10.This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

  1. Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?
library(ISLR)
require(MASS)
## Loading required package: MASS
require(class)
## Loading required package: class
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
plot(Today~Lag1,col="darkred",data = Weekly)
simplelm=lm(Today~Lag1,data = Weekly)
abline(simplelm,lwd=3,col="darkgreen")

pairs(Weekly)

  1. Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
logmod=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,family = "binomial",data = Weekly)
summary(logmod)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = "binomial", data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

out of all the data only Lag2 is significant as estimated Std is the only one that has a significant value. the coefficient indicates that a chnage to lag 1 would either increase or decrease lag2.

  1. Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.
probs=predict(logmod,type="response")
preds=rep("down",1089)
preds[probs>0.5]="up"
table(preds,Weekly$Direction)
##       
## preds  Down  Up
##   down   54  48
##   up    430 557

Based on the confusion matrix ( which made me confused) we can see that thres strong evidnece of thinfs going up, yet there is also strong of evidence prviding a down prediction. essentially ending with 430 false positive giving us a low percentage of 12.59% true negatives.

hist(probs,breaks=100,col="darkred")
abline(v=mean(probs),lwd=2)

plot(probs,col=ifelse(Weekly$Direction=="Down","red","green"),pch=16)
abline(h=0.5,lwd=3)

in the plot we can see that most probabilities end up being above the .5 line which if we used it we would consider most of the probabilites being up

  1. Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).
training.data=Weekly[Weekly$Year<2009,]
test.data=Weekly[Weekly$Year>2008,]
simpglm=glm(Direction~Lag2,data = training.data,family = "binomial")
summary(simpglm)
## 
## Call:
## glm(formula = Direction ~ Lag2, family = "binomial", data = training.data)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.536  -1.264   1.021   1.091   1.368  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.20326    0.06428   3.162  0.00157 **
## Lag2         0.05810    0.02870   2.024  0.04298 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1350.5  on 983  degrees of freedom
## AIC: 1354.5
## 
## Number of Fisher Scoring iterations: 4
testprobs=predict(simpglm,type="response",newdata=test.data)
testdirs=Weekly$Direction[Weekly$Year>2008]
plot(testprobs,col=ifelse(Weekly$Direction[Weekly$Year>2008]=="Down","red","green"),pch=16)
abline(h=0.5,lwd=3)

testpreds=rep("Down",104)
testpreds[testprobs>0.5]="up"
mean(probs)
## [1] 0.5555556
table(testpreds,testdirs)
##          testdirs
## testpreds Down Up
##      Down    9  5
##      up     34 56

the erorr for the test is 34/90=37.78%

  1. Repeat (d) using LDA.
lda.fit=lda(Direction~Lag2,data=training.data)
lda.fit
## Call:
## lda(Direction ~ Lag2, data = training.data)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
## 
## Coefficients of linear discriminants:
##            LD1
## Lag2 0.4414162
plot(lda.fit)

lda.pred=predict(lda.fit,newdata=test.data,type="response")
lda.class=lda.pred$class
table(lda.class,test.data$Direction)
##          
## lda.class Down Up
##      Down    9  5
##      Up     34 56

we can see that the model still shows that most of the data goes up. this could be because of the lag2 levels so it is difficult to find an accurate way to tell the diffrences with the same error rate as above.

  1. Repeat (d) using QDA.
qda.fit=qda(Direction~Lag2,data=training.data)
qda.fit
## Call:
## qda(Direction ~ Lag2, data = training.data)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
qda.pred=predict(qda.fit,newdata=test.data,type="response")
qda.class=qda.pred$class
table(qda.class,test.data$Direction)
##          
## qda.class Down Up
##      Down    0  0
##      Up     43 61

this model is the worst one as it classfies evetything going up. the error rate for the model is 41.35% which makes it a bad model.

  1. Repeat (d) using KNN with K = 1.
set.seed(1)
train.X=cbind(training.data$Lag2)
test.X=cbind(test.data$Lag2)
train.Y=cbind(training.data$Direction)
knn.pred=knn(train.X,test.X,train.Y,k=1)
table(knn.pred,test.data$Direction)
##         
## knn.pred Down Up
##        1   21 30
##        2   22 31
knn3.pred=knn(train.X,test.X,train.Y,k=3)
table(knn3.pred,test.data$Direction)
##          
## knn3.pred Down Up
##         1   16 19
##         2   27 42

on the firt model we see a bad test rate as it spits it above the 45% range, on the second set of data we improve the error rate down to below 45% range which makes it a litte bit better.

