The Impact of Storms and Other Severe Weather Events in Public Health and Economic Problems for Communities and Municipalities

Synopsis

In this report we aim to describe the relationship between the storms and other severe weather events on both public health and economic problems for communities and municipalities. The study utilizes the U.S National Oceanic and Atmospheric Administration’s (NOAA) storm database.

Data Processing

Here we are going to download the data.

For information about the variables: - National Weather Service Storm (Data Documentation)[https://d396qusza40orc.cloudfront.net/repdata%2Fpeer2_doc%2Fpd01016005curr.pdf] - National Climatic Data Center Storm Events (FAQ)[https://d396qusza40orc.cloudfront.net/repdata%2Fpeer2_doc%2FNCDC%20Storm%20Events-FAQ%20Page.pdf]

Load Data

# Download the data for Mac or Windows
archiveFile<-"storm.csv.bz2"
if (!file.exists(archiveFile)){
    fileUrl<-"https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
    if(Sys.info()["sysname"]=="Darwin"){
        download.file(url=fileUrl, destfile=archiveFile, method="curl")
    } else {
        download.file(url=fileUrl, destfile=archiveFile)
    }
}
#Decompress the csv.bz2 file

# Load data
storm <- read.csv("./storm.csv",header=TRUE,stringsAsFactors=FALSE)

#Install:  install.packages("gridExtra")
#Look at the data
head(storm)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6

For this study we will only be utilizing the following variables: EVTYPE , FATALITIES, INJURIES, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP

# Subset these variables from the dataset
mydatacol<-c("EVTYPE","FATALITIES","INJURIES","PROPDMG","PROPDMGEXP","CROPDMG",
             "CROPDMGEXP")
mydata<-storm[mydatacol]
head(mydata)
##    EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## 1 TORNADO          0       15    25.0          K       0           
## 2 TORNADO          0        0     2.5          K       0           
## 3 TORNADO          0        2    25.0          K       0           
## 4 TORNADO          0        2     2.5          K       0           
## 5 TORNADO          0        2     2.5          K       0           
## 6 TORNADO          0        6     2.5          K       0

Preparing the Property Damage data

First lets explore our data

unique(mydata$PROPDMGEXP)
##  [1] "K" "M" ""  "B" "m" "+" "0" "5" "6" "?" "4" "2" "3" "h" "7" "H" "-"
## [18] "1" "8"
unique(mydata$CROPDMGEXP)
## [1] ""  "M" "K" "m" "B" "?" "0" "k" "2"
# Translate the property and crop exponent data to numerical
#PROPERTY
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="K"]<-1e+03
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="M"]<-1e+06
mydata$PROPDMGEXP[mydata$PROPDMGEXP==""]<-1
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="B"]<-1e+09
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="m"]<-1e+06
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="0"]<-1
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="5"]<-1e+05
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="6"]<-1e+06
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="4"]<-1e+04
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="2"]<-1e+02
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="3"]<-1e+03
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="h"]<-1e+2
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="7"]<-1e+07
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="H"]<-1e+02
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="1"]<-1e+01
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="8"]<-1e+08
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="+"]<-0
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="?"]<-0
mydata$PROPDMGEXP[mydata$PROPDMGEXP=="-"]<-0

#CROP
mydata$CROPDMGEXP[mydata$CROPDMGEXP=="M"]<-1e+06
mydata$CROPDMGEXP[mydata$CROPDMGEXP=="K"]<-1e+03
mydata$CROPDMGEXP[mydata$CROPDMGEXP=="m"]<-1e+06
mydata$CROPDMGEXP[mydata$CROPDMGEXP=="B"]<-1e+09
mydata$CROPDMGEXP[mydata$CROPDMGEXP=="0"]<-1
mydata$CROPDMGEXP[mydata$CROPDMGEXP=="k"]<-1e+06
mydata$CROPDMGEXP[mydata$CROPDMGEXP=="2"]<-1e+09
mydata$CROPDMGEXP[mydata$CROPDMGEXP==""]<-1
mydata$CROPDMGEXP[mydata$CROPDMGEXP=="?"]<-0

#Convert column PROPDMGEXP and CROPDMGEXP to number                          
mydata$PROPDMGEXP<-sapply(mydata$PROPDMGEXP,as.numeric)                         
mydata$CROPDMGEXP<-sapply(mydata$CROPDMGEXP,as.numeric)

