library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(stringr)
x <- rbind(matrix(rnorm(5000, sd = 0.3), ncol = 2),
matrix(rnorm(5000, mean = 1, sd = 0.3), ncol = 2))
head(x)
## [,1] [,2]
## [1,] -0.3240826 -0.4851197
## [2,] 0.4455235 0.1192265
## [3,] -0.2084990 0.2487887
## [4,] -0.3130462 -0.1555823
## [5,] -0.4153098 0.5743731
## [6,] 0.3658255 -0.5323574
# Visualizando os dados
str(x)
## num [1:5000, 1:2] -0.324 0.446 -0.208 -0.313 -0.415 ...
Modelo k-means: km.out
km.out <- kmeans(x, centers = 3, nstart = 20)
summary(km.out)
## Length Class Mode
## cluster 5000 -none- numeric
## centers 6 -none- numeric
## totss 1 -none- numeric
## withinss 3 -none- numeric
## tot.withinss 1 -none- numeric
## betweenss 1 -none- numeric
## size 3 -none- numeric
## iter 1 -none- numeric
## ifault 1 -none- numeric
km.out$cluster
## [1] 1 2 1 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 2 1 2 1 1 1 1 1 2 2 2 2 1 2 1 2
## [38] 1 1 2 2 2 1 2 1 2 2 2 1 2 2 2 1 1 2 2 2 2 1 2 1 2 1 2 2 2 1 1 1 2 2 1 2 1
## [75] 1 2 1 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 2 1 1 1 2 2 2 1 2 2 1 2 1 2 2 2 2
## [112] 1 2 1 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 2 2 2 1 1 1 1 1 1 1 2 1 2 2 1 2
## [149] 1 1 2 1 2 2 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 2 2 1 2 2
## [186] 1 1 1 1 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 1 2 1 2 2 2 2 2 2 1 2 2
## [223] 1 1 1 2 2 2 2 2 1 1 1 2 1 2 2 2 2 1 1 2 1 2 2 2 2 2 2 1 1 1 1 2 1 2 2 2 1
## [260] 2 2 2 2 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 2 1
## [297] 1 1 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 2 2 2 1 1 2 2 1 2
## [334] 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 2 1 2 2 2
## [371] 1 1 2 1 1 2 1 2 1 1 1 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 1 2 2 2 2 1 2 2 2 1
## [408] 1 1 1 2 1 2 1 1 1 2 1 2 2 2 1 2 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 2 1
## [445] 2 1 2 1 1 1 1 2 2 1 1 2 2 2 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2
## [482] 2 2 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 2 2 1 1 2 1
## [519] 2 2 2 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 2 1 2 2 1 2 1 1 1 2 1 2 1 1
## [556] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 2 1 2 2 2 2 1 1 1 2 2 1 2
## [593] 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2 1 1 1 1 1
## [630] 2 1 1 1 1 2 1 1 2 1 2 1 2 2 2 2 1 2 1 1 2 1 1 2 1 1 1 2 2 2 2 1 2 1 2 1 1
## [667] 2 2 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 2 2 1 2 2 1 2 1 1 1 2 1 1 1 2 2 2 2
## [704] 2 1 2 2 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2 2 1 1 2 2
## [741] 2 1 1 1 1 1 2 2 1 2 2 2 2 1 1 2 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 1 1 1 1
## [778] 2 1 2 2 2 2 2 1 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 2 2 2 1 2 2 1 1 1 2 1 1 1
## [815] 1 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 1 2
## [852] 1 2 1 2 2 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 1 1 1
## [889] 1 1 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 2 2 1 2 2 1 1 2 2 2 1 1
## [926] 1 1 2 2 2 2 2 1 1 1 1 2 1 1 1 2 2 1 2 1 1 1 1 2 2 1 2 1 2 2 2 1 1 1 2 2 2
## [963] 1 1 1 1 1 1 1 2 2 2 1 2 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2
## [1000] 1 1 2 2 2 2 2 1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2 1 1 1 2 2 2 1 2 1 2 2 1 2 1
## [1037] 2 1 2 2 2 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 2 1 2
## [1074] 1 1 1 1 1 1 1 2 2 2 1 1 1 1 3 2 1 1 1 1 2 1 2 2 1 2 1 1 2 2 2 1 2 1 1 2 1
## [1111] 1 1 2 1 2 1 1 1 2 2 2 1 2 1 1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 2 1
## [1148] 1 2 2 1 2 1 2 1 1 1 3 2 1 1 1 1 2 1 2 2 1 1 1 2 1 2 2 1 1 2 2 1 2 1 1 1 2
## [1185] 2 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 1 2 1 2 2 1 1
## [1222] 1 1 1 2 1 1 1 2 1 1 1 1 2 2 2 1 2 1 2 2 2 2 2 1 1 2 2 2 2 1 1 1 1 2 1 2 2
## [1259] 1 1 1 1 1 2 1 1 2 2 2 1 1 1 2 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 2 1
## [1296] 1 2 2 1 2 1 2 1 2 2 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 2 1
## [1333] 2 1 1 2 1 2 1 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1
## [1370] 1 1 1 1 1 2 1 1 2 2 1 1 1 2 2 2 2 1 2 1 2 1 1 2 2 1 2 1 2 1 1 1 1 2 2 2 1
## [1407] 2 2 1 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 1 1 2 2 1 2 1 2 1 1 1 1 1
## [1444] 2 2 1 2 2 2 1 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 1 2 2 1 1 1 1 1 2 1 2
## [1481] 1 1 1 2 2 1 1 2 2 2 1 1 1 1 1 2 1 1 1 2 2 1 2 2 1 1 1 2 1 2 1 2 1 2 2 1 2
## [1518] 1 1 2 1 2 1 1 2 2 1 2 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1
## [1555] 2 1 2 2 1 2 1 2 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 2 1 2 1 1
## [1592] 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 2 2 2 1 2 1 1 1 1 2 1 2 1 1 2 2 2 2 1 2 2 1
## [1629] 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 2 1 1 2 2 2 2 1 1 1 2 1 2 2
## [1666] 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 2
## [1703] 2 2 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 1 2 1 2 2 1 1 2 2 2 1 2 1 1 1 2 1 2 1
## [1740] 1 2 1 2 2 1 2 2 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 1
## [1777] 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 1 1 2 2 1 2 1 2 2
## [1814] 2 1 2 1 1 1 2 1 1 1 2 2 1 2 2 2 2 2 2 1 1 1 1 2 2 1 2 2 1 2 1 2 2 2 1 1 1
## [1851] 2 2 2 1 2 1 2 2 2 2 1 2 1 1 1 1 2 2 2 1 1 2 2 1 1 1 1 1 2 2 1 1 2 1 2 1 2
## [1888] 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2
## [1925] 2 2 1 2 1 1 2 2 1 1 1 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 1 1 2 2 2 1 1
## [1962] 2 1 1 1 2 2 1 2 2 2 1 2 1 2 1 2 1 1 2 3 2 1 2 2 2 2 1 2 1 2 2 1 1 2 2 1 1
## [1999] 2 1 1 1 2 1 1 2 2 2 2 2 2 1 2 1 1 1 2 2 1 2 2 2 2 1 1 2 1 1 2 2 1 1 2 2 2
## [2036] 2 2 1 1 1 2 1 2 1 2 2 2 2 1 1 1 1 2 2 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2
## [2073] 1 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 2 1 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1
## [2110] 1 2 2 1 2 2 1 2 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 2 2 1 1 1 2 1 2 1
## [2147] 2 1 2 2 2 1 2 1 1 1 2 2 2 2 2 2 1 2 1 1 1 2 1 1 2 2 2 1 1 1 2 1 1 2 1 2 1
## [2184] 2 1 1 1 1 1 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1
## [2221] 1 2 2 2 2 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 1
## [2258] 2 1 1 1 2 2 2 2 1 2 1 2 2 2 1 2 1 1 2 2 2 2 1 1 2 1 1 2 1 2 2 1 2 1 1 1 2
## [2295] 1 2 1 1 1 2 2 2 2 2 1 2 1 1 2 2 2 1 1 1 1 2 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2
## [2332] 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2
## [2369] 1 1 1 2 2 2 2 2 2 2 1 2 2 1 1 1 2 2 1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 2 1 2 1
## [2406] 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 1
## [2443] 1 1 2 2 2 1 1 2 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 1 1 2 2 2 2 2 2 2
## [2480] 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2517] 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [2554] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2591] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2628] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2665] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2702] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2739] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2776] 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3
## [2813] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3
## [2850] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2887] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2924] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [2961] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2998] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3035] 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3072] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [3109] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3146] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3183] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [3220] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3257] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3294] 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3331] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3368] 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3405] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3442] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3
## [3479] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3516] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3553] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3590] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3627] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3664] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3701] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3738] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3
