#Load Tidyverse

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

#Load NYC Flights Dataset

library(nycflights13)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
view(flights)
describe(flights)
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
##                vars      n    mean      sd median trimmed     mad  min  max
## year              1 336776 2013.00    0.00   2013 2013.00    0.00 2013 2013
## month             2 336776    6.55    3.41      7    6.56    4.45    1   12
## day               3 336776   15.71    8.77     16   15.70   11.86    1   31
## dep_time          4 328521 1349.11  488.28   1401 1346.82  634.55    1 2400
## sched_dep_time    5 336776 1344.25  467.34   1359 1341.60  613.80  106 2359
## dep_delay         6 328521   12.64   40.21     -2    3.32    5.93  -43 1301
## arr_time          7 328063 1502.05  533.26   1535 1526.42  619.73    1 2400
## sched_arr_time    8 336776 1536.38  497.46   1556 1550.67  618.24    1 2359
## arr_delay         9 327346    6.90   44.63     -5   -1.03   20.76  -86 1272
## carrier*         10 336776    7.14    4.14      6    7.00    5.93    1   16
## flight           11 336776 1971.92 1632.47   1496 1830.51 1608.62    1 8500
## tailnum*         12 334264 1814.32 1199.75   1798 1778.21 1587.86    1 4043
## origin*          13 336776    1.95    0.82      2    1.94    1.48    1    3
## dest*            14 336776   50.03   28.12     50   49.56   32.62    1  105
## air_time         15 327346  150.69   93.69    129  140.03   75.61   20  695
## distance         16 336776 1039.91  733.23    872  955.27  569.32   17 4983
## hour             17 336776   13.18    4.66     13   13.15    5.93    1   23
## minute           18 336776   26.23   19.30     29   25.64   23.72    0   59
## time_hour        19 336776     NaN      NA     NA     NaN      NA  Inf -Inf
##                range  skew kurtosis   se
## year               0   NaN      NaN 0.00
## month             11 -0.01    -1.19 0.01
## day               30  0.01    -1.19 0.02
## dep_time        2399 -0.02    -1.09 0.85
## sched_dep_time  2253 -0.01    -1.20 0.81
## dep_delay       1344  4.80    43.95 0.07
## arr_time        2399 -0.47    -0.19 0.93
## sched_arr_time  2358 -0.35    -0.38 0.86
## arr_delay       1358  3.72    29.23 0.08
## carrier*          15  0.36    -1.21 0.01
## flight          8499  0.66    -0.85 2.81
## tailnum*        4042  0.17    -1.24 2.08
## origin*            2  0.09    -1.50 0.00
## dest*            104  0.13    -1.08 0.05
## air_time         675  1.07     0.86 0.16
## distance        4966  1.13     1.19 1.26
## hour              22  0.00    -1.21 0.01
## minute            59  0.09    -1.24 0.03
## time_hour       -Inf    NA       NA   NA

#Filter: Hartsfield Jackson Atlanta International Airpot

Atlanta <- filter(flights, carrier %in% c("DL"))

Atlanta
## # A tibble: 48,110 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      554            600        -6      812            837
##  2  2013     1     1      602            610        -8      812            820
##  3  2013     1     1      606            610        -4      837            845
##  4  2013     1     1      615            615         0      833            842
##  5  2013     1     1      653            700        -7      936           1009
##  6  2013     1     1      655            655         0     1021           1030
##  7  2013     1     1      655            700        -5     1037           1045
##  8  2013     1     1      655            700        -5     1002           1020
##  9  2013     1     1      657            700        -3      959           1013
## 10  2013     1     1      658            700        -2      944            939
## # ... with 48,100 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

#Filter: March Flights

MarchATL <- filter(Atlanta, month == 3)

MarchATL
## # A tibble: 4,189 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     3     1      558            600        -2      750            759
##  2  2013     3     1      600            600         0      848            837
##  3  2013     3     1      609            615        -6      759            825
##  4  2013     3     1      611            615        -4      838            842
##  5  2013     3     1      624            630        -6      857            859
##  6  2013     3     1      652            700        -8     1016           1019
##  7  2013     3     1      653            655        -2      955           1029
##  8  2013     3     1      656            700        -4     1018            953
##  9  2013     3     1      656            700        -4     1003           1014
## 10  2013     3     1      657            700        -3      953           1034
## # ... with 4,179 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

#Filter: Putting it all together

AtlSelect <- select(MarchATL, dep_time, dep_delay, arr_time, arr_delay)

AtlSelect
## # A tibble: 4,189 x 4
##    dep_time dep_delay arr_time arr_delay
##       <int>     <dbl>    <int>     <dbl>
##  1      558        -2      750        -9
##  2      600         0      848        11
##  3      609        -6      759       -26
##  4      611        -4      838        -4
##  5      624        -6      857        -2
##  6      652        -8     1016        -3
##  7      653        -2      955       -34
##  8      656        -4     1018        25
##  9      656        -4     1003       -11
## 10      657        -3      953       -41
## # ... with 4,179 more rows
AtlSumStats <- summary(MarchATL$arr_time)

