Question 10

  1. Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns? Year & Volume seem to have a significant linear relationship.
library(ISLR)
library(corrplot)
## corrplot 0.92 loaded
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
corrplot(cor(Weekly[,-9]), method="square")

  1. Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary() function to print the results. Do any of the predictors appear to be statistically significant? If so,which ones? Lag2 appear statistically significant.
attach(Weekly)
Weekly.fit<-glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly,family=binomial)
summary(Weekly.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4
  1. Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression. The model correctly predicted the weekly market trend 56% of the time. Up was correctly predicted 92% of the time. Down was correctly predicted only 11% of the time.
logWeekly.prob= predict(Weekly.fit, type='response')
logWeekly.pred =rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
table(logWeekly.pred, Direction)
##               Direction
## logWeekly.pred Down  Up
##           Down   54  48
##           Up    430 557
  1. Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010). The model correctly predicted weekly trends 62.5% of the time.
train = (Year<2009)
Weekly.0910 <-Weekly[!train,]
Weekly.fit<-glm(Direction~Lag2, data=Weekly,family=binomial, subset=train)
logWeekly.prob= predict(Weekly.fit, Weekly.0910, type = "response")
logWeekly.pred = rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(logWeekly.pred, Direction.0910)
##               Direction.0910
## logWeekly.pred Down Up
##           Down    9  5
##           Up     34 56
mean(logWeekly.pred == Direction.0910)
## [1] 0.625
  1. Repeat (d) using LDA. This model produced similar results as model in part (d).
library(MASS)
Weeklylda.fit<-lda(Direction~Lag2, data=Weekly,family=binomial, subset=train)
Weeklylda.pred<-predict(Weeklylda.fit, Weekly.0910)
table(Weeklylda.pred$class, Direction.0910)
##       Direction.0910
##        Down Up
##   Down    9  5
##   Up     34 56
mean(Weeklylda.pred$class==Direction.0910)
## [1] 0.625
  1. Repeat (d) using QDA. This model produced an accuray rate of 59%.
Weeklyqda.fit = qda(Direction ~ Lag2, data = Weekly, subset = train)
Weeklyqda.pred = predict(Weeklyqda.fit, Weekly.0910)$class
table(Weeklyqda.pred, Direction.0910)
##               Direction.0910
## Weeklyqda.pred Down Up
##           Down    0  0
##           Up     43 61
mean(Weeklyqda.pred==Direction.0910)
## [1] 0.5865385
  1. Repeat (d) using KNN with K = 1.
library(class)
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=1)
table(Weekknn.pred,Direction.0910)
##             Direction.0910
## Weekknn.pred Down Up
##         Down   21 30
##         Up     22 31
mean(Weekknn.pred == Direction.0910)
## [1] 0.5
  1. Which of these methods appears to provide the best results on this data? Logistic Regression & Linear Discriminant Analysis.

  2. Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

#Log Reg w/ Interaction Lag2:Lag4
Weekly.fit<-glm(Direction~Lag2:Lag4+Lag2, data=Weekly,family=binomial, subset=train)
logWeekly.prob= predict(Weekly.fit, Weekly.0910, type = "response")
logWeekly.pred = rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(logWeekly.pred, Direction.0910)
##               Direction.0910
## logWeekly.pred Down Up
##           Down    3  4
##           Up     40 57
mean(logWeekly.pred == Direction.0910)
## [1] 0.5769231
#LDA with Interaction Lag2:Lag4
Weeklylda.fit<-lda(Direction~Lag2:Lag4+Lag2, data=Weekly,family=binomial, subset=train)
Weeklylda.pred<-predict(Weeklylda.fit, Weekly.0910)
table(Weeklylda.pred$class, Direction.0910)
##       Direction.0910
##        Down Up
##   Down    3  3
##   Up     40 58
mean(Weeklylda.pred$class==Direction.0910)
## [1] 0.5865385
Weeklyqda.fit = qda(Direction ~ poly(Lag2,2), data = Weekly, subset = train)
Weeklyqda.pred = predict(Weeklyqda.fit, Weekly.0910)$class
table(Weeklyqda.pred, Direction.0910)
##               Direction.0910
## Weeklyqda.pred Down Up
##           Down    7  3
##           Up     36 58
mean(Weeklyqda.pred==Direction.0910)
## [1] 0.625
#K=10
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=10)
table(Weekknn.pred,Direction.0910)
##             Direction.0910
## Weekknn.pred Down Up
##         Down   17 21
##         Up     26 40
mean(Weekknn.pred == Direction.0910)
## [1] 0.5480769
#K=100
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=100)
table(Weekknn.pred,Direction.0910)
##             Direction.0910
## Weekknn.pred Down Up
##         Down   10 11
##         Up     33 50
mean(Weekknn.pred == Direction.0910)
## [1] 0.5769231
detach(Weekly)

##Question 11

Auto <- read.csv("/Users/Sadiyah/Desktop/Spring 2022/STA/ALL CSV FILES/Auto.csv", header = TRUE, na.strings = "?")
Auto = na.omit(Auto)
dim(Auto)
## [1] 392   9
library(ISLR)
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##   acceleration        year           origin          name          
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   Length:392        
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   Class :character  
##  Median :15.50   Median :76.00   Median :1.000   Mode  :character  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577                     
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000                     
##  Max.   :24.80   Max.   :82.00   Max.   :3.000
attach(Auto)
  1. Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.
mpg01 <- rep(0, length(mpg))
mpg01[mpg > median(mpg)] <- 1
Auto = data.frame(Auto, mpg01)
  1. Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question.Describe your findings. Cylinders, Displacement, & Weight.
corrplot(cor(Auto[,-9]), method="square")