## [3775] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3812] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3849] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3886] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3923] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3960] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3997] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4034] 3 1 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [4071] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4108] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4145] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4182] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4219] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4256] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [4293] 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3
## [4330] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [4367] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3
## [4404] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4441] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3
## [4478] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4515] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4552] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4589] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4626] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4663] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3
## [4700] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4737] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4774] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4811] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4848] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4885] 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4922] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4959] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4996] 3 3 3 3 3
km.out
## K-means clustering with 3 clusters of sizes 1351, 1216, 2433
##
## Cluster means:
## [,1] [,2]
## 1 -0.2155094 -0.03325906
## 2 0.2954926 0.06242132
## 3 1.0167146 1.01012085
##
## Clustering vector:
## [1] 1 2 1 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 2 1 2 1 1 1 1 1 2 2 2 2 1 2 1 2
## [38] 1 1 2 2 2 1 2 1 2 2 2 1 2 2 2 1 1 2 2 2 2 1 2 1 2 1 2 2 2 1 1 1 2 2 1 2 1
## [75] 1 2 1 1 1 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 2 1 1 1 2 2 2 1 2 2 1 2 1 2 2 2 2
## [112] 1 2 1 2 2 2 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 2 2 2 1 1 1 1 1 1 1 2 1 2 2 1 2
## [149] 1 1 2 1 2 2 1 1 2 1 2 1 1 2 1 2 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 2 2 1 2 2
## [186] 1 1 1 1 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1 2 1 2 2 1 1 1 2 1 2 2 2 2 2 2 1 2 2
## [223] 1 1 1 2 2 2 2 2 1 1 1 2 1 2 2 2 2 1 1 2 1 2 2 2 2 2 2 1 1 1 1 2 1 2 2 2 1
## [260] 2 2 2 2 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 2 1
## [297] 1 1 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 2 2 2 1 1 2 2 1 2
## [334] 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 2 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 2 1 2 2 2
## [371] 1 1 2 1 1 2 1 2 1 1 1 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 1 2 2 2 2 1 2 2 2 1
## [408] 1 1 1 2 1 2 1 1 1 2 1 2 2 2 1 2 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 1 1 2 1 2 1
## [445] 2 1 2 1 1 1 1 2 2 1 1 2 2 2 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 2
## [482] 2 2 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 1 1 1 2 2 1 1 2 1
## [519] 2 2 2 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 2 1 2 2 1 2 1 1 1 2 1 2 1 1
## [556] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 2 1 2 2 2 2 1 1 1 2 2 1 2
## [593] 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2 1 1 1 1 1
## [630] 2 1 1 1 1 2 1 1 2 1 2 1 2 2 2 2 1 2 1 1 2 1 1 2 1 1 1 2 2 2 2 1 2 1 2 1 1
## [667] 2 2 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 2 2 1 2 2 1 2 1 1 1 2 1 1 1 2 2 2 2
## [704] 2 1 2 2 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2 2 1 1 2 2
## [741] 2 1 1 1 1 1 2 2 1 2 2 2 2 1 1 2 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 1 1 1 1
## [778] 2 1 2 2 2 2 2 1 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 2 2 2 1 2 2 1 1 1 2 1 1 1
## [815] 1 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 2 2 1 2 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 1 2
## [852] 1 2 1 2 2 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 1 1 1
## [889] 1 1 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 2 2 1 2 2 1 1 2 2 2 1 1
## [926] 1 1 2 2 2 2 2 1 1 1 1 2 1 1 1 2 2 1 2 1 1 1 1 2 2 1 2 1 2 2 2 1 1 1 2 2 2
## [963] 1 1 1 1 1 1 1 2 2 2 1 2 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2
## [1000] 1 1 2 2 2 2 2 1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 2 1 1 1 2 2 2 1 2 1 2 2 1 2 1
## [1037] 2 1 2 2 2 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 1 1 1 1 2 1 2
## [1074] 1 1 1 1 1 1 1 2 2 2 1 1 1 1 3 2 1 1 1 1 2 1 2 2 1 2 1 1 2 2 2 1 2 1 1 2 1
## [1111] 1 1 2 1 2 1 1 1 2 2 2 1 2 1 1 1 2 2 1 1 2 1 1 1 1 2 2 1 1 1 1 2 1 1 1 2 1
## [1148] 1 2 2 1 2 1 2 1 1 1 3 2 1 1 1 1 2 1 2 2 1 1 1 2 1 2 2 1 1 2 2 1 2 1 1 1 2
## [1185] 2 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 1 1 2 2 1 1 2 2 1 1 1 2 2 2 1 2 1 2 2 1 1
## [1222] 1 1 1 2 1 1 1 2 1 1 1 1 2 2 2 1 2 1 2 2 2 2 2 1 1 2 2 2 2 1 1 1 1 2 1 2 2
## [1259] 1 1 1 1 1 2 1 1 2 2 2 1 1 1 2 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 1 1 1 1 2 2 1
## [1296] 1 2 2 1 2 1 2 1 2 2 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 2 1
## [1333] 2 1 1 2 1 2 1 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 2 1 1 1 1
## [1370] 1 1 1 1 1 2 1 1 2 2 1 1 1 2 2 2 2 1 2 1 2 1 1 2 2 1 2 1 2 1 1 1 1 2 2 2 1
## [1407] 2 2 1 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 1 1 2 2 1 2 1 2 1 1 1 1 1
## [1444] 2 2 1 2 2 2 1 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 1 2 2 1 1 1 1 1 2 1 2
## [1481] 1 1 1 2 2 1 1 2 2 2 1 1 1 1 1 2 1 1 1 2 2 1 2 2 1 1 1 2 1 2 1 2 1 2 2 1 2
## [1518] 1 1 2 1 2 1 1 2 2 1 2 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1
## [1555] 2 1 2 2 1 2 1 2 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 2 1 2 1 1
## [1592] 2 1 1 1 1 2 2 1 1 1 2 1 2 1 1 2 2 2 1 2 1 1 1 1 2 1 2 1 1 2 2 2 2 1 2 2 1
## [1629] 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 2 1 1 2 2 2 2 1 1 1 2 1 2 2
## [1666] 2 1 2 2 1 1 2 1 2 2 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1 2
## [1703] 2 2 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 1 2 1 2 2 1 1 2 2 2 1 2 1 1 1 2 1 2 1
## [1740] 1 2 1 2 2 1 2 2 1 2 1 2 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 1
## [1777] 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 1 2 2 2 1 1 1 2 2 1 1 2 2 1 2 1 2 2
## [1814] 2 1 2 1 1 1 2 1 1 1 2 2 1 2 2 2 2 2 2 1 1 1 1 2 2 1 2 2 1 2 1 2 2 2 1 1 1
## [1851] 2 2 2 1 2 1 2 2 2 2 1 2 1 1 1 1 2 2 2 1 1 2 2 1 1 1 1 1 2 2 1 1 2 1 2 1 2
## [1888] 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 2 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2
## [1925] 2 2 1 2 1 1 2 2 1 1 1 1 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 1 1 2 2 2 1 1
## [1962] 2 1 1 1 2 2 1 2 2 2 1 2 1 2 1 2 1 1 2 3 2 1 2 2 2 2 1 2 1 2 2 1 1 2 2 1 1
## [1999] 2 1 1 1 2 1 1 2 2 2 2 2 2 1 2 1 1 1 2 2 1 2 2 2 2 1 1 2 1 1 2 2 1 1 2 2 2
## [2036] 2 2 1 1 1 2 1 2 1 2 2 2 2 1 1 1 1 2 2 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2
## [2073] 1 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 2 1 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1
## [2110] 1 2 2 1 2 2 1 2 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 1 1 2 2 1 1 1 2 1 2 1
## [2147] 2 1 2 2 2 1 2 1 1 1 2 2 2 2 2 2 1 2 1 1 1 2 1 1 2 2 2 1 1 1 2 1 1 2 1 2 1
## [2184] 2 1 1 1 1 1 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 2 1 1
## [2221] 1 2 2 2 2 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 1
## [2258] 2 1 1 1 2 2 2 2 1 2 1 2 2 2 1 2 1 1 2 2 2 2 1 1 2 1 1 2 1 2 2 1 2 1 1 1 2
## [2295] 1 2 1 1 1 2 2 2 2 2 1 2 1 1 2 2 2 1 1 1 1 2 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2
## [2332] 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2
## [2369] 1 1 1 2 2 2 2 2 2 2 1 2 2 1 1 1 2 2 1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 2 1 2 1
## [2406] 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 1
## [2443] 1 1 2 2 2 1 1 2 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 1 1 2 2 2 2 2 2 2
## [2480] 1 1 2 1 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2517] 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [2554] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2591] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2628] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2665] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2702] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2739] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2776] 