Curso os tópicos

Recursos adicionais

Aprendizado não supervisionado em R

Aprendizado por reforço

Dois grandes objetivos:

Introdução ao cluster k-means

Bibliotecas e dados

library(readr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(stringr)

Agrupamento k-means

x <- rbind(matrix(rnorm(5000, sd = 0.3), ncol = 2),
           matrix(rnorm(5000, mean = 1, sd = 0.3), ncol = 2))
head(x)
##            [,1]       [,2]
## [1,] -0.3240826 -0.4851197
## [2,]  0.4455235  0.1192265
## [3,] -0.2084990  0.2487887
## [4,] -0.3130462 -0.1555823
## [5,] -0.4153098  0.5743731
## [6,]  0.3658255 -0.5323574
# Visualizando os dados
str(x)
##  num [1:5000, 1:2] -0.324 0.446 -0.208 -0.313 -0.415 ...

Modelo agrupamento k-means

Modelo k-means: km.out

km.out <- kmeans(x, centers = 3, nstart = 20)

Inspecione o resultado

summary(km.out)
##              Length Class  Mode   
## cluster      5000   -none- numeric
## centers         6   -none- numeric
## totss           1   -none- numeric
## withinss        3   -none- numeric
## tot.withinss    1   -none- numeric
## betweenss       1   -none- numeric
## size            3   -none- numeric
## iter            1   -none- numeric
## ifault          1   -none- numeric

Cluster do modelo

km.out$cluster
##    [1] 1 2 1 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 2 1 2 1 1 1 1 1 2 2 2 2 1 2 1 2
##   [38] 1 1 2 2 2 1 2 1 2 2 2 1 2 2 2 1 1 2 2 2 2 1 2 1 2 1 2 2 2 1 1 1 2 2 1 2 1
##   [75] 1 2 1 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 2 1 1 1 2 2 2 1 2 2 1 2 1 2 2 2 2
##  [112] 1 2 1 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 2 2 2 1 1 1 1 1 1 1 2 1 2 2 1 2
##  [149] 1 1 2 1 2 2 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 2 2 1 2 2
##  [186] 1 1 1 1 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 1 2 1 2 2 2 2 2 2 1 2 2
##  [223] 1 1 1 2 2 2 2 2 1 1 1 2 1 2 2 2 2 1 1 2 1 2 2 2 2 2 2 1 1 1 1 2 1 2 2 2 1
##  [260] 2 2 2 2 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 2 1
##  [297] 1 1 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 2 2 2 1 1 2 2 1 2
##  [334] 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 2 1 2 2 2
##  [371] 1 1 2 1 1 2 1 2 1 1 1 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 1 2 2 2 2 1 2 2 2 1
##  [408] 1 1 1 2 1 2 1 1 1 2 1 2 2 2 1 2 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 2 1
##  [445] 2 1 2 1 1 1 1 2 2 1 1 2 2 2 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2
##  [482] 2 2 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 2 2 1 1 2 1
##  [519] 2 2 2 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 2 1 2 2 1 2 1 1 1 2 1 2 1 1
##  [556] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 2 1 2 2 2 2 1 1 1 2 2 1 2
##  [593] 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2 1 1 1 1 1
##  [630] 2 1 1 1 1 2 1 1 2 1 2 1 2 2 2 2 1 2 1 1 2 1 1 2 1 1 1 2 2 2 2 1 2 1 2 1 1
##  [667] 2 2 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 2 2 1 2 2 1 2 1 1 1 2 1 1 1 2 2 2 2
##  [704] 2 1 2 2 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2 2 1 1 2 2
##  [741] 2 1 1 1 1 1 2 2 1 2 2 2 2 1 1 2 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 1 1 1 1
##  [778] 2 1 2 2 2 2 2 1 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 2 2 2 1 2 2 1 1 1 2 1 1 1
##  [815] 1 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 1 2
##  [852] 1 2 1 2 2 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 1 1 1
##  [889] 1 1 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 2 2 1 2 2 1 1 2 2 2 1 1
##  [926] 1 1 2 2 2 2 2 1 1 1 1 2 1 1 1 2 2 1 2 1 1 1 1 2 2 1 2 1 2 2 2 1 1 1 2 2 2
##  [963] 1 1 1 1 1 1 1 2 2 2 1 2 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2
## [1000] 1 1 2 2 2 2 2 1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2 1 1 1 2 2 2 1 2 1 2 2 1 2 1
## [1037] 2 1 2 2 2 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 2 1 2
## [1074] 1 1 1 1 1 1 1 2 2 2 1 1 1 1 3 2 1 1 1 1 2 1 2 2 1 2 1 1 2 2 2 1 2 1 1 2 1
## [1111] 1 1 2 1 2 1 1 1 2 2 2 1 2 1 1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 2 1
## [1148] 1 2 2 1 2 1 2 1 1 1 3 2 1 1 1 1 2 1 2 2 1 1 1 2 1 2 2 1 1 2 2 1 2 1 1 1 2
## [1185] 2 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 1 2 1 2 2 1 1
## [1222] 1 1 1 2 1 1 1 2 1 1 1 1 2 2 2 1 2 1 2 2 2 2 2 1 1 2 2 2 2 1 1 1 1 2 1 2 2
## [1259] 1 1 1 1 1 2 1 1 2 2 2 1 1 1 2 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 2 1
## [1296] 1 2 2 1 2 1 2 1 2 2 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 2 1
## [1333] 2 1 1 2 1 2 1 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1
## [1370] 1 1 1 1 1 2 1 1 2 2 1 1 1 2 2 2 2 1 2 1 2 1 1 2 2 1 2 1 2 1 1 1 1 2 2 2 1
## [1407] 2 2 1 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 1 1 2 2 1 2 1 2 1 1 1 1 1
## [1444] 2 2 1 2 2 2 1 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 1 2 2 1 1 1 1 1 2 1 2
## [1481] 1 1 1 2 2 1 1 2 2 2 1 1 1 1 1 2 1 1 1 2 2 1 2 2 1 1 1 2 1 2 1 2 1 2 2 1 2
## [1518] 1 1 2 1 2 1 1 2 2 1 2 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1
## [1555] 2 1 2 2 1 2 1 2 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 2 1 2 1 1
## [1592] 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 2 2 2 1 2 1 1 1 1 2 1 2 1 1 2 2 2 2 1 2 2 1
## [1629] 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 2 1 1 2 2 2 2 1 1 1 2 1 2 2
## [1666] 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 2
## [1703] 2 2 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 1 2 1 2 2 1 1 2 2 2 1 2 1 1 1 2 1 2 1
## [1740] 1 2 1 2 2 1 2 2 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 1
## [1777] 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 1 1 2 2 1 2 1 2 2
## [1814] 2 1 2 1 1 1 2 1 1 1 2 2 1 2 2 2 2 2 2 1 1 1 1 2 2 1 2 2 1 2 1 2 2 2 1 1 1
## [1851] 2 2 2 1 2 1 2 2 2 2 1 2 1 1 1 1 2 2 2 1 1 2 2 1 1 1 1 1 2 2 1 1 2 1 2 1 2
## [1888] 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2
## [1925] 2 2 1 2 1 1 2 2 1 1 1 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 1 1 2 2 2 1 1
## [1962] 2 1 1 1 2 2 1 2 2 2 1 2 1 2 1 2 1 1 2 3 2 1 2 2 2 2 1 2 1 2 2 1 1 2 2 1 1
## [1999] 2 1 1 1 2 1 1 2 2 2 2 2 2 1 2 1 1 1 2 2 1 2 2 2 2 1 1 2 1 1 2 2 1 1 2 2 2
## [2036] 2 2 1 1 1 2 1 2 1 2 2 2 2 1 1 1 1 2 2 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2
## [2073] 1 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 2 1 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1
## [2110] 1 2 2 1 2 2 1 2 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 2 2 1 1 1 2 1 2 1
## [2147] 2 1 2 2 2 1 2 1 1 1 2 2 2 2 2 2 1 2 1 1 1 2 1 1 2 2 2 1 1 1 2 1 1 2 1 2 1
## [2184] 2 1 1 1 1 1 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1
## [2221] 1 2 2 2 2 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 1
## [2258] 2 1 1 1 2 2 2 2 1 2 1 2 2 2 1 2 1 1 2 2 2 2 1 1 2 1 1 2 1 2 2 1 2 1 1 1 2
## [2295] 1 2 1 1 1 2 2 2 2 2 1 2 1 1 2 2 2 1 1 1 1 2 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2
## [2332] 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2
## [2369] 1 1 1 2 2 2 2 2 2 2 1 2 2 1 1 1 2 2 1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 2 1 2 1
## [2406] 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 1
## [2443] 1 1 2 2 2 1 1 2 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 1 1 2 2 2 2 2 2 2
## [2480] 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2517] 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [2554] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2591] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2628] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2665] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2702] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2739] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2776] 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3
## [2813] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3
## [2850] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2887] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2924] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [2961] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2998] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3035] 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3072] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [3109] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3146] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3183] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [3220] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3257] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3294] 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3331] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3368] 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3405] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3442] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3
## [3479] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3516] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3553] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3590] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3627] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3664] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3701] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3738] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3
## [3775] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3812] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3849] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3886] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3923] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3960] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3997] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4034] 3 1 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [4071] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4108] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4145] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4182] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4219] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4256] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [4293] 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3
## [4330] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [4367] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3
## [4404] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4441] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3
## [4478] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4515] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4552] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4589] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4626] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4663] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3
## [4700] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4737] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4774] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4811] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4848] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4885] 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4922] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4959] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4996] 3 3 3 3 3

