library(ISLR)
library(PerformanceAnalytics)
library(MASS)
library(class)
data("Weekly")

Problem 10

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.
(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

str(Weekly)
## 'data.frame':    1089 obs. of  9 variables:
##  $ Year     : num  1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 ...
##  $ Lag1     : num  0.816 -0.27 -2.576 3.514 0.712 ...
##  $ Lag2     : num  1.572 0.816 -0.27 -2.576 3.514 ...
##  $ Lag3     : num  -3.936 1.572 0.816 -0.27 -2.576 ...
##  $ Lag4     : num  -0.229 -3.936 1.572 0.816 -0.27 ...
##  $ Lag5     : num  -3.484 -0.229 -3.936 1.572 0.816 ...
##  $ Volume   : num  0.155 0.149 0.16 0.162 0.154 ...
##  $ Today    : num  -0.27 -2.576 3.514 0.712 1.178 ...
##  $ Direction: Factor w/ 2 levels "Down","Up": 1 1 2 2 2 1 2 2 2 1 ...
sum(sapply(Weekly, is.nan))
## [1] 0
sapply(Filter(is.numeric,Weekly),range)
##      Year    Lag1    Lag2    Lag3    Lag4    Lag5   Volume   Today
## [1,] 1990 -18.195 -18.195 -18.195 -18.195 -18.195 0.087465 -18.195
## [2,] 2010  12.026  12.026  12.026  12.026  12.026 9.328214  12.026
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
chart.Correlation(cor(Weekly[,-9]), histogram = FALSE, pch=19)

* The range of Lag1,Lag2,Lag3,Lag4,Lag5 are same, but their mean, median are different. Variable Year and Volumn have significant linear relation, others are not.

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

attach(Weekly)
Log.model = glm(Direction~.-Year-Today, data = Weekly, family= binomial)
summary(Log.model)
## 
## Call:
## glm(formula = Direction ~ . - Year - Today, family = binomial, 
##     data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

Log.model.pred <- predict(Log.model, type = "response")
Log.model.pred = ifelse(Log.model.pred >=0.5, "Up","Down")
caret::confusionMatrix(as.factor(Log.model.pred), Direction)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down  Up
##       Down   54  48
##       Up    430 557
##                                          
##                Accuracy : 0.5611         
##                  95% CI : (0.531, 0.5908)
##     No Information Rate : 0.5556         
##     P-Value [Acc > NIR] : 0.369          
##                                          
##                   Kappa : 0.035          
##                                          
##  Mcnemar's Test P-Value : <2e-16         
##                                          
##             Sensitivity : 0.11157        
##             Specificity : 0.92066        
##          Pos Pred Value : 0.52941        
##          Neg Pred Value : 0.56434        
##              Prevalence : 0.44444        
##          Detection Rate : 0.04959        
##    Detection Prevalence : 0.09366        
##       Balanced Accuracy : 0.51612        
##                                          
##        'Positive' Class : Down           
## 

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

Weekly.train <-Weekly[(Year<2009),]
Weekly.test <-Weekly[!(Year<2009),]
Weekly.fit<-glm(Direction~Lag2, data=Weekly.train,family=binomial)
LogWeekly.preb= predict(Weekly.fit, Weekly.test, type = "response")
LogWeekly.preb = ifelse(LogWeekly.preb > 0.5, "Up","Down")
caret::confusionMatrix(as.factor(LogWeekly.preb), Weekly.test$Direction)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    9  5
##       Up     34 56
##                                          
##                Accuracy : 0.625          
##                  95% CI : (0.5247, 0.718)
##     No Information Rate : 0.5865         
##     P-Value [Acc > NIR] : 0.2439         
##                                          
##                   Kappa : 0.1414         
##                                          
##  Mcnemar's Test P-Value : 7.34e-06       
##                                          
##             Sensitivity : 0.20930        
##             Specificity : 0.91803        
##          Pos Pred Value : 0.64286        
##          Neg Pred Value : 0.62222        
##              Prevalence : 0.41346        
##          Detection Rate : 0.08654        
##    Detection Prevalence : 0.13462        
##       Balanced Accuracy : 0.56367        
##                                          
##        'Positive' Class : Down           
## 

(e) Repeat (d) using LDA.