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3
## [2813] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3
## [2850] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2887] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2924] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [2961] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2998] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3035] 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3072] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [3109] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3146] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3183] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [3220] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3257] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3294] 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3331] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3368] 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3405] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3442] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3
## [3479] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3516] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3553] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3590] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3627] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3664] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3701] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3738] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3
## [3775] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3812] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3849] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3886] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3923] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3960] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3997] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4034] 3 1 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [4071] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4108] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4145] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4182] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4219] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4256] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [4293] 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3
## [4330] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [4367] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3
## [4404] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4441] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3
## [4478] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4515] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4552] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4589] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4626] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4663] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3
## [4700] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4737] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4774] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4811] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4848] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4885] 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4922] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4959] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4996] 3 3 3 3 3
##
## Within cluster sum of squares by cluster:
## [1] 164.1809 168.1065 418.8300
## (between_SS / total_SS = 77.9 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
plot(x, col = km.out$cluster, main = "Cluster",
xlab = "Dados",
ylab = "Total")
par(mfrow = c(2, 3))
set.seed(1)
for(i in 1:6) {
# Modelo K-Means
km.out <- kmeans(x, centers = 3, nstart = 1)
# Gráfico
plot(x, col = km.out$cluster,
main = km.out$tot.withinss,
xlab = "Cluster dos", ylab = "Total")
}
# Manipulando algoritmos aleatórios
Processo de k-médias:
Seleção do modelo:
Determinando o número de clusters
# Set up 2 x 3 plotting grid
par(mfrow = c(2, 3))
# Set seed
set.seed(1)
for(i in 1:6) {
# Run kmeans() on x with three clusters and one start
km.out <- kmeans(x, centers = 3, nstart = 1)
# Plot clusters
plot(x, col = km.out$cluster,
main = km.out$tot.withinss,
xlab = "", ylab = "")
}
# Selecionando o número de clusters
# Inicializa o total dentro do erro de soma dos quadrados: wss
wss <- 0
# Para 1 a 15 centros de cluster
for (i in 1:15) {
km.out <- kmeans(x, centers = i, nstart = 20)
# Salva o total dentro da soma dos quadrados na variável wss
wss[i] <- km.out$tot.withinss
}
## Warning: did not converge in 10 iterations
## Warning: did not converge in 10 iterations
## Warning: did not converge in 10 iterations
# Plotar o total dentro da soma dos quadrados e. número de clusters
plot(1:15, wss, type = "b",
xlab = "Número de clusters",
ylab = "Dentro de grupos soma de quadrados")
# Defina k igual ao número de clusters correspondentes à localização do cotovelo
# k <- 2
head(x)
## [,1] [,2]
## [1,] -0.3240826 -0.4851197
## [2,] 0.4455235 0.1192265
## [3,] -0.2084990 0.2487887
## [4,] -0.3130462 -0.1555823
## [5,] -0.4153098 0.5743731
## [6,] 0.3658255 -0.5323574
hclust.out <- hclust(dist(x))
# O resultado do modelo
summary(hclust.out)
## Length Class Mode
## merge 9998 -none- numeric
## height 4999 -none- numeric
## order 5000 -none- numeric
## labels 0 -none- NULL
## method 1 -none- character
## call 2 -none- call
## dist.method 1 -none- character
plot(hclust.out)
abline(h = 7, col = "red")
# Corte por altura
cutree(hclust.out, h = 7)
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1037] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1074] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1111] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1148] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1185] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1222] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1259] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1296] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1333] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1370] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1407] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1444] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1481] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1518] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1555] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1592] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1629] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1666] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1703] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1740] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1777] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1814] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1851] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1888] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1925] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1962] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1999] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2036] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2073] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2110] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2147] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2184] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2221] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2258] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2295] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2332] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2369] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2406] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2443] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2480] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2517] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2554] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2591] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2628] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2665] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2702] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2739] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2776] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2813] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2850] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2887] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