Objeto km.out

km.out
## K-means clustering with 3 clusters of sizes 1351, 1216, 2433
## 
## Cluster means:
##         [,1]        [,2]
## 1 -0.2155094 -0.03325906
## 2  0.2954926  0.06242132
## 3  1.0167146  1.01012085
## 
## Clustering vector:
##    [1] 1 2 1 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 2 1 2 1 1 1 1 1 2 2 2 2 1 2 1 2
##   [38] 1 1 2 2 2 1 2 1 2 2 2 1 2 2 2 1 1 2 2 2 2 1 2 1 2 1 2 2 2 1 1 1 2 2 1 2 1
##   [75] 1 2 1 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 2 1 1 1 2 2 2 1 2 2 1 2 1 2 2 2 2
##  [112] 1 2 1 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 2 2 2 1 1 1 1 1 1 1 2 1 2 2 1 2
##  [149] 1 1 2 1 2 2 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 2 2 1 2 2
##  [186] 1 1 1 1 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 1 2 1 2 2 2 2 2 2 1 2 2
##  [223] 1 1 1 2 2 2 2 2 1 1 1 2 1 2 2 2 2 1 1 2 1 2 2 2 2 2 2 1 1 1 1 2 1 2 2 2 1
##  [260] 2 2 2 2 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 2 1
##  [297] 1 1 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 2 2 2 1 1 2 2 1 2
##  [334] 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 2 1 2 2 2
##  [371] 1 1 2 1 1 2 1 2 1 1 1 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 1 2 2 2 2 1 2 2 2 1
##  [408] 1 1 1 2 1 2 1 1 1 2 1 2 2 2 1 2 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 2 1
##  [445] 2 1 2 1 1 1 1 2 2 1 1 2 2 2 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2
##  [482] 2 2 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 2 2 1 1 2 1
##  [519] 2 2 2 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 2 1 2 2 1 2 1 1 1 2 1 2 1 1
##  [556] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 2 1 2 2 2 2 1 1 1 2 2 1 2
##  [593] 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2 1 1 1 1 1
##  [630] 2 1 1 1 1 2 1 1 2 1 2 1 2 2 2 2 1 2 1 1 2 1 1 2 1 1 1 2 2 2 2 1 2 1 2 1 1
##  [667] 2 2 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 2 2 1 2 2 1 2 1 1 1 2 1 1 1 2 2 2 2
##  [704] 2 1 2 2 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2 2 1 1 2 2
##  [741] 2 1 1 1 1 1 2 2 1 2 2 2 2 1 1 2 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 1 1 1 1
##  [778] 2 1 2 2 2 2 2 1 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 2 2 2 1 2 2 1 1 1 2 1 1 1
##  [815] 1 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 1 2
##  [852] 1 2 1 2 2 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 1 1 1
##  [889] 1 1 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 2 2 1 2 2 1 1 2 2 2 1 1
##  [926] 1 1 2 2 2 2 2 1 1 1 1 2 1 1 1 2 2 1 2 1 1 1 1 2 2 1 2 1 2 2 2 1 1 1 2 2 2
##  [963] 1 1 1 1 1 1 1 2 2 2 1 2 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2
## [1000] 1 1 2 2 2 2 2 1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2 1 1 1 2 2 2 1 2 1 2 2 1 2 1
## [1037] 2 1 2 2 2 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 2 1 2
## [1074] 1 1 1 1 1 1 1 2 2 2 1 1 1 1 3 2 1 1 1 1 2 1 2 2 1 2 1 1 2 2 2 1 2 1 1 2 1
## [1111] 1 1 2 1 2 1 1 1 2 2 2 1 2 1 1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 2 1
## [1148] 1 2 2 1 2 1 2 1 1 1 3 2 1 1 1 1 2 1 2 2 1 1 1 2 1 2 2 1 1 2 2 1 2 1 1 1 2
## [1185] 2 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 1 2 1 2 2 1 1
## [1222] 1 1 1 2 1 1 1 2 1 1 1 1 2 2 2 1 2 1 2 2 2 2 2 1 1 2 2 2 2 1 1 1 1 2 1 2 2
## [1259] 1 1 1 1 1 2 1 1 2 2 2 1 1 1 2 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 2 1
## [1296] 1 2 2 1 2 1 2 1 2 2 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 2 1
## [1333] 2 1 1 2 1 2 1 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1
## [1370] 1 1 1 1 1 2 1 1 2 2 1 1 1 2 2 2 2 1 2 1 2 1 1 2 2 1 2 1 2 1 1 1 1 2 2 2 1
## [1407] 2 2 1 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 1 1 2 2 1 2 1 2 1 1 1 1 1
## [1444] 2 2 1 2 2 2 1 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 1 2 2 1 1 1 1 1 2 1 2
## [1481] 1 1 1 2 2 1 1 2 2 2 1 1 1 1 1 2 1 1 1 2 2 1 2 2 1 1 1 2 1 2 1 2 1 2 2 1 2
## [1518] 1 1 2 1 2 1 1 2 2 1 2 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1
## [1555] 2 1 2 2 1 2 1 2 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 2 1 2 1 1
## [1592] 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 2 2 2 1 2 1 1 1 1 2 1 2 1 1 2 2 2 2 1 2 2 1
## [1629] 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 2 1 1 2 2 2 2 1 1 1 2 1 2 2
## [1666] 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 2
## [1703] 2 2 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 1 2 1 2 2 1 1 2 2 2 1 2 1 1 1 2 1 2 1
## [1740] 1 2 1 2 2 1 2 2 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 1
## [1777] 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 1 1 2 2 1 2 1 2 2
## [1814] 2 1 2 1 1 1 2 1 1 1 2 2 1 2 2 2 2 2 2 1 1 1 1 2 2 1 2 2 1 2 1 2 2 2 1 1 1
## [1851] 2 2 2 1 2 1 2 2 2 2 1 2 1 1 1 1 2 2 2 1 1 2 2 1 1 1 1 1 2 2 1 1 2 1 2 1 2
## [1888] 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2
## [1925] 2 2 1 2 1 1 2 2 1 1 1 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 1 1 2 2 2 1 1
## [1962] 2 1 1 1 2 2 1 2 2 2 1 2 1 2 1 2 1 1 2 3 2 1 2 2 2 2 1 2 1 2 2 1 1 2 2 1 1
## [1999] 2 1 1 1 2 1 1 2 2 2 2 2 2 1 2 1 1 1 2 2 1 2 2 2 2 1 1 2 1 1 2 2 1 1 2 2 2
## [2036] 2 2 1 1 1 2 1 2 1 2 2 2 2 1 1 1 1 2 2 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2
## [2073] 1 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 2 1 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1
## [2110] 1 2 2 1 2 2 1 2 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 2 2 1 1 1 2 1 2 1
## [2147] 2 1 2 2 2 1 2 1 1 1 2 2 2 2 2 2 1 2 1 1 1 2 1 1 2 2 2 1 1 1 2 1 1 2 1 2 1
## [2184] 2 1 1 1 1 1 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1
## [2221] 1 2 2 2 2 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 1
## [2258] 2 1 1 1 2 2 2 2 1 2 1 2 2 2 1 2 1 1 2 2 2 2 1 1 2 1 1 2 1 2 2 1 2 1 1 1 2
## [2295] 1 2 1 1 1 2 2 2 2 2 1 2 1 1 2 2 2 1 1 1 1 2 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2
## [2332] 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2
## [2369] 1 1 1 2 2 2 2 2 2 2 1 2 2 1 1 1 2 2 1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 2 1 2 1
## [2406] 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 1
## [2443] 1 1 2 2 2 1 1 2 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 1 1 2 2 2 2 2 2 2
## [2480] 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2517] 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [2554] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2591] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2628] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2665] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2702] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2739] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2776] 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3
## [2813] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3
## [2850] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2887] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2924] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [2961] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2998] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3035] 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3072] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [3109] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3146] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3183] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [3220] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3257] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3294] 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3331] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3368] 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3405] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3442] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3
## [3479] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3516] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3553] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3590] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3627] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3664] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3701] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3738] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3
## [3775] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3812] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3849] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3886] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3923] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3960] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3997] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4034] 3 1 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [4071] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4108] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4145] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4182] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4219] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4256] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [4293] 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3
## [4330] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [4367] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3
## [4404] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4441] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3
## [4478] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4515] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4552] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4589] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4626] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4663] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3
## [4700] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4737] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4774] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4811] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4848] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4885] 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4922] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4959] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4996] 3 3 3 3 3
## 
## Within cluster sum of squares by cluster:
## [1] 164.1809 168.1065 418.8300
##  (between_SS / total_SS =  77.9 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"