  1. Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for
qda.fit2 = qda(Direction~Lag1 + Lag2 + Lag4, data= training.data)
qda.fit2
## Call:
## qda(Direction ~ Lag1 + Lag2 + Lag4, data = training.data)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##              Lag1        Lag2       Lag4
## Down  0.289444444 -0.03568254 0.15925624
## Up   -0.009213235  0.26036581 0.09220956
qda.pred2 = predict(qda.fit2, newdata=test.data, type="response")
qda.class2 = qda.pred2$class
table(qda.class2, test.data$Direction)
##           
## qda.class2 Down Up
##       Down    9 20
##       Up     34 41
lda.fit2 = lda(Direction~Lag1 + Lag2 + Lag4, data= training.data)
lda.fit2
## Call:
## lda(Direction ~ Lag1 + Lag2 + Lag4, data = training.data)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##              Lag1        Lag2       Lag4
## Down  0.289444444 -0.03568254 0.15925624
## Up   -0.009213235  0.26036581 0.09220956
## 
## Coefficients of linear discriminants:
##             LD1
## Lag1 -0.2984478
## Lag2  0.2960224
## Lag4 -0.1113485
lda.pred2 = predict(lda.fit2, newdata=test.data, type="response")
lda.class2 = lda.pred2$class
table(lda.class2, test.data$Direction)
##           
## lda.class2 Down Up
##       Down    9  7
##       Up     34 54

We do not see any improvement in the output using only Lag2 which does not benefit us

11.In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

  1. Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.
library(ISLR)
data("Auto")
mpg01<-rep(0,length(Auto$mpg))
mpg01[Auto$mpg>median(Auto$mpg)]<-1
Auto<-data.frame(Auto,mpg01)
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365  
##      mpg01    
##  Min.   :0.0  
##  1st Qu.:0.0  
##  Median :0.5  
##  Mean   :0.5  
##  3rd Qu.:1.0  
##  Max.   :1.0  
## 
  1. Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the otherfeatures seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.
pairs(Auto[,-9])

par(mfrow=c(2,3))
boxplot(cylinders~mpg01,data = Auto,main="cylinders vs mpg01")
boxplot(displacement ~ mpg01, data = Auto, main = "Displacement vs mpg01")
boxplot(horsepower ~ mpg01, data = Auto, main = "Horsepower vs mpg01")
boxplot(weight ~ mpg01, data = Auto, main = "Weight vs mpg01")
boxplot(acceleration ~ mpg01, data = Auto, main = "Acceleration vs mpg01")
boxplot(year ~ mpg01, data = Auto, main = "Year vs mpg01")

there is a slight correlation or association between the vraibales of mpg1 , cylinders, weight, displacement and horespower. In the scatter plot its a little difficult to tell as the MPG01 is based on binary.

  1. Split the data into a training set and a test set.
set.seed(123)
train <- sample(1:dim(Auto)[1], dim(Auto)[1]*.7, rep=FALSE)
test <- -train
training_data<- Auto[train, ]
testing_data= Auto[test, ]
mpg01.test <- mpg01[test]

By using these functions i am able to split the data into the two different sets

  1. Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
lda_model <- lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = training_data)
lda_model
## Call:
## lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = training_data)
## 
## Prior probabilities of groups:
##         0         1 
## 0.4963504 0.5036496 
## 
## Group means:
##   cylinders   weight displacement horsepower
## 0  6.786765 3641.022     275.2941  130.96324
## 1  4.188406 2314.000     114.5290   78.00725
## 
## Coefficients of linear discriminants:
##                        LD1
## cylinders    -0.3974647924
## weight       -0.0009670704
## displacement -0.0029615583
## horsepower    0.0049004106
lda_pred = predict(lda_model, testing_data)
names(lda_pred)
## [1] "class"     "posterior" "x"
pred.lda <- predict(lda_model, testing_data)
table(pred.lda$class, mpg01.test)
##    mpg01.test
##      0  1
##   0 50  3
##   1 10 55
mean(pred.lda$class != mpg01.test)
## [1] 0.1101695