2924] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2961] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2998] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3035] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3072] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3109] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3146] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3183] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3220] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3257] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3294] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3331] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3368] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3405] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3442] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3479] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3516] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3553] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3590] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3627] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3664] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3701] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3738] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3775] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3812] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3849] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3886] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3923] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3960] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [3997] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4034] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4071] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4108] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4145] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4182] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4219] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4256] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4293] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4330] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4367] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4404] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4441] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4478] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4515] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4552] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4589] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4626] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4663] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4700] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4737] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4774] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4811] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4848] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4885] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4922] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4959] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [4996] 1 1 1 1 1
cutree(hclust.out, k = 3)
## [1] 1 2 1 1 2 2 1 1 2 1 2 1 2 2 1 2 1 2 1 2 2 1 1 2 1 2 1 1 1 1 2 2 2 1 1 1 2
## [38] 1 1 2 1 1 1 2 1 2 2 2 1 1 2 1 1 1 1 2 2 2 2 1 2 1 1 2 2 2 1 1 1 1 2 1 2 1
## [75] 1 2 1 1 2 1 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 1 2 2 1 2 1 2 2 1 2
## [112] 1 2 2 2 1 1 1 1 1 2 2 1 2 1 2 2 2 2 1 2 1 2 2 2 2 1 2 2 1 1 1 2 2 2 2 2 2
## [149] 1 1 2 1 2 2 2 2 2 1 2 1 1 2 1 2 2 1 2 2 1 1 1 1 2 1 2 1 2 1 1 1 1 2 1 2 2
## [186] 1 1 1 1 2 2 2 2 1 1 2 1 1 2 2 1 2 1 2 2 1 1 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2
## [223] 1 2 1 2 1 3 2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 2 1 2 2 2 2 1 1 1 1 1 1 2 1 2 1
## [260] 2 2 2 2 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 2 1
## [297] 1 2 2 1 1 1 1 1 3 1 2 2 2 1 1 2 2 2 2 1 1 1 1 1 2 1 2 1 2 2 2 1 1 2 2 1 2
## [334] 1 1 1 2 1 1 2 2 2 1 1 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 1 1 1 2 1 2 1 2
## [371] 1 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 2 1 1 2 1 1 1 1 2 1 1 1 2 1 2 2 2 2 2 2 1
## [408] 2 1 1 2 1 2 1 1 1 2 1 2 2 2 1 2 1 2 1 2 1 1 1 1 2 2 1 2 2 2 1 1 1 2 2 2 1
## [445] 2 1 2 2 2 2 1 2 2 1 1 2 2 2 1 2 1 1 2 1 1 1 2 2 1 1 1 2 1 1 1 1 2 1 1 1 2
## [482] 2 2 1 2 2 2 1 2 1 1 2 2 2 1 2 2 1 1 1 2 2 1 2 1 1 1 2 1 1 1 1 2 2 1 1 2 1
## [519] 2 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 2 2 1 2 2 1 1 1 1 1 2 1 2 1 1
## [556] 2 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 1 1 2 1 1 1 1 1 2 2 2 2 1 1 1 2 2 2 2
## [593] 2 2 2 1 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2 1 1 1 1 1
## [630] 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 2 1 1 1 1 2 1 1 2 1 1 1 2 1 2 2 1 2 1 1 1 1
## [667] 2 1 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 2 2 1 2 2 2 1 1 1 1 2 1 1 1 2 2 2 1
## [704] 1 2 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 2 2 2 1 1 1 1 1 2 2 1 1 1 2 2 1 2 1 2
## [741] 1 2 1 1 1 1 2 1 1 2 2 2 2 1 1 2 1 1 2 2 2 2 1 2 2 1 2 1 1 1 1 2 2 2 1 1 2
## [778] 2 1 2 2 1 2 2 1 2 1 2 1 1 1 2 2 1 1 1 1 2 2 2 1 2 2 2 1 1 2 1 1 1 1 1 1 1
## [815] 2 2 2 1 3 2 1 2 1 2 1 2 2 1 1 1 2 2 1 2 1 1 2 2 1 2 2 2 2 2 1 2 1 2 2 1 2
## [852] 1 2 1 1 1 2 2 1 1 1 2 2 1 1 2 1 1 2 1 1 1 2 2 1 1 1 2 2 1 2 2 1 1 1 1 1 1
## [889] 1 2 2 1 1 1 1 2 1 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1 2 2 2 1 2 2 1 1 2 2 2 1 2
## [926] 1 1 2 2 2 2 1 1 1 1 1 2 1 1 1 2 3 1 2 1 1 1 1 2 2 1 1 1 2 2 2 2 1 1 2 2 2
## [963] 1 1 1 1 1 2 2 2 2 2 1 3 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 1 2 1 2 2
## [1000] 1 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 2 2 1 2 1 2 1 1 2 2 2 2 2 1 2 1 1 2 1 2 1
## [1037] 2 1 2 2 1 1 1 2 1 2 1 2 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2
## [1074] 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 2 1 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 2 2 1 2 1
## [1111] 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 2 1 1 1 1 2 1 1 2 2 1 1 2 1 2 1 1 1 2 1
## [1148] 1 2 2 1 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 2 1 2 1 2 1 2
## [1185] 2 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 1 1 2 2 1 1 2 1 1 1 1 2 1 2 1 1 1 2 2 1 1
## [1222] 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 1 2 1 2 2 2 2 2 1 1 2 2 1 2 1 1 1 1 2 1 1 2
## [1259] 2 1 1 1 1 1 1 1 2 2 2 1 1 1 2 1 2 1 1 1 1 2 2 1 1 2 1 1 2 1 1 1 1 1 2 2 1
## [1296] 1 1 2 1 2 1 2 2 1 2 1 2 1 1 2 2 2 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 1
## [1333] 2 1 1 2 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 1 1 1
## [1370] 1 1 1 1 1 2 1 1 2 1 1 1 2 2 1 2 2 1 2 1 1 1 1 2 2 1 2 1 2 1 1 1 1 2 2 2 1
## [1407] 2 2 1 1 2 1 2 1 2 1 2 1 1 1 2 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 1 2 1 1 1 1 1
## [1444] 2 2 1 1 2 2 2 2 1 1 1 2 1 1 3 1 2 2 2 2 1 1 1 2 2 2 1 2 2 1 1 1 1 1 1 2 2
## [1481] 1 1 1 2 2 1 1 2 2 2 1 2 1 2 1 2 1 1 1 2 2 1 1 2 1 1 1 2 1 2 1 2 1 2 2 1 2
## [1518] 1 1 2 1 2 1 1 2 1 1 2 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 1
## [1555] 2 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 1
## [1592] 2 1 1 1 1 2 2 2 2 1 3 1 2 2 1 1 2 2 1 2 1 2 2 1 1 1 2 2 1 2 2 2 2 1 1 1 2
## [1629] 1 2 2 1 1 1 1 2 1 1 2 2 1 1 2 2 1 2 1 2 1 1 2 2 1 2 1 1 2 2 1 1 1 2 1 2 2
## [1666] 2 1 2 1 1 1 2 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 2 1 2 1
## [1703] 2 2 1 1 2 1 1 1 1 1 2 2 2 1 2 2 2 2 1 1 1 2 2 1 1 2 2 2 1 1 1 1 1 1 1 2 1
## [1740] 1 2 1 2 2 2 2 2 1 2 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 2 1 2 2 1 1 1 2 1 1
## [1777] 1 1 2 2 1 1 1 1 2 1 1 2 2 1 2 2 1 1 2 1 2 2 2 1 1 1 2 2 1 1 1 2 1 2 1 2 2
## [1814] 2 1 2 1 1 1 2 1 1 1 1 2 1 2 1 2 2 2 1 1 1 2 1 2 2 1 2 2 1 2 1 2 2 2 1 1 2
## [1851] 2 2 2 1 2 1 2 2 2 2 1 2 1 1 1 1 1 1 2 1 1 2 2 1 1 1 1 1 2 2 2 1 2 2 2 1 2
## [1888] 1 1 2 2 2 1 1 1 2 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 2 1 2
## [1925] 1 2 1 2 2 1 2 2 1 1 1 1 2 2 2 1 2 1 1 2 2 1 2 1 2 2 2 1 2 2 1 1 2 2 1 1 2
## [1962] 1 1 1 1 1 2 1 2 2 1 1 1 1 2 1 2 1 2 2 3 1 1 2 2 2 2 1 2 1 1 2 1 2 2 2 1 1
## [1999] 2 1 1 1 2 1 1 1 2 2 2 2 2 1 2 1 1 1 2 2 1 2 2 1 2 1 1 2 1 1 2 2 1 1 1 2 2
## [2036] 2 2 1 1 1 2 1 1 1 2 2 1 2 1 2 1 1 2 2 1 1 1 2 1 1 1 1 2 2 1 2 1 1 1 1 2 2
## [2073] 1 1 1 1 1 2 2 1 2 2 1 1 1 1 2 2 2 1 1 1 2 2 2 1 2 2 2 2 1 1 1 2 2 1 2 1 1
## [2110] 1 2 2 1 1 2 1 2 1 1 2 1 1 1 1 1 2 2 2 1 1 1 2 1 1 2 2 1 1 2 1 1 1 2 1 2 1
## [2147] 2 1 1 1 2 1 1 1 1 1 2 3 2 2 2 2 1 2 1 1 1 2 1 1 2 2 1 1 1 1 2 1 1 2 1 2 1
## [2184] 2 2 1 1 1 1 2 2 2 1 1 2 2 1 1 1 1 2 1 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 2 1 2
## [2221] 1 2 2 2 1 1 2 1 1 2 1 1 1 2 2 1 1 2 1 1 1 1 2 2 3 2 2 1 1 2 2 2 