Dosen Pengampu : Prof.Dr.Suhartono,M.Kom
Lembaga : UIN Maliki Malang
Jurusan : Teknik Informatika
Fakultas : Sains Dan Teknologi
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
datainflowAceh <- read_excel(path = "InflowThAceh.xlsx")
datainflowAceh
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 57900. 2308. 23238. 9385. 3012. 1426.
## 2 2012 65911. 2620. 25981. 11192. 4447. 2236.
## 3 2013 98369. 36337. 18120. 14056. 8933. 3378.
## 4 2014 86024. 4567. 30503. 14103. 6358. 2563.
## 5 2015 86549. 4710. 30254. 13309. 7156. 3218.
## 6 2016 97764. 5775. 34427. 14078. 8211. 4317.
## 7 2017 103748. 5514. 35617. 15312. 8553. 4412.
## 8 2018 117495. 5799. 41769. 15058. 10730. 5134.
## 9 2019 133762. 7509. 47112. 14750. 10915. 6077.
## 10 2020 109345. 6641. 36609. 10696. 9148. 6175.
## 11 2021 89270. 3702. 31840. 10748. 7769. 5009.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Bellitung` <dbl>
library(readxl)
dataoutflowAceh <- read_excel(path = "outflowThAceh.xlsx")
dataoutflowAceh
## # A tibble: 11 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 80092. 6338. 22176. 5300. 12434. 5819.
## 2 2012 85235. 6378. 22495. 6434. 13014. 6966.
## 3 2013 103288. 23278. 19235. 6511. 15460. 8747.
## 4 2014 102338. 8630. 26391. 7060. 15158. 10122.
## 5 2015 109186. 9637. 27877. 7471. 15789. 9803.
## 6 2016 121992. 11311. 31959. 9198. 17645. 10068.
## 7 2017 133606. 11760. 35243. 10754. 18128. 10749.
## 8 2018 135676. 11450. 36908. 8447. 17926. 12597.
## 9 2019 153484. 13087. 44051. 9465. 19277. 12644.
## 10 2020 140589. 12874. 39758. 8763. 19139. 8461.
## 11 2021 86627. 5770. 23453. 5941. 12631. 5128.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Bellitung` <dbl>
datainflowAceh$`Aceh`
## [1] 2307.985 2619.567 36336.547 4566.588 4709.829 5774.937 5514.223
## [8] 5799.114 7508.835 6640.830 3701.603
plot(datainflowAceh$`Aceh`, type = "l", col = "red")
dataoutflowAceh$`Aceh`
## [1] 6338.054 6378.008 23278.066 8629.870 9636.560 11310.606 11760.247
## [8] 11449.810 13086.971 12873.680 5769.832
plot(dataoutflowAceh$`Aceh`, type = "l", col = "blue")
plot(datainflowAceh$`Aceh`, type = "l", col = "orange")
library(readxl)
datainflowBlnAceh <- read_excel(path = "inflowBlnAceh.xlsx")
datainflowBlnAceh
## # A tibble: 128 x 12
## keterangan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 4164. 124. 2068. 545. 94.2
## 2 2011-02-01 00:00:00 3338. 115. 1826. 450. 96.4
## 3 2011-03-01 00:00:00 4878. 154. 2028. 849. 288.
## 4 2011-04-01 00:00:00 3157. 122. 1429. 539. 160.
## 5 2011-05-01 00:00:00 3821. 123. 1539. 692. 195.
## 6 2011-06-01 00:00:00 3686. 151. 1637. 592. 101.
## 7 2011-07-01 00:00:00 4370. 107. 1791. 800. 143.
## 8 2011-08-01 00:00:00 3668. 184. 1256. 586. 134.
## 9 2011-09-01 00:00:00 12875. 606. 4172. 2176. 1014.
## 10 2011-10-01 00:00:00 4777. 158. 1941. 787. 341.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflowBlnAceh <- read_excel(path = "outflowBlnAceh.xlsx")
