This assignment reviews a baseball dataset, which looks at teams across a number of different features. We’ll be building a number of linear regression models and comparing their efficacy.
To start, we will explore the dataset: its shape, composition, and any information that may help with future data processing and model building.
## Warning: package 'corrplot' was built under R version 4.1.2
## Warning: package 'caret' was built under R version 4.1.2
## Warning: package 'kableExtra' was built under R version 4.1.2
## Warning: package 'caTools' was built under R version 4.1.2
## Warning: package 'car' was built under R version 4.1.2
## Warning: package 'carData' was built under R version 4.1.2
## Warning: package 'ggResidpanel' was built under R version 4.1.2
#eval <- getURL("https://raw.githubusercontent.com/cmm6/data608/main/moneyball-evaluation-data.csv",.opts=curlOptions(followlocation = TRUE))
#train <- getURL("https://raw.githubusercontent.com/cmm6/data608/main/moneyball-training-data.csv",.opts=curlOptions(followlocation = TRUE))
baseball_eval <- read.csv("https://raw.githubusercontent.com/cmm6/data608/main/moneyball-evaluation-data.csv", header=TRUE, sep = ",")
baseball_training <- read.csv("https://raw.githubusercontent.com/cmm6/data608/main/moneyball-training-data.csv", header=TRUE, sep = ",")
baseball_eval <- subset(baseball_eval, select = -c(INDEX) )
baseball_training = subset(baseball_training, select = -c(INDEX) )
print(dim(baseball_training))
## [1] 2276 16
print(head(baseball_training))
## TARGET_WINS TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B TEAM_BATTING_HR
## 1 39 1445 194 39 13
## 2 70 1339 219 22 190
## 3 86 1377 232 35 137
## 4 70 1387 209 38 96
## 5 82 1297 186 27 102
## 6 75 1279 200 36 92
## TEAM_BATTING_BB TEAM_BATTING_SO TEAM_BASERUN_SB TEAM_BASERUN_CS
## 1 143 842 NA NA
## 2 685 1075 37 28
## 3 602 917 46 27
## 4 451 922 43 30
## 5 472 920 49 39
## 6 443 973 107 59
## TEAM_BATTING_HBP TEAM_PITCHING_H TEAM_PITCHING_HR TEAM_PITCHING_BB
## 1 NA 9364 84 927
## 2 NA 1347 191 689
## 3 NA 1377 137 602
## 4 NA 1396 97 454
## 5 NA 1297 102 472
## 6 NA 1279 92 443
## TEAM_PITCHING_SO TEAM_FIELDING_E TEAM_FIELDING_DP
## 1 5456 1011 NA
## 2 1082 193 155
## 3 917 175 153
## 4 928 164 156
## 5 920 138 168
## 6 973 123 149
We’ve dropped the index, which the data dictionary confirms is irrelevant to the target variable. As such, the evaluation set has 2276 observations, with 16 columns. The first, Target_Wins is the target of future linear regression modeling.
First, we’ll use summary() to get a sense of the type and values for each field.
Right away, we can see several fields have NA values, including the majority of TEAM_BATTING_HBP. We can try different ways to handle these in later model development, e.g. removing entirely vs. replacing with mean, etc.
summary(baseball_training)
## TARGET_WINS TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B
## Min. : 0.00 Min. : 891 Min. : 69.0 Min. : 0.00
## 1st Qu.: 71.00 1st Qu.:1383 1st Qu.:208.0 1st Qu.: 34.00
## Median : 82.00 Median :1454 Median :238.0 Median : 47.00
## Mean : 80.79 Mean :1469 Mean :241.2 Mean : 55.25
## 3rd Qu.: 92.00 3rd Qu.:1537 3rd Qu.:273.0 3rd Qu.: 72.00
## Max. :146.00 Max. :2554 Max. :458.0 Max. :223.00
##
## TEAM_BATTING_HR TEAM_BATTING_BB TEAM_BATTING_SO TEAM_BASERUN_SB
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0
## 1st Qu.: 42.00 1st Qu.:451.0 1st Qu.: 548.0 1st Qu.: 66.0
## Median :102.00 Median :512.0 Median : 750.0 Median :101.0
## Mean : 99.61 Mean :501.6 Mean : 735.6 Mean :124.8
## 3rd Qu.:147.00 3rd Qu.:580.0 3rd Qu.: 930.0 3rd Qu.:156.0
## Max. :264.00 Max. :878.0 Max. :1399.0 Max. :697.0
## NA's :102 NA's :131
## TEAM_BASERUN_CS TEAM_BATTING_HBP TEAM_PITCHING_H TEAM_PITCHING_HR
## Min. : 0.0 Min. :29.00 Min. : 1137 Min. : 0.0
## 1st Qu.: 38.0 1st Qu.:50.50 1st Qu.: 1419 1st Qu.: 50.0
## Median : 49.0 Median :58.00 Median : 1518 Median :107.0
## Mean : 52.8 Mean :59.36 Mean : 1779 Mean :105.7
## 3rd Qu.: 62.0 3rd Qu.:67.00 3rd Qu.: 1682 3rd Qu.:150.0
## Max. :201.0 Max. :95.00 Max. :30132 Max. :343.0
## NA's :772 NA's :2085
## TEAM_PITCHING_BB TEAM_PITCHING_SO TEAM_FIELDING_E TEAM_FIELDING_DP
## Min. : 0.0 Min. : 0.0 Min. : 65.0 Min. : 52.0
## 1st Qu.: 476.0 1st Qu.: 615.0 1st Qu.: 127.0 1st Qu.:131.0
## Median : 536.5 Median : 813.5 Median : 159.0 Median :149.0
## Mean : 553.0 Mean : 817.7 Mean : 246.5 Mean :146.4
## 3rd Qu.: 611.0 3rd Qu.: 968.0 3rd Qu.: 249.2 3rd Qu.:164.0
## Max. :3645.0 Max. :19278.0 Max. :1898.0 Max. :228.0
## NA's :102 NA's :286
One of the key requirements of linear regression is a linear relationship between the explanatory and target variables. Digging into these relationships using scatter plot, it looks like TEAM_BATTING_SO, TEAM_BATTING_BB, and TEAM_PITCHING_SO have clear clustering around 0 and may not be linear.
pairs(baseball_training, lower.panel = NULL, cex = 0.4, cex.labels=0.5)
Digging further in with scatterplots versus the target, as well as box plots, there is clear clustering of some values around 0 for both TEAM_BATTING_BB and TEAM_BATTING_SO, and nearly all TEAM_PITCHING_SO values are 0. The boxplot for the latter shows a few outliers, but otherwise the majority of the data tightly clustered at low value.
boxplot(baseball_training$TEAM_BATTING_BB)
plot(baseball_training$TEAM_BATTING_BB,baseball_training$TARGET_WINS)
boxplot(baseball_training$TEAM_BATTING_SO)
plot(baseball_training$TEAM_BATTING_SO,baseball_training$TARGET_WINS)
boxplot(baseball_training$TEAM_PITCHING_SO)
plot(baseball_training$TEAM_PITCHING_SO,baseball_training$TARGET_WINS)
These features and other nonlinearity can be kept in mind in executing the model.
Also valauble is building a correlation matrix. This serves two purposes - to show which features correlate highly to the Target variable, and to reduce potential for collinearity if two features are not offering distinct value to the model. NA values are omitted.
training_cor <- cor(na.omit(baseball_training))
corrplot(training_cor, method = 'number',number.cex=7/ncol(baseball_training))
In terms of collinearity, there is large correlation between: * TEAM_PITCHING_H and TEAM_BATTING_H * TEAM_PITCHING_HR and TEAM_BATTING_HR * TEAM_PITCHING_BB and TEAM_BATTING_BB * TEAM_PITCHING_SO and TEAM_BATTING_SO
In the final model, we can explore keeping just 1 of each of these pairs.
In terms of correlation to the TARGET_WINS, TEAM_BATTING_H, TEAM_BATTING_BB, TEAM_PITCHING_H, and TEAM_PITCHING_BB have highest positive correlation. These are also fields with mutual correlation, which is helpful to note going into the model development and data preparation.
Finally, we can create a baseline model, that takes every variable unadjusted. This can act as a baseline to outperform as we iterate with more elaborate models.
lm_baseline <- lm(TARGET_WINS~.,baseball_training)
summary(lm_baseline)
##
## Call:
## lm(formula = TARGET_WINS ~ ., data = baseball_training)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.8708 -5.6564 -0.0599 5.2545 22.9274
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60.28826 19.67842 3.064 0.00253 **
## TEAM_BATTING_H 1.91348 2.76139 0.693 0.48927
## TEAM_BATTING_2B 0.02639 0.03029 0.871 0.38484
## TEAM_BATTING_3B -0.10118 0.07751 -1.305 0.19348
## TEAM_BATTING_HR -4.84371 10.50851 -0.461 0.64542
## TEAM_BATTING_BB -4.45969 3.63624 -1.226 0.22167
## TEAM_BATTING_SO 0.34196 2.59876 0.132 0.89546
## TEAM_BASERUN_SB 0.03304 0.02867 1.152 0.25071
## TEAM_BASERUN_CS -0.01104 0.07143 -0.155 0.87730
## TEAM_BATTING_HBP 0.08247 0.04960 1.663 0.09815 .
## TEAM_PITCHING_H -1.89096 2.76095 -0.685 0.49432
## TEAM_PITCHING_HR 4.93043 10.50664 0.469 0.63946
## TEAM_PITCHING_BB 4.51089 3.63372 1.241 0.21612
## TEAM_PITCHING_SO -0.37364 2.59705 -0.144 0.88577
## TEAM_FIELDING_E -0.17204 0.04140 -4.155 5.08e-05 ***
## TEAM_FIELDING_DP -0.10819 0.03654 -2.961 0.00349 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.467 on 175 degrees of freedom
## (2085 observations deleted due to missingness)
## Multiple R-squared: 0.5501, Adjusted R-squared: 0.5116
## F-statistic: 14.27 on 15 and 175 DF, p-value: < 2.2e-16
For Data preparation, there are two things we want to focus on, imputing missing values and making sure the data is ready for the models. The first item we can tackle is finding and replacing missing values. First, we want to find the percentage of missing values. The largest is TEAM_BATTING_HBP with 91% missing data while the second largest variables is TEAM_BASERUN_CS with 33% missing. We also have TEAM_FIELDING_DP with 12% missing, TEAM_BASERUN_SB with roughly 5% and both TEAM_PITCHING_SO and TEAM_BATTING_SO with 4.5% each.
For Team Batting HBP, I was originally going to fill in the NAs with 0 since there is a limited chance that it occurs and seems more like a data input error (the min is 29 but if it is not common should be 0), But since it is an issue that relates to how the games are recorded (this was not recoreded in the early days of baseball) we will get the mean data instead. And for TEAM_FIELDING_DP, I will do the same since it seems to have the same error. For all the other NAs it would make sense to fill in with the mean since there is not too much missing data or the min is 0.0.
Now, another thing we want to check for is if there are any issues with collinearity.
training_cor <- cor(na.omit(baseball_training))
corrplot(training_cor,method = 'color' ,order = 'hclust', addrect = 2)
From this heatmap we can see that there is a pairwise relationship between TEAM_PITCHING_HR and TEAM_BATTING_HR (close to 1), but since they are integral to our data, we will not get rid of either.