1 1 2 2 1
## [2258] 2 2 1 1 2 2 2 2 1 2 1 2 2 2 1 1 1 1 2 2 2 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 2
## [2295] 1 2 1 1 1 2 2 1 2 2 1 2 1 1 1 2 2 2 1 1 1 2 2 2 1 2 2 1 2 1 1 2 1 1 2 2 2
## [2332] 2 1 2 2 2 2 2 2 1 2 2 1 1 1 2 1 1 1 1 2 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 2
## [2369] 1 1 1 2 2 1 2 2 2 2 1 2 2 2 1 1 2 2 1 2 2 1 2 2 2 1 1 2 1 1 1 1 1 2 1 2 1
## [2406] 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 1
## [2443] 1 1 2 2 2 1 1 2 1 2 2 1 1 2 2 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 2 2 1 2 1 2
## [2480] 2 1 1 1 1 1 2 1 1 1 2 1 2 2 1 2 1 2 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2517] 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [2554] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2591] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2628] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2665] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2702] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [2739] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2776] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2813] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3
## [2850] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2887] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
## [2924] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3
## [2961] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [2998] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3035] 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3072] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3
## [3109] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3
## [3146] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3183] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [3220] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3257] 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3294] 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [3331] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3368] 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3
## [3405] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3442] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3
## [3479] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3516] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3553] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3590] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3627] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3664] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3701] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3738] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3
## [3775] 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3812] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3849] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3886] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [3923] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [3960] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3
## [3997] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4034] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4071] 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4108] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 2 3 3 3
## [4145] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4182] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4219] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 3
## [4256] 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2
## [4293] 3 3 3 3 3 3 3 3 3 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3
## [4330] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4367] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3
## [4404] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4441] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3
## [4478] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4515] 3 3 3 3 3 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4552] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4589] 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3
## [4626] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4663] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3
## [4700] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3
## [4737] 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4774] 3 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4811] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4848] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4885] 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4922] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4959] 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4996] 3 3 3 3 3
# Cluster usando ligação completa: hclust.complete
hclust.complete <- hclust(dist(x), method = "complete")
# Agrupe usando a ligação média: hclust.average
hclust.average <- hclust(dist(x), method = "average")
# Cluster usando link único: hclust.single
hclust.single <- hclust(dist(x), method = "single")
# Plotar dendrograma de hclust.complete
plot(hclust.complete, main = "Complete")
# Plotar dendrograma de hclust.average
plot(hclust.average, main = "Average")
# Introdução ao PCA
Redução de dimensionalidade com PCA
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
pr.iris <- prcomp(x = iris[-5], scale = F, center = T)
summary(pr.iris)
## Importance of components:
## PC1 PC2 PC3 PC4
## Standard deviation 2.0563 0.49262 0.2797 0.15439
## Proportion of Variance 0.9246 0.05307 0.0171 0.00521
## Cumulative Proportion 0.9246 0.97769 0.9948 1.00000
pr.iris
## Standard deviations (1, .., p=4):
## [1] 2.0562689 0.4926162 0.2796596 0.1543862
##
## Rotation (n x k) = (4 x 4):
## PC1 PC2 PC3 PC4
## Sepal.Length 0.36138659 -0.65658877 0.58202985 0.3154872
## Sepal.Width -0.08452251 -0.73016143 -0.59791083 -0.3197231
## Petal.Length 0.85667061 0.17337266 -0.07623608 -0.4798390
## Petal.Width 0.35828920 0.07548102 -0.54583143 0.7536574
# Criando um biplot
# Isso não parece tão bonito quanto o que ele tinha no vídeo
biplot(pr.iris)
# Gráfico
biplot(pr.iris)
# Obtendo proporção de variância para um scree plot
pr.var <- pr.iris$sdev^2
pve <- pr.var / sum(pr.var)
# Variação do gráfico explicada para cada componente principal
plot(pve,
xlab = "Principal Component",
ylab = "Proporção de Variação Explicada",
ylim = c(0,1),
type = "b")
# Problemas práticos com PCA
3 coisas precisam ser consideradas para um PCA bem-sucedido:
# Dados - mtcars
data(mtcars)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
round(colMeans(mtcars), 2)
## mpg cyl disp hp drat wt qsec vs am gear carb
## 20.09 6.19 230.72 146.69 3.60 3.22 17.85 0.44 0.41 3.69 2.81
round(apply(mtcars, 2, sd), 2)
## mpg cyl disp hp drat wt qsec vs am gear carb
## 6.03 1.79 123.94 68.56 0.53 0.98 1.79 0.50 0.50 0.74 1.62
pr.mtcars_no_scale <- prcomp(x = mtcars, scale = F, center = F)
pr.mtcars_scale <- prcomp(x = mtcars, scale = T, center = T)
biplot(pr.mtcars_no_scale)
# Gráfico do escalonamento
biplot(pr.mtcars_scale)
# Projeto na prática - Modelo ML Câncer
url <- “http://s3.amazonaw
url <- "http://s3.amazonaws.com/assets.datacamp.com/production/course_1903/datasets/WisconsinCancer.csv"
# Baixe os dados: wisc.df
wisc.df <- read.csv(url)
str(wisc.df)
## 'data.frame': 569 obs. of 33 variables:
## $ id : int 842302 842517 84300903 84348301 84358402 843786 844359 84458202 844981 84501001 ...
## $ diagnosis : chr "M" "M" "M" "M" ...
## $ radius_mean : num 18 20.6 19.7 11.4 20.3 ...
## $ texture_mean : num 10.4 17.8 21.2 20.4 14.3 ...
## $ perimeter_mean : num 122.8 132.9 130 77.6 135.1 ...
## $ area_mean : num 1001 1326 1203 386 1297 ...
## $ smoothness_mean : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
## $ compactness_mean : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
## $ concavity_mean : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
## $ concave.points_mean : num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
## $ symmetry_mean : num 0.242 0.181 0.207 0.26 0.181 ...
## $ fractal_dimension_mean : num 0.0787 0.0567 0.06 0.0974 0.0588 ...
## $ radius_se : num 1.095 0.543 0.746 0.496 0.757 ...
## $ texture_se : num 0.905 0.734 0.787 1.156 0.781 ...
## $ perimeter_se : num 8.59 3.4 4.58 3.44 5.44 ...
## $ area_se : num 153.4 74.1 94 27.2 94.4 ...
## $ smoothness_se : num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
## $ compactness_se : num 0.049 0.0131 0.0401 0.0746 0.0246 ...
## $ concavity_se : num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
## $ concave.points_se : num 0.0159 0.0134 0.0206 0.0187 0.0188 ...
## $ symmetry_se : num 0.03 0.0139 0.0225 0.0596 0.0176 ...
## $ fractal_dimension_se : num 0.00619 0.00353 0.00457 0.00921 0.00511 ...
## $ radius_worst : num 25.4 25 23.6 14.9 22.5 ...
## $ texture_worst : num 17.3 23.4 25.5 26.5 16.7 ...
## $ perimeter_worst : num 184.6 158.8 152.5 98.9 152.2 ...
## $ area_worst : num 2019 1956 1709 568 1575 ...
## $ smoothness_worst : num 0.162 0.124 0.144 0.21 0.137 ...
## $ compactness_worst : num 0.666 0.187 0.424 0.866 0.205 ...
## $ concavity_worst : num 0.712 0.242 0.45 0.687 0.4 ...
## $ concave.points_worst : num 0.265 0.186 0.243 0.258 0.163 ...
## $ symmetry_worst : num 0.46 0.275 0.361 0.664 0.236 ...
## $ fractal_dimension_worst: num 0.1189 0.089 0.0876 0.173 0.0768 ...
## $ X : logi NA NA NA NA NA NA ...
# Dados
wisc.data <- as.matrix(wisc.df[, 3:32])