Gráfico Scatter plot

plot(x, col = km.out$cluster, main = "Cluster",
     xlab = "Dados",
     ylab = "Total")

Configurar grade de plotagem 2 x 3

par(mfrow = c(2, 3))

Definir seed

set.seed(1)

for(i in 1:6) {
  # Modelo K-Means
  km.out <- kmeans(x, centers = 3, nstart = 1)
  
  # Gráfico
  plot(x, col = km.out$cluster, 
       main = km.out$tot.withinss, 
       xlab = "Cluster dos", ylab = "Total")
}

# Manipulando algoritmos aleatórios

Como kmeans() funciona e questões práticas

# Set up 2 x 3 plotting grid
par(mfrow = c(2, 3))

# Set seed
set.seed(1)

for(i in 1:6) {
  # Run kmeans() on x with three clusters and one start
  km.out <- kmeans(x, centers = 3, nstart = 1)
  
  # Plot clusters
  plot(x, col = km.out$cluster, 
       main = km.out$tot.withinss, 
       xlab = "", ylab = "")
}

# Selecionando o número de clusters

# Inicializa o total dentro do erro de soma dos quadrados: wss
wss <- 0

# Para 1 a 15 centros de cluster
for (i in 1:15) {
  km.out <- kmeans(x, centers = i, nstart = 20)
  # Salva o total dentro da soma dos quadrados na variável wss
  wss[i] <- km.out$tot.withinss
}
## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations

## Warning: did not converge in 10 iterations
# Plotar o total dentro da soma dos quadrados e. número de clusters
plot(1:15, wss, type = "b", 
     xlab = "Número de clusters", 
     ylab = "Dentro de grupos soma de quadrados")

# Defina k igual ao número de clusters correspondentes à localização do cotovelo
# k <- 2

Agrupamento hierárquico

Introdução ao agrupamento hierárquico

Processar

Agrupamento hierárquico com resultados

head(x)
##            [,1]       [,2]
## [1,] -0.3240826 -0.4851197
## [2,]  0.4455235  0.1192265
## [3,] -0.2084990  0.2487887
## [4,] -0.3130462 -0.1555823
## [5,] -0.4153098  0.5743731
## [6,]  0.3658255 -0.5323574

Criar modelo de cluster hierárquico: hclust.out

hclust.out <- hclust(dist(x))

# O resultado do modelo
summary(hclust.out)
##             Length Class  Mode     
## merge       9998   -none- numeric  
## height      4999   -none- numeric  
## order       5000   -none- numeric  
## labels         0   -none- NULL     
## method         1   -none- character
## call           2   -none- call     
## dist.method    1   -none- character

Selecionando o número de clusters

Gráfico

plot(hclust.out)
abline(h = 7, col = "red")

# Corte por altura

cutree(hclust.out, h = 7)
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1037] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1074] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1111] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1148] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1185] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1222] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1259] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1296] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1333] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1370] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1407] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1444] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1481] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1518] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1555] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1592] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1629] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1666] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1703] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1740] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1777] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1814] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1851] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1888] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1925] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1962] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1999] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2036] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2073] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2110] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2147] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2184] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2221] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2258] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2295] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2332] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2369] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2406] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2443] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2480] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2517] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2554] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2591] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2628] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2665] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2702] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2739] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2776] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2813] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2850] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2887] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2924] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2961] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2998] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3035] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3072] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3109] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3146] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3183] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3220] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3257] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3294] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3331] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3368] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3405] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3442] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3479] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3516] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3553] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3590] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3627] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3664] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3701] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3738] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3775] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3812] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3849] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3886] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3923] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3960] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3997] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4034] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4071] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4108] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4145] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4182] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4219] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4256] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4293] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4330] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4367] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4404] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4441] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4478] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4515] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4552] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4589] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4626] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4663] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4700] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4737] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4774] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4811] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4848] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4885] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4922] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4959] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4996] 1 1 1 1 1