Finally, I will add several new columns, One for Predicted runs for season, Team Fielding, and Team Pitching
We need to do the same for baseball eval
And now, we are ready to split the data and build the model.
set.seed(678)
split <- sample.split(baseball_training$TARGET_WINS, SplitRatio = 0.8)
training_set <- subset(baseball_training, split == TRUE)
test_set <- subset(baseball_training, split == FALSE)
We split the data into train (80%) and test data (20%)
lm2 <- lm(TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_2B + TEAM_BATTING_3B +
TEAM_BATTING_HR + TEAM_BATTING_BB + TEAM_BATTING_SO +
TEAM_BASERUN_SB + TEAM_PITCHING_H +
TEAM_PITCHING_BB + TEAM_PITCHING_SO +
TEAM_FIELDING_E + TEAM_FIELDING_DP, data = training_set)
summary(lm2)
##
## Call:
## lm(formula = TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_2B +
## TEAM_BATTING_3B + TEAM_BATTING_HR + TEAM_BATTING_BB + TEAM_BATTING_SO +
## TEAM_BASERUN_SB + TEAM_PITCHING_H + TEAM_PITCHING_BB + TEAM_PITCHING_SO +
## TEAM_FIELDING_E + TEAM_FIELDING_DP, data = training_set)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.627 -8.472 0.049 8.515 56.544
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.2410579 5.9344238 3.748 0.000184 ***
## TEAM_BATTING_H 0.0490852 0.0041243 11.902 < 2e-16 ***
## TEAM_BATTING_2B -0.0155517 0.0103227 -1.507 0.132100
## TEAM_BATTING_3B 0.0658366 0.0183529 3.587 0.000343 ***
## TEAM_BATTING_HR 0.0568688 0.0110121 5.164 2.68e-07 ***
## TEAM_BATTING_BB 0.0075975 0.0056821 1.337 0.181357
## TEAM_BATTING_SO -0.0062301 0.0028160 -2.212 0.027066 *
## TEAM_BASERUN_SB 0.0244755 0.0048265 5.071 4.36e-07 ***
## TEAM_PITCHING_H -0.0009467 0.0003790 -2.498 0.012590 *
## TEAM_PITCHING_BB 0.0023327 0.0036950 0.631 0.527908
## TEAM_PITCHING_SO 0.0025050 0.0008933 2.804 0.005100 **
## TEAM_FIELDING_E -0.0199673 0.0026315 -7.588 5.17e-14 ***
## TEAM_FIELDING_DP -0.1234703 0.0146783 -8.412 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.23 on 1813 degrees of freedom
## Multiple R-squared: 0.3232, Adjusted R-squared: 0.3187
## F-statistic: 72.15 on 12 and 1813 DF, p-value: < 2.2e-16
vif(lm2)
## TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B TEAM_BATTING_HR
## 3.780657 2.473079 2.888639 4.667396
## TEAM_BATTING_BB TEAM_BATTING_SO TEAM_BASERUN_SB TEAM_PITCHING_H
## 5.480579 5.016713 1.804216 3.561706
## TEAM_PITCHING_BB TEAM_PITCHING_SO TEAM_FIELDING_E TEAM_FIELDING_DP
## 4.540903 2.903665 4.161496 1.333660
The most common way to detect multicollinearity is by using the variance inflation factor (VIF), which measures the correlation and strength of correlation between the predictor variables in a regression model.
A value greater than 5 indicates potentially severe correlation between a given predictor variable and other predictor variables in the model.
From our earlier analysis , we already noticed that a correlation exist between TEAM_PITCHING_H * TEAM_BATTING_H and TEAM_BATTING_BB * TEAM_PITCHING_BB and TEAM_PITCHING_SO * TEAM_BATTING_SO
Model Diagnostics
resid_panel(lm2, plots='default', smoother = TRUE)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
par(mfrow=c(2,2))
plot(lm2)
In this model we are going to remove the correlated predictors
lm3 <- lm(TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_2B + TEAM_BATTING_3B +
TEAM_BATTING_HR + TEAM_BATTING_BB + TEAM_BATTING_SO +
TEAM_BASERUN_SB + TEAM_FIELDING_E, data = training_set)
summary(lm3)
##
## Call:
## lm(formula = TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_2B +
## TEAM_BATTING_3B + TEAM_BATTING_HR + TEAM_BATTING_BB + TEAM_BATTING_SO +
## TEAM_BASERUN_SB + TEAM_FIELDING_E, data = training_set)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53.078 -9.154 0.002 8.508 60.798
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.0105200 5.7444624 1.394 0.16334
## TEAM_BATTING_H 0.0460224 0.0041572 11.071 < 2e-16 ***
## TEAM_BATTING_2B -0.0134959 0.0103968 -1.298 0.19442
## TEAM_BATTING_3B 0.0813442 0.0183731 4.427 1.01e-05 ***
## TEAM_BATTING_HR 0.0352787 0.0109966 3.208 0.00136 **
## TEAM_BATTING_BB 0.0033577 0.0037405 0.898 0.36949
## TEAM_BATTING_SO 0.0005925 0.0025871 0.229 0.81889
## TEAM_BASERUN_SB 0.0323915 0.0047867 6.767 1.77e-11 ***
## TEAM_FIELDING_E -0.0229460 0.0021954 -10.452 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.53 on 1817 degrees of freedom
## Multiple R-squared: 0.2909, Adjusted R-squared: 0.2877
## F-statistic: 93.15 on 8 and 1817 DF, p-value: < 2.2e-16
vif(lm3)
## TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B TEAM_BATTING_HR TEAM_BATTING_BB
## 3.674111 2.399495 2.769016 4.451733 2.271714
## TEAM_BATTING_SO TEAM_BASERUN_SB TEAM_FIELDING_E
## 4.050009 1.697371 2.770376
Model Diagnostics
resid_panel(lm3, plots='default', smoother = TRUE)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
par(mfrow=c(2,2))
plot(lm3)
We will do further clean up based on p-value
lm4 <- lm(TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_2B + TEAM_BATTING_3B +
TEAM_BATTING_HR + TEAM_BASERUN_SB + TEAM_FIELDING_E, data = training_set)
summary(lm4)
##
## Call:
## lm(formula = TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_2B +
## TEAM_BATTING_3B + TEAM_BATTING_HR + TEAM_BASERUN_SB + TEAM_FIELDING_E,
## data = training_set)
##
## Residuals:
## Min 1Q Median 3Q Max
## -52.943 -9.046 -0.028 8.581 60.883
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.376668 3.450126 3.008 0.00267 **
## TEAM_BATTING_H 0.045480 0.003481 13.067 < 2e-16 ***
## TEAM_BATTING_2B -0.012592 0.010003 -1.259 0.20827
## TEAM_BATTING_3B 0.082751 0.018220 4.542 5.94e-06 ***
## TEAM_BATTING_HR 0.038935 0.008380 4.647 3.62e-06 ***
## TEAM_BASERUN_SB 0.033813 0.004331 7.806 9.86e-15 ***
## TEAM_FIELDING_E -0.024096 0.001771 -13.603 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.52 on 1819 degrees of freedom
## Multiple R-squared: 0.2905, Adjusted R-squared: 0.2882
## F-statistic: 124.2 on 6 and 1819 DF, p-value: < 2.2e-16
vif(lm4)
## TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B TEAM_BATTING_HR TEAM_BASERUN_SB
## 2.577105 2.222817 2.724804 2.586646 1.390762
## TEAM_FIELDING_E
## 1.804790
Model Diagnostics
resid_panel(lm4, plots='default', smoother = TRUE)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
par(mfrow=c(2,2))
plot(lm4)
In order to select the best model, we will look at the evaluation metrics (RSE, R-Squared, Adj. R-Squared, F-Statistic, and AIC) for all three models and compare them.
Extract Model Evaluation Metrics
Model 1
# extract the rse, r.squared, adj.r.squared, F-statistic, and AIC for model 1
model1_rse <- round(summary(lm2)$sigma, 4)
model1_r_squared <- round(summary(lm2)$r.squared, 4)
model1_adj_r_squared <- round(summary(lm2)$adj.r.squared, 4)
model1_f_statistic <- round(summary(lm2)$fstatistic[1], 4)
model1_aic <- round(AIC(lm2), 4)
model1_metrics <- c(model1_rse, model1_r_squared, model1_adj_r_squared, model1_f_statistic,
model1_aic)
Model 2
# extract the rse, r.squared, adj.r.squared, F-statistic, and AIC for model 2
model2_rse <- round(summary(lm3)$sigma, 4)
model2_r_squared <- round(summary(lm3)$r.squared, 4)
model2_adj_r_squared <- round(summary(lm3)$adj.r.squared, 4)
model2_f_statistic <- round(summary(lm3)$fstatistic[1], 4)
model2_aic <- round(AIC(lm3), 4)
model2_metrics <- c(model2_rse, model2_r_squared, model2_adj_r_squared, model2_f_statistic,
model2_aic)
Model 3
# extract the rse, r.squared, adj.r.squared, F-statistic, and AIC for model 3
model3_rse <- round(summary(lm4)$sigma, 4)
model3_r_squared <- round(summary(lm4)$r.squared, 4)
model3_adj_r_squared <- round(summary(lm4)$adj.r.squared, 4)
model3_f_statistic <- round(summary(lm4)$fstatistic[1], 4)
model3_aic <- round(AIC(lm4), 4)
model3_metrics <- c(model3_rse, model3_r_squared, model3_adj_r_squared, model3_f_statistic,
model3_aic)
Combine all metrics
metrics <- data.frame(model1_metrics, model2_metrics, model3_metrics)
metrics_rownames <- c("RSE", "RSquared", "Adj-RSquared", "F-Statistic", "AIC")
metrics_headers <- c("Model1", "Model2", "Model3")
rownames(metrics) <- metrics_rownames
colnames(metrics) <- metrics_headers
metrics <- metrics %>% kbl() %>% kable_styling()
metrics
| Model1 | Model2 | Model3 | |
|---|---|---|---|
| RSE | 13.2276 | 13.5252 | 13.5207 |
| RSquared | 0.3232 | 0.2909 | 0.2905 |
| Adj-RSquared | 0.3187 | 0.2877 | 0.2882 |
| F-Statistic | 72.1506 | 93.1534 | 124.1515 |
| AIC | 14627.4980 | 14704.7697 | 14701.5802 |
The model diagnostic plots for all three models appear to be fairly similar. The Q-Q plot shows that the distribution is nearly normal and the residual vs fitted plot also shows no specific patter to worry about. Also, looking at the metrics of all three models, we can see that the values are fairly close. The RSE values are around 13 for all three models and the R-Square and Adj. R-Squared are about 30% for all three models. Furthermore, the AIC (Akaike Information Criteria) for all models are fairly close as well. However, the F-Statistic for Model3 is well above those for models 1 and 2. We can see that as we kept improving the model by selecting features whose p-values are significant, other model metrics remain fairly similar but the F-Statistic improved significantly from model1 to model3. Hence, we select model3 since it has a higher F-Statistic and it’s a simpler model than the others and contains less features that are almost all statistically significant.
Now that we have the model selected, let’s run it against the training data and see how accurate all of them are to make sure that model three is the best is by looking at the RSME. Then run it against the data we have in the Eval Training Set.
test_predictions = predict(lm2, newdata=test_set, interval ="predict")
test_set_1 <- cbind(test_set,test_predictions)
# RMSE
paste0("The Root Sqaure Mean Error for model one is: ", round(sqrt(mean((test_set_1$TARGET_WINS - test_set_1$fit)^2)),2))
## [1] "The Root Sqaure Mean Error for model one is: 12.3"
test_predictions = predict(lm3, newdata=test_set, interval ="predict")
test_set_2 <- cbind(test_set,test_predictions)
# RMSE
paste0("The Root Sqaure Mean Error for model two is: ", round(sqrt(mean((test_set_2$TARGET_WINS - test_set_2$fit)^2)),2))
## [1] "The Root Sqaure Mean Error for model two is: 12.5"
test_predictions = predict(lm4, newdata=test_set, interval ="predict")
test_set_3 <- cbind(test_set,test_predictions)
# RMSE
paste0("The Root Sqaure Mean Error for model three is: ", round(sqrt(mean((test_set_3$TARGET_WINS - test_set_3$fit)^2)),2))
## [1] "The Root Sqaure Mean Error for model three is: 12.51"
Linear Model One has the lowest RSME, but overall they are not too far apart, meaning they will perform similar so we will still work with Linear Model Three.
test_predictions = predict(lm4, newdata=baseball_eval, interval ="predict")
baseball_eval_final <- cbind(test_predictions,baseball_eval)
Here is the model run with Baseball Eva. Fit is the predicted value, while lwr and upr are the values that fall within a 95% confidence degree.