lda.fit<-lda(Direction ~ Lag2, data=Weekly.train,family=binomial)
ldaWeekly.pred = predict(lda.fit,Weekly.test)
caret::confusionMatrix(as.factor(ldaWeekly.pred$class), as.factor(Direction[!(Year<2009)]))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    9  5
##       Up     34 56
##                                          
##                Accuracy : 0.625          
##                  95% CI : (0.5247, 0.718)
##     No Information Rate : 0.5865         
##     P-Value [Acc > NIR] : 0.2439         
##                                          
##                   Kappa : 0.1414         
##                                          
##  Mcnemar's Test P-Value : 7.34e-06       
##                                          
##             Sensitivity : 0.20930        
##             Specificity : 0.91803        
##          Pos Pred Value : 0.64286        
##          Neg Pred Value : 0.62222        
##              Prevalence : 0.41346        
##          Detection Rate : 0.08654        
##    Detection Prevalence : 0.13462        
##       Balanced Accuracy : 0.56367        
##                                          
##        'Positive' Class : Down           
## 

(f) Repeat (d) using QDA.

qda.fit<-qda(Direction ~ Lag2, data=Weekly.train,family=binomial)
qdaWeekly.pred = predict(qda.fit,Weekly.test)
caret::confusionMatrix(as.factor(qdaWeekly.pred$class),Weekly.test$Direction)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down    0  0
##       Up     43 61
##                                           
##                Accuracy : 0.5865          
##                  95% CI : (0.4858, 0.6823)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.5419          
##                                           
##                   Kappa : 0               
##                                           
##  Mcnemar's Test P-Value : 1.504e-10       
##                                           
##             Sensitivity : 0.0000          
##             Specificity : 1.0000          
##          Pos Pred Value :    NaN          
##          Neg Pred Value : 0.5865          
##              Prevalence : 0.4135          
##          Detection Rate : 0.0000          
##    Detection Prevalence : 0.0000          
##       Balanced Accuracy : 0.5000          
##                                           
##        'Positive' Class : Down            
## 

(g) Repeat (d) using KNN with K = 1.

knn.train = data.frame(Weekly.train$Lag2)
knn.test = data.frame(Weekly.test$Lag2)
set.seed(1)
knn.pred = knn(knn.train, knn.test, Weekly.train$Direction, k=1)
caret::confusionMatrix(as.factor(knn.pred),as.factor(Weekly.test$Direction))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down   21 30
##       Up     22 31
##                                           
##                Accuracy : 0.5             
##                  95% CI : (0.4003, 0.5997)
##     No Information Rate : 0.5865          
##     P-Value [Acc > NIR] : 0.9700          
##                                           
##                   Kappa : -0.0033         
##                                           
##  Mcnemar's Test P-Value : 0.3317          
##                                           
##             Sensitivity : 0.4884          
##             Specificity : 0.5082          
##          Pos Pred Value : 0.4118          
##          Neg Pred Value : 0.5849          
##              Prevalence : 0.4135          
##          Detection Rate : 0.2019          
##    Detection Prevalence : 0.4904          
##       Balanced Accuracy : 0.4983          
##                                           
##        'Positive' Class : Down            
## 

(h) Which of these methods appears to provide the best results on this data?

(i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

Weekly.trainC <-Weekly[(Year<2001),]
Weekly.testC <-Weekly[!(Year<2007),]

Logistic regression

logmodel = glm(Direction~Lag2 + Lag4 + Lag5, data = Weekly.trainC, family=binomial)
logmodel.pred = predict(logmodel, Weekly.testC, type ="response")
logmodel.pred = ifelse(logmodel.pred >=0.5, "Up","Down")
caret::confusionMatrix(as.factor(logmodel.pred), as.factor(Weekly.testC$Direction))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down   11 15
##       Up     85 98
##                                           
##                Accuracy : 0.5215          
##                  95% CI : (0.4515, 0.5909)
##     No Information Rate : 0.5407          
##     P-Value [Acc > NIR] : 0.7342          
##                                           
##                   Kappa : -0.0192         
##                                           
##  Mcnemar's Test P-Value : 5.2e-12         
##                                           
##             Sensitivity : 0.11458         
##             Specificity : 0.86726         
##          Pos Pred Value : 0.42308         
##          Neg Pred Value : 0.53552         
##              Prevalence : 0.45933         
##          Detection Rate : 0.05263         
##    Detection Prevalence : 0.12440         
##       Balanced Accuracy : 0.49092         
##                                           
##        'Positive' Class : Down            
## 