Número de clusters

cutree(hclust.out, k = 3)
##    [1] 1 2 1 1 2 2 1 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 1 2 1 2 1 1 1 1 2 2 2 1 1 1 2
##   [38] 1 1 2 1 1 1 2 1 2 2 2 1 1 2 1 1 1 1 2 2 2 2 1 2 1 1 2 2 2 1 1 1 1 2 1 2 1
##   [75] 1 2 1 1 2 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 1 2 2 1 2 1 2 2 1 2
##  [112] 1 2 2 2 1 1 1 1 1 2 2 1 2 1 2 2 2 2 1 2 1 2 2 2 2 1 2 2 1 1 1 2 2 2 2 2 2
##  [149] 1 1 2 1 2 2 2 2 2 1 2 1 1 2 1 2 2 1 2 2 1 1 1 1 2 1 2 1 2 1 1 1 1 2 1 2 2
##  [186] 1 1 1 1 2 2 2 2 1 1 2 1 1 2 2 1 2 1 2 2 1 1 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2
##  [223] 1 2 1 2 1 3 2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 2 1 2 2 2 2 1 1 1 1 1 1 2 1 2 1
##  [260] 2 2 2 2 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 2 1
##  [297] 1 2 2 1 1 1 1 1 3 1 2 2 2 1 1 2 2 2 2 1 1 1 1 1 2 1 2 1 2 2 2 1 1 2 2 1 2
##  [334] 1 1 1 2 1 1 2 2 2 1 1 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 1 1 1 2 1 2 1 2
##  [371] 1 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 2 1 1 2 1 1 1 1 2 1 1 1 2 1 2 2 2 2 2 2 1
##  [408] 2 1 1 2 1 2 1 1 1 2 1 2 2 2 1 2 1 2 1 2 1 1 1 1 2 2 1 2 2 2 1 1 1 2 2 2 1
##  [445] 2 1 2 2 2 2 1 2 2 1 1 2 2 2 1 2 1 1 2 1 1 1 2 2 1 1 1 2 1 1 1 1 2 1 1 1 2
##  [482] 2 2 1 2 2 2 1 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2 1 1 1 2 1 1 1 1 2 2 1 1 2 1
##  [519] 2 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 2 1 2 2 1 1 1 1 1 2 1 2 1 1
##  [556] 2 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 1 1 2 1 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2
##  [593] 2 2 2 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2 1 1 1 1 1
##  [630] 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 1 1 1 1 2 1 1 2 1 1 1 2 1 2 2 1 2 1 1 1 1
##  [667] 2 1 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 2 2 1 2 2 2 1 1 1 1 2 1 1 1 2 2 2 1
##  [704] 1 2 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 2 2 2 1 1 1 1 1 2 2 1 1 1 2 2 1 2 1 2
##  [741] 1 2 1 1 1 1 2 1 1 2 2 2 2 1 1 2 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 2 1 1 2
##  [778] 2 1 2 2 1 2 2 1 2 1 2 1 1 1 2 2 1 1 1 1 2 2 2 1 2 2 2 1 1 2 1 1 1 1 1 1 1
##  [815] 2 2 2 1 3 2 1 2 1 2 1 2 2 1 1 1 2 2 1 2 1 1 2 2 1 2 2 2 2 2 1 2 1 2 2 1 2
##  [852] 1 2 1 1 1 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 2 2 1 1 1 2 2 1 2 2 1 1 1 1 1 1
##  [889] 1 2 2 1 1 1 1 2 1 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1 2 2 2 1 2 2 1 1 2 2 2 1 2
##  [926] 1 1 2 2 2 2 1 1 1 1 1 2 1 1 1 2 3 1 2 1 1 1 1 2 2 1 1 1 2 2 2 2 1 1 2 2 2
##  [963] 1 1 1 1 1 2 2 2 2 2 1 3 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 1 2 1 2 2
## [1000] 1 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 2 2 1 2 1 2 1 1 2 2 2 2 2 1 2 1 1 2 1 2 1
## [1037] 2 1 2 2 1 1 1 2 1 2 1 2 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2
## [1074] 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 2 1 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 2 2 1 2 1
## [1111] 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 2 1 1 1 1 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1
## [1148] 1 2 2 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 2 1 2 1 2 1 2
## [1185] 2 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 1 1 2 2 1 1 2 1 1 1 1 2 1 2 1 1 1 2 2 1 1
## [1222] 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 1 2 1 2 2 2 2 2 1 1 2 2 1 2 1 1 1 1 2 1 1 2
## [1259] 2 1 1 1 1 1 1 1 2 2 2 1 1 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 2 2 1
## [1296] 1 1 2 1 2 1 2 2 1 2 1 2 1 1 2 2 2 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 1
## [1333] 2 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1
## [1370] 1 1 1 1 1 2 1 1 2 1 1 1 2 2 1 2 2 1 2 1 1 1 1 2 2 1 2 1 2 1 1 1 1 2 2 2 1
## [1407] 2 2 1 1 2 1 2 1 2 1 2 1 1 1 2 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 1 2 1 1 1 1 1
## [1444] 2 2 1 1 2 2 2 2 1 1 1 2 1 1 3 1 2 2 2 2 1 1 1 2 2 2 1 2 2 1 1 1 1 1 1 2 2
## [1481] 1 1 1 2 2 1 1 2 2 2 1 2 1 2 1 2 1 1 1 2 2 1 1 2 1 1 1 2 1 2 1 2 1 2 2 1 2
## [1518] 1 1 2 1 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 1
## [1555] 2 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 1
## [1592] 2 1 1 1 1 2 2 2 2 1 3 1 2 2 1 1 2 2 1 2 1 2 2 1 1 1 2 2 1 2 2 2 2 1 1 1 2
## [1629] 1 2 2 1 1 1 1 2 1 1 2 2 1 1 2 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 1 2 1 2 2
## [1666] 2 1 2 1 1 1 2 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 2 1 2 1
## [1703] 2 2 1 1 2 1 1 1 1 1 2 2 2 1 2 2 2 2 1 1 1 2 2 1 1 2 2 2 1 1 1 1 1 1 1 2 1
## [1740] 1 2 1 2 2 2 2 2 1 2 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 2 1 2 2 1 1 1 2 1 1
## [1777] 1 1 2 2 1 1 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 2 1 1 1 2 2 1 1 1 2 1 2 1 2 2
## [1814] 2 1 2 1 1 1 2 1 1 1 1 2 1 2 1 2 2 2 1 1 1 2 1 2 2 1 2 2 1 2 1 2 2 2 1 1 2
## [1851] 2 2 2 1 2 1 2 2 2 2 1 2 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 2 1 2 2 2 1 2
## [1888] 1 1 2 2 2 1 1 1 2 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 2 1 2
## [1925] 1 2 1 2 2 1 2 2 1 1 1 1 2 2 2 1 2 1 1 2 2 1 2 1 2 2 2 1 2 2 1 1 2 2 1 1 2
## [1962] 1 1 1 1 1 2 1 2 2 1 1 1 1 2 1 2 1 2 2 3 1 1 2 2 2 2 1 2 1 1 2 1 2 2 2 1 1
## [1999] 2 1 1 1 2 1 1 1 2 2 2 2 2 1 2 1 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 1 1 2 2
## [2036] 2 2 1 1 1 2 1 1 1 2 2 1 2 1 2 1 1 2 2 1 1 1 2 1 1 1 1 2 2 1 2 1 1 1 1 2 2
## [2073] 1 1 1 1 1 2 2 1 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1
## [2110] 1 2 2 1 1 2 1 2 1 1 2 1 1 1 1 1 2 2 2 1 1 1 2 1 1 2 2 1 1 2 1 1 1 2 1 2 1
## [2147] 2 1 1 1 2 1 1 1 1 1 2 3 2 2 2 2 1 2 1 1 1 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 1
## [2184] 2 2 1 1 1 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 2 1 2
## [2221] 1 2 2 2 1 1 2 1 1 2 1 1 1 2 2 1 1 2 1 1 1 1 2 2 3 2 2 1 1 2 2 2 1 1 2 2 1
## [2258] 2 2 1 1 2 2 2 2 1 2 1 2 2 2 1 1 1 1 2 2 2 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 2
## [2295] 1 2 1 1 1 2 2 1 2 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 2 1 2 1 1 2 1 1 2 2 2
## [2332] 2 1 2 2 2 2 2 2 1 2 2 1 1 1 2 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 2
## [2369] 1 1 1 2 2 1 2 2 2 2 1 2 2 2 1 1 2 2 1 2 2 1 2 2 2 1 1 2 1 1 1 1 1 2 1 2 1
## [2406] 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 1
## [2443] 1 1 2 2 2 1 1 2 1 2 2 1 1 2 2 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 2 2 1 2 1 2
## [2480] 2 1 1 1 1 1 2 1 1 1 2 1 2 2 1 2 1 2 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2517] 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [2554] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2591] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2628] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2665] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2702] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [2739] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2776] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2813] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3
## [2850] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2887] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [2924] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [2961] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2998] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3035] 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3072] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [3109] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3
## [3146] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3183] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [3220] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3257] 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3294] 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3331] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3368] 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3
## [3405] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3442] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3
## [3479] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3516] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3553] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3590] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3627] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3664] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3701] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3738] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3
## [3775] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3812] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3849] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3886] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3923] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3960] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [3997] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4034] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4071] 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4108] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 2 3 3 3
## [4145] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4182] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4219] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 3
## [4256] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2
## [4293] 3 3 3 3 3 3 3 3 3 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3
## [4330] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4367] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3
## [4404] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4441] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3
## [4478] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4515] 3 3 3 3 3 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4552] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4589] 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3
## [4626] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4663] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3
## [4700] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4737] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4774] 3 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4811] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4848] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4885] 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4922] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4959] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4996] 3 3 3 3 3

Clusters e questões práticas

Métodos de ligação

# Cluster usando ligação completa: hclust.complete
hclust.complete <- hclust(dist(x), method = "complete")

# Agrupe usando a ligação média: hclust.average
hclust.average <- hclust(dist(x), method = "average")

# Cluster usando link único: hclust.single
hclust.single <- hclust(dist(x), method = "single")

# Plotar dendrograma de hclust.complete
plot(hclust.complete, main = "Complete")

# Plotar dendrograma de hclust.average

plot(hclust.average, main = "Average")

# Introdução ao PCA

Redução de dimensionalidade com PCA

Dados PCA com iris

summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 

Dados PCA

pr.iris <- prcomp(x = iris[-5], scale = F, center = T)
summary(pr.iris)
## Importance of components:
##                           PC1     PC2    PC3     PC4
## Standard deviation     2.0563 0.49262 0.2797 0.15439
## Proportion of Variance 0.9246 0.05307 0.0171 0.00521
## Cumulative Proportion  0.9246 0.97769 0.9948 1.00000

Resultado do PCA

pr.iris
## Standard deviations (1, .., p=4):
## [1] 2.0562689 0.4926162 0.2796596 0.1543862
## 
## Rotation (n x k) = (4 x 4):
##                      PC1         PC2         PC3        PC4
## Sepal.Length  0.36138659 -0.65658877  0.58202985  0.3154872
## Sepal.Width  -0.08452251 -0.73016143 -0.59791083 -0.3197231
## Petal.Length  0.85667061  0.17337266 -0.07623608 -0.4798390
## Petal.Width   0.35828920  0.07548102 -0.54583143  0.7536574

Resultados do PCA

Visualizando e interpretando os resultados do PCA

# Criando um biplot
# Isso não parece tão bonito quanto o que ele tinha no vídeo

biplot(pr.iris)

# Gráfico

biplot(pr.iris)