baseball_eval_final %>%
kbl() %>%
kable_paper("hover", full_width = F, html_font = "Times New Roman", font_size = 10) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
| fit | lwr | upr | TEAM_BATTING_H | TEAM_BATTING_2B | TEAM_BATTING_3B | TEAM_BATTING_HR | TEAM_BATTING_BB | TEAM_BATTING_SO | TEAM_BASERUN_SB | TEAM_BASERUN_CS | TEAM_BATTING_HBP | TEAM_PITCHING_H | TEAM_PITCHING_HR | TEAM_PITCHING_BB | TEAM_PITCHING_SO | TEAM_FIELDING_E | TEAM_FIELDING_DP | PRED_RUNS | TEAM_FIELDING |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 67.90646 | 41.350848 | 94.46208 | 1209 | 170 | 33 | 83 | 447 | 1080.0000 | 62.0000 | 50.00000 | 62.36842 | 1209 | 83 | 447 | 1080.000 | 140 | 156.000 | 907.3684 | 16.000 |
| 68.40512 | 41.839095 | 94.97114 | 1221 | 151 | 29 | 88 | 516 | 929.0000 | 54.0000 | 39.00000 | 62.36842 | 1221 | 88 | 516 | 929.000 | 135 | 164.000 | 939.3684 | 29.000 |
| 75.77338 | 49.214303 | 102.33247 | 1395 | 183 | 29 | 93 | 509 | 816.0000 | 59.0000 | 47.00000 | 62.36842 | 1395 | 93 | 509 | 816.000 | 156 | 153.000 | 982.3684 | -3.000 |
| 87.08601 | 60.533402 | 113.63861 | 1539 | 309 | 29 | 159 | 486 | 914.0000 | 148.0000 | 57.00000 | 42.00000 | 1539 | 159 | 486 | 914.000 | 124 | 154.000 | 1230.0000 | 30.000 |
| 68.70025 | 42.145847 | 95.25464 | 1445 | 203 | 68 | 5 | 95 | 416.0000 | 123.7033 | 52.31977 | 62.36842 | 3902 | 14 | 257 | 1123.000 | 616 | 130.000 | 771.3914 | -486.000 |
| 67.66162 | 41.094911 | 94.22833 | 1431 | 236 | 53 | 10 | 215 | 377.0000 | 123.7033 | 52.31977 | 62.36842 | 2793 | 20 | 420 | 736.000 | 572 | 105.000 | 957.3914 | -467.000 |
| 79.18169 | 52.572600 | 105.79078 | 1430 | 219 | 55 | 37 | 568 | 527.0000 | 365.0000 | 52.31977 | 62.36842 | 1544 | 40 | 613 | 569.000 | 490 | 146.057 | 1403.6882 | -343.943 |
| 74.48895 | 47.913359 | 101.06453 | 1385 | 158 | 42 | 33 | 356 | 609.0000 | 185.0000 | 52.31977 | 62.36842 | 1626 | 39 | 418 | 715.000 | 328 | 104.000 | 950.6882 | -224.000 |
| 72.38324 | 45.820956 | 98.94553 | 1259 | 177 | 78 | 23 | 466 | 689.0000 | 150.0000 | 52.31977 | 62.36842 | 1342 | 25 | 497 | 734.000 | 226 | 132.000 | 1039.6882 | -94.000 |
| 74.30083 | 47.753170 | 100.84848 | 1397 | 212 | 42 | 58 | 452 | 584.0000 | 52.0000 | 52.31977 | 62.36842 | 1489 | 62 | 482 | 622.000 | 184 | 145.000 | 960.6882 | -39.000 |
| 74.81810 | 48.264837 | 101.37137 | 1427 | 243 | 40 | 50 | 495 | 640.0000 | 64.0000 | 52.31977 | 62.36842 | 1501 | 53 | 521 | 673.000 | 200 | 183.000 | 1032.6882 | -17.000 |
| 84.35026 | 57.800401 | 110.90012 | 1496 | 239 | 55 | 164 | 462 | 670.0000 | 48.0000 | 28.00000 | 62.36842 | 1574 | 173 | 486 | 705.000 | 150 | 178.000 | 1082.3684 | 28.000 |
| 81.85578 | 55.276351 | 108.43522 | 1420 | 223 | 57 | 186 | 511 | 751.0000 | 31.0000 | 21.00000 | 62.36842 | 1494 | 196 | 538 | 790.000 | 137 | 167.000 | 1118.3684 | 30.000 |
| 80.42991 | 53.878734 | 106.98109 | 1460 | 232 | 22 | 176 | 503 | 680.0000 | 27.0000 | 8.00000 | 62.36842 | 1536 | 185 | 529 | 715.000 | 125 | 160.000 | 1056.3684 | 35.000 |
| 78.62753 | 52.069829 | 105.18523 | 1411 | 195 | 22 | 141 | 485 | 665.0000 | 59.0000 | 48.00000 | 62.36842 | 1411 | 141 | 485 | 665.000 | 115 | 114.000 | 1012.3684 | -1.000 |
| 80.02598 | 53.464345 | 106.58761 | 1434 | 192 | 30 | 153 | 434 | 747.0000 | 57.0000 | 46.00000 | 62.36842 | 1434 | 153 | 434 | 747.000 | 146 | 180.000 | 974.3684 | 34.000 |
| 72.80680 | 46.265018 | 99.34858 | 1297 | 204 | 22 | 130 | 491 | 1008.0000 | 84.0000 | 55.00000 | 62.36842 | 1313 | 132 | 497 | 1021.000 | 154 | 126.000 | 1054.3684 | -28.000 |
| 80.92890 | 54.389187 | 107.46861 | 1446 | 284 | 25 | 166 | 565 | 1041.0000 | 77.0000 | 39.00000 | 55.00000 | 1464 | 168 | 572 | 1054.000 | 115 | 172.000 | 1218.0000 | 57.000 |
| 68.74721 | 42.189647 | 95.30478 | 1276 | 162 | 52 | 17 | 383 | 709.3361 | 138.0000 | 52.31977 | 62.36842 | 1351 | 18 | 406 | 799.668 | 301 | 83.000 | 889.6882 | -218.000 |
| 92.24734 | 65.691883 | 118.80279 | 1715 | 322 | 72 | 116 | 527 | 397.0000 | 90.0000 | 83.00000 | 62.36842 | 1816 | 123 | 558 | 420.000 | 232 | 174.000 | 1303.3684 | -58.000 |
| 81.92984 | 55.363319 | 108.49636 | 1520 | 295 | 68 | 49 | 628 | 459.0000 | 77.0000 | 49.00000 | 62.36842 | 1620 | 52 | 669 | 489.000 | 166 | 158.000 | 1269.3684 | -8.000 |
| 84.39483 | 57.839352 | 110.95030 | 1597 | 291 | 38 | 98 | 629 | 563.0000 | 54.0000 | 43.00000 | 62.36842 | 1702 | 104 | 670 | 600.000 | 155 | 174.000 | 1256.3684 | 19.000 |
| 79.90711 | 53.361572 | 106.45265 | 1453 | 256 | 67 | 105 | 653 | 651.0000 | 40.0000 | 41.00000 | 62.36842 | 1559 | 113 | 701 | 698.000 | 179 | 153.000 | 1272.3684 | -26.000 |
| 73.71380 | 47.172487 | 100.25511 | 1378 | 225 | 26 | 118 | 533 | 677.0000 | 18.0000 | 36.00000 | 62.36842 | 1450 | 124 | 561 | 712.000 | 160 | 174.000 | 1046.3684 | 14.000 |
| 84.21949 | 57.678895 | 110.76008 | 1516 | 277 | 24 | 152 | 431 | 902.0000 | 89.0000 | 36.00000 | 54.00000 | 1516 | 152 | 431 | 902.000 | 105 | 164.000 | 1063.0000 | 59.000 |
| 87.19068 | 60.637675 | 113.74369 | 1556 | 288 | 20 | 164 | 474 | 878.0000 | 121.0000 | 32.00000 | 73.00000 | 1556 | 164 | 474 | 878.000 | 102 | 156.000 | 1172.0000 | 54.000 |
| 53.36989 | 26.628296 | 80.11148 | 1499 | 183 | 28 | 3 | 83 | 0.0000 | 123.7033 | 52.31977 | 62.36842 | 5167 | 10 | 286 | 0.000 | 1224 | 146.057 | 738.3914 | -1077.943 |
| 76.81684 | 50.265541 | 103.36815 | 1464 | 263 | 58 | 47 | 385 | 479.0000 | 63.0000 | 66.00000 | 62.36842 | 1540 | 49 | 405 | 504.000 | 232 | 146.000 | 964.3684 | -86.000 |
| 81.49095 | 54.898005 | 108.08389 | 1558 | 318 | 66 | 32 | 634 | 439.0000 | 83.0000 | 64.00000 | 62.36842 | 1639 | 34 | 667 | 462.000 | 218 | 130.000 | 1292.3684 | -88.000 |
| 76.03297 | 49.426308 | 102.63963 | 1502 | 308 | 36 | 39 | 432 | 602.0000 | 45.0000 | 46.00000 | 62.36842 | 1601 | 42 | 460 | 642.000 | 199 | 135.000 | 996.3684 | -64.000 |
| 86.87193 | 60.322680 | 113.42118 | 1596 | 320 | 58 | 130 | 718 | 596.0000 | 70.0000 | 54.00000 | 62.36842 | 1679 | 137 | 755 | 627.000 | 178 | 146.000 | 1449.3684 | -32.000 |
| 84.99018 | 58.457558 | 111.52281 | 1546 | 260 | 59 | 110 | 630 | 541.0000 | 72.0000 | 65.00000 | 62.36842 | 1648 | 117 | 671 | 577.000 | 167 | 166.000 | 1299.3684 | -1.000 |
| 82.70763 | 56.169930 | 109.24534 | 1516 | 282 | 53 | 115 | 723 | 695.0000 | 47.0000 | 38.00000 | 62.36842 | 1595 | 121 | 761 | 731.000 | 146 | 174.000 | 1358.3684 | 28.000 |
| 83.67289 | 57.133747 | 110.21204 | 1550 | 275 | 47 | 146 | 765 | 723.0000 | 29.0000 | 20.00000 | 62.36842 | 1631 | 154 | 805 | 761.000 | 178 | 177.000 | 1384.3684 | -1.000 |
| 81.32920 | 54.786096 | 107.87231 | 1447 | 260 | 54 | 148 | 532 | 935.0000 | 39.0000 | 33.00000 | 62.36842 | 1465 | 150 | 539 | 947.000 | 130 | 154.000 | 1135.3684 | 24.000 |
| 81.30176 | 54.747265 | 107.85626 | 1450 | 252 | 28 | 203 | 594 | 855.0000 | 50.0000 | 48.00000 | 62.36842 | 1450 | 203 | 594 | 855.000 | 156 | 131.000 | 1237.3684 | -25.000 |
| 75.72511 | 49.191270 | 102.25896 | 1347 | 239 | 36 | 130 | 546 | 897.0000 | 69.0000 | 31.00000 | 62.36842 | 1408 | 136 | 571 | 938.000 | 136 | 147.000 | 1138.3684 | 11.000 |
| 90.08979 | 63.511035 | 116.66855 | 1561 | 260 | 56 | 214 | 531 | 911.0000 | 66.0000 | 47.00000 | 62.36842 | 1571 | 215 | 534 | 917.000 | 133 | 163.000 | 1239.3684 | 30.000 |
| 84.70025 | 58.142547 | 111.25795 | 1578 | 252 | 26 | 135 | 567 | 780.0000 | 48.0000 | 47.00000 | 62.36842 | 2367 | 203 | 851 | 1170.000 | 137 | 162.000 | 1421.3684 | 25.000 |
| 88.40230 | 61.845815 | 114.95878 | 1598 | 259 | 45 | 181 | 500 | 842.0000 | 38.0000 | 25.00000 | 62.36842 | 1598 | 181 | 500 | 842.000 | 143 | 128.000 | 1110.3684 | -15.000 |
| 80.04253 | 53.480584 | 106.60448 | 1497 | 322 | 21 | 145 | 599 | 711.0000 | 41.0000 | 34.00000 | 62.36842 | 1506 | 146 | 603 | 715.000 | 130 | 147.000 | 1228.3684 | 17.000 |
