\(~\)
\(~\)
P(G | \(A_{1}\)) = 2 / 2 = 1
P(G | \(A_{2}\)) = 0 / 2 = 0
P(G | \(A_{3}\)) = 1 / 2 = 0.5
\(~\)
\(~\)
P(A | B) = \(\frac{P(B | A) * P(A)}{P(B)}\)
A, B = events
P(A|B) = probability of A given B is true
P(B|A) = probability of B given A is true
P(A), P(B) = the independent probabilities of A and B
\(~\)
P(\(A_{1}\) | G) = \(\frac{P(G | A_{1}) * P(A_{1})}{(P(G | A_{1}) * P(A_{1})) + (P(G | A_{2}) * P(G | A_{2})) + (P(G | A_{3}) * P(G | A_{3}))}\)
P(\(A_{1}\) | G) = \(\frac{(1 * \frac{1}{3})}{(1 * \frac{1}{3}) + (0 * \frac{1}{3}) + (\frac{1}{2} * \frac{1}{3})}\)
P(\(A_{1}\) | G) = \(\frac{2}{3}\)
\(~\)