LDA

ldamodel = lda(Direction~Lag2 + Lag4 + Lag5, data=Weekly.trainC,family=binomial)
ldaWeekly.pred = predict(lda.fit,Weekly.testC)
caret::confusionMatrix(as.factor(ldaWeekly.pred$class), as.factor(Weekly.testC$Direction))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down  Up
##       Down   17  10
##       Up     79 103
##                                           
##                Accuracy : 0.5742          
##                  95% CI : (0.5041, 0.6421)
##     No Information Rate : 0.5407          
##     P-Value [Acc > NIR] : 0.1836          
##                                           
##                   Kappa : 0.0937          
##                                           
##  Mcnemar's Test P-Value : 5.679e-13       
##                                           
##             Sensitivity : 0.17708         
##             Specificity : 0.91150         
##          Pos Pred Value : 0.62963         
##          Neg Pred Value : 0.56593         
##              Prevalence : 0.45933         
##          Detection Rate : 0.08134         
##    Detection Prevalence : 0.12919         
##       Balanced Accuracy : 0.54429         
##                                           
##        'Positive' Class : Down            
## 

QDA

qdamodel = qda(Direction~Lag2 + Lag4 + Lag5, data=Weekly.trainC,family=binomial)
qdaWeekly.pred = predict(qda.fit,Weekly.testC)
caret::confusionMatrix(as.factor(qdaWeekly.pred$class), as.factor(Weekly.testC$Direction))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down  Up
##       Down    0   0
##       Up     96 113
##                                           
##                Accuracy : 0.5407          
##                  95% CI : (0.4706, 0.6096)
##     No Information Rate : 0.5407          
##     P-Value [Acc > NIR] : 0.5284          
##                                           
##                   Kappa : 0               
##                                           
##  Mcnemar's Test P-Value : <2e-16          
##                                           
##             Sensitivity : 0.0000          
##             Specificity : 1.0000          
##          Pos Pred Value :    NaN          
##          Neg Pred Value : 0.5407          
##              Prevalence : 0.4593          
##          Detection Rate : 0.0000          
##    Detection Prevalence : 0.0000          
##       Balanced Accuracy : 0.5000          
##                                           
##        'Positive' Class : Down            
## 

KNN

knntrain = data.frame(Weekly.trainC$Lag2,Weekly.trainC$Lag4,Weekly.trainC$Lag5)
knntest = data.frame(Weekly.testC$Lag2,Weekly.testC$Lag4,Weekly.testC$Lag5)
set.seed(1)
knnpred = knn(knntrain, knntest, Weekly.trainC$Direction, k=10)
caret::confusionMatrix(as.factor(knnpred),as.factor(Weekly.testC$Direction))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Down Up
##       Down   39 36
##       Up     57 77
##                                           
##                Accuracy : 0.555           
##                  95% CI : (0.4849, 0.6236)
##     No Information Rate : 0.5407          
##     P-Value [Acc > NIR] : 0.36496         
##                                           
##                   Kappa : 0.0891          
##                                           
##  Mcnemar's Test P-Value : 0.03809         
##                                           
##             Sensitivity : 0.4062          
##             Specificity : 0.6814          
##          Pos Pred Value : 0.5200          
##          Neg Pred Value : 0.5746          
##              Prevalence : 0.4593          
##          Detection Rate : 0.1866          
##    Detection Prevalence : 0.3589          
##       Balanced Accuracy : 0.5438          
##                                           
##        'Positive' Class : Down            
## 
detach(Weekly)

Problem 11

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

data(Auto)
head(Auto)
##   mpg cylinders displacement horsepower weight acceleration year origin
## 1  18         8          307        130   3504         12.0   70      1
## 2  15         8          350        165   3693         11.5   70      1
## 3  18         8          318        150   3436         11.0   70      1
## 4  16         8          304        150   3433         12.0   70      1
## 5  17         8          302        140   3449         10.5   70      1
## 6  15         8          429        198   4341         10.0   70      1
##                        name
## 1 chevrolet chevelle malibu
## 2         buick skylark 320
## 3        plymouth satellite
## 4             amc rebel sst
## 5               ford torino
## 6          ford galaxie 500
attach(Auto)
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

sum(is.na(Auto))
## [1] 0
mpg01 = ifelse(mpg>=median(mpg),1,0)
Auto =data.frame(Auto,mpg01)

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question.Describe your findings.

chart.Correlation(cor(Auto[,-9]), histogram = FALSE, pch=19)

* From the correlation chart, all variables in Auto dataset either negative or positive correlate moderately with mpg01.