# Obtendo proporção de variância para um scree plot

pr.var <- pr.iris$sdev^2
pve <- pr.var / sum(pr.var)

# Variação do gráfico explicada para cada componente principal
plot(pve, 
     xlab = "Principal Component",
     ylab = "Proporção de Variação Explicada",
     ylim = c(0,1), 
     type = "b")

# Problemas práticos com PCA

3 coisas precisam ser consideradas para um PCA bem-sucedido:

# Dados - mtcars
data(mtcars)
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

Resultado

round(colMeans(mtcars), 2)
##    mpg    cyl   disp     hp   drat     wt   qsec     vs     am   gear   carb 
##  20.09   6.19 230.72 146.69   3.60   3.22  17.85   0.44   0.41   3.69   2.81

Resultado 2

round(apply(mtcars, 2, sd), 2)
##    mpg    cyl   disp     hp   drat     wt   qsec     vs     am   gear   carb 
##   6.03   1.79 123.94  68.56   0.53   0.98   1.79   0.50   0.50   0.74   1.62

Gráfico

pr.mtcars_no_scale <- prcomp(x = mtcars, scale = F, center = F)
pr.mtcars_scale <- prcomp(x = mtcars, scale = T, center = T)

biplot(pr.mtcars_no_scale)

# Gráfico do escalonamento

biplot(pr.mtcars_scale)

# Projeto na prática - Modelo ML Câncer

Introdução ao estudo de caso

Baixar e preparar dados

Dados

url <- “http://s3.amazonaw

Preparando os dados

url <- "http://s3.amazonaws.com/assets.datacamp.com/production/course_1903/datasets/WisconsinCancer.csv"

# Baixe os dados: wisc.df
wisc.df <- read.csv(url)
str(wisc.df)
## 'data.frame':    569 obs. of  33 variables:
##  $ id                     : int  842302 842517 84300903 84348301 84358402 843786 844359 84458202 844981 84501001 ...
##  $ diagnosis              : chr  "M" "M" "M" "M" ...
##  $ radius_mean            : num  18 20.6 19.7 11.4 20.3 ...
##  $ texture_mean           : num  10.4 17.8 21.2 20.4 14.3 ...
##  $ perimeter_mean         : num  122.8 132.9 130 77.6 135.1 ...
##  $ area_mean              : num  1001 1326 1203 386 1297 ...
##  $ smoothness_mean        : num  0.1184 0.0847 0.1096 0.1425 0.1003 ...
##  $ compactness_mean       : num  0.2776 0.0786 0.1599 0.2839 0.1328 ...
##  $ concavity_mean         : num  0.3001 0.0869 0.1974 0.2414 0.198 ...
##  $ concave.points_mean    : num  0.1471 0.0702 0.1279 0.1052 0.1043 ...
##  $ symmetry_mean          : num  0.242 0.181 0.207 0.26 0.181 ...
##  $ fractal_dimension_mean : num  0.0787 0.0567 0.06 0.0974 0.0588 ...
##  $ radius_se              : num  1.095 0.543 0.746 0.496 0.757 ...
##  $ texture_se             : num  0.905 0.734 0.787 1.156 0.781 ...
##  $ perimeter_se           : num  8.59 3.4 4.58 3.44 5.44 ...
##  $ area_se                : num  153.4 74.1 94 27.2 94.4 ...
##  $ smoothness_se          : num  0.0064 0.00522 0.00615 0.00911 0.01149 ...
##  $ compactness_se         : num  0.049 0.0131 0.0401 0.0746 0.0246 ...
##  $ concavity_se           : num  0.0537 0.0186 0.0383 0.0566 0.0569 ...
##  $ concave.points_se      : num  0.0159 0.0134 0.0206 0.0187 0.0188 ...
##  $ symmetry_se            : num  0.03 0.0139 0.0225 0.0596 0.0176 ...
##  $ fractal_dimension_se   : num  0.00619 0.00353 0.00457 0.00921 0.00511 ...
##  $ radius_worst           : num  25.4 25 23.6 14.9 22.5 ...
##  $ texture_worst          : num  17.3 23.4 25.5 26.5 16.7 ...
##  $ perimeter_worst        : num  184.6 158.8 152.5 98.9 152.2 ...
##  $ area_worst             : num  2019 1956 1709 568 1575 ...
##  $ smoothness_worst       : num  0.162 0.124 0.144 0.21 0.137 ...
##  $ compactness_worst      : num  0.666 0.187 0.424 0.866 0.205 ...
##  $ concavity_worst        : num  0.712 0.242 0.45 0.687 0.4 ...
##  $ concave.points_worst   : num  0.265 0.186 0.243 0.258 0.163 ...
##  $ symmetry_worst         : num  0.46 0.275 0.361 0.664 0.236 ...
##  $ fractal_dimension_worst: num  0.1189 0.089 0.0876 0.173 0.0768 ...
##  $ X                      : logi  NA NA NA NA NA NA ...

Converte as características dos dados: wisc.data

# Dados
wisc.data <- as.matrix(wisc.df[, 3:32])
str(wisc.data)
##  num [1:569, 1:30] 18 20.6 19.7 11.4 20.3 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:30] "radius_mean" "texture_mean" "perimeter_mean" "area_mean" ...

Visualizando os dados

# Visualizando os cinco primeiros dados
head(wisc.data)
##      radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## [1,]       17.99        10.38         122.80    1001.0         0.11840
## [2,]       20.57        17.77         132.90    1326.0         0.08474
## [3,]       19.69        21.25         130.00    1203.0         0.10960
## [4,]       11.42        20.38          77.58     386.1         0.14250
## [5,]       20.29        14.34         135.10    1297.0         0.10030
## [6,]       12.45        15.70          82.57     477.1         0.12780
##      compactness_mean concavity_mean concave.points_mean symmetry_mean
## [1,]          0.27760         0.3001             0.14710        0.2419
## [2,]          0.07864         0.0869             0.07017        0.1812
## [3,]          0.15990         0.1974             0.12790        0.2069
## [4,]          0.28390         0.2414             0.10520        0.2597
## [5,]          0.13280         0.1980             0.10430        0.1809
## [6,]          0.17000         0.1578             0.08089        0.2087
##      fractal_dimension_mean radius_se texture_se perimeter_se area_se
## [1,]                0.07871    1.0950     0.9053        8.589  153.40
## [2,]                0.05667    0.5435     0.7339        3.398   74.08
## [3,]                0.05999    0.7456     0.7869        4.585   94.03
## [4,]                0.09744    0.4956     1.1560        3.445   27.23
## [5,]                0.05883    0.7572     0.7813        5.438   94.44
## [6,]                0.07613    0.3345     0.8902        2.217   27.19
##      smoothness_se compactness_se concavity_se concave.points_se symmetry_se
## [1,]      0.006399        0.04904      0.05373           0.01587     0.03003
## [2,]      0.005225        0.01308      0.01860           0.01340     0.01389
## [3,]      0.006150        0.04006      0.03832           0.02058     0.02250
## [4,]      0.009110        0.07458      0.05661           0.01867     0.05963
## [5,]      0.011490        0.02461      0.05688           0.01885     0.01756
## [6,]      0.007510        0.03345      0.03672           0.01137     0.02165
##      fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## [1,]             0.006193        25.38         17.33          184.60     2019.0
## [2,]             0.003532        24.99         23.41          158.80     1956.0
## [3,]             0.004571        23.57         25.53          152.50     1709.0
## [4,]             0.009208        14.91         26.50           98.87      567.7
## [5,]             0.005115        22.54         16.67          152.20     1575.0
## [6,]             0.005082        15.47         23.75          103.40      741.6
##      smoothness_worst compactness_worst concavity_worst concave.points_worst
## [1,]           0.1622            0.6656          0.7119               0.2654
## [2,]           0.1238            0.1866          0.2416               0.1860
## [3,]           0.1444            0.4245          0.4504               0.2430
## [4,]           0.2098            0.8663          0.6869               0.2575
## [5,]           0.1374            0.2050          0.4000               0.1625
## [6,]           0.1791            0.5249          0.5355               0.1741
##      symmetry_worst fractal_dimension_worst
## [1,]         0.4601                 0.11890
## [2,]         0.2750                 0.08902
## [3,]         0.3613                 0.08758
## [4,]         0.6638                 0.17300
## [5,]         0.2364                 0.07678
## [6,]         0.3985                 0.12440