From the output obtained we can tell that the test error is of 11.02%

  1. Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
qda_model = qda(mpg01 ~ cylinders + horsepower + weight + acceleration, data=training_data)
qda_model
## Call:
## qda(mpg01 ~ cylinders + horsepower + weight + acceleration, data = training_data)
## 
## Prior probabilities of groups:
##         0         1 
## 0.4963504 0.5036496 
## 
## Group means:
##   cylinders horsepower   weight acceleration
## 0  6.786765  130.96324 3641.022     14.55588
## 1  4.188406   78.00725 2314.000     16.55072
qda.class=predict(qda_model, testing_data)$class
table(qda.class, testing_data$mpg01)
##          
## qda.class  0  1
##         0 53  4
##         1  7 54
mean(qda.class != testing_data$mpg01)
## [1] 0.09322034

from the output we can conclude the test error using those variables is of 9.32%

  1. Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
glm_model <- glm(mpg01 ~ cylinders + weight + displacement + horsepower, data = training_data, family = binomial)
summary(glm_model)
## 
## Call:
## glm(formula = mpg01 ~ cylinders + weight + displacement + horsepower, 
##     family = binomial, data = training_data)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.44120  -0.17870   0.08712   0.31147   3.05303  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  11.8103006  2.0819718   5.673 1.41e-08 ***
## cylinders     0.1869071  0.3972245   0.471  0.63797    
## weight       -0.0020251  0.0008573  -2.362  0.01817 *  
## displacement -0.0164493  0.0095899  -1.715  0.08629 .  
## horsepower   -0.0443408  0.0172072  -2.577  0.00997 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 379.83  on 273  degrees of freedom
## Residual deviance: 138.27  on 269  degrees of freedom
## AIC: 148.27
## 
## Number of Fisher Scoring iterations: 7
probs <- predict(glm_model, testing_data, type = "response")
pred.glm <- rep(0, length(probs))
pred.glm[probs > 0.5] <- 1
table(pred.glm, mpg01.test)
##         mpg01.test
## pred.glm  0  1
##        0 53  6
##        1  7 52
mean(pred.glm != mpg01.test)
## [1] 0.1101695

doing the logistic regression we can tell that the test error for this os of 11.02% as well like in question d

  1. Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?
str(Auto)
## 'data.frame':    392 obs. of  10 variables:
##  $ mpg         : num  18 15 18 16 17 15 14 14 14 15 ...
##  $ cylinders   : num  8 8 8 8 8 8 8 8 8 8 ...
##  $ displacement: num  307 350 318 304 302 429 454 440 455 390 ...
##  $ horsepower  : num  130 165 150 150 140 198 220 215 225 190 ...
##  $ weight      : num  3504 3693 3436 3433 3449 ...
##  $ acceleration: num  12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
##  $ year        : num  70 70 70 70 70 70 70 70 70 70 ...
##  $ origin      : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ name        : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161 141 54 223 241 2 ...
##  $ mpg01       : num  0 0 0 0 0 0 0 0 0 0 ...
data = scale(Auto[,-c(9,10)])
set.seed(1234)
train <- sample(1:dim(Auto)[1], 392*.7, rep=FALSE)
test <- -train
training_data = data[train,c("cylinders","horsepower","weight","acceleration")]
testing_data = data[test, c("cylinders", "horsepower","weight","acceleration")]
train.mpg01 = Auto$mpg01[train]
test.mpg01= Auto$mpg01[test]
library(class)
set.seed(1234)
knn_pred_y = knn(training_data, testing_data, train.mpg01, k = 1)
table(knn_pred_y, test.mpg01)
##           test.mpg01
## knn_pred_y  0  1
##          0 57  5
##          1  7 49
mean(knn_pred_y != test.mpg01)
## [1] 0.1016949

the test error is 10.12% and the value of that best fits is 1 if we want to deeper into finding the best k vakue then we have to do these coands to find the optimal k with lowest test error

knn_pred_y = NULL
error_rate = NULL
for(i in 1:dim(testing_data)[1]){
set.seed(1234)
knn_pred_y = knn(training_data,testing_data,train.mpg01,k=i)
error_rate[i] = mean(test.mpg01 != knn_pred_y)}
min_error_rate = min(error_rate)
print(min_error_rate)
## [1] 0.09322034
K = which(error_rate == min_error_rate)
print(K)
## [1] 4

the lowest test error it came up with would be the 9.32% which has a k value equal to 4

