387   FALSE FALSE
## seed.tmt          1.373874     0.4392387   FALSE FALSE
## germ              1.103627     0.4392387   FALSE FALSE
## plant.growth      1.951327     0.2928258   FALSE FALSE
## leaves            7.870130     0.2928258   FALSE FALSE
## leaf.halo         1.547511     0.4392387   FALSE FALSE
## leaf.marg         1.615385     0.4392387   FALSE FALSE
## leaf.size         1.479638     0.4392387   FALSE FALSE
## leaf.shread       5.072917     0.2928258   FALSE FALSE
## leaf.malf        12.311111     0.2928258   FALSE FALSE
## leaf.mild        26.750000     0.4392387   FALSE  TRUE
## stem              1.253378     0.2928258   FALSE FALSE
## lodging          12.380952     0.2928258   FALSE FALSE
## stem.cankers      1.984293     0.5856515   FALSE FALSE
## canker.lesion     1.807910     0.5856515   FALSE FALSE
## fruiting.bodies   4.548077     0.2928258   FALSE FALSE
## ext.decay         3.681481     0.4392387   FALSE FALSE
## mycelium        106.500000     0.2928258   FALSE  TRUE
## int.discolor     13.204545     0.4392387   FALSE FALSE
## sclerotia        31.250000     0.2928258   FALSE  TRUE
## fruit.pods        3.130769     0.5856515   FALSE FALSE
## fruit.spots       3.450000     0.5856515   FALSE FALSE
## seed              4.139130     0.2928258   FALSE FALSE
## mold.growth       7.820896     0.2928258   FALSE FALSE
## seed.discolor     8.015625     0.2928258   FALSE FALSE
## seed.size         9.016949     0.2928258   FALSE FALSE
## shriveling       14.184211     0.2928258   FALSE FALSE
## roots             6.406977     0.4392387   FALSE FALSE

A majority of the distributions are not degenerate. Those exhibiting a degenerate distribution in both the smooth scatter and the histograms are: leaf.mild, mycelium, sclerotia, and possibly int.discolor. However, analyzing the variances of these variables int.discolor does not have a variance consistent with degenerate distribution.

3.2.b) Referencing the missing data chart, predictors that have to do with the internal components of the plants exhibit more missing data. Given the class there is a noticeable pattern in the amount of missing data.

3.2.c) Utilizing more modern approaches to data imputation, we can utilize the MICE function from the mice package. This conducts Multivariate Imputation by Chained Equations, which is a robust, informative method of dealing with missing data in data sets. The procedure ‘fills in’ (imputes) missing data in a data set through an iterative series of predictive models. In each iteration, each specified variable in the data set is imputed using the other variables in the data set.

Example below:

soybean_imm_data = Soybean %>% mice(method='pmm')
## 
##  iter imp variable
##   1   1  date  plant.stand*  precip*  temp  hail*  crop.hist  area.dam  sever*  seed.tmt*  germ*  plant.growth  leaf.halo  leaf.marg  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   1   2  date  plant.stand  precip*  temp  hail*  crop.hist  area.dam  sever*  seed.tmt*  germ*  plant.growth  leaf.halo  leaf.marg  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   1   3  date*  plant.stand*  precip  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   1   4  date  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo  leaf.marg  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   1   5  date  plant.stand*  precip*  temp*  hail*  crop.hist  area.dam  sever*  seed.tmt*  germ*  plant.growth  leaf.halo  leaf.marg  leaf.size  leaf.shread*  leaf.malf  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   2   1  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   2   2  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   2   3  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   2   4  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   2   5  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   3   1  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   3   2  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   3   3  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo  leaf.marg  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   3   4  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   3   5  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   4   1  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   4   2  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   4   3  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor  sclerotia  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   4   4  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   4   5  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   5   1  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   5   2  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   5   3  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   5   4  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
##   5   5  date*  plant.stand*  precip*  temp*  hail*  crop.hist*  area.dam*  sever*  seed.tmt*  germ*  plant.growth*  leaf.halo*  leaf.marg*  leaf.size*  leaf.shread*  leaf.malf*  leaf.mild*  stem*  lodging*  stem.cankers*  canker.lesion*  fruiting.bodies*  ext.decay*  mycelium*  int.discolor*  sclerotia*  fruit.pods*  fruit.spots*  seed*  mold.growth*  seed.discolor*  seed.size*  shriveling*  roots*
## Warning: Number of logged events: 1655
plot_missing(Soybean)

plot_missing(complete(soybean_imm_data))