Visualizando linhas e colunas

# Visualizando linhas e colunas
dim(wisc.data)
## [1] 569  30

Defina os nomes das linhas de wisc.data

row.names(wisc.data) <- wisc.df$id
head(wisc.data)
##          radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 842302         17.99        10.38         122.80    1001.0         0.11840
## 842517         20.57        17.77         132.90    1326.0         0.08474
## 84300903       19.69        21.25         130.00    1203.0         0.10960
## 84348301       11.42        20.38          77.58     386.1         0.14250
## 84358402       20.29        14.34         135.10    1297.0         0.10030
## 843786         12.45        15.70          82.57     477.1         0.12780
##          compactness_mean concavity_mean concave.points_mean symmetry_mean
## 842302            0.27760         0.3001             0.14710        0.2419
## 842517            0.07864         0.0869             0.07017        0.1812
## 84300903          0.15990         0.1974             0.12790        0.2069
## 84348301          0.28390         0.2414             0.10520        0.2597
## 84358402          0.13280         0.1980             0.10430        0.1809
## 843786            0.17000         0.1578             0.08089        0.2087
##          fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 842302                  0.07871    1.0950     0.9053        8.589  153.40
## 842517                  0.05667    0.5435     0.7339        3.398   74.08
## 84300903                0.05999    0.7456     0.7869        4.585   94.03
## 84348301                0.09744    0.4956     1.1560        3.445   27.23
## 84358402                0.05883    0.7572     0.7813        5.438   94.44
## 843786                  0.07613    0.3345     0.8902        2.217   27.19
##          smoothness_se compactness_se concavity_se concave.points_se
## 842302        0.006399        0.04904      0.05373           0.01587
## 842517        0.005225        0.01308      0.01860           0.01340
## 84300903      0.006150        0.04006      0.03832           0.02058
## 84348301      0.009110        0.07458      0.05661           0.01867
## 84358402      0.011490        0.02461      0.05688           0.01885
## 843786        0.007510        0.03345      0.03672           0.01137
##          symmetry_se fractal_dimension_se radius_worst texture_worst
## 842302       0.03003             0.006193        25.38         17.33
## 842517       0.01389             0.003532        24.99         23.41
## 84300903     0.02250             0.004571        23.57         25.53
## 84348301     0.05963             0.009208        14.91         26.50
## 84358402     0.01756             0.005115        22.54         16.67
## 843786       0.02165             0.005082        15.47         23.75
##          perimeter_worst area_worst smoothness_worst compactness_worst
## 842302            184.60     2019.0           0.1622            0.6656
## 842517            158.80     1956.0           0.1238            0.1866
## 84300903          152.50     1709.0           0.1444            0.4245
## 84348301           98.87      567.7           0.2098            0.8663
## 84358402          152.20     1575.0           0.1374            0.2050
## 843786            103.40      741.6           0.1791            0.5249
##          concavity_worst concave.points_worst symmetry_worst
## 842302            0.7119               0.2654         0.4601
## 842517            0.2416               0.1860         0.2750
## 84300903          0.4504               0.2430         0.3613
## 84348301          0.6869               0.2575         0.6638
## 84358402          0.4000               0.1625         0.2364
## 843786            0.5355               0.1741         0.3985
##          fractal_dimension_worst
## 842302                   0.11890
## 842517                   0.08902
## 84300903                 0.08758
## 84348301                 0.17300
## 84358402                 0.07678
## 843786                   0.12440

Criando a coluna diagnóstico

diagnosis <- as.numeric(wisc.df$diagnosis == "M")
diagnosis
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1
##  [75] 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0
## [112] 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0
## [149] 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 1
## [186] 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0
## [223] 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1
## [260] 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
## [297] 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0
## [334] 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
## [371] 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
## [408] 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0
## [445] 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
## [482] 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1
## [519] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [556] 0 0 0 0 0 0 0 1 1 1 1 1 1 0

Análise exploratória de dados

str(wisc.data)
##  num [1:569, 1:30] 18 20.6 19.7 11.4 20.3 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : chr [1:569] "842302" "842517" "84300903" "84348301" ...
##   ..$ : chr [1:30] "radius_mean" "texture_mean" "perimeter_mean" "area_mean" ...
# Dados das váriaveis
colnames(wisc.data)
##  [1] "radius_mean"             "texture_mean"           
##  [3] "perimeter_mean"          "area_mean"              
##  [5] "smoothness_mean"         "compactness_mean"       
##  [7] "concavity_mean"          "concave.points_mean"    
##  [9] "symmetry_mean"           "fractal_dimension_mean" 
## [11] "radius_se"               "texture_se"             
## [13] "perimeter_se"            "area_se"                
## [15] "smoothness_se"           "compactness_se"         
## [17] "concavity_se"            "concave.points_se"      
## [19] "symmetry_se"             "fractal_dimension_se"   
## [21] "radius_worst"            "texture_worst"          
## [23] "perimeter_worst"         "area_worst"             
## [25] "smoothness_worst"        "compactness_worst"      
## [27] "concavity_worst"         "concave.points_worst"   
## [29] "symmetry_worst"          "fractal_dimension_worst"
# Tabela - diagnosis
table(diagnosis)
## diagnosis
##   0   1 
## 357 212

Executando PCA

# Verifique as médias das colunas e os desvios padrão
round(colMeans(wisc.data), 2)
##             radius_mean            texture_mean          perimeter_mean 
##                   14.13                   19.29                   91.97 
##               area_mean         smoothness_mean        compactness_mean 
##                  654.89                    0.10                    0.10 
##          concavity_mean     concave.points_mean           symmetry_mean 
##                    0.09                    0.05                    0.18 
##  fractal_dimension_mean               radius_se              texture_se 
##                    0.06                    0.41                    1.22 
##            perimeter_se                 area_se           smoothness_se 
##                    2.87                   40.34                    0.01 
##          compactness_se            concavity_se       concave.points_se 
##                    0.03                    0.03                    0.01 
##             symmetry_se    fractal_dimension_se            radius_worst 
##                    0.02                    0.00                   16.27 
##           texture_worst         perimeter_worst              area_worst 
##                   25.68                  107.26                  880.58 
##        smoothness_worst       compactness_worst         concavity_worst 
##                    0.13                    0.25                    0.27 
##    concave.points_worst          symmetry_worst fractal_dimension_worst 
##                    0.11                    0.29                    0.08
round(apply(wisc.data, 2, sd), 2)
##             radius_mean            texture_mean          perimeter_mean 
##                    3.52                    4.30                   24.30 
##               area_mean         smoothness_mean        compactness_mean 
##                  351.91                    0.01                    0.05 
##          concavity_mean     concave.points_mean           symmetry_mean 
##                    0.08                    0.04                    0.03 
##  fractal_dimension_mean               radius_se              texture_se 
##                    0.01                    0.28                    0.55 
##            perimeter_se                 area_se           smoothness_se 
##                    2.02                   45.49                    0.00 
##          compactness_se            concavity_se       concave.points_se 
##                    0.02                    0.03                    0.01 
##             symmetry_se    fractal_dimension_se            radius_worst 
##                    0.01                    0.00                    4.83 
##           texture_worst         perimeter_worst              area_worst 
##                    6.15                   33.60                  569.36 
##        smoothness_worst       compactness_worst         concavity_worst 
##                    0.02                    0.16                    0.21 
##    concave.points_worst          symmetry_worst fractal_dimension_worst 
##                    0.07                    0.06                    0.02
# Executa o PCA, dimensionando se apropriado: wisc.pr
wisc.pr <- prcomp(wisc.data, scale = T, center = T)

# Veja o resumo dos resultados
summary(wisc.pr)
## Importance of components:
##                           PC1    PC2     PC3     PC4     PC5     PC6     PC7
## Standard deviation     3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
## Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
## Cumulative Proportion  0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
##                            PC8    PC9    PC10   PC11    PC12    PC13    PC14
## Standard deviation     0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
## Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
## Cumulative Proportion  0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
##                           PC15    PC16    PC17    PC18    PC19    PC20   PC21
## Standard deviation     0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
## Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
## Cumulative Proportion  0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
##                           PC22    PC23   PC24    PC25    PC26    PC27    PC28
## Standard deviation     0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
## Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
## Cumulative Proportion  0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
##                           PC29    PC30
## Standard deviation     0.02736 0.01153
## Proportion of Variance 0.00002 0.00000
## Cumulative Proportion  1.00000 1.00000