dataoutflowBlnAceh
## # A tibble: 128 x 12
## keterangan Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau
## <dttm> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 3442. 350. 941. 307. 478.
## 2 2011-02-01 00:00:00 3989. 193. 990. 228. 400.
## 3 2011-03-01 00:00:00 4229. 230. 1209. 347. 621.
## 4 2011-04-01 00:00:00 6721. 529. 1653. 336. 1006.
## 5 2011-05-01 00:00:00 5787. 523. 1465. 328. 1000.
## 6 2011-06-01 00:00:00 7395. 406. 2167. 399. 1366.
## 7 2011-07-01 00:00:00 7154. 958. 1695. 449. 815.
## 8 2011-08-01 00:00:00 16043. 1046. 4104. 1376. 2729.
## 9 2011-09-01 00:00:00 1915. 124. 824. 148. 154.
## 10 2011-10-01 00:00:00 5174. 634. 1392. 299. 830.
## # ... with 118 more rows, and 6 more variables: `Kep. Riau` <dbl>, Jambi <dbl>,
## # `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
datainflowBlnAceh$`Aceh`
## [1] 124.33329 115.14321 154.41614 122.18349 122.75253 151.37534
## [7] 107.22432 183.84525 605.62334 157.64630 287.24653 176.19523
## [13] 315.65341 292.57807 170.13069 139.33374 167.56600 119.32971
## [19] 196.61835 420.06418 286.31394 142.89984 288.58842 80.49051
## [25] 5571.15653 3457.27812 3253.57336 3775.08977 3705.38033 3449.77565
## [31] 3456.32173 8516.17096 243.91990 379.41362 322.99838 205.46842
## [37] 779.00596 332.03457 248.89939 260.82180 168.17801 194.97802
## [43] 173.99322 1306.11875 271.45458 454.45573 219.11177 157.53593
## [49] 836.57498 376.45107 317.53476 263.06848 256.64615 398.59527
## [55] 977.94399 495.56495 179.23767 257.65850 227.20326 123.34945
## [61] 883.11220 498.41373 242.45180 218.98473 298.46423 450.32018
## [67] 1374.47417 310.75050 538.99459 432.31664 301.61184 225.04199
## [73] 1120.37553 452.83734 347.32016 240.71874 299.60563 194.84441
## [79] 1149.75614 264.01934 627.70230 365.36280 275.68807 175.99260
## [85] 1279.35872 366.57150 278.86587 262.95066 288.49282 1005.08498
## [91] 784.64208 369.23511 426.04458 344.08223 243.18631 150.59965
## [97] 1293.88334 565.87121 397.27368 342.84300 420.44274 1554.92585
## [103] 473.28934 684.81679 405.51614 467.20195 436.23339 466.53727
## [109] 1641.95487 692.74998 297.06861 281.42142 489.21304 1095.11262
## [115] 257.81810 592.86464 410.39330 273.60601 438.09977 170.52803
## [121] 762.78539 487.91516 368.91965 308.33410 566.54102 502.60975
## [127] 280.32142 424.17610
plot(datainflowBlnAceh$`Aceh`, type = "l", col = "red")
dataoutflowBlnAceh$`Aceh`
## [1] 349.57673 192.62487 230.35748 528.59007 523.47023 405.84701
## [7] 957.58488 1046.09243 123.98156 634.45751 595.14381 750.32697
## [13] 420.97459 217.70857 503.88607 600.25342 429.26734 606.25526
## [19] 600.85083 791.04331 303.81795 854.83456 207.40890 841.70726
## [25] 758.75245 1850.82994 2442.65886 1618.83372 2777.13063 2209.74012
## [31] 5383.25551 2570.21842 566.69494 895.80335 699.91951 1504.22825
## [37] 288.10448 489.92887 504.83732 773.93194 485.84142 912.38357
## [43] 1538.16507 285.80192 611.06198 902.31059 586.60778 1250.89508
## [49] 269.29171 255.71308 521.69449 1125.85624 564.44034 1011.07770
## [55] 1558.53777 301.57675 1040.79937 316.39942 824.14892 1847.02405
## [61] 307.32375 172.45727 730.75026 667.74179 1079.70825 2642.66616
## [67] 692.69059 653.34617 1027.41562 515.70143 962.49370 1858.31057
## [73] 247.27680 344.01370 677.88709 850.88747 1157.54011 2346.78323
## [79] 282.09425 1520.49864 354.31840 667.42332 766.85433 2544.67010
## [85] 120.03917 266.02669 996.17473 707.23188 1634.43230 1889.68997
## [91] 278.98765 1155.80705 609.61619 549.33587 622.53291 2619.93560
## [97] 85.36298 400.92165 964.22663 1218.54729 3312.30047 122.91218
## [103] 687.35821 1230.78590 600.44006 552.87679 1055.67352 2855.56524
## [109] 182.38950 426.10026 1433.83382 1432.33902 1689.68700 436.00470
## [115] 1768.67777 455.94178 829.58521 1174.85940 774.36491 2269.89617
## [121] 56.98918 60.56520 591.41875 1789.00566 2112.99646 176.09492
## [127] 662.04381 320.71844
plot(dataoutflowBlnAceh$`Aceh`, type = "l", col = "yellow")