str(wisc.data)
## num [1:569, 1:30] 18 20.6 19.7 11.4 20.3 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:30] "radius_mean" "texture_mean" "perimeter_mean" "area_mean" ...
# Visualizando os cinco primeiros dados
head(wisc.data)
## radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## [1,] 17.99 10.38 122.80 1001.0 0.11840
## [2,] 20.57 17.77 132.90 1326.0 0.08474
## [3,] 19.69 21.25 130.00 1203.0 0.10960
## [4,] 11.42 20.38 77.58 386.1 0.14250
## [5,] 20.29 14.34 135.10 1297.0 0.10030
## [6,] 12.45 15.70 82.57 477.1 0.12780
## compactness_mean concavity_mean concave.points_mean symmetry_mean
## [1,] 0.27760 0.3001 0.14710 0.2419
## [2,] 0.07864 0.0869 0.07017 0.1812
## [3,] 0.15990 0.1974 0.12790 0.2069
## [4,] 0.28390 0.2414 0.10520 0.2597
## [5,] 0.13280 0.1980 0.10430 0.1809
## [6,] 0.17000 0.1578 0.08089 0.2087
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## [1,] 0.07871 1.0950 0.9053 8.589 153.40
## [2,] 0.05667 0.5435 0.7339 3.398 74.08
## [3,] 0.05999 0.7456 0.7869 4.585 94.03
## [4,] 0.09744 0.4956 1.1560 3.445 27.23
## [5,] 0.05883 0.7572 0.7813 5.438 94.44
## [6,] 0.07613 0.3345 0.8902 2.217 27.19
## smoothness_se compactness_se concavity_se concave.points_se symmetry_se
## [1,] 0.006399 0.04904 0.05373 0.01587 0.03003
## [2,] 0.005225 0.01308 0.01860 0.01340 0.01389
## [3,] 0.006150 0.04006 0.03832 0.02058 0.02250
## [4,] 0.009110 0.07458 0.05661 0.01867 0.05963
## [5,] 0.011490 0.02461 0.05688 0.01885 0.01756
## [6,] 0.007510 0.03345 0.03672 0.01137 0.02165
## fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
## [1,] 0.006193 25.38 17.33 184.60 2019.0
## [2,] 0.003532 24.99 23.41 158.80 1956.0
## [3,] 0.004571 23.57 25.53 152.50 1709.0
## [4,] 0.009208 14.91 26.50 98.87 567.7
## [5,] 0.005115 22.54 16.67 152.20 1575.0
## [6,] 0.005082 15.47 23.75 103.40 741.6
## smoothness_worst compactness_worst concavity_worst concave.points_worst
## [1,] 0.1622 0.6656 0.7119 0.2654
## [2,] 0.1238 0.1866 0.2416 0.1860
## [3,] 0.1444 0.4245 0.4504 0.2430
## [4,] 0.2098 0.8663 0.6869 0.2575
## [5,] 0.1374 0.2050 0.4000 0.1625
## [6,] 0.1791 0.5249 0.5355 0.1741
## symmetry_worst fractal_dimension_worst
## [1,] 0.4601 0.11890
## [2,] 0.2750 0.08902
## [3,] 0.3613 0.08758
## [4,] 0.6638 0.17300
## [5,] 0.2364 0.07678
## [6,] 0.3985 0.12440
# Visualizando linhas e colunas
dim(wisc.data)
## [1] 569 30
row.names(wisc.data) <- wisc.df$id
head(wisc.data)
## radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 842302 17.99 10.38 122.80 1001.0 0.11840
## 842517 20.57 17.77 132.90 1326.0 0.08474
## 84300903 19.69 21.25 130.00 1203.0 0.10960
## 84348301 11.42 20.38 77.58 386.1 0.14250
## 84358402 20.29 14.34 135.10 1297.0 0.10030
## 843786 12.45 15.70 82.57 477.1 0.12780
## compactness_mean concavity_mean concave.points_mean symmetry_mean
## 842302 0.27760 0.3001 0.14710 0.2419
## 842517 0.07864 0.0869 0.07017 0.1812
## 84300903 0.15990 0.1974 0.12790 0.2069
## 84348301 0.28390 0.2414 0.10520 0.2597
## 84358402 0.13280 0.1980 0.10430 0.1809
## 843786 0.17000 0.1578 0.08089 0.2087
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 842302 0.07871 1.0950 0.9053 8.589 153.40
## 842517 0.05667 0.5435 0.7339 3.398 74.08
## 84300903 0.05999 0.7456 0.7869 4.585 94.03
## 84348301 0.09744 0.4956 1.1560 3.445 27.23
## 84358402 0.05883 0.7572 0.7813 5.438 94.44
## 843786 0.07613 0.3345 0.8902 2.217 27.19
## smoothness_se compactness_se concavity_se concave.points_se
## 842302 0.006399 0.04904 0.05373 0.01587
## 842517 0.005225 0.01308 0.01860 0.01340
## 84300903 0.006150 0.04006 0.03832 0.02058
## 84348301 0.009110 0.07458 0.05661 0.01867
## 84358402 0.011490 0.02461 0.05688 0.01885
## 843786 0.007510 0.03345 0.03672 0.01137
## symmetry_se fractal_dimension_se radius_worst texture_worst
## 842302 0.03003 0.006193 25.38 17.33
## 842517 0.01389 0.003532 24.99 23.41
## 84300903 0.02250 0.004571 23.57 25.53
## 84348301 0.05963 0.009208 14.91 26.50
## 84358402 0.01756 0.005115 22.54 16.67
## 843786 0.02165 0.005082 15.47 23.75
## perimeter_worst area_worst smoothness_worst compactness_worst
## 842302 184.60 2019.0 0.1622 0.6656
## 842517 158.80 1956.0 0.1238 0.1866
## 84300903 152.50 1709.0 0.1444 0.4245
## 84348301 98.87 567.7 0.2098 0.8663
## 84358402 152.20 1575.0 0.1374 0.2050
## 843786 103.40 741.6 0.1791 0.5249
## concavity_worst concave.points_worst symmetry_worst
## 842302 0.7119 0.2654 0.4601
## 842517 0.2416 0.1860 0.2750
## 84300903 0.4504 0.2430 0.3613
## 84348301 0.6869 0.2575 0.6638
## 84358402 0.4000 0.1625 0.2364
## 843786 0.5355 0.1741 0.3985
## fractal_dimension_worst
## 842302 0.11890
## 842517 0.08902
## 84300903 0.08758
## 84348301 0.17300
## 84358402 0.07678
## 843786 0.12440
diagnosis <- as.numeric(wisc.df$diagnosis == "M")
diagnosis
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [38] 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1
## [75] 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0
## [112] 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0
## [149] 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 1
## [186] 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0
## [223] 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1
## [260] 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
## [297] 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0
## [334] 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
## [371] 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
## [408] 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0
## [445] 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
## [482] 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1
## [519] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [556] 0 0 0 0 0 0 0 1 1 1 1 1 1 0
Quantas observações estão neste conjunto de dados? 569
Quantas variáveis/recursos nos dados são sufixados com _mean? 10
Quantas das observações têm um diagnóstico maligno? 212
str(wisc.data)
## num [1:569, 1:30] 18 20.6 19.7 11.4 20.3 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:569] "842302" "842517" "84300903" "84348301" ...
## ..$ : chr [1:30] "radius_mean" "texture_mean" "perimeter_mean" "area_mean" ...
# Dados das váriaveis
colnames(wisc.data)
## [1] "radius_mean" "texture_mean"
## [3] "perimeter_mean" "area_mean"
## [5] "smoothness_mean" "compactness_mean"
## [7] "concavity_mean" "concave.points_mean"
## [9] "symmetry_mean" "fractal_dimension_mean"
## [11] "radius_se" "texture_se"
## [13] "perimeter_se" "area_se"
## [15] "smoothness_se" "compactness_se"
## [17] "concavity_se" "concave.points_se"
## [19] "symmetry_se" "fractal_dimension_se"
## [21] "radius_worst" "texture_worst"
## [23] "perimeter_worst" "area_worst"
## [25] "smoothness_worst" "compactness_worst"
## [27] "concavity_worst" "concave.points_worst"
## [29] "symmetry_worst" "fractal_dimension_worst"
# Tabela - diagnosis
table(diagnosis)
## diagnosis
## 0 1
## 357 212
# Verifique as médias das colunas e os desvios padrão
round(colMeans(wisc.data), 2)
## radius_mean texture_mean perimeter_mean
## 14.13 19.29 91.97
## area_mean smoothness_mean compactness_mean
## 654.89 0.10 0.10
## concavity_mean concave.points_mean symmetry_mean
## 0.09 0.05 0.18
## fractal_dimension_mean radius_se texture_se
## 0.06 0.41 1.22
## perimeter_se area_se smoothness_se
## 2.87 40.34 0.01
## compactness_se concavity_se concave.points_se
## 0.03 0.03 0.01
## symmetry_se fractal_dimension_se radius_worst
## 0.02 0.00 16.27
## texture_worst perimeter_worst area_worst
## 25.68 107.26 880.58
## smoothness_worst compactness_worst concavity_worst
## 0.13 0.25 0.27
## concave.points_worst symmetry_worst fractal_dimension_worst
## 0.11 0.29 0.08
round(apply(wisc.data, 2, sd), 2)
## radius_mean texture_mean perimeter_mean
## 3.52 4.30 24.30
## area_mean smoothness_mean compactness_mean
## 351.91 0.01 0.05
## concavity_mean concave.points_mean symmetry_mean
## 0.08 0.04 0.03
## fractal_dimension_mean radius_se texture_se
## 0.01 0.28 0.55
## perimeter_se area_se smoothness_se
## 2.02 45.49 0.00
## compactness_se concavity_se concave.points_se
## 0.02 0.03 0.01
## symmetry_se fractal_dimension_se radius_worst
## 0.01 0.00 4.83
## texture_worst perimeter_worst area_worst
## 6.15 33.60 569.36
## smoothness_worst compactness_worst concavity_worst
## 0.02 0.16 0.21
## concave.points_worst symmetry_worst fractal_dimension_worst
## 0.07 0.06 0.02
# Executa o PCA, dimensionando se apropriado: wisc.pr
wisc.pr <- prcomp(wisc.data, scale = T, center = T)