Interpretando os resultados do PCA

# Cria um biplot de wisc.pr
biplot(wisc.pr)

# Gráfico scatter plot

# Observações do gráfico de dispersão pelos componentes 1 e 2
plot(wisc.pr$x[, c(1, 2)], 
     col = (diagnosis + 1), 
     xlab = "PC1", 
     ylab = "PC2")

# Repita para os componentes 1 e 3

plot(wisc.pr$x[, c(1, 3)], 
     col = (diagnosis + 1), 
     xlab = "PC1", 
     ylab = "PC3")

# Faça a exploração de dados adicionais de sua escolha abaixo (opcional)

plot(wisc.pr$x[, c(2, 3)], 
     col = (diagnosis + 1), 
     xlab = "PC2", 
     ylab = "PC3")

- Podemos ver nos gráficos que pc1 e pc2 se sobrepõem menos que pc1 e pc3. - Isso é esperado, pois pc1 e pc2 devem ser ortogonais e explicar diferentes variâncias

Variação explicada

# Configurar grade de plotagem 1 x 2
par(mfrow = c(1, 2))

# Calcula a variabilidade de cada componente
pr.var <- wisc.pr$sdev^2

# Variação explicada por cada componente principal: pve
pve <- pr.var / sum(pr.var)

# Variação do gráfico explicada para cada componente principal
plot(pve, xlab = "Principal componente", 
     ylab = "Proporção de Variação Explicada", 
     ylim = c(0, 1), type = "b")

# Plotar proporção cumulativa de variância explicada
plot(cumsum(pve), xlab = "Principal componente", 
     ylab = "Proporção Cumulativa de Variação Explicada", 
     ylim = c(0, 1), type = "b")

– Comunicação dos resultados do PCA - Para o primeiro componente principal, qual é o componente do vetor de carregamento para o recurso concave.points_mean? -0,26085376

-Qual é o número mínimo de componentes principais necessários para explicar 80% da variância dos dados? 5

wisc.pr$rotation[1:10,1:2]
##                                PC1         PC2
## radius_mean            -0.21890244  0.23385713
## texture_mean           -0.10372458  0.05970609
## perimeter_mean         -0.22753729  0.21518136
## area_mean              -0.22099499  0.23107671
## smoothness_mean        -0.14258969 -0.18611302
## compactness_mean       -0.23928535 -0.15189161
## concavity_mean         -0.25840048 -0.06016536
## concave.points_mean    -0.26085376  0.03476750
## symmetry_mean          -0.13816696 -0.19034877
## fractal_dimension_mean -0.06436335 -0.36657547

Revisão do PCA e próximos passos

– Agrupamento hierárquico de dados de caso

# Dimensione os dados wisc.data: data.scaled
head(wisc.data)
##          radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 842302         17.99        10.38         122.80    1001.0         0.11840
## 842517         20.57        17.77         132.90    1326.0         0.08474
## 84300903       19.69        21.25         130.00    1203.0         0.10960
## 84348301       11.42        20.38          77.58     386.1         0.14250
## 84358402       20.29        14.34         135.10    1297.0         0.10030
## 843786         12.45        15.70          82.57     477.1         0.12780
##          compactness_mean concavity_mean concave.points_mean symmetry_mean
## 842302            0.27760         0.3001             0.14710        0.2419
## 842517            0.07864         0.0869             0.07017        0.1812
## 84300903          0.15990         0.1974             0.12790        0.2069
## 84348301          0.28390         0.2414             0.10520        0.2597
## 84358402          0.13280         0.1980             0.10430        0.1809
## 843786            0.17000         0.1578             0.08089        0.2087
##          fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 842302                  0.07871    1.0950     0.9053        8.589  153.40
## 842517                  0.05667    0.5435     0.7339        3.398   74.08
## 84300903                0.05999    0.7456     0.7869        4.585   94.03
## 84348301                0.09744    0.4956     1.1560        3.445   27.23
## 84358402                0.05883    0.7572     0.7813        5.438   94.44
## 843786                  0.07613    0.3345     0.8902        2.217   27.19
##          smoothness_se compactness_se concavity_se concave.points_se
## 842302        0.006399        0.04904      0.05373           0.01587
## 842517        0.005225        0.01308      0.01860           0.01340
## 84300903      0.006150        0.04006      0.03832           0.02058
## 84348301      0.009110        0.07458      0.05661           0.01867
## 84358402      0.011490        0.02461      0.05688           0.01885
## 843786        0.007510        0.03345      0.03672           0.01137
##          symmetry_se fractal_dimension_se radius_worst texture_worst
## 842302       0.03003             0.006193        25.38         17.33
## 842517       0.01389             0.003532        24.99         23.41
## 84300903     0.02250             0.004571        23.57         25.53
## 84348301     0.05963             0.009208        14.91         26.50
## 84358402     0.01756             0.005115        22.54         16.67
## 843786       0.02165             0.005082        15.47         23.75
##          perimeter_worst area_worst smoothness_worst compactness_worst
## 842302            184.60     2019.0           0.1622            0.6656
## 842517            158.80     1956.0           0.1238            0.1866
## 84300903          152.50     1709.0           0.1444            0.4245
## 84348301           98.87      567.7           0.2098            0.8663
## 84358402          152.20     1575.0           0.1374            0.2050
## 843786            103.40      741.6           0.1791            0.5249
##          concavity_worst concave.points_worst symmetry_worst
## 842302            0.7119               0.2654         0.4601
## 842517            0.2416               0.1860         0.2750
## 84300903          0.4504               0.2430         0.3613
## 84348301          0.6869               0.2575         0.6638
## 84358402          0.4000               0.1625         0.2364
## 843786            0.5355               0.1741         0.3985
##          fractal_dimension_worst
## 842302                   0.11890
## 842517                   0.08902
## 84300903                 0.08758
## 84348301                 0.17300
## 84358402                 0.07678
## 843786                   0.12440
data.scaled <- scale(wisc.data)
head(data.scaled)
##          radius_mean texture_mean perimeter_mean  area_mean smoothness_mean
## 842302     1.0960995   -2.0715123      1.2688173  0.9835095       1.5670875
## 842517     1.8282120   -0.3533215      1.6844726  1.9070303      -0.8262354
## 84300903   1.5784992    0.4557859      1.5651260  1.5575132       0.9413821
## 84348301  -0.7682333    0.2535091     -0.5921661 -0.7637917       3.2806668
## 84358402   1.7487579   -1.1508038      1.7750113  1.8246238       0.2801253
## 843786    -0.4759559   -0.8346009     -0.3868077 -0.5052059       2.2354545
##          compactness_mean concavity_mean concave.points_mean symmetry_mean
## 842302          3.2806281     2.65054179           2.5302489   2.215565542
## 842517         -0.4866435    -0.02382489           0.5476623   0.001391139
## 84300903        1.0519999     1.36227979           2.0354398   0.938858720
## 84348301        3.3999174     1.91421287           1.4504311   2.864862154
## 84358402        0.5388663     1.36980615           1.4272370  -0.009552062
## 843786          1.2432416     0.86554001           0.8239307   1.004517928
##          fractal_dimension_mean  radius_se texture_se perimeter_se    area_se
## 842302                2.2537638  2.4875451 -0.5647681    2.8305403  2.4853907
## 842517               -0.8678888  0.4988157 -0.8754733    0.2630955  0.7417493
## 84300903             -0.3976580  1.2275958 -0.7793976    0.8501802  1.1802975
## 84348301              4.9066020  0.3260865 -0.1103120    0.2863415 -0.2881246
## 84358402             -0.5619555  1.2694258 -0.7895490    1.2720701  1.1893103
## 843786                1.8883435 -0.2548461 -0.5921406   -0.3210217 -0.2890039
##          smoothness_se compactness_se concavity_se concave.points_se
## 842302      -0.2138135     1.31570389    0.7233897        0.66023900
## 842517      -0.6048187    -0.69231710   -0.4403926        0.25993335
## 84300903    -0.2967439     0.81425704    0.2128891        1.42357487
## 84348301     0.6890953     2.74186785    0.8187979        1.11402678
## 84358402     1.4817634    -0.04847723    0.8277425        1.14319885
## 843786       0.1562093     0.44515196    0.1598845       -0.06906279
##          symmetry_se fractal_dimension_se radius_worst texture_worst
## 842302     1.1477468           0.90628565    1.8850310   -1.35809849
## 842517    -0.8047423          -0.09935632    1.8043398   -0.36887865
## 84300903   0.2368272           0.29330133    1.5105411   -0.02395331
## 84348301   4.7285198           2.04571087   -0.2812170    0.13386631
## 84358402  -0.3607748           0.49888916    1.2974336   -1.46548091
## 843786     0.1340009           0.48641784   -0.1653528   -0.31356043
##          perimeter_worst area_worst smoothness_worst compactness_worst
## 842302         2.3015755  1.9994782        1.3065367         2.6143647
## 842517         1.5337764  1.8888270       -0.3752817        -0.4300658
## 84300903       1.3462906  1.4550043        0.5269438         1.0819801
## 84348301      -0.2497196 -0.5495377        3.3912907         3.8899747
## 84358402       1.3373627  1.2196511        0.2203623        -0.3131190
## 843786        -0.1149083 -0.2441054        2.0467119         1.7201029
##          concavity_worst concave.points_worst symmetry_worst
## 842302         2.1076718            2.2940576      2.7482041
## 842517        -0.1466200            1.0861286     -0.2436753
## 84300903       0.8542223            1.9532817      1.1512420
## 84348301       1.9878392            2.1738732      6.0407261
## 84358402       0.6126397            0.7286181     -0.8675896
## 843786         1.2621327            0.9050914      1.7525273
##          fractal_dimension_worst
## 842302                 1.9353117
## 842517                 0.2809428
## 84300903               0.2012142
## 84348301               4.9306719
## 84358402              -0.3967505
## 843786                 2.2398308
# Calcular as distâncias (euclidianas): data.dist
data.dist <- dist(data.scaled)

