library(ISLR)
library(corrplot)
## corrplot 0.92 loaded
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
corrplot(cor(Weekly[,-9]), method="square")
attach(Weekly)
Weekly.fit<-glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly,family=binomial)
summary(Weekly.fit)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = binomial, data = Weekly)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6949 -1.2565 0.9913 1.0849 1.4579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
logWeekly.prob= predict(Weekly.fit, type='response')
logWeekly.pred =rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
table(logWeekly.pred, Direction)
## Direction
## logWeekly.pred Down Up
## Down 54 48
## Up 430 557
train = (Year<2009)
Weekly.0910 <-Weekly[!train,]
Weekly.fit<-glm(Direction~Lag2, data=Weekly,family=binomial, subset=train)
logWeekly.prob= predict(Weekly.fit, Weekly.0910, type = "response")
logWeekly.pred = rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(logWeekly.pred, Direction.0910)
## Direction.0910
## logWeekly.pred Down Up
## Down 9 5
## Up 34 56
mean(logWeekly.pred == Direction.0910)
## [1] 0.625
library(MASS)
Weeklylda.fit<-lda(Direction~Lag2, data=Weekly,family=binomial, subset=train)
Weeklylda.pred<-predict(Weeklylda.fit, Weekly.0910)
table(Weeklylda.pred$class, Direction.0910)
## Direction.0910
## Down Up
## Down 9 5
## Up 34 56
mean(Weeklylda.pred$class==Direction.0910)
## [1] 0.625
Weeklyqda.fit = qda(Direction ~ Lag2, data = Weekly, subset = train)
Weeklyqda.pred = predict(Weeklyqda.fit, Weekly.0910)$class
table(Weeklyqda.pred, Direction.0910)
## Direction.0910
## Weeklyqda.pred Down Up
## Down 0 0
## Up 43 61
mean(Weeklyqda.pred==Direction.0910)
## [1] 0.5865385
library(class)
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=1)
table(Weekknn.pred,Direction.0910)
## Direction.0910
## Weekknn.pred Down Up
## Down 21 30
## Up 22 31
mean(Weekknn.pred == Direction.0910)
## [1] 0.5
Which of these methods appears to provide the best results on this data? Logistic Regression & Linear Discriminant Analysis.
Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.
#Log Reg w/ Interaction Lag2:Lag4
Weekly.fit<-glm(Direction~Lag2:Lag4+Lag2, data=Weekly,family=binomial, subset=train)
logWeekly.prob= predict(Weekly.fit, Weekly.0910, type = "response")
logWeekly.pred = rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(logWeekly.pred, Direction.0910)
## Direction.0910
## logWeekly.pred Down Up
## Down 3 4
## Up 40 57
mean(logWeekly.pred == Direction.0910)
## [1] 0.5769231
#LDA with Interaction Lag2:Lag4
Weeklylda.fit<-lda(Direction~Lag2:Lag4+Lag2, data=Weekly,family=binomial, subset=train)
Weeklylda.pred<-predict(Weeklylda.fit, Weekly.0910)
table(Weeklylda.pred$class, Direction.0910)
## Direction.0910
## Down Up
## Down 3 3
## Up 40 58
mean(Weeklylda.pred$class==Direction.0910)
## [1] 0.5865385
Weeklyqda.fit = qda(Direction ~ poly(Lag2,2), data = Weekly, subset = train)
Weeklyqda.pred = predict(Weeklyqda.fit, Weekly.0910)$class
table(Weeklyqda.pred, Direction.0910)
## Direction.0910
## Weeklyqda.pred Down Up
## Down 7 3
## Up 36 58
mean(Weeklyqda.pred==Direction.0910)
## [1] 0.625
#K=10
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=10)
table(Weekknn.pred,Direction.0910)
## Direction.0910
## Weekknn.pred Down Up
## Down 17 21
## Up 26 40
mean(Weekknn.pred == Direction.0910)
## [1] 0.5480769
#K=100
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=100)
table(Weekknn.pred,Direction.0910)
## Direction.0910
## Weekknn.pred Down Up
## Down 10 11
## Up 33 50
mean(Weekknn.pred == Direction.0910)
## [1] 0.5769231
detach(Weekly)
##Question 11
Auto <- read.csv("/Users/Sadiyah/Desktop/Spring 2022/STA/ALL CSV FILES/Auto.csv", header = TRUE, na.strings = "?")