# Veja o resumo dos resultados
summary(wisc.pr)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
## Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
## Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
## PC8 PC9 PC10 PC11 PC12 PC13 PC14
## Standard deviation 0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
## Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
## Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
## PC15 PC16 PC17 PC18 PC19 PC20 PC21
## Standard deviation 0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
## Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
## Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
## PC22 PC23 PC24 PC25 PC26 PC27 PC28
## Standard deviation 0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
## Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
## Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
## PC29 PC30
## Standard deviation 0.02736 0.01153
## Proportion of Variance 0.00002 0.00000
## Cumulative Proportion 1.00000 1.00000
# Cria um biplot de wisc.pr
biplot(wisc.pr)
# Gráfico scatter plot
# Observações do gráfico de dispersão pelos componentes 1 e 2
plot(wisc.pr$x[, c(1, 2)],
col = (diagnosis + 1),
xlab = "PC1",
ylab = "PC2")
# Repita para os componentes 1 e 3
plot(wisc.pr$x[, c(1, 3)],
col = (diagnosis + 1),
xlab = "PC1",
ylab = "PC3")
# Faça a exploração de dados adicionais de sua escolha abaixo (opcional)
plot(wisc.pr$x[, c(2, 3)],
col = (diagnosis + 1),
xlab = "PC2",
ylab = "PC3")
- Podemos ver nos gráficos que pc1 e pc2 se sobrepõem menos que pc1 e pc3. - Isso é esperado, pois pc1 e pc2 devem ser ortogonais e explicar diferentes variâncias
# Configurar grade de plotagem 1 x 2
par(mfrow = c(1, 2))
# Calcula a variabilidade de cada componente
pr.var <- wisc.pr$sdev^2
# Variação explicada por cada componente principal: pve
pve <- pr.var / sum(pr.var)
# Variação do gráfico explicada para cada componente principal
plot(pve, xlab = "Principal componente",
ylab = "Proporção de Variação Explicada",
ylim = c(0, 1), type = "b")
# Plotar proporção cumulativa de variância explicada
plot(cumsum(pve), xlab = "Principal componente",
ylab = "Proporção Cumulativa de Variação Explicada",
ylim = c(0, 1), type = "b")
– Comunicação dos resultados do PCA - Para o primeiro componente principal, qual é o componente do vetor de carregamento para o recurso concave.points_mean? -0,26085376
-Qual é o número mínimo de componentes principais necessários para explicar 80% da variância dos dados? 5
wisc.pr$rotation[1:10,1:2]
## PC1 PC2
## radius_mean -0.21890244 0.23385713
## texture_mean -0.10372458 0.05970609
## perimeter_mean -0.22753729 0.21518136
## area_mean -0.22099499 0.23107671
## smoothness_mean -0.14258969 -0.18611302
## compactness_mean -0.23928535 -0.15189161
## concavity_mean -0.25840048 -0.06016536
## concave.points_mean -0.26085376 0.03476750
## symmetry_mean -0.13816696 -0.19034877
## fractal_dimension_mean -0.06436335 -0.36657547
– Agrupamento hierárquico de dados de caso
# Dimensione os dados wisc.data: data.scaled
head(wisc.data)
## radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 842302 17.99 10.38 122.80 1001.0 0.11840
## 842517 20.57 17.77 132.90 1326.0 0.08474
## 84300903 19.69 21.25 130.00 1203.0 0.10960
## 84348301 11.42 20.38 77.58 386.1 0.14250
## 84358402 20.29 14.34 135.10 1297.0 0.10030
## 843786 12.45 15.70 82.57 477.1 0.12780
## compactness_mean concavity_mean concave.points_mean symmetry_mean
## 842302 0.27760 0.3001 0.14710 0.2419
## 842517 0.07864 0.0869 0.07017 0.1812
## 84300903 0.15990 0.1974 0.12790 0.2069
## 84348301 0.28390 0.2414 0.10520 0.2597
## 84358402 0.13280 0.1980 0.10430 0.1809
## 843786 0.17000 0.1578 0.08089 0.2087
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 842302 0.07871 1.0950 0.9053 8.589 153.40
## 842517 0.05667 0.5435 0.7339 3.398 74.08
## 84300903 0.05999 0.7456 0.7869 4.585 94.03
## 84348301 0.09744 0.4956 1.1560 3.445 27.23
## 84358402 0.05883 0.7572 0.7813 5.438 94.44
## 843786 0.07613 0.3345 0.8902 2.217 27.19
## smoothness_se compactness_se concavity_se concave.points_se
## 842302 0.006399 0.04904 0.05373 0.01587
## 842517 0.005225 0.01308 0.01860 0.01340
## 84300903 0.006150 0.04006 0.03832 0.02058
## 84348301 0.009110 0.07458 0.05661 0.01867
## 84358402 0.011490 0.02461 0.05688 0.01885
## 843786 0.007510 0.03345 0.03672 0.01137
## symmetry_se fractal_dimension_se radius_worst texture_worst
## 842302 0.03003 0.006193 25.38 17.33
## 842517 0.01389 0.003532 24.99 23.41
## 84300903 0.02250 0.004571 23.57 25.53
## 84348301 0.05963 0.009208 14.91 26.50
## 84358402 0.01756 0.005115 22.54 16.67
## 843786 0.02165 0.005082 15.47 23.75
## perimeter_worst area_worst smoothness_worst compactness_worst
## 842302 184.60 2019.0 0.1622 0.6656
## 842517 158.80 1956.0 0.1238 0.1866
## 84300903 152.50 1709.0 0.1444 0.4245
## 84348301 98.87 567.7 0.2098 0.8663
## 84358402 152.20 1575.0 0.1374 0.2050
## 843786 103.40 741.6 0.1791 0.5249
## concavity_worst concave.points_worst symmetry_worst
## 842302 0.7119 0.2654 0.4601
## 842517 0.2416 0.1860 0.2750
## 84300903 0.4504 0.2430 0.3613
## 84348301 0.6869 0.2575 0.6638
## 84358402 0.4000 0.1625 0.2364
## 843786 0.5355 0.1741 0.3985
## fractal_dimension_worst
## 842302 0.11890
## 842517 0.08902
## 84300903 0.08758
## 84348301 0.17300
## 84358402 0.07678
## 843786 0.12440
data.scaled <- scale(wisc.data)
head(data.scaled)
## radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 842302 1.0960995 -2.0715123 1.2688173 0.9835095 1.5670875
## 842517 1.8282120 -0.3533215 1.6844726 1.9070303 -0.8262354
## 84300903 1.5784992 0.4557859 1.5651260 1.5575132 0.9413821
## 84348301 -0.7682333 0.2535091 -0.5921661 -0.7637917 3.2806668
## 84358402 1.7487579 -1.1508038 1.7750113 1.8246238 0.2801253
## 843786 -0.4759559 -0.8346009 -0.3868077 -0.5052059 2.2354545
## compactness_mean concavity_mean concave.points_mean symmetry_mean
## 842302 3.2806281 2.65054179 2.5302489 2.215565542
## 842517 -0.4866435 -0.02382489 0.5476623 0.001391139
## 84300903 1.0519999 1.36227979 2.0354398 0.938858720
## 84348301 3.3999174 1.91421287 1.4504311 2.864862154
## 84358402 0.5388663 1.36980615 1.4272370 -0.009552062
## 843786 1.2432416 0.86554001 0.8239307 1.004517928
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 842302 2.2537638 2.4875451 -0.5647681 2.8305403 2.4853907
## 842517 -0.8678888 0.4988157 -0.8754733 0.2630955 0.7417493
## 84300903 -0.3976580 1.2275958 -0.7793976 0.8501802 1.1802975
## 84348301 4.9066020 0.3260865 -0.1103120 0.2863415 -0.2881246
## 84358402 -0.5619555 1.2694258 -0.7895490 1.2720701 1.1893103
## 843786 1.8883435 -0.2548461 -0.5921406 -0.3210217 -0.2890039
## smoothness_se compactness_se concavity_se concave.points_se
## 842302 -0.2138135 1.31570389 0.7233897 0.66023900
## 842517 -0.6048187 -0.69231710 -0.4403926 0.25993335
## 84300903 -0.2967439 0.81425704 0.2128891 1.42357487
## 84348301 0.6890953 2.74186785 0.8187979 1.11402678
## 84358402 1.4817634 -0.04847723 0.8277425 1.14319885
## 843786 0.1562093 0.44515196 0.1598845 -0.06906279
## symmetry_se fractal_dimension_se radius_worst texture_worst
## 842302 1.1477468 0.90628565 1.8850310 -1.35809849
## 842517 -0.8047423 -0.09935632 1.8043398 -0.36887865
## 84300903 0.2368272 0.29330133 1.5105411 -0.02395331
## 84348301 4.7285198 2.04571087 -0.2812170 0.13386631
## 84358402 -0.3607748 0.49888916 1.2974336 -1.46548091
## 843786 0.1340009 0.48641784 -0.1653528 -0.31356043
## perimeter_worst area_worst smoothness_worst compactness_worst
## 842302 2.3015755 1.9994782 1.3065367 2.6143647
## 842517 1.5337764 1.8888270 -0.3752817 -0.4300658
## 84300903 1.3462906 1.4550043 0.5269438 1.0819801
## 84348301 -0.2497196 -0.5495377 3.3912907 3.8899747
## 84358402 1.3373627 1.2196511 0.2203623 -0.3131190
## 843786 -0.1149083 -0.2441054 2.0467119 1.7201029
## concavity_worst concave.points_worst symmetry_worst
## 842302 2.1076718 2.2940576 2.7482041
## 842517 -0.1466200 1.0861286 -0.2436753
## 84300903 0.8542223 1.9532817 1.1512420
## 84348301 1.9878392 2.1738732 6.0407261
## 84358402 0.6126397 0.7286181 -0.8675896
## 843786 1.2621327 0.9050914 1.7525273
## fractal_dimension_worst
## 842302 1.9353117
## 842517 0.2809428
## 84300903 0.2012142
## 84348301 4.9306719
## 84358402 -0.3967505
## 843786 2.2398308
# Calcular as distâncias (euclidianas): data.dist
data.dist <- dist(data.scaled)
# Crie um modelo de cluster hierárquico: wisc.hclust
wisc.hclust <- hclust(data.dist, method = "complete")
# Gráfico
plot(wisc.hclust)
# Gráficos
Eu meio que posso ver por que poderíamos cortar em 4. Isso nos dá os principais clusers e então temos alguns minúsculos à esquerda.