| 85.84309 | 59.294736 | 112.39145 | 1569 | 310 | 39 | 124 | 623 | 728.0000 | 65.0000 | 36.00000 | 62.36842 | 1569 | 124 | 623 | 728.000 | 93 | 123.000 | 1259.3684 | 30.000 |
| 29.18663 | 2.252219 | 56.12103 | 1119 | 118 | 33 | 7 | 37 | 0.0000 | 123.7033 | 52.31977 | 62.36842 | 4120 | 26 | 136 | 0.000 | 1568 | 146.057 | 532.3914 | -1421.943 |
| 100.22825 | 73.507943 | 126.94855 | 1609 | 196 | 120 | 62 | 781 | 599.0000 | 536.0000 | 52.31977 | 62.36842 | 1931 | 74 | 937 | 719.000 | 470 | 146.057 | 1965.6882 | -323.943 |
| 89.23984 | 62.607181 | 115.87249 | 1514 | 175 | 70 | 80 | 615 | 612.0000 | 392.0000 | 52.31977 | 62.36842 | 1803 | 95 | 733 | 729.000 | 413 | 146.057 | 1564.6882 | -266.943 |
| 92.24573 | 65.666171 | 118.82528 | 1657 | 237 | 119 | 41 | 593 | 334.0000 | 325.0000 | 52.31977 | 62.36842 | 2114 | 52 | 756 | 426.000 | 537 | 146.057 | 1592.6882 | -390.943 |
| 97.46780 | 70.858826 | 124.07677 | 1746 | 213 | 106 | 69 | 526 | 429.0000 | 324.0000 | 52.31977 | 62.36842 | 2176 | 86 | 655 | 535.000 | 500 | 146.057 | 1481.6882 | -353.943 |
| 74.62464 | 48.077078 | 101.17221 | 1319 | 224 | 70 | 56 | 416 | 677.0000 | 176.0000 | 131.00000 | 62.36842 | 1397 | 59 | 440 | 717.000 | 284 | 100.000 | 1159.3684 | -184.000 |
| 70.86662 | 44.311333 | 97.42191 | 1293 | 204 | 70 | 18 | 437 | 630.0000 | 134.0000 | 52.31977 | 62.36842 | 1360 | 19 | 460 | 663.000 | 281 | 127.000 | 1000.6882 | -154.000 |
| 77.57368 | 51.031722 | 104.11565 | 1420 | 235 | 70 | 36 | 450 | 443.0000 | 121.0000 | 136.00000 | 62.36842 | 1494 | 38 | 473 | 466.000 | 237 | 118.000 | 1133.3684 | -119.000 |
| 80.04953 | 53.507420 | 106.59165 | 1496 | 269 | 54 | 76 | 412 | 500.0000 | 55.0000 | 52.31977 | 62.36842 | 1574 | 80 | 433 | 526.000 | 177 | 171.000 | 1001.6882 | -6.000 |
| 85.62533 | 59.054371 | 112.19629 | 1625 | 289 | 38 | 80 | 517 | 486.0000 | 72.0000 | 52.31977 | 62.36842 | 1709 | 84 | 544 | 511.000 | 154 | 164.000 | 1137.6882 | 10.000 |
| 78.87609 | 52.337103 | 105.41508 | 1391 | 239 | 50 | 145 | 499 | 1041.0000 | 70.0000 | 49.00000 | 62.36842 | 1391 | 145 | 499 | 1041.000 | 162 | 147.000 | 1114.3684 | -15.000 |
| 74.94712 | 48.401519 | 101.49272 | 1319 | 203 | 43 | 130 | 415 | 854.0000 | 41.0000 | 30.00000 | 62.36842 | 1319 | 130 | 415 | 854.000 | 119 | 149.000 | 924.3684 | 30.000 |
| 77.40231 | 50.870833 | 103.93379 | 1411 | 251 | 35 | 107 | 471 | 912.0000 | 93.0000 | 64.00000 | 62.36842 | 1411 | 107 | 471 | 912.000 | 174 | 149.000 | 1083.3684 | -25.000 |
| 79.47383 | 52.940251 | 106.00741 | 1420 | 221 | 41 | 104 | 417 | 816.0000 | 77.0000 | 51.00000 | 62.36842 | 1420 | 104 | 417 | 816.000 | 114 | 142.000 | 973.3684 | 28.000 |
| 90.00851 | 63.432941 | 116.58409 | 1552 | 206 | 106 | 38 | 566 | 401.0000 | 334.0000 | 52.31977 | 62.36842 | 1849 | 45 | 674 | 478.000 | 411 | 119.000 | 1472.6882 | -292.000 |
| 74.22821 | 47.663136 | 100.79329 | 1280 | 203 | 72 | 15 | 392 | 616.0000 | 227.0000 | 52.31977 | 62.36842 | 1346 | 16 | 412 | 648.000 | 250 | 100.000 | 1043.6882 | -150.000 |
| 63.65799 | 37.068826 | 90.24716 | 1120 | 122 | 61 | 7 | 427 | 709.3361 | 194.0000 | 52.31977 | 62.36842 | 1186 | 7 | 452 | 799.668 | 332 | 106.000 | 950.6882 | -226.000 |
| 78.91953 | 52.370422 | 105.46864 | 1390 | 183 | 84 | 18 | 445 | 709.3361 | 216.0000 | 52.31977 | 62.36842 | 1462 | 19 | 468 | 799.668 | 304 | 107.000 | 1083.6882 | -197.000 |
| 86.77523 | 60.223689 | 113.32677 | 1554 | 252 | 81 | 29 | 494 | 414.0000 | 174.0000 | 52.31977 | 62.36842 | 1798 | 34 | 572 | 479.000 | 200 | 134.000 | 1222.6882 | -66.000 |
| 77.99621 | 51.445187 | 104.54722 | 1410 | 218 | 69 | 45 | 738 | 627.0000 | 65.0000 | 58.00000 | 62.36842 | 1483 | 47 | 776 | 660.000 | 142 | 189.000 | 1293.3684 | 47.000 |
| 84.70522 | 58.166860 | 111.24358 | 1507 | 262 | 28 | 159 | 573 | 907.0000 | 107.0000 | 52.00000 | 62.36842 | 1516 | 160 | 577 | 913.000 | 126 | 132.000 | 1247.3684 | 6.000 |
| 85.37853 | 58.805571 | 111.95149 | 1481 | 284 | 19 | 242 | 499 | 1030.0000 | 78.0000 | 51.00000 | 63.00000 | 1481 | 242 | 499 | 1030.000 | 100 | 167.000 | 1236.0000 | 67.000 |
| 85.19424 | 58.638887 | 111.74960 | 1450 | 253 | 23 | 200 | 435 | 1002.0000 | 137.0000 | 67.00000 | 79.00000 | 1450 | 200 | 435 | 1002.000 | 94 | 166.000 | 1194.0000 | 72.000 |
| 97.60697 | 70.956176 | 124.25776 | 1637 | 260 | 93 | 26 | 487 | 288.0000 | 446.0000 | 52.31977 | 62.36842 | 2088 | 33 | 621 | 367.000 | 321 | 146.057 | 1560.6882 | -174.943 |
| 77.07514 | 50.538980 | 103.61130 | 1436 | 202 | 82 | 44 | 376 | 681.0000 | 160.0000 | 52.31977 | 62.36842 | 1674 | 51 | 438 | 794.000 | 414 | 119.000 | 1040.6882 | -295.000 |
| 84.73351 | 58.182891 | 111.28413 | 1600 | 218 | 89 | 21 | 344 | 538.0000 | 152.0000 | 52.31977 | 62.36842 | 1851 | 24 | 398 | 623.000 | 373 | 137.000 | 992.6882 | -236.000 |
| 78.88174 | 52.312859 | 105.45063 | 1348 | 168 | 76 | 23 | 506 | 709.3361 | 296.0000 | 52.31977 | 62.36842 | 1427 | 24 | 536 | 799.668 | 327 | 127.000 | 1213.6882 | -200.000 |
| 87.19457 | 60.616352 | 113.77279 | 1460 | 191 | 111 | 22 | 612 | 629.0000 | 306.0000 | 52.31977 | 62.36842 | 1546 | 23 | 648 | 666.000 | 314 | 114.000 | 1392.6882 | -200.000 |
| 89.93102 | 63.305242 | 116.55680 | 1621 | 255 | 126 | 37 | 478 | 350.0000 | 54.0000 | 52.31977 | 62.36842 | 1705 | 39 | 503 | 368.000 | 193 | 168.000 | 1089.6882 | -25.000 |
| 77.01948 | 50.462422 | 103.57654 | 1433 | 241 | 49 | 45 | 468 | 501.0000 | 52.0000 | 52.31977 | 62.36842 | 1507 | 47 | 492 | 527.000 | 127 | 203.000 | 993.6882 | 76.000 |
| 81.14025 | 54.598206 | 107.68230 | 1440 | 232 | 48 | 155 | 586 | 679.0000 | 49.0000 | 32.00000 | 62.36842 | 1515 | 163 | 616 | 714.000 | 144 | 204.000 | 1194.3684 | 60.000 |
| 85.55268 | 58.946344 | 112.15902 | 1479 | 211 | 34 | 232 | 555 | 799.0000 | 47.0000 | 23.00000 | 62.36842 | 1556 | 244 | 584 | 841.000 | 119 | 155.000 | 1193.3684 | 36.000 |
| 84.00933 | 57.461042 | 110.55762 | 1573 | 281 | 36 | 106 | 379 | 938.0000 | 59.0000 | 55.00000 | 62.36842 | 1573 | 106 | 379 | 938.000 | 144 | 144.000 | 978.3684 | 0.000 |
| 87.17014 | 60.608026 | 113.73226 | 1558 | 224 | 42 | 171 | 474 | 1042.0000 | 79.0000 | 56.00000 | 62.36842 | 1558 | 171 | 474 | 1042.000 | 168 | 158.000 | 1108.3684 | -10.000 |
| 81.57644 | 55.043069 | 108.10981 | 1385 | 225 | 46 | 130 | 637 | 961.0000 | 147.0000 | 66.00000 | 62.36842 | 1457 | 137 | 670 | 1011.000 | 116 | 150.000 | 1346.3684 | 34.000 |
| 81.56494 | 55.026766 | 108.10312 | 1419 | 250 | 27 | 164 | 488 | 1006.0000 | 124.0000 | 56.00000 | 62.36842 | 1419 | 164 | 488 | 1006.000 | 125 | 131.000 | 1171.3684 | 6.000 |
| 71.85034 | 45.295755 | 98.40493 | 1284 | 198 | 61 | 19 | 383 | 709.3361 | 186.0000 | 52.31977 | 62.36842 | 1351 | 20 | 403 | 799.668 | 270 | 100.000 | 981.6882 | -170.000 |
| 78.16604 | 51.613431 | 104.71865 | 1403 | 200 | 68 | 10 | 390 | 709.3361 | 201.0000 | 52.31977 | 62.36842 | 1495 | 11 | 416 | 799.668 | 262 | 119.000 | 1009.6882 | -143.000 |
| 85.65305 | 59.064226 | 112.24187 | 1631 | 358 | 48 | 105 | 553 | 455.0000 | 55.0000 | 34.00000 | 62.36842 | 1716 | 110 | 582 | 479.000 | 179 | 173.000 | 1244.3684 | -6.000 |
| 90.25997 | 63.677723 | 116.84222 | 1666 | 343 | 82 | 98 | 487 | 600.0000 | 67.0000 | 57.00000 | 62.36842 | 1764 | 104 | 516 | 635.000 | 184 | 156.000 | 1225.3684 | -28.000 |
| 97.55760 | 70.951952 | 124.16325 | 1804 | 376 | 86 | 129 | 541 | 494.0000 | 69.0000 | 56.00000 | 62.36842 | 1898 | 136 | 569 | 520.000 | 191 | 162.000 | 1347.3684 | -29.000 |
| 81.35558 | 54.805333 | 107.90583 | 1534 | 284 | 53 | 74 | 539 | 624.0000 | 50.0000 | 44.00000 | 62.36842 | 1614 | 78 | 567 | 656.000 | 173 | 202.000 | 1134.3684 | 29.000 |