#Multiply by PROPDMG to get the value of each event
mydata$PROPDMGTOTAL<-mydata$PROPDMGEXP*mydata$PROPDMG
mydata$CROPDMGTOTAL<-mydata$CROPDMGEXP*mydata$CROPDMG
#Order Data Frame
mydata<-data.frame(EVTYPE=mydata$EVTYPE,
                   FATALITIES=mydata$FATALITIES,
                   INJURIES=mydata$INJURIES,
                   PROPDMG=mydata$PROPDMG,
                   PROPDMGEXP=mydata$PROPDMGEXP,
                   PROPDMGTOTAL=mydata$PROPDMGTOTAL,
                   CROPDMG=mydata$CROPDMG,
                   CROPDMGEXP=mydata$CROPDMGEXP,
                   CROPDMGTOTAL=mydata$CROPDMGTOTAL)

head(mydata)
##    EVTYPE FATALITIES INJURIES PROPDMG PROPDMGEXP PROPDMGTOTAL CROPDMG
## 1 TORNADO          0       15    25.0       1000        25000       0
## 2 TORNADO          0        0     2.5       1000         2500       0
## 3 TORNADO          0        2    25.0       1000        25000       0
## 4 TORNADO          0        2     2.5       1000         2500       0
## 5 TORNADO          0        2     2.5       1000         2500       0
## 6 TORNADO          0        6     2.5       1000         2500       0
##   CROPDMGEXP CROPDMGTOTAL
## 1          1            0
## 2          1            0
## 3          1            0
## 4          1            0
## 5          1            0
## 6          1            0

Sum data by Event Type

aggFatalities<-aggregate(FATALITIES~EVTYPE,data=mydata,FUN=sum)
aggINJURIES<-aggregate(INJURIES~EVTYPE,data=mydata,FUN=sum)
aggPROPDMG<-aggregate(PROPDMGTOTAL~EVTYPE,data=mydata,FUN=sum)
aggCROPDMG<-aggregate(CROPDMGTOTAL~EVTYPE,data=mydata,FUN=sum)

Sort data and retrieve the top 10 events

fatalities10<-head(aggFatalities[order(aggFatalities$FATALITIES,decreasing=TRUE),],n=10)
injuries10<-head(aggINJURIES[order(aggINJURIES$INJURIES,decreasing=TRUE),],n=10)
property10<-head(aggPROPDMG[order(aggPROPDMG$PROPDMGTOTAL,decreasing=TRUE),] , n=10)
crop10<-head(aggCROPDMG[order(aggCROPDMG$CROPDMGTOTAL,decreasing=TRUE),] ,n=10)

Results

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.1.3
library(grid)
library(gridExtra)

Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

gfatalities<-ggplot(fatalities10,aes(reorder(EVTYPE,-FATALITIES),FATALITIES))+
            geom_bar(stat="identity", fill="blue")+
            theme_bw() + theme(axis.text.x = element_text(angle = 90, hjust = 1))+
            labs(x="Event Type", y="Fatalities") + labs(title="Number of Fatalities")
            
ginjuries<- ggplot(injuries10, aes(reorder(EVTYPE, -INJURIES),INJURIES)) +
            geom_bar(stat="identity", fill="blue") +
            theme_bw() + theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
            labs(x="Event Type", y="Injuries") + labs(title= "Number of Injuries")

#Show results
grid.arrange(gfatalities,ginjuries, nrow=1)

####Across the United States, which types of events have the greatest economic consequences?

gproperties<-ggplot(property10,aes(reorder(EVTYPE,-PROPDMGTOTAL),PROPDMGTOTAL))+
            geom_bar(stat="identity", fill="blue")+
            theme_bw() + theme(axis.text.x = element_text(angle = 90, hjust = 1))+
            labs(x="Event Type", y="Damage") + 
            labs(title="Number of Damage in Properties")
  
gcrop<-ggplot(crop10,aes(reorder(EVTYPE,-CROPDMGTOTAL),CROPDMGTOTAL))+
            geom_bar(stat="identity", fill="blue")+
            theme_bw() + theme(axis.text.x = element_text(angle = 90, hjust = 1))+
            labs(x="Event Type", y="Damage") + 
            labs(title="Number of Damage in Crops")
#Show results
grid.arrange(gproperties,gcrop, nrow=1)