Seria legal se pudéssemos colorir as linhas pelo diagnóstico de alguma forma que nos ajudasse a ver onde devemos nos dividir.
# Modelo
# Corte a árvore para que ela tenha 4 clusters: wisc.hclust.clusters
wisc.hclust.clusters <- cutree(wisc.hclust, k = 4)
# Comparar a associação do cluster com o diagnóstico real
table(wisc.hclust.clusters, diagnosis)
## diagnosis
## wisc.hclust.clusters 0 1
## 1 12 165
## 2 2 5
## 3 343 40
## 4 0 2
# Contagem de observações fora do lugar com base no cluster
# Basicamente apenas somando os minutos da linha aqui
sum(apply(table(wisc.hclust.clusters, diagnosis), 1, min))
## [1] 54
# Crie um modelo k-means em wisc.data: wisc.km
head(wisc.data)
## radius_mean texture_mean perimeter_mean area_mean smoothness_mean
## 842302 17.99 10.38 122.80 1001.0 0.11840
## 842517 20.57 17.77 132.90 1326.0 0.08474
## 84300903 19.69 21.25 130.00 1203.0 0.10960
## 84348301 11.42 20.38 77.58 386.1 0.14250
## 84358402 20.29 14.34 135.10 1297.0 0.10030
## 843786 12.45 15.70 82.57 477.1 0.12780
## compactness_mean concavity_mean concave.points_mean symmetry_mean
## 842302 0.27760 0.3001 0.14710 0.2419
## 842517 0.07864 0.0869 0.07017 0.1812
## 84300903 0.15990 0.1974 0.12790 0.2069
## 84348301 0.28390 0.2414 0.10520 0.2597
## 84358402 0.13280 0.1980 0.10430 0.1809
## 843786 0.17000 0.1578 0.08089 0.2087
## fractal_dimension_mean radius_se texture_se perimeter_se area_se
## 842302 0.07871 1.0950 0.9053 8.589 153.40
## 842517 0.05667 0.5435 0.7339 3.398 74.08
## 84300903 0.05999 0.7456 0.7869 4.585 94.03
## 84348301 0.09744 0.4956 1.1560 3.445 27.23
## 84358402 0.05883 0.7572 0.7813 5.438 94.44
## 843786 0.07613 0.3345 0.8902 2.217 27.19
## smoothness_se compactness_se concavity_se concave.points_se
## 842302 0.006399 0.04904 0.05373 0.01587
## 842517 0.005225 0.01308 0.01860 0.01340
## 84300903 0.006150 0.04006 0.03832 0.02058
## 84348301 0.009110 0.07458 0.05661 0.01867
## 84358402 0.011490 0.02461 0.05688 0.01885
## 843786 0.007510 0.03345 0.03672 0.01137
## symmetry_se fractal_dimension_se radius_worst texture_worst
## 842302 0.03003 0.006193 25.38 17.33
## 842517 0.01389 0.003532 24.99 23.41
## 84300903 0.02250 0.004571 23.57 25.53
## 84348301 0.05963 0.009208 14.91 26.50
## 84358402 0.01756 0.005115 22.54 16.67
## 843786 0.02165 0.005082 15.47 23.75
## perimeter_worst area_worst smoothness_worst compactness_worst
## 842302 184.60 2019.0 0.1622 0.6656
## 842517 158.80 1956.0 0.1238 0.1866
## 84300903 152.50 1709.0 0.1444 0.4245
## 84348301 98.87 567.7 0.2098 0.8663
## 84358402 152.20 1575.0 0.1374 0.2050
## 843786 103.40 741.6 0.1791 0.5249
## concavity_worst concave.points_worst symmetry_worst
## 842302 0.7119 0.2654 0.4601
## 842517 0.2416 0.1860 0.2750
## 84300903 0.4504 0.2430 0.3613
## 84348301 0.6869 0.2575 0.6638
## 84358402 0.4000 0.1625 0.2364
## 843786 0.5355 0.1741 0.3985
## fractal_dimension_worst
## 842302 0.11890
## 842517 0.08902
## 84300903 0.08758
## 84348301 0.17300
## 84358402 0.07678
## 843786 0.12440
# Modelo
wisc.km <- kmeans(scale(wisc.data), centers = 2, nstart = 20)
# Comparar k-means com diagnósticos reais
table(wisc.km$cluster, diagnosis)
## diagnosis
## 0 1
## 1 343 37
## 2 14 175
sum(apply(table(wisc.km$cluster, diagnosis), 1, min))
## [1] 51
# Tabela
table(wisc.hclust.clusters, wisc.km$cluster)
##
## wisc.hclust.clusters 1 2
## 1 17 160
## 2 0 7
## 3 363 20
## 4 0 2
sum(apply(table(wisc.hclust.clusters, wisc.km$cluster), 1, min))
## [1] 37
Lembre-se de exercícios anteriores que o modelo PCA exigia significativamente menos recursos para descrever 80% e 95% da variabilidade dos dados.
Além de normalizar os dados e potencialmente evitar overfitting, o PCA também descorrelaciona as variáveis, algumas vezes melhorando o desempenho de outras técnicas de modelagem.
# Crie um modelo de cluster hierárquico: wisc.pr.hclust
summary(wisc.pr)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
## Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
## Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
## PC8 PC9 PC10 PC11 PC12 PC13 PC14
## Standard deviation 0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
## Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
## Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
## PC15 PC16 PC17 PC18 PC19 PC20 PC21
## Standard deviation 0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
## Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
## Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
## PC22 PC23 PC24 PC25 PC26 PC27 PC28
## Standard deviation 0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
## Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
## Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
## PC29 PC30
## Standard deviation 0.02736 0.01153
## Proportion of Variance 0.00002 0.00000
## Cumulative Proportion 1.00000 1.00000
wisc.pr.hclust <- hclust(dist(wisc.pr$x[, 1:7]), method = "complete")
# Corte o modelo em 4 clusters: wisc.pr.hclust.clusters
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k = 4)
# Compare com diagnósticos reais
t <- table(wisc.pr.hclust.clusters, diagnosis)
t
## diagnosis
## wisc.pr.hclust.clusters 0 1
## 1 5 113
## 2 350 97
## 3 2 0
## 4 0 2
# Resultado final
sum(apply(t, 1, min))
## [1] 102
# Comparar com modelo k-means e hierárquico
t <- table(wisc.hclust.clusters, diagnosis)
t
## diagnosis
## wisc.hclust.clusters 0 1
## 1 12 165
## 2 2 5
## 3 343 40
## 4 0 2
# Resultado do KMEANS
sum(apply(t, 1, min))
## [1] 54
t <- table(wisc.km$cluster, diagnosis)
t
## diagnosis
## 0 1
## 1 343 37
## 2 14 175
sum(apply(t, 1, min))
## [1] 51
Esta foi uma visão geral de alto nível sobre os tópicos de clustering hierárquico e k-means e PCA
Acho que abrange alguns bons conceitos, como seleção de modelos de variáveis, interpretação e dimensionamento de dados
Eu tive um pouco de intuição sobre como os algoritmos funcionam
Não sinto que conheço bem esses tópicos ou que estou pronto para basear as decisões de negócios no meu conhecimento dessas técnicas de modelo.
Foi uma boa maneira de começar e agora estou definitivamente pronto para aprofundar essas técnicas.
Neste modelo ML curso da datacamp de machine learning - Aprendizado não supervisionado em R