| 82.59983 | 56.049817 | 109.14985 | 1472 | 222 | 52 | 156 | 659 | 788.0000 | 48.0000 | 41.00000 | 62.36842 | 1548 | 164 | 693 | 829.000 | 163 | 148.000 | 1274.3684 | -15.000 |
| 81.02543 | 54.473502 | 107.57735 | 1489 | 229 | 21 | 134 | 467 | 603.0000 | 61.0000 | 26.00000 | 62.36842 | 1566 | 141 | 491 | 634.000 | 133 | 174.000 | 1024.3684 | 41.000 |
| 78.80465 | 52.251314 | 105.35799 | 1367 | 198 | 21 | 156 | 506 | 857.0000 | 109.0000 | 46.00000 | 62.36842 | 1367 | 156 | 506 | 857.000 | 114 | 127.000 | 1098.3684 | 13.000 |
| 82.67668 | 56.139054 | 109.21431 | 1485 | 222 | 46 | 101 | 534 | 692.0000 | 88.0000 | 88.00000 | 62.36842 | 1494 | 102 | 537 | 696.000 | 131 | 146.000 | 1144.3684 | 15.000 |
| 82.88689 | 56.341477 | 109.43230 | 1458 | 225 | 32 | 109 | 651 | 625.0000 | 151.0000 | 68.00000 | 62.36842 | 1458 | 109 | 651 | 625.000 | 123 | 129.000 | 1298.3684 | 6.000 |
| 88.13140 | 61.559678 | 114.70312 | 1530 | 334 | 30 | 198 | 630 | 1061.0000 | 143.0000 | 60.00000 | 62.36842 | 1530 | 198 | 630 | 1061.000 | 110 | 146.000 | 1457.3684 | 36.000 |
| 79.16406 | 52.593132 | 105.73499 | 1421 | 160 | 72 | 30 | 523 | 508.0000 | 289.0000 | 52.31977 | 62.36842 | 1731 | 37 | 637 | 619.000 | 445 | 146.057 | 1302.6882 | -298.943 |
| 87.04854 | 60.296301 | 113.80077 | 1869 | 301 | 122 | 58 | 347 | 127.0000 | 399.0000 | 52.31977 | 62.36842 | 10814 | 336 | 2008 | 735.000 | 1261 | 146.057 | 3002.6882 | -1114.943 |
| 74.07883 | 47.532179 | 100.62549 | 1400 | 169 | 66 | 26 | 431 | 344.0000 | 156.0000 | 52.31977 | 62.36842 | 1680 | 31 | 517 | 413.000 | 398 | 133.000 | 1048.6882 | -265.000 |
| 83.19515 | 56.639925 | 109.75037 | 1494 | 193 | 81 | 12 | 340 | 709.3361 | 207.0000 | 52.31977 | 62.36842 | 1614 | 13 | 367 | 799.668 | 285 | 85.000 | 974.6882 | -200.000 |
| 82.56287 | 55.984272 | 109.14147 | 1449 | 223 | 62 | 20 | 423 | 709.3361 | 298.0000 | 52.31977 | 62.36842 | 1544 | 21 | 451 | 799.668 | 286 | 93.000 | 1168.6882 | -193.000 |
| 79.99250 | 53.440140 | 106.54486 | 1385 | 200 | 76 | 29 | 483 | 709.3361 | 262.0000 | 52.31977 | 62.36842 | 1457 | 31 | 508 | 799.668 | 296 | 83.000 | 1189.6882 | -213.000 |
| 84.44415 | 57.885204 | 111.00310 | 1443 | 218 | 99 | 24 | 716 | 554.0000 | 254.0000 | 154.00000 | 62.36842 | 1518 | 25 | 753 | 583.000 | 271 | 113.000 | 1564.3684 | -158.000 |
| 98.45938 | 71.863494 | 125.05526 | 1825 | 284 | 106 | 61 | 616 | 398.0000 | 101.0000 | 94.00000 | 62.36842 | 1932 | 65 | 652 | 421.000 | 245 | 113.000 | 1360.3684 | -132.000 |
| 88.14264 | 61.566570 | 114.71871 | 1627 | 296 | 95 | 38 | 630 | 445.0000 | 93.0000 | 76.00000 | 62.36842 | 1712 | 40 | 663 | 468.000 | 207 | 159.000 | 1323.3684 | -48.000 |
| 91.01234 | 64.437446 | 117.58723 | 1623 | 299 | 106 | 54 | 622 | 445.0000 | 149.0000 | 77.00000 | 62.36842 | 1718 | 57 | 659 | 471.000 | 221 | 183.000 | 1406.3684 | -38.000 |
| 84.44106 | 57.874322 | 111.00781 | 1556 | 298 | 82 | 60 | 500 | 550.0000 | 72.0000 | 53.00000 | 62.36842 | 1637 | 63 | 526 | 579.000 | 187 | 176.000 | 1153.3684 | -11.000 |
| 73.15025 | 46.610615 | 99.68988 | 1381 | 228 | 39 | 80 | 535 | 501.0000 | 41.0000 | 42.00000 | 62.36842 | 1453 | 84 | 563 | 527.000 | 203 | 149.000 | 1055.3684 | -54.000 |
| 83.72013 | 57.179361 | 110.26090 | 1556 | 272 | 46 | 114 | 532 | 634.0000 | 32.0000 | 37.00000 | 62.36842 | 1637 | 120 | 560 | 667.000 | 138 | 157.000 | 1123.3684 | 19.000 |
| 79.45605 | 52.900106 | 106.01200 | 1416 | 206 | 32 | 168 | 610 | 775.0000 | 36.0000 | 18.00000 | 62.36842 | 1490 | 177 | 642 | 815.000 | 130 | 138.000 | 1164.3684 | 8.000 |
| 80.77281 | 54.219494 | 107.32612 | 1413 | 257 | 21 | 204 | 546 | 1268.0000 | 87.0000 | 50.00000 | 62.36842 | 1413 | 204 | 546 | 1268.000 | 135 | 157.000 | 1227.3684 | 22.000 |
| 73.79022 | 47.210661 | 100.36979 | 1504 | 253 | 102 | 33 | 262 | 482.0000 | 123.7033 | 52.31977 | 62.36842 | 2901 | 64 | 505 | 930.000 | 652 | 154.000 | 1131.3914 | -498.000 |
| 56.21510 | 29.595510 | 82.83469 | 1193 | 165 | 68 | 45 | 299 | 1011.0000 | 123.7033 | 52.31977 | 62.36842 | 1726 | 65 | 432 | 1462.000 | 743 | 146.057 | 948.3914 | -596.943 |
| 82.20348 | 55.641577 | 108.76538 | 1461 | 325 | 30 | 166 | 470 | 1145.0000 | 89.0000 | 40.00000 | 67.00000 | 1461 | 166 | 470 | 1145.000 | 103 | 174.000 | 1187.0000 | 71.000 |
| 83.81973 | 57.271581 | 110.36788 | 1458 | 294 | 36 | 187 | 590 | 999.0000 | 89.0000 | 30.00000 | 61.00000 | 1458 | 187 | 590 | 999.000 | 101 | 136.000 | 1287.0000 | 35.000 |
| 62.24563 | 35.654134 | 88.83712 | 1295 | 237 | 64 | 25 | 360 | 814.0000 | 129.0000 | 52.31977 | 62.36842 | 1734 | 33 | 482 | 1090.000 | 609 | 146.057 | 1051.6882 | -462.943 |
| 83.04656 | 56.511637 | 109.58149 | 1431 | 263 | 58 | 118 | 591 | 675.0000 | 155.0000 | 75.00000 | 62.36842 | 1431 | 118 | 591 | 675.000 | 155 | 151.000 | 1322.3684 | -4.000 |
| 85.73302 | 59.165928 | 112.30012 | 1469 | 305 | 59 | 98 | 498 | 644.0000 | 216.0000 | 84.00000 | 62.36842 | 1469 | 98 | 498 | 644.000 | 150 | 153.000 | 1322.3684 | 3.000 |
| 93.51336 | 66.965130 | 120.06160 | 1633 | 266 | 59 | 115 | 508 | 709.0000 | 185.0000 | 43.00000 | 62.36842 | 1633 | 115 | 508 | 709.000 | 141 | 150.000 | 1238.3684 | 9.000 |
| 90.94204 | 64.404116 | 117.47996 | 1603 | 295 | 58 | 132 | 442 | 758.0000 | 133.0000 | 48.00000 | 62.36842 | 1603 | 132 | 442 | 758.000 | 127 | 140.000 | 1170.3684 | 13.000 |
| 83.95211 | 57.422812 | 110.48141 | 1487 | 269 | 52 | 117 | 400 | 832.0000 | 106.0000 | 64.00000 | 62.36842 | 1487 | 117 | 400 | 832.000 | 129 | 157.000 | 1070.3684 | 28.000 |
| 81.67109 | 55.106905 | 108.23527 | 1474 | 318 | 44 | 101 | 501 | 884.0000 | 108.0000 | 62.00000 | 62.36842 | 1483 | 102 | 504 | 889.000 | 123 | 162.000 | 1199.3684 | 39.000 |
| 90.65737 | 64.118655 | 117.19608 | 1594 | 296 | 52 | 152 | 538 | 938.0000 | 128.0000 | 39.00000 | 62.36842 | 1604 | 153 | 541 | 944.000 | 126 | 190.000 | 1270.3684 | 64.000 |
| 81.66964 | 55.125915 | 108.21336 | 1415 | 285 | 42 | 140 | 524 | 921.0000 | 140.0000 | 65.00000 | 52.00000 | 1415 | 140 | 524 | 921.000 | 130 | 153.000 | 1248.0000 | 23.000 |
| 78.95534 | 52.413308 | 105.49737 | 1445 | 289 | 34 | 126 | 424 | 1008.0000 | 53.0000 | 33.00000 | 63.00000 | 1445 | 126 | 424 | 1008.000 | 125 | 163.000 | 1022.0000 | 38.000 |
| 76.69830 | 50.089855 | 103.30674 | 1362 | 199 | 81 | 29 | 408 | 508.0000 | 386.0000 | 52.31977 | 62.36842 | 1576 | 34 | 472 | 588.000 | 581 | 146.057 | 1281.6882 | -434.943 |
| 91.10848 | 64.534158 | 117.68281 | 1572 | 195 | 106 | 30 | 522 | 288.0000 | 297.0000 | 52.31977 | 62.36842 | 1721 | 33 | 571 | 315.000 | 344 | 146.057 | 1313.6882 | -197.943 |
| 67.09385 | 40.525875 | 93.66182 | 1209 | 168 | 56 | 16 | 435 | 709.3361 | 217.0000 | 52.31977 | 62.36842 | 1280 | 17 | 461 | 799.668 | 363 | 92.000 | 1032.6882 | -271.000 |
| 68.94708 | 42.385870 | 95.50829 | 1242 | 155 | 69 | 20 | 368 | 709.3361 | 132.0000 | 52.31977 | 62.36842 | 1359 | 22 | 403 | 799.668 | 287 | 103.000 | 893.6882 | -184.000 |
| 63.09859 | 36.500985 | 89.69620 | 1098 | 116 | 63 | 29 | 340 | 709.3361 | 119.0000 | 52.31977 | 62.36842 | 1155 | 31 | 358 | 799.668 | 254 | 69.000 | 799.6882 | -185.000 |
| 71.17337 | 44.608707 | 97.73803 | 1235 | 175 | 77 | 26 | 457 | 743.0000 | 159.0000 | 52.31977 | 62.36842 | 1299 | 27 | 481 | 782.000 | 246 | 131.000 | 1032.6882 | -115.000 |
| 88.80027 | 62.241990 | 115.35855 | 1651 | 247 | 80 | 59 | 357 | 335.0000 | 83.0000 | 63.00000 | 62.36842 | 1737 | 62 | 376 | 352.000 | 219 | 146.000 | 970.3684 | -73.000 |
| 90.57611 | 63.999565 | 117.15265 | 1712 | 265 | 85 | 68 | 463 | 406.0000 | 39.0000 | 32.00000 | 62.36842 | 1813 | 72 | 490 | 430.000 | 221 | 138.000 | 1041.3684 | -83.000 |
| 77.12412 | 50.580369 | 103.66786 | 1391 | 206 | 78 | 41 | 390 | 523.0000 | 112.0000 | 52.31977 | 62.36842 | 1473 | 43 | 413 | 554.000 | 239 | 124.000 | 964.6882 | -115.000 |