  1. Split the data into a training set and a test set.
train <- (year %% 2 == 0)
train.auto <- Auto[train,]
test.auto <- Auto[-train,]
  1. Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained? 8.44%
autolda.fit <- lda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
autolda.pred <- predict(autolda.fit, test.auto)
table(autolda.pred$class, test.auto$mpg01)
##    
##       0   1
##   0 169   7
##   1  26 189
mean(autolda.pred$class != test.auto$mpg01)
## [1] 0.08439898
  1. Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained? 9.97%
autoqda.fit <- qda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
autoqda.pred <- predict(autoqda.fit, test.auto)
table(autoqda.pred$class, test.auto$mpg01)
##    
##       0   1
##   0 176  20
##   1  19 176
mean(autoqda.pred$class != test.auto$mpg01)
## [1] 0.09974425
  1. Perform a Logistic Regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained? 8.44%
auto.fit<-glm(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto,family=binomial)
auto.probs = predict(auto.fit, test.auto, type = "response")
auto.pred = rep(0, length(auto.probs))
auto.pred[auto.probs > 0.5] = 1
table(auto.pred, test.auto$mpg01)
##          
## auto.pred   0   1
##         0 174  12
##         1  21 184
mean(auto.pred != test.auto$mpg01)
## [1] 0.08439898
  1. Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Test error rates are 7.16% for K=1, 11.25% for K=5, and 12.53% for K=10. Which value of K seems to perform the best on this data set? K=1 had 7.16% error rate.
#K=1
train.K= cbind(displacement,horsepower,weight,cylinders,year, origin)[train,]
test.K=cbind(displacement,horsepower,weight,cylinders, year, origin)[-train,]
set.seed(1)
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=1)
mean(autok.pred != test.auto$mpg01)
## [1] 0.07161125
#K=5
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=5)
mean(autok.pred != test.auto$mpg01)
## [1] 0.112532
#K=10
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=10)
mean(autok.pred != test.auto$mpg01)
## [1] 0.1253197
detach(Auto)

##Question 13 Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median.Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings. Findings are: log regression had lowest test error rate of 9.09%. In this model, indus, nox, rad, & tax were significant. All modeling techniques has the same variables so comparison is easiest. These variables had the strongest association with crime01. K nearest neighbors k=1 had highest error rate at 84.58% so this model is not a good fit.

summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
attach(Boston)
#Creating binary variable, crim
crime01 <- rep(0, length(crim))
crime01[crim > median(crim)] <- 1
Boston= data.frame(Boston,crime01)
#Split dataset
train = 1:(dim(Boston)[1]/2)
test = (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston.train = Boston[train, ]
Boston.test = Boston[test, ]
crime01.test = crime01[test]
#Association to crime01 variable
corrplot(cor(Boston), method="square")

##Log Regression

set.seed(1)
Boston.fit <-glm(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Boston.probs = predict(Boston.fit, Boston.test, type = "response")
Boston.pred = rep(0, length(Boston.probs))
Boston.pred[Boston.probs > 0.5] = 1
table(Boston.pred, crime01.test)
##            crime01.test
## Boston.pred   0   1
##           0  75   8
##           1  15 155
mean(Boston.pred != crime01.test)
## [1] 0.09090909
summary(Boston.fit)
## 
## Call:
## glm(formula = crime01 ~ indus + nox + age + dis + rad + tax, 
##     family = binomial, data = Boston.train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.97810  -0.21406  -0.03454   0.47107   3.04502  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -42.214032   7.617440  -5.542 2.99e-08 ***
## indus        -0.213126   0.073236  -2.910  0.00361 ** 
## nox          80.868029  16.066473   5.033 4.82e-07 ***
## age           0.003397   0.012032   0.282  0.77772    
## dis           0.307145   0.190502   1.612  0.10690    
## rad           0.847236   0.183767   4.610 4.02e-06 ***
## tax          -0.013760   0.004956  -2.777  0.00549 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.37  on 252  degrees of freedom
## Residual deviance: 144.44  on 246  degrees of freedom
## AIC: 158.44
## 
## Number of Fisher Scoring iterations: 8

##Linear Discriminant Analysis

Boston.ldafit <-lda(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Bostonlda.pred = predict(Boston.ldafit, Boston.test)
table(Bostonlda.pred$class, crime01.test)
##    crime01.test
##       0   1
##   0  81  18
##   1   9 145
mean(Bostonlda.pred$class != crime01.test)
## [1] 0.1067194

##K Nearest Neighbors

#K=1
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=1)
table(Bosknn.pred,crime01.test)
##            crime01.test
## Bosknn.pred   0   1
##           0  31 155
##           1  59   8
mean(Bosknn.pred !=crime01.test)
## [1] 0.8458498
#K=100
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=100)
table(Bosknn.pred,crime01.test)
##            crime01.test
## Bosknn.pred   0   1
##           0  21   6
##           1  69 157
mean(Bosknn.pred !=crime01.test)
## [1] 0.2964427