# Crie um modelo de cluster hierárquico: wisc.hclust
wisc.hclust <- hclust(data.dist, method = "complete")

Resultados do agrupamento hierárquico

# Gráfico 
plot(wisc.hclust)

# Gráficos

Selecionando o número de clusters

# Modelo
# Corte a árvore para que ela tenha 4 clusters: wisc.hclust.clusters
wisc.hclust.clusters <- cutree(wisc.hclust, k = 4)

# Comparar a associação do cluster com o diagnóstico real
table(wisc.hclust.clusters, diagnosis)
##                     diagnosis
## wisc.hclust.clusters   0   1
##                    1  12 165
##                    2   2   5
##                    3 343  40
##                    4   0   2
# Contagem de observações fora do lugar com base no cluster
# Basicamente apenas somando os minutos da linha aqui

sum(apply(table(wisc.hclust.clusters, diagnosis), 1, min))
## [1] 54

Modelo KMEANS

# Crie um modelo k-means em wisc.data: wisc.km
head(wisc.data)
##          radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 842302         17.99        10.38         122.80    1001.0         0.11840
## 842517         20.57        17.77         132.90    1326.0         0.08474
## 84300903       19.69        21.25         130.00    1203.0         0.10960
## 84348301       11.42        20.38          77.58     386.1         0.14250
## 84358402       20.29        14.34         135.10    1297.0         0.10030
## 843786         12.45        15.70          82.57     477.1         0.12780
##          compactness_mean concavity_mean concave.points_mean symmetry_mean
## 842302            0.27760         0.3001             0.14710        0.2419
## 842517            0.07864         0.0869             0.07017        0.1812
## 84300903          0.15990         0.1974             0.12790        0.2069
## 84348301          0.28390         0.2414             0.10520        0.2597
## 84358402          0.13280         0.1980             0.10430        0.1809
## 843786            0.17000         0.1578             0.08089        0.2087
##          fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 842302                  0.07871    1.0950     0.9053        8.589  153.40
## 842517                  0.05667    0.5435     0.7339        3.398   74.08
## 84300903                0.05999    0.7456     0.7869        4.585   94.03
## 84348301                0.09744    0.4956     1.1560        3.445   27.23
## 84358402                0.05883    0.7572     0.7813        5.438   94.44
## 843786                  0.07613    0.3345     0.8902        2.217   27.19
##          smoothness_se compactness_se concavity_se concave.points_se
## 842302        0.006399        0.04904      0.05373           0.01587
## 842517        0.005225        0.01308      0.01860           0.01340
## 84300903      0.006150        0.04006      0.03832           0.02058
## 84348301      0.009110        0.07458      0.05661           0.01867
## 84358402      0.011490        0.02461      0.05688           0.01885
## 843786        0.007510        0.03345      0.03672           0.01137
##          symmetry_se fractal_dimension_se radius_worst texture_worst
## 842302       0.03003             0.006193        25.38         17.33
## 842517       0.01389             0.003532        24.99         23.41
## 84300903     0.02250             0.004571        23.57         25.53
## 84348301     0.05963             0.009208        14.91         26.50
## 84358402     0.01756             0.005115        22.54         16.67
## 843786       0.02165             0.005082        15.47         23.75
##          perimeter_worst area_worst smoothness_worst compactness_worst
## 842302            184.60     2019.0           0.1622            0.6656
## 842517            158.80     1956.0           0.1238            0.1866
## 84300903          152.50     1709.0           0.1444            0.4245
## 84348301           98.87      567.7           0.2098            0.8663
## 84358402          152.20     1575.0           0.1374            0.2050
## 843786            103.40      741.6           0.1791            0.5249
##          concavity_worst concave.points_worst symmetry_worst
## 842302            0.7119               0.2654         0.4601
## 842517            0.2416               0.1860         0.2750
## 84300903          0.4504               0.2430         0.3613
## 84348301          0.6869               0.2575         0.6638
## 84358402          0.4000               0.1625         0.2364
## 843786            0.5355               0.1741         0.3985
##          fractal_dimension_worst
## 842302                   0.11890
## 842517                   0.08902
## 84300903                 0.08758
## 84348301                 0.17300
## 84358402                 0.07678
## 843786                   0.12440

Modelo

# Modelo
wisc.km <- kmeans(scale(wisc.data), centers = 2, nstart = 20)

# Comparar k-means com diagnósticos reais
table(wisc.km$cluster, diagnosis)
##    diagnosis
##       0   1
##   1 343  37
##   2  14 175

Resultado modelo

sum(apply(table(wisc.km$cluster, diagnosis), 1, min))
## [1] 51

Comparar k-means com agrupamento hierárquico

# Tabela
table(wisc.hclust.clusters, wisc.km$cluster)
##                     
## wisc.hclust.clusters   1   2
##                    1  17 160
##                    2   0   7
##                    3 363  20
##                    4   0   2
sum(apply(table(wisc.hclust.clusters, wisc.km$cluster), 1, min))
## [1] 37

Agrupamento nos resultados do PCA

# Crie um modelo de cluster hierárquico: wisc.pr.hclust
summary(wisc.pr)
## Importance of components:
##                           PC1    PC2     PC3     PC4     PC5     PC6     PC7
## Standard deviation     3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
## Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
## Cumulative Proportion  0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
##                            PC8    PC9    PC10   PC11    PC12    PC13    PC14
## Standard deviation     0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
## Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
## Cumulative Proportion  0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
##                           PC15    PC16    PC17    PC18    PC19    PC20   PC21
## Standard deviation     0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
## Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
## Cumulative Proportion  0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
##                           PC22    PC23   PC24    PC25    PC26    PC27    PC28
## Standard deviation     0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
## Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
## Cumulative Proportion  0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
##                           PC29    PC30
## Standard deviation     0.02736 0.01153
## Proportion of Variance 0.00002 0.00000
## Cumulative Proportion  1.00000 1.00000
wisc.pr.hclust <- hclust(dist(wisc.pr$x[, 1:7]), method = "complete")

# Corte o modelo em 4 clusters: wisc.pr.hclust.clusters
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k = 4)

# Compare com diagnósticos reais
t <- table(wisc.pr.hclust.clusters, diagnosis)
t
##                        diagnosis
## wisc.pr.hclust.clusters   0   1
##                       1   5 113
##                       2 350  97
##                       3   2   0
##                       4   0   2
# Resultado final
sum(apply(t, 1, min))
## [1] 102
# Comparar com modelo k-means e hierárquico
t <- table(wisc.hclust.clusters, diagnosis)
t
##                     diagnosis
## wisc.hclust.clusters   0   1
##                    1  12 165
##                    2   2   5
##                    3 343  40
##                    4   0   2
# Resultado do KMEANS
sum(apply(t, 1, min))
## [1] 54
t <- table(wisc.km$cluster, diagnosis)
t
##    diagnosis
##       0   1
##   1 343  37
##   2  14 175
sum(apply(t, 1, min))
## [1] 51

Conclusão

Observação

Neste modelo ML curso da datacamp de machine learning - Aprendizado não supervisionado em R