| 88.62795 | 62.083217 | 115.17268 | 1625 | 299 | 73 | 105 | 534 | 481.0000 | 85.0000 | 52.31977 | 62.36842 | 1721 | 111 | 565 | 509.000 | 203 | 120.000 | 1241.6882 | -83.000 |
| 94.45463 | 67.888504 | 121.02075 | 1740 | 319 | 77 | 128 | 506 | 569.0000 | 56.0000 | 52.31977 | 62.36842 | 1830 | 135 | 532 | 599.000 | 178 | 176.000 | 1226.6882 | -2.000 |
| 85.70182 | 59.146267 | 112.25738 | 1626 | 303 | 55 | 84 | 584 | 592.0000 | 59.0000 | 52.31977 | 62.36842 | 1733 | 90 | 622 | 631.000 | 192 | 150.000 | 1237.6882 | -42.000 |
| 78.67944 | 52.119127 | 105.23976 | 1471 | 277 | 36 | 65 | 602 | 509.0000 | 85.0000 | 52.31977 | 62.36842 | 1547 | 68 | 633 | 535.000 | 145 | 158.000 | 1210.6882 | 13.000 |
| 77.04698 | 50.493693 | 103.60028 | 1373 | 232 | 14 | 130 | 478 | 966.0000 | 155.0000 | 67.00000 | 62.36842 | 1373 | 130 | 478 | 966.000 | 179 | 118.000 | 1138.3684 | -61.000 |
| 84.70803 | 58.157071 | 111.25899 | 1466 | 215 | 35 | 158 | 527 | 1151.0000 | 143.0000 | 51.00000 | 62.36842 | 1649 | 178 | 593 | 1295.000 | 146 | 135.000 | 1257.3684 | -11.000 |
| 85.55286 | 58.989976 | 112.11574 | 1450 | 226 | 30 | 203 | 536 | 1092.0000 | 102.0000 | 41.00000 | 62.00000 | 1450 | 203 | 536 | 1092.000 | 73 | 145.000 | 1200.0000 | 72.000 |
| 65.41152 | 38.833438 | 91.98961 | 1474 | 223 | 57 | 18 | 259 | 391.0000 | 123.7033 | 52.31977 | 62.36842 | 2985 | 36 | 524 | 792.000 | 780 | 75.000 | 1060.3914 | -705.000 |
| 77.47220 | 50.936947 | 104.00746 | 1335 | 228 | 49 | 120 | 500 | 909.0000 | 106.0000 | 75.00000 | 62.36842 | 1335 | 120 | 500 | 909.000 | 127 | 168.000 | 1140.3684 | 41.000 |
| 78.82870 | 52.289384 | 105.36801 | 1455 | 233 | 36 | 97 | 435 | 677.0000 | 52.0000 | 57.00000 | 62.36842 | 1464 | 98 | 438 | 681.000 | 137 | 157.000 | 975.3684 | 20.000 |
| 86.72575 | 60.137314 | 113.31419 | 1477 | 272 | 35 | 82 | 511 | 779.0000 | 256.0000 | 115.00000 | 62.36842 | 1477 | 82 | 511 | 779.000 | 89 | 146.000 | 1333.3684 | 57.000 |
| 80.65404 | 54.113823 | 107.19425 | 1426 | 240 | 25 | 125 | 555 | 932.0000 | 138.0000 | 93.00000 | 62.36842 | 1426 | 125 | 555 | 932.000 | 131 | 148.000 | 1238.3684 | 17.000 |
| 67.97319 | 41.416075 | 94.53031 | 1255 | 183 | 61 | 11 | 304 | 814.0000 | 161.0000 | 52.31977 | 62.36842 | 1346 | 12 | 326 | 873.000 | 336 | 104.000 | 856.6882 | -232.000 |
| 72.01129 | 45.443062 | 98.57952 | 1264 | 141 | 79 | 9 | 392 | 709.3361 | 181.0000 | 52.31977 | 62.36842 | 1347 | 10 | 418 | 799.668 | 294 | 95.000 | 942.6882 | -199.000 |
| 92.56482 | 65.997937 | 119.13170 | 1695 | 310 | 89 | 66 | 610 | 421.0000 | 110.0000 | 44.00000 | 62.36842 | 1795 | 70 | 646 | 446.000 | 193 | 173.000 | 1327.3684 | -20.000 |
| 77.71803 | 51.164523 | 104.27154 | 1460 | 274 | 66 | 63 | 538 | 674.0000 | 54.0000 | 53.00000 | 62.36842 | 1536 | 66 | 566 | 709.000 | 222 | 170.000 | 1138.3684 | -52.000 |
| 73.00420 | 46.450375 | 99.55802 | 1349 | 237 | 46 | 53 | 610 | 639.0000 | 50.0000 | 39.00000 | 62.36842 | 1419 | 56 | 642 | 672.000 | 137 | 160.000 | 1129.3684 | 23.000 |
| 73.55969 | 47.016895 | 100.10249 | 1340 | 226 | 40 | 117 | 554 | 771.0000 | 14.0000 | 40.00000 | 62.36842 | 1410 | 123 | 583 | 811.000 | 135 | 167.000 | 1082.3684 | 32.000 |
| 78.91242 | 52.376172 | 105.44868 | 1396 | 257 | 42 | 150 | 554 | 969.0000 | 92.0000 | 33.00000 | 62.36842 | 1396 | 150 | 554 | 969.000 | 172 | 158.000 | 1190.3684 | -14.000 |
| 80.97302 | 54.437462 | 107.50858 | 1472 | 259 | 47 | 82 | 604 | 684.0000 | 99.0000 | 56.00000 | 62.36842 | 1472 | 82 | 604 | 684.000 | 146 | 171.000 | 1209.3684 | 25.000 |
| 84.54399 | 58.007932 | 111.08004 | 1544 | 256 | 46 | 112 | 526 | 693.0000 | 66.0000 | 45.00000 | 62.36842 | 1544 | 112 | 526 | 693.000 | 134 | 203.000 | 1113.3684 | 69.000 |
| 81.19827 | 54.662709 | 107.73384 | 1453 | 282 | 41 | 141 | 502 | 779.0000 | 68.0000 | 44.00000 | 62.36842 | 1453 | 141 | 502 | 779.000 | 120 | 139.000 | 1140.3684 | 19.000 |
| 83.65842 | 57.108064 | 110.20878 | 1446 | 257 | 39 | 196 | 501 | 977.0000 | 81.0000 | 61.00000 | 62.36842 | 1446 | 196 | 501 | 977.000 | 118 | 168.000 | 1197.3684 | 50.000 |
| 81.89436 | 55.343506 | 108.44521 | 1468 | 289 | 30 | 106 | 506 | 990.0000 | 119.0000 | 61.00000 | 62.36842 | 1486 | 107 | 512 | 1002.000 | 93 | 146.000 | 1179.3684 | 53.000 |
| 47.04110 | 19.999627 | 74.08258 | 1546 | 44 | 29 | 0 | 15 | 44.0000 | 0.0000 | 0.00000 | 62.36842 | 22768 | 0 | 221 | 648.000 | 1473 | 146.057 | 356.3684 | -1326.943 |
| 74.11245 | 47.565151 | 100.65976 | 1372 | 195 | 31 | 103 | 353 | 932.0000 | 36.0000 | 31.00000 | 62.36842 | 1372 | 103 | 353 | 932.000 | 166 | 154.000 | 811.3684 | -12.000 |
| 76.42642 | 49.883606 | 102.96923 | 1365 | 203 | 29 | 98 | 547 | 958.0000 | 89.0000 | 43.00000 | 62.36842 | 1365 | 98 | 547 | 958.000 | 112 | 135.000 | 1071.3684 | 23.000 |
| 75.61267 | 49.055288 | 102.17006 | 1314 | 172 | 26 | 112 | 436 | 1031.0000 | 141.0000 | 64.00000 | 62.36842 | 1314 | 112 | 436 | 1031.000 | 151 | 171.000 | 1013.3684 | 20.000 |
| 86.72979 | 60.152186 | 113.30739 | 1469 | 323 | 41 | 200 | 547 | 1071.0000 | 146.0000 | 35.00000 | 62.00000 | 1469 | 200 | 547 | 1071.000 | 104 | 131.000 | 1354.0000 | 27.000 |
| 67.06032 | 40.490730 | 93.62991 | 1382 | 185 | 86 | 32 | 326 | 642.0000 | 123.7033 | 52.31977 | 62.36842 | 2073 | 48 | 489 | 963.000 | 680 | 146.057 | 1030.3914 | -533.943 |
| 91.37193 | 64.783481 | 117.96039 | 1642 | 218 | 135 | 29 | 449 | 459.0000 | 252.0000 | 52.31977 | 62.36842 | 2000 | 35 | 547 | 559.000 | 488 | 93.000 | 1295.6882 | -395.000 |
| 73.02064 | 46.463850 | 99.57744 | 1324 | 153 | 65 | 17 | 437 | 709.3361 | 201.0000 | 52.31977 | 62.36842 | 1420 | 18 | 469 | 799.668 | 352 | 101.000 | 1019.6882 | -251.000 |
| 100.73237 | 74.098448 | 127.36628 | 1770 | 313 | 116 | 160 | 677 | 599.0000 | 96.0000 | 63.00000 | 62.36842 | 1862 | 168 | 712 | 630.000 | 219 | 139.000 | 1522.3684 | -80.000 |
| 100.88443 | 74.307209 | 127.46164 | 1765 | 293 | 83 | 164 | 792 | 587.0000 | 146.0000 | 72.00000 | 62.36842 | 1869 | 174 | 839 | 622.000 | 177 | 139.000 | 1659.3684 | -38.000 |
| 88.44071 | 61.896431 | 114.98499 | 1590 | 277 | 76 | 113 | 657 | 510.0000 | 74.0000 | 50.00000 | 62.36842 | 1729 | 123 | 714 | 554.000 | 164 | 124.000 | 1366.3684 | -40.000 |
| 100.29821 | 73.692705 | 126.90371 | 1775 | 334 | 88 | 193 | 741 | 629.0000 | 82.0000 | 42.00000 | 62.36842 | 1879 | 204 | 785 | 666.000 | 173 | 157.000 | 1586.3684 | -16.000 |
| 92.33441 | 65.756401 | 118.91243 | 1635 | 297 | 77 | 183 | 746 | 639.0000 | 63.0000 | 38.00000 | 62.36842 | 1720 | 193 | 785 | 672.000 | 178 | 141.000 | 1505.3684 | -37.000 |
| 87.89552 | 61.324392 | 114.46664 | 1557 | 264 | 79 | 146 | 655 | 503.0000 | 25.0000 | 25.00000 | 62.36842 | 1638 | 154 | 689 | 529.000 | 126 | 169.000 | 1290.3684 | 43.000 |
| 84.59363 | 58.033564 | 111.15369 | 1485 | 210 | 57 | 153 | 591 | 746.0000 | 52.0000 | 40.00000 | 62.36842 | 1562 | 161 | 622 | 785.000 | 129 | 193.000 | 1196.3684 | 64.000 |
| 82.49377 | 55.955603 | 109.03194 | 1461 | 229 | 41 | 152 | 515 | 597.0000 | 66.0000 | 47.00000 | 62.36842 | 1479 | 154 | 521 | 604.000 | 124 | 185.000 | 1118.3684 | 61.000 |
| 76.16520 | 49.619068 | 102.71133 | 1322 | 208 | 19 | 147 | 427 | 1027.0000 | 119.0000 | 45.00000 | 62.36842 | 1322 | 147 | 427 | 1027.000 | 126 | 164.000 | 1027.3684 | 38.000 |
| 81.10439 | 54.562362 | 107.64642 | 1462 | 281 | 18 | 163 | 536 | 903.0000 | 78.0000 | 37.00000 | 62.36842 | 1462 | 163 | 536 | 903.000 | 112 | 165.000 | 1175.3684 | 53.000 |
| 90.51012 | 63.937565 | 117.08268 | 1537 | 217 | 115 | 23 | 517 | 709.3361 | 275.0000 | 52.31977 | 62.36842 | 1638 | 25 | 551 | 799.668 | 280 | 123.000 | 1295.6882 | -157.000 |
| 86.30847 | 59.759438 | 112.85751 | 1495 | 236 | 85 | 35 | 565 | 579.0000 | 234.0000 | 52.31977 | 62.36842 | 1583 | 37 | 598 | 613.000 | 224 | 114.000 | 1302.6882 | -110.000 |