AtlSumStats
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##       1    1205    1652    1598    2019    2400      60

#Lets Make a Table

ATLSchTable <- table(MarchATL$sched_arr_time)

ATLSchTable
## 
##   31   32  759  800  814  816  825  829  830  837  842  844  849  859  901  907 
##    1   25    6   20    5   20    1    5   25    1    5   25   25    1    4   15 
##  908  916  918  928  931  933  938  944  951  953 1004 1007 1009 1010 1011 1012 
##   10    5   25    1   20    5    1    5   25    1    2    5   25   10   25   25 
## 1014 1018 1019 1020 1021 1022 1024 1027 1029 1030 1031 1032 1034 1039 1040 1042 
##    1    5    1   30    2   20    2    1    1   25    5   25    1    1    5    1 
## 1043 1044 1045 1051 1055 1056 1057 1100 1102 1104 1105 1106 1108 1112 1113 1114 
##    5   25   26    4   25    4    1   21    4    5   31   30   25    6    4   19 
## 1115 1116 1117 1120 1122 1123 1124 1126 1127 1129 1130 1131 1133 1135 1136 1140 
##   31   21    1    5    4   26   24    5    2   26    5   26    1    1    5   25 
## 1142 1143 1145 1205 1207 1210 1212 1213 1214 1216 1220 1221 1224 1227 1228 1231 
##    5   25    1    1    1    5    4   26    6   25   25    5   26    1    1    5 
## 1232 1234 1237 1239 1246 1247 1248 1251 1254 1300 1305 1306 1307 1308 1309 1314 
##   30   30    1    1    5    5   23    5    1    5   26    5    3   24    1    4 
## 1315 1316 1323 1331 1334 1335 1337 1339 1341 1342 1345 1348 1359 1402 1407 1409 
##   25   16    1   25   25    6    1   25    1    1    1    2    5   50    6    2 
## 1410 1412 1413 1414 1416 1419 1420 1421 1424 1430 1434 1438 1440 1444 1446 1447 
##    6   10    5   50   30    5    1   25    1    1   25   29    2    2   12   28 
## 1449 1450 1451 1453 1454 1459 1508 1511 1529 1534 1535 1537 1547 1549 1552 1554 
##   25   30   25    1    1    1    5   25    1   25    5    1    1    5   25    5 
## 1556 1606 1613 1629 1630 1631 1632 1634 1635 1636 1638 1641 1645 1649 1651 1653 
##   25    1    5   30   10   24   25    1    1    1    2    4   25    3   18   25 
## 1654 1655 1701 1737 1738 1742 1748 1749 1751 1753 1758 1801 1802 1803 1805 1815 
##   25    1    2   25    5    1    1    2   11   25    5   40   10   25    1    2 
## 1819 1820 1822 1823 1824 1825 1830 1831 1832 1834 1837 1838 1840 1842 1843 1845 
##   55   24    4    1   25    6    1    6   25   25    1   25    3    5    5    1 
## 1847 1850 1853 1856 1857 1859 1900 1901 1903 1904 1907 1909 1912 1916 1917 1919 
##   49   27   25   25    5    1    6   31    1   24   25    1    1    5    2    9 
## 1920 1921 1922 1924 1925 1926 1930 1931 1933 1934 1935 1936 1939 1942 1943 1944 
##    1   30   25   54    1    5    6   25   30   25    1    5   25   25    1    6 
## 1951 2002 2003 2006 2008 2014 2015 2017 2019 2020 2024 2025 2027 2028 2029 2031 
##    1    5   30    5   25    5    2   25    1    3   25    5   35   25    1    1 
## 2033 2034 2035 2036 2037 2040 2041 2042 2043 2044 2045 2046 2049 2050 2052 2058 
##    6    5   25   26   25   26    1    1   25   50   25    6   26   24    1    1 
## 2100 2101 2104 2107 2110 2117 2130 2131 2132 2133 2134 2136 2139 2140 2142 2143 
##   24    1    4    3   19    1    7   25    4    1   25    1   28    1    1    1 
## 2145 2148 2149 2154 2155 2157 2200 2202 2203 2204 2205 2206 2207 2209 2210 2212 
##    1    5   24    6    5   29    5   19    5    1   25   25    1    1   11    2 
## 2218 2220 2221 2222 2223 2226 2227 2229 2230 2231 2232 2235 2236 2237 2238 2239 
##    5   21    4    2    3   25    5    2    1   25    6   25    5    5    1   30 
## 2240 2242 2243 2245 2246 2247 2248 2250 2251 2256 2257 2302 2303 2306 2316 2318 
##   25   30   75    1    2   27    1    1    5   25    2    6    1    1    1   25 
## 2327 2328 2334 2342 
##   17    1    1   25

#Head and Tails

AtlHead <- head(MarchATL$arr_time)
Atltail <- tail(MarchATL$arr_time)
barplot(table(MarchATL$arr_time, MarchATL$sched_arr_time))