(c) Split the data into a training set and a test set.

train <- (year %% 2 == 0)
train.auto <- Auto[train,]
test.auto <- Auto[-train,]

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

autolda.fit <- lda(mpg01~ displacement + horsepower + weight + year+ cylinders + origin, data=train.auto)
autolda.pred <- predict(autolda.fit, test.auto)
table(autolda.pred$class, test.auto$mpg01)
##    
##       0   1
##   0 169   7
##   1  26 189
mean(autolda.pred$class != test.auto$mpg01)
## [1] 0.08439898

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

autoqda.fit <- qda(mpg01~ displacement + horsepower + weight + year+ cylinders + origin, data=train.auto)
autoqda.pred <- predict(autoqda.fit, test.auto)
table(autoqda.pred$class, test.auto$mpg01)
##    
##       0   1
##   0 176  20
##   1  19 176
mean(autoqda.pred$class != test.auto$mpg01)
## [1] 0.09974425

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

auto.fit<-glm(mpg01 ~ displacement + horsepower + weight + year+ cylinders + origin, data=train.auto,family=binomial)
auto.probs = predict(auto.fit, test.auto, type = "response")
auto.pred = rep(0, length(auto.probs))
auto.pred[auto.probs > 0.5] = 1
table(auto.pred, test.auto$mpg01)
##          
## auto.pred   0   1
##         0 174  12
##         1  21 184
mean(auto.pred != test.auto$mpg01)
## [1] 0.08439898

(g) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

train.K= cbind(displacement,horsepower,weight,cylinders,year, origin)[train,]
test.K=cbind(displacement,horsepower,weight,cylinders, year, origin)[-train,]
set.seed(1)
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=1)
mean(autok.pred != test.auto$mpg01)
## [1] 0.07161125
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=5)
mean(autok.pred != test.auto$mpg01)
## [1] 0.112532
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=10)
mean(autok.pred != test.auto$mpg01)
## [1] 0.1253197
detach(Auto)

Question 13

Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median.Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

data(Boston)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
attach(Boston)

Creating binary crim variable.

crime01 =ifelse(crim > median(crim), 1,0)
Boston= data.frame(Boston,crime01)

Splitting the dataset

train = 1:(dim(Boston)[1]/2)
test = (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston.train = Boston[train, ]
Boston.test = Boston[test, ]
crime01.test = crime01[test]

Determination of any associations to crime01

chart.Correlation(cor(Boston), histogram = FALSE, pch=19)

Logistic Regression

set.seed(1)
Boston.fit <-glm(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Boston.probs = predict(Boston.fit, Boston.test, type = "response")
Boston.pred = rep(0, length(Boston.probs))
Boston.pred[Boston.probs > 0.5] = 1
table(Boston.pred, crime01.test)
##            crime01.test
## Boston.pred   0   1
##           0  75   8
##           1  15 155
mean(Boston.pred != crime01.test)
## [1] 0.09090909
summary(Boston.fit)
## 
## Call:
## glm(formula = crime01 ~ indus + nox + age + dis + rad + tax, 
##     family = binomial, data = Boston.train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.97810  -0.21406  -0.03454   0.47107   3.04502  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -42.214032   7.617440  -5.542 2.99e-08 ***
## indus        -0.213126   0.073236  -2.910  0.00361 ** 
## nox          80.868029  16.066473   5.033 4.82e-07 ***
## age           0.003397   0.012032   0.282  0.77772    
## dis           0.307145   0.190502   1.612  0.10690    
## rad           0.847236   0.183767   4.610 4.02e-06 ***
## tax          -0.013760   0.004956  -2.777  0.00549 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.37  on 252  degrees of freedom
## Residual deviance: 144.44  on 246  degrees of freedom
## AIC: 158.44
## 
## Number of Fisher Scoring iterations: 8

Linear Discriminat Analysis

Boston.ldafit <-lda(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Bostonlda.pred = predict(Boston.ldafit, Boston.test)
table(Bostonlda.pred$class, crime01.test)
##    crime01.test
##       0   1
##   0  81  18
##   1   9 145
mean(Bostonlda.pred$class != crime01.test)
## [1] 0.1067194

K Nearest Neighbors

#K=1
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=1)
table(Bosknn.pred,crime01.test)
##            crime01.test
## Bosknn.pred   0   1
##           0  31 155
##           1  59   8
mean(Bosknn.pred !=crime01.test)
## [1] 0.8458498
#K=10
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=10)
table(Bosknn.pred,crime01.test)
##            crime01.test
## Bosknn.pred   0   1
##           0  42   8
##           1  48 155
mean(Bosknn.pred !=crime01.test)
## [1] 0.2213439
#K=100
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=100)
table(Bosknn.pred,crime01.test)
##            crime01.test
## Bosknn.pred   0   1
##           0  20   6
##           1  70 157
mean(Bosknn.pred !=crime01.test)
## [1] 0.3003953