| 79.50035 | 52.943455 | 106.05725 | 1468 | 280 | 70 | 66 | 565 | 488.0000 | 60.0000 | 50.00000 | 62.36842 | 1585 | 71 | 610 | 527.000 | 187 | 141.000 | 1198.3684 | -46.000 |
| 90.45268 | 63.890015 | 117.01534 | 1689 | 296 | 74 | 59 | 580 | 343.0000 | 103.0000 | 66.00000 | 62.36842 | 1777 | 62 | 610 | 361.000 | 204 | 130.000 | 1270.3684 | -74.000 |
| 82.00510 | 55.459075 | 108.55113 | 1533 | 301 | 59 | 104 | 536 | 567.0000 | 64.0000 | 36.00000 | 62.36842 | 1634 | 111 | 571 | 604.000 | 224 | 140.000 | 1197.3684 | -84.000 |
| 74.95719 | 48.410736 | 101.50364 | 1379 | 229 | 55 | 64 | 636 | 592.0000 | 39.0000 | 35.00000 | 62.36842 | 1451 | 67 | 669 | 623.000 | 150 | 169.000 | 1153.3684 | 19.000 |
| 75.05170 | 48.516126 | 101.58728 | 1373 | 223 | 37 | 94 | 718 | 590.0000 | 55.0000 | 45.00000 | 62.36842 | 1444 | 99 | 755 | 621.000 | 147 | 156.000 | 1271.3684 | 9.000 |
| 76.42423 | 49.887648 | 102.96080 | 1394 | 215 | 43 | 118 | 505 | 765.0000 | 42.0000 | 32.00000 | 62.36842 | 1466 | 124 | 531 | 805.000 | 175 | 197.000 | 1043.3684 | 22.000 |
| 74.76294 | 48.223185 | 101.30269 | 1371 | 223 | 36 | 116 | 540 | 783.0000 | 17.0000 | 12.00000 | 62.36842 | 1442 | 122 | 568 | 824.000 | 134 | 157.000 | 1034.3684 | 23.000 |
| 79.56364 | 53.021028 | 106.10624 | 1400 | 210 | 28 | 148 | 617 | 953.0000 | 100.0000 | 39.00000 | 62.36842 | 1400 | 148 | 617 | 953.000 | 137 | 162.000 | 1204.3684 | 25.000 |
| 83.36986 | 56.753956 | 109.98576 | 1327 | 209 | 33 | 114 | 596 | 823.0000 | 343.0000 | 124.00000 | 62.36842 | 1335 | 115 | 600 | 828.000 | 145 | 131.000 | 1485.3684 | -14.000 |
| 83.98310 | 57.427470 | 110.53874 | 1432 | 263 | 33 | 199 | 593 | 1056.0000 | 140.0000 | 63.00000 | 62.36842 | 1432 | 199 | 593 | 1056.000 | 142 | 122.000 | 1353.3684 | -20.000 |
| 83.97948 | 57.435194 | 110.52376 | 1474 | 251 | 22 | 156 | 580 | 926.0000 | 129.0000 | 54.00000 | 62.36842 | 1474 | 156 | 580 | 926.000 | 105 | 151.000 | 1254.3684 | 46.000 |
| 82.20557 | 55.653668 | 108.75747 | 1450 | 279 | 28 | 205 | 609 | 1008.0000 | 46.0000 | 20.00000 | 68.00000 | 1450 | 205 | 609 | 1008.000 | 102 | 144.000 | 1255.0000 | 42.000 |
| 92.14465 | 65.441693 | 118.84760 | 2025 | 292 | 140 | 32 | 259 | 70.0000 | 259.0000 | 52.31977 | 62.36842 | 10935 | 173 | 1399 | 378.000 | 1172 | 146.057 | 2236.6882 | -1025.943 |
| 96.66514 | 69.903149 | 123.42712 | 1669 | 281 | 102 | 35 | 391 | 473.0000 | 580.0000 | 52.31977 | 62.36842 | 2033 | 43 | 476 | 576.000 | 643 | 146.057 | 1588.6882 | -496.943 |
| 86.19414 | 59.610778 | 112.77751 | 1631 | 291 | 79 | 52 | 650 | 604.0000 | 307.0000 | 52.31977 | 62.36842 | 1987 | 63 | 792 | 736.000 | 566 | 146.057 | 1635.6882 | -419.943 |
| 56.66256 | 29.925193 | 83.39992 | 1420 | 299 | 79 | 5 | 233 | 587.0000 | 123.7033 | 52.31977 | 62.36842 | 2347 | 8 | 385 | 970.000 | 1056 | 146.057 | 1006.3914 | -909.943 |
| 60.90987 | 34.323385 | 87.49636 | 1312 | 230 | 52 | 29 | 324 | 591.0000 | 123.7033 | 52.31977 | 62.36842 | 1932 | 43 | 477 | 870.000 | 658 | 146.057 | 1026.3914 | -511.943 |
| 110.65329 | 83.947484 | 137.35911 | 2058 | 336 | 90 | 75 | 573 | 324.0000 | 341.0000 | 52.31977 | 62.36842 | 2545 | 93 | 709 | 401.000 | 456 | 146.057 | 1665.6882 | -309.943 |
| 70.73907 | 44.194202 | 97.28393 | 1351 | 181 | 58 | 25 | 402 | 709.3361 | 169.0000 | 52.31977 | 62.36842 | 1440 | 27 | 428 | 799.668 | 427 | 99.000 | 975.6882 | -328.000 |
| 81.20067 | 54.654599 | 107.74675 | 1452 | 199 | 87 | 17 | 433 | 709.3361 | 192.0000 | 52.31977 | 62.36842 | 1548 | 18 | 461 | 799.668 | 293 | 106.000 | 1070.6882 | -187.000 |
| 79.02373 | 52.493285 | 105.55418 | 1466 | 242 | 57 | 68 | 300 | 562.0000 | 106.0000 | 88.00000 | 62.36842 | 1552 | 72 | 318 | 595.000 | 246 | 143.000 | 941.3684 | -103.000 |
| 80.34826 | 53.795239 | 106.90127 | 1534 | 256 | 44 | 64 | 406 | 511.0000 | 59.0000 | 52.31977 | 62.36842 | 1635 | 68 | 433 | 545.000 | 195 | 166.000 | 970.6882 | -29.000 |
| 81.92792 | 55.339123 | 108.51672 | 1609 | 311 | 38 | 61 | 433 | 581.0000 | 57.0000 | 52.31977 | 62.36842 | 1749 | 66 | 471 | 632.000 | 214 | 152.000 | 1052.6882 | -62.000 |
| 69.50891 | 42.954909 | 96.06291 | 1344 | 207 | 28 | 59 | 472 | 527.0000 | 57.0000 | 52.31977 | 62.36842 | 1414 | 62 | 497 | 554.000 | 246 | 158.000 | 962.6882 | -88.000 |
| 77.00702 | 50.476424 | 103.53762 | 1438 | 239 | 41 | 96 | 463 | 629.0000 | 72.0000 | 52.31977 | 62.36842 | 1513 | 101 | 487 | 662.000 | 221 | 133.000 | 1049.6882 | -88.000 |
| 78.31788 | 51.771810 | 104.86395 | 1368 | 225 | 53 | 139 | 686 | 708.0000 | 46.0000 | 34.00000 | 62.36842 | 1439 | 146 | 722 | 745.000 | 116 | 123.000 | 1281.3684 | 7.000 |
| 77.63775 | 51.096747 | 104.17875 | 1381 | 218 | 52 | 127 | 615 | 708.0000 | 47.0000 | 24.00000 | 62.36842 | 1453 | 134 | 647 | 745.000 | 151 | 147.000 | 1177.3684 | -4.000 |
| 83.85012 | 57.313274 | 110.38697 | 1498 | 250 | 59 | 130 | 603 | 916.0000 | 54.0000 | 35.00000 | 62.36842 | 1576 | 137 | 634 | 964.000 | 136 | 143.000 | 1224.3684 | 7.000 |
| 78.73380 | 52.181159 | 105.28644 | 1389 | 206 | 53 | 145 | 497 | 1098.0000 | 46.0000 | 32.00000 | 62.36842 | 1398 | 146 | 500 | 1105.000 | 158 | 154.000 | 1044.3684 | -4.000 |
| 81.19169 | 54.655992 | 107.72738 | 1448 | 224 | 49 | 117 | 510 | 969.0000 | 56.0000 | 42.00000 | 62.36842 | 1448 | 117 | 510 | 969.000 | 113 | 147.000 | 1060.3684 | 34.000 |
| 75.46817 | 48.920632 | 102.01572 | 1307 | 225 | 58 | 102 | 522 | 1073.0000 | 72.0000 | 64.00000 | 62.36842 | 1315 | 103 | 525 | 1080.000 | 113 | 135.000 | 1108.3684 | 22.000 |
| 85.55761 | 59.013868 | 112.10136 | 1517 | 250 | 38 | 104 | 563 | 654.0000 | 156.0000 | 70.00000 | 62.36842 | 2297 | 157 | 852 | 990.000 | 130 | 136.000 | 1532.3684 | 6.000 |
| 79.57843 | 53.037533 | 106.11932 | 1417 | 245 | 25 | 112 | 506 | 831.0000 | 128.0000 | 76.00000 | 62.36842 | 1417 | 112 | 506 | 831.000 | 121 | 138.000 | 1154.3684 | 17.000 |
| 78.99695 | 52.461273 | 105.53263 | 1352 | 209 | 45 | 125 | 640 | 906.0000 | 143.0000 | 75.00000 | 62.36842 | 1352 | 125 | 640 | 906.000 | 152 | 117.000 | 1299.3684 | -35.000 |
| 80.03610 | 53.486068 | 106.58614 | 1458 | 296 | 34 | 106 | 559 | 995.0000 | 81.0000 | 28.00000 | 62.36842 | 1640 | 119 | 629 | 1119.000 | 108 | 156.000 | 1236.3684 | 48.000 |
| 77.93536 | 51.385069 | 104.48565 | 1390 | 290 | 35 | 116 | 519 | 1032.0000 | 92.0000 | 56.00000 | 62.36842 | 1390 | 116 | 519 | 1032.000 | 105 | 134.000 | 1170.3684 | 29.000 |
| 81.12158 | 54.559024 | 107.68414 | 1475 | 257 | 80 | 52 | 515 | 573.0000 | 284.0000 | 52.31977 | 62.36842 | 1810 | 64 | 632 | 703.000 | 471 | 146.057 | 1419.6882 | -324.943 |
| 73.78631 | 47.229529 | 100.34308 | 1378 | 178 | 85 | 35 | 512 | 604.0000 | 246.0000 | 52.31977 | 62.36842 | 1654 | 42 | 614 | 725.000 | 570 | 146.057 | 1272.6882 | -423.943 |
| 104.84793 | 78.199556 | 131.49629 | 1817 | 277 | 155 | 60 | 541 | 259.0000 | 319.0000 | 52.31977 | 62.36842 | 2264 | 75 | 674 | 323.000 | 441 | 146.057 | 1599.6882 | -294.943 |
| 94.79337 | 68.191941 | 121.39479 | 1711 | 213 | 133 | 29 | 418 | 375.0000 | 195.0000 | 52.31977 | 62.36842 | 1860 | 32 | 454 | 408.000 | 392 | 146.057 | 1138.6882 | -245.943 |
| 83.11606 | 56.532655 | 109.69947 | 1415 | 217 | 112 | 52 | 552 | 613.0000 | 168.0000 | 52.31977 | 62.36842 | 1489 | 55 | 581 | 645.000 | 243 | 138.000 | 1244.6882 | -105.000 |
| 68.79327 | 42.246595 | 95.33995 | 1263 | 190 | 32 | 97 | 511 | 762.0000 | 45.0000 | 43.00000 | 62.36842 | 1329 | 102 | 538 | 802.000 | 190 | 176.000 | 1007.3684 | -14.000 |
| 73.50300 | 46.944367 | 100.06164 | 1328 | 221 | 63 | 96 | 495 | 686.0000 | 23.0000 | 23.00000 | 62.36842 | 1397 | 101 | 521 | 722.000 | 175 | 184.000 | 1009.3684 | 9.000 |