  1. Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.
library(MASS)
data("Boston")
crim01 <- rep(0, length(Boston$crim))
crim01[Boston$crim > median(Boston$crim)] <- 1
Boston <- data.frame(Boston, crim01)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv           crim01   
##  Min.   : 1.73   Min.   : 5.00   Min.   :0.0  
##  1st Qu.: 6.95   1st Qu.:17.02   1st Qu.:0.0  
##  Median :11.36   Median :21.20   Median :0.5  
##  Mean   :12.65   Mean   :22.53   Mean   :0.5  
##  3rd Qu.:16.95   3rd Qu.:25.00   3rd Qu.:1.0  
##  Max.   :37.97   Max.   :50.00   Max.   :1.0
set.seed(1234)
train <- sample(1:dim(Boston)[1], dim(Boston)[1]*.7, rep=FALSE)
test <- -train
Boston.train <- Boston[train, ]
Boston.test <- Boston[test, ]
crim01.test <- crim01[test]
fit.glm1 <- glm(crim01 ~ . - crim01 - crim, data = Boston, family = binomial)
fit.glm1
## 
## Call:  glm(formula = crim01 ~ . - crim01 - crim, family = binomial, 
##     data = Boston)
## 
## Coefficients:
## (Intercept)           zn        indus         chas          nox           rm  
##  -34.103704    -0.079918    -0.059389     0.785327    48.523782    -0.425596  
##         age          dis          rad          tax      ptratio        black  
##    0.022172     0.691400     0.656465    -0.006412     0.368716    -0.013524  
##       lstat         medv  
##    0.043862     0.167130  
## 
## Degrees of Freedom: 505 Total (i.e. Null);  492 Residual
## Null Deviance:       701.5 
## Residual Deviance: 211.9     AIC: 239.9
fit.glm <- glm(crim01 ~ nox + indus + age + rad, data = Boston, family = binomial)
probs <- predict(fit.glm, Boston.test, type = "response")
pred.glm <- rep(0, length(probs))
pred.glm[probs > 0.5] <- 1
table(pred.glm, crim01.test)
##         crim01.test
## pred.glm  0  1
##        0 68 18
##        1  7 59
mean(pred.glm != crim01.test)
## [1] 0.1644737

fot the logistic regresson the test error is 16.45%

fit.lda <- lda(crim01 ~ nox + indus + age + rad , data = Boston)
pred.lda <- predict(fit.lda, Boston.test)
table(pred.lda$class, crim01.test)
##    crim01.test
##      0  1
##   0 72 25
##   1  3 52
mean(pred.lda$class != crim01.test)
## [1] 0.1842105

fot the lda model the test error is 18.42%

data = scale(Boston[,-c(1,15)])
set.seed(1234)
train <- sample(1:dim(Boston)[1], dim(Boston)[1]*.7, rep=FALSE)
test <- -train
training_data = data[train, c("nox" , "indus" , "age" , "rad")]
testing_data = data[test, c("nox" , "indus" , "age" , "rad")]
train.crime01 = Boston$crim01[train]
test.crime01= Boston$crim01[test]
library(class)
set.seed(1234)
knn_pred_y = knn(training_data, testing_data, train.crime01, k = 1)
table(knn_pred_y, test.crime01)
##           test.crime01
## knn_pred_y  0  1
##          0 67  6
##          1  8 71
mean(knn_pred_y != test.crime01)
## [1] 0.09210526
knn_pred_y = NULL
error_rate = NULL
for(i in 1:dim(testing_data)[1]){
set.seed(1234)
knn_pred_y = knn(training_data,testing_data,train.crime01,k=i)
error_rate[i] = mean(test.crime01 != knn_pred_y)}
min_error_rate = min(error_rate)
print(min_error_rate)
## [1] 0.06578947
K = which(error_rate == min_error_rate)
print(K)
## [1] 4

From the output with k equaling 1 the test error is 9.21% when we try to find the lowest test error we find that it is 6.58% with a k equaling to 4