Auto = na.omit(Auto)
dim(Auto)
## [1] 392 9
library(ISLR)
summary(Auto)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225
## Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804
## Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
## acceleration year origin name
## Min. : 8.00 Min. :70.00 Min. :1.000 Length:392
## 1st Qu.:13.78 1st Qu.:73.00 1st Qu.:1.000 Class :character
## Median :15.50 Median :76.00 Median :1.000 Mode :character
## Mean :15.54 Mean :75.98 Mean :1.577
## 3rd Qu.:17.02 3rd Qu.:79.00 3rd Qu.:2.000
## Max. :24.80 Max. :82.00 Max. :3.000
attach(Auto)
mpg01 <- rep(0, length(mpg))
mpg01[mpg > median(mpg)] <- 1
Auto = data.frame(Auto, mpg01)
corrplot(cor(Auto[,-9]), method="square")
train <- (year %% 2 == 0)
train.auto <- Auto[train,]
test.auto <- Auto[-train,]
autolda.fit <- lda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
autolda.pred <- predict(autolda.fit, test.auto)
table(autolda.pred$class, test.auto$mpg01)
##
## 0 1
## 0 169 7
## 1 26 189
mean(autolda.pred$class != test.auto$mpg01)
## [1] 0.08439898
autoqda.fit <- qda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
autoqda.pred <- predict(autoqda.fit, test.auto)
table(autoqda.pred$class, test.auto$mpg01)
##
## 0 1
## 0 176 20
## 1 19 176
mean(autoqda.pred$class != test.auto$mpg01)
## [1] 0.09974425
auto.fit<-glm(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto,family=binomial)
auto.probs = predict(auto.fit, test.auto, type = "response")
auto.pred = rep(0, length(auto.probs))
auto.pred[auto.probs > 0.5] = 1
table(auto.pred, test.auto$mpg01)
##
## auto.pred 0 1
## 0 174 12
## 1 21 184
mean(auto.pred != test.auto$mpg01)
## [1] 0.08439898
#K=1
train.K= cbind(displacement,horsepower,weight,cylinders,year, origin)[train,]
test.K=cbind(displacement,horsepower,weight,cylinders, year, origin)[-train,]
set.seed(1)
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=1)
mean(autok.pred != test.auto$mpg01)
## [1] 0.07161125
#K=5
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=5)
mean(autok.pred != test.auto$mpg01)
## [1] 0.112532
#K=10
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=10)
mean(autok.pred != test.auto$mpg01)
## [1] 0.1253197
detach(Auto)
##Question 13 Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median.Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings. Findings are: log regression had lowest test error rate of 9.09%. In this model, indus, nox, rad, & tax were significant. All modeling techniques has the same variables so comparison is easiest. These variables had the strongest association with crime01. K nearest neighbors k=1 had highest error rate at 84.58% so this model is not a good fit.
summary(Boston)
## crim zn indus chas
## Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000
## 1st Qu.: 0.08205 1st Qu.: 0.00 1st Qu.: 5.19 1st Qu.:0.00000
## Median : 0.25651 Median : 0.00 Median : 9.69 Median :0.00000
## Mean : 3.61352 Mean : 11.36 Mean :11.14 Mean :0.06917
## 3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000
## Max. :88.97620 Max. :100.00 Max. :27.74 Max. :1.00000
## nox rm age dis
## Min. :0.3850 Min. :3.561 Min. : 2.90 Min. : 1.130
## 1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02 1st Qu.: 2.100
## Median :0.5380 Median :6.208 Median : 77.50 Median : 3.207
## Mean :0.5547 Mean :6.285 Mean : 68.57 Mean : 3.795
## 3rd Qu.:0.6240 3rd Qu.:6.623 3rd Qu.: 94.08 3rd Qu.: 5.188
## Max. :0.8710 Max. :8.780 Max. :100.00 Max. :12.127
## rad tax ptratio black
## Min. : 1.000 Min. :187.0 Min. :12.60 Min. : 0.32
## 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40 1st Qu.:375.38
## Median : 5.000 Median :330.0 Median :19.05 Median :391.44
## Mean : 9.549 Mean :408.2 Mean :18.46 Mean :356.67
## 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.23
## Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90
## lstat medv
## Min. : 1.73 Min. : 5.00
## 1st Qu.: 6.95 1st Qu.:17.02
## Median :11.36 Median :21.20
## Mean :12.65 Mean :22.53
## 3rd Qu.:16.95 3rd Qu.:25.00
## Max. :37.97 Max. :50.00
attach(Boston)
#Creating binary variable, crim
crime01 <- rep(0, length(crim))
crime01[crim > median(crim)] <- 1
Boston= data.frame(Boston,crime01)
#Split dataset
train = 1:(dim(Boston)[1]/2)
test = (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston.train = Boston[train, ]
Boston.test = Boston[test, ]
crime01.test = crime01[test]
#Association to crime01 variable
corrplot(cor(Boston), method="square")
##Log Regression
set.seed(1)
Boston.fit <-glm(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Boston.probs = predict(Boston.fit, Boston.test, type = "response")
Boston.pred = rep(0, length(Boston.probs))
Boston.pred[Boston.probs > 0.5] = 1
table(Boston.pred, crime01.test)
## crime01.test
## Boston.pred 0 1
## 0 75 8
## 1 15 155
mean(Boston.pred != crime01.test)
## [1] 0.09090909
summary(Boston.fit)
##
## Call:
## glm(formula = crime01 ~ indus + nox + age + dis + rad + tax,
## family = binomial, data = Boston.train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.97810 -0.21406 -0.03454 0.47107 3.04502
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -42.214032 7.617440 -5.542 2.99e-08 ***
## indus -0.213126 0.073236 -2.910 0.00361 **
## nox 80.868029 16.066473 5.033 4.82e-07 ***
## age 0.003397 0.012032 0.282 0.77772
## dis 0.307145 0.190502 1.612 0.10690
## rad 0.847236 0.183767 4.610 4.02e-06 ***
## tax -0.013760 0.004956 -2.777 0.00549 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 329.37 on 252 degrees of freedom
## Residual deviance: 144.44 on 246 degrees of freedom
## AIC: 158.44
##
## Number of Fisher Scoring iterations: 8
##Linear Discriminant Analysis
Boston.ldafit <-lda(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Bostonlda.pred = predict(Boston.ldafit, Boston.test)
table(Bostonlda.pred$class, crime01.test)
## crime01.test
## 0 1
## 0 81 18
## 1 9 145
mean(Bostonlda.pred$class != crime01.test)
## [1] 0.1067194
##K Nearest Neighbors
#K=1
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=1)
table(Bosknn.pred,crime01.test)
## crime01.test
## Bosknn.pred 0 1
## 0 31 155
## 1 59 8
mean(Bosknn.pred !=crime01.test)
## [1] 0.8458498
#K=100
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=100)
table(Bosknn.pred,crime01.test)
## crime01.test
## Bosknn.pred 0 1
## 0 21 6
## 1 69 157
mean(Bosknn.pred !=crime01.test)
## [1] 0.2964427