| 86.45506 | 59.909014 | 113.00110 | 1571 | 248 | 59 | 126 | 511 | 786.0000 | 36.0000 | 25.00000 | 62.36842 | 1653 | 133 | 538 | 827.000 | 135 | 171.000 | 1094.3684 | 36.000 |
| 86.42243 | 59.874584 | 112.97028 | 1522 | 235 | 70 | 130 | 444 | 871.0000 | 66.0000 | 34.00000 | 62.36842 | 1522 | 130 | 444 | 871.000 | 137 | 195.000 | 1041.3684 | 58.000 |
| 92.56234 | 66.002088 | 119.12259 | 1550 | 278 | 57 | 133 | 474 | 878.0000 | 260.0000 | 120.00000 | 62.36842 | 1550 | 133 | 474 | 878.000 | 145 | 137.000 | 1384.3684 | -8.000 |
| 78.31800 | 51.782995 | 104.85301 | 1412 | 237 | 33 | 98 | 438 | 841.0000 | 96.0000 | 62.00000 | 62.36842 | 1412 | 98 | 438 | 841.000 | 128 | 142.000 | 1026.3684 | 14.000 |
| 77.59144 | 51.056764 | 104.12612 | 1344 | 243 | 46 | 111 | 560 | 959.0000 | 120.0000 | 61.00000 | 62.36842 | 1361 | 112 | 567 | 971.000 | 126 | 130.000 | 1210.3684 | 4.000 |
| 80.34522 | 53.810090 | 106.88035 | 1441 | 276 | 30 | 141 | 513 | 1094.0000 | 95.0000 | 62.00000 | 62.36842 | 1621 | 159 | 577 | 1231.000 | 136 | 155.000 | 1243.3684 | 19.000 |
| 79.47369 | 52.928175 | 106.01920 | 1395 | 271 | 35 | 107 | 393 | 1060.0000 | 159.0000 | 51.00000 | 62.36842 | 1395 | 107 | 393 | 1060.000 | 140 | 161.000 | 1078.3684 | 21.000 |
| 83.67344 | 57.120849 | 110.22602 | 1506 | 320 | 31 | 168 | 564 | 1032.0000 | 86.0000 | 40.00000 | 66.00000 | 1506 | 168 | 564 | 1032.000 | 132 | 169.000 | 1275.0000 | 37.000 |
| 80.76313 | 54.230231 | 107.29603 | 1437 | 269 | 39 | 143 | 418 | 1073.0000 | 63.0000 | 40.00000 | 96.00000 | 1446 | 144 | 421 | 1080.000 | 104 | 190.000 | 1071.0000 | 86.000 |
| 86.11806 | 59.180308 | 113.05582 | 2170 | 241 | 70 | 13 | 111 | 102.0000 | 92.0000 | 76.00000 | 62.36842 | 6893 | 41 | 353 | 324.000 | 1217 | 146.057 | 907.3684 | -1070.943 |
| 76.21233 | 49.674016 | 102.75064 | 1324 | 194 | 53 | 94 | 537 | 775.0000 | 101.0000 | 58.00000 | 62.36842 | 1332 | 95 | 540 | 780.000 | 141 | 155.000 | 1102.3684 | 14.000 |
| 80.30608 | 53.769572 | 106.84259 | 1442 | 239 | 25 | 136 | 484 | 917.0000 | 96.0000 | 68.00000 | 62.36842 | 1442 | 136 | 484 | 917.000 | 135 | 135.000 | 1110.3684 | 0.000 |
| 81.33301 | 54.790575 | 107.87545 | 1413 | 279 | 37 | 157 | 602 | 1177.0000 | 131.0000 | 53.00000 | 46.00000 | 1413 | 157 | 602 | 1177.000 | 141 | 155.000 | 1305.0000 | 14.000 |
| 80.39867 | 53.865781 | 106.93156 | 1416 | 269 | 39 | 130 | 600 | 977.0000 | 99.0000 | 44.00000 | 49.00000 | 1416 | 130 | 600 | 977.000 | 109 | 136.000 | 1230.0000 | 27.000 |
| 72.51378 | 45.943774 | 99.08378 | 1523 | 216 | 97 | 33 | 360 | 712.0000 | 123.7033 | 52.31977 | 62.36842 | 2203 | 48 | 521 | 1030.000 | 743 | 146.057 | 1105.3914 | -596.943 |
| 73.71216 | 47.148300 | 100.27602 | 1294 | 169 | 51 | 24 | 546 | 709.3361 | 217.0000 | 52.31977 | 62.36842 | 1370 | 25 | 578 | 799.668 | 244 | 79.000 | 1153.6882 | -165.000 |
| 94.39368 | 67.833870 | 120.95348 | 1668 | 251 | 98 | 79 | 497 | 413.0000 | 145.0000 | 121.00000 | 62.36842 | 1766 | 84 | 526 | 437.000 | 198 | 164.000 | 1282.3684 | -34.000 |
| 80.19634 | 53.650010 | 106.74267 | 1422 | 215 | 53 | 140 | 660 | 662.0000 | 44.0000 | 52.31977 | 62.36842 | 1496 | 147 | 694 | 696.000 | 144 | 190.000 | 1260.6882 | 46.000 |
| 86.21665 | 59.649114 | 112.78418 | 1524 | 231 | 31 | 200 | 513 | 807.0000 | 72.0000 | 49.00000 | 62.36842 | 1496 | 196 | 504 | 792.000 | 139 | 150.000 | 1149.3684 | 11.000 |
| 78.19035 | 51.659353 | 104.72134 | 1392 | 227 | 41 | 134 | 568 | 842.0000 | 90.0000 | 59.00000 | 62.36842 | 1392 | 134 | 568 | 842.000 | 178 | 136.000 | 1181.3684 | -42.000 |
| 74.18851 | 47.652125 | 100.72490 | 1318 | 200 | 44 | 80 | 512 | 845.0000 | 101.0000 | 58.00000 | 62.36842 | 1326 | 80 | 515 | 850.000 | 157 | 125.000 | 1060.3684 | -32.000 |
| 82.36777 | 55.814618 | 108.92093 | 1499 | 229 | 26 | 112 | 528 | 980.0000 | 126.0000 | 76.00000 | 62.36842 | 1499 | 112 | 528 | 980.000 | 169 | 134.000 | 1159.3684 | -35.000 |
| 78.91147 | 52.370761 | 105.45218 | 1345 | 215 | 48 | 141 | 471 | 973.0000 | 95.0000 | 57.00000 | 62.36842 | 1345 | 141 | 471 | 973.000 | 108 | 151.000 | 1089.3684 | 43.000 |
| 90.75794 | 64.137418 | 117.37846 | 1620 | 210 | 139 | 66 | 542 | 355.0000 | 233.0000 | 52.31977 | 62.36842 | 1988 | 81 | 665 | 436.000 | 523 | 146.057 | 1427.6882 | -376.943 |
| 75.27608 | 48.728616 | 101.82354 | 1339 | 185 | 80 | 34 | 413 | 579.0000 | 149.0000 | 52.31977 | 62.36842 | 1682 | 43 | 519 | 727.000 | 276 | 146.000 | 1081.6882 | -130.000 |
| 89.41956 | 62.870815 | 115.96831 | 1621 | 272 | 86 | 95 | 503 | 545.0000 | 87.0000 | 52.31977 | 62.36842 | 1705 | 100 | 529 | 573.000 | 208 | 148.000 | 1183.6882 | -60.000 |
| 86.52977 | 59.982678 | 113.07685 | 1585 | 288 | 62 | 105 | 572 | 498.0000 | 39.0000 | 52.31977 | 62.36842 | 1667 | 110 | 602 | 524.000 | 118 | 170.000 | 1210.6882 | 52.000 |
| 83.59618 | 57.035418 | 110.15695 | 1576 | 269 | 46 | 67 | 542 | 513.0000 | 58.0000 | 52.31977 | 62.36842 | 1658 | 70 | 570 | 540.000 | 143 | 158.000 | 1124.6882 | 15.000 |
| 85.68705 | 59.142594 | 112.23151 | 1541 | 300 | 49 | 101 | 451 | 781.0000 | 117.0000 | 54.00000 | 62.36842 | 1541 | 101 | 451 | 781.000 | 122 | 174.000 | 1134.3684 | 52.000 |
| 64.49635 | 37.920394 | 91.07231 | 1149 | 175 | 18 | 59 | 529 | 974.0000 | 133.0000 | 77.00000 | 62.36842 | 1209 | 62 | 556 | 1025.000 | 175 | 155.000 | 1080.3684 | -20.000 |
| 87.63568 | 61.068565 | 114.20280 | 1626 | 265 | 27 | 125 | 483 | 593.0000 | 92.0000 | 49.00000 | 62.36842 | 1636 | 126 | 486 | 597.000 | 148 | 170.000 | 1106.3684 | 22.000 |
| 80.48592 | 53.946241 | 107.02560 | 1461 | 228 | 29 | 121 | 423 | 812.0000 | 82.0000 | 50.00000 | 62.36842 | 1470 | 122 | 426 | 817.000 | 139 | 139.000 | 998.3684 | 0.000 |
| 84.70973 | 58.166070 | 111.25340 | 1472 | 284 | 39 | 181 | 483 | 984.0000 | 113.0000 | 67.00000 | 62.36842 | 1472 | 181 | 483 | 984.000 | 130 | 145.000 | 1229.3684 | 15.000 |
| 74.62907 | 48.089254 | 101.16889 | 1366 | 218 | 39 | 99 | 451 | 649.0000 | 28.0000 | 52.00000 | 62.36842 | 1374 | 100 | 454 | 653.000 | 131 | 164.000 | 952.3684 | 33.000 |
| 87.99106 | 61.437159 | 114.54496 | 1489 | 287 | 36 | 195 | 470 | 1094.0000 | 156.0000 | 55.00000 | 74.00000 | 1489 | 195 | 470 | 1094.000 | 97 | 184.000 | 1273.0000 | 87.000 |
| 83.04804 | 56.492800 | 109.60328 | 1457 | 305 | 38 | 187 | 522 | 1142.0000 | 71.0000 | 18.00000 | 53.00000 | 1457 | 187 | 522 | 1142.000 | 107 | 159.000 | 1194.0000 | 52.000 |
| 58.61904 | 31.988678 | 85.24941 | 1454 | 220 | 52 | 9 | 97 | 393.0000 | 123.7033 | 52.31977 | 62.36842 | 3141 | 19 | 210 | 849.000 | 994 | 95.000 | 729.3914 | -899.000 |
| 91.49270 | 64.919202 | 118.06620 | 1642 | 221 | 98 | 56 | 638 | 451.0000 | 319.0000 | 52.31977 | 62.36842 | 2031 | 69 | 789 | 558.000 | 492 | 146.057 | 1597.6882 | -345.943 |
| 35.00600 | 8.142664 | 61.86933 | 819 | 72 | 72 | 18 | 198 | 1107.0000 | 123.7033 | 52.31977 | 62.36842 | 7371 | 162 | 1782 | 9963.000 | 936 | 146.057 | 2182.3914 | -789.943 |
| 69.88548 | 43.324998 | 96.44595 | 1251 | 162 | 23 | 95 | 492 | 860.0000 | 71.0000 | 69.00000 | 62.36842 | 1299 | 99 | 511 | 893.000 | 139 | 146.000 | 993.3684 | 7.000 |
| 74.60064 | 48.052541 | 101.14874 | 1345 | 190 | 23 | 125 | 695 | 777.0000 | 77.0000 | 68.00000 | 62.36842 | 1345 | 125 | 695 | 777.000 | 163 | 156.000 | 1240.3684 | -7.000 |
| 80.54513 | 53.993597 | 107.09666 | 1381 | 263 | 37 | 102 | 463 | 976.0000 | 196.0000 | 63.00000 | 62.36842 | 1381 | 102 | 463 | 976.000 | 124 | 113.000 | 1186.3684 | -11.000 |
| 82.71051 | 56.151418 | 109.26960 | 1410 | 270 | 36 | 122 | 542 | 860.0000 | 228.0000 | 56.00000 | 62.36842 | 1410 | 122 | 542 | 860.000 | 159 | 144.000 | 1316.3684 | -15.000 |
| 79.71552 | 53.126202 | 106.30483 | 1423 | 339 | 34 | 172 | 420 | 1084.0000 | 75.0000 | 46.00000 | 62.36842 | 1423 | 172 | 420 | 1084.000 | 131 | 150.000 | 1148.3684 | 19.000 |