library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
getSymbols("RACE")
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## 
## This message is shown once per session and may be disabled by setting 
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## [1] "RACE"
dim(RACE)
## [1] 1601    6
head(RACE)
##            RACE.Open RACE.High RACE.Low RACE.Close RACE.Volume RACE.Adjusted
## 2015-10-21     60.00     60.97    55.00      55.00    22498800      52.29956
## 2015-10-22     57.07     58.20    55.70      56.75     4545100      53.96364
## 2015-10-23     57.77     58.00    56.27      56.38     1967600      53.61180
## 2015-10-26     57.00     57.00    54.54      55.02     1466300      52.31858
## 2015-10-27     54.80     54.99    49.36      53.85     5949200      51.20602
## 2015-10-28     54.02     54.16    50.10      51.87     2411300      49.32324
tail(RACE)
##            RACE.Open RACE.High RACE.Low RACE.Close RACE.Volume RACE.Adjusted
## 2022-02-22    217.00   219.900   214.04     216.43      344200        216.43
## 2022-02-23    221.03   221.450   215.07     215.30      301200        215.30
## 2022-02-24    204.88   215.875   204.30     215.55      732800        215.55
## 2022-02-25    212.20   215.460   210.30     213.42      460300        213.42
## 2022-02-28    212.04   218.000   211.68     215.31      376300        215.31
## 2022-03-01    214.90   215.370   207.63     208.48      357700        208.48
chartSeries(RACE)

getSymbols("AAPL")
## [1] "AAPL"
dim(AAPL)
## [1] 3817    6
head(AAPL)
##            AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
## 2007-01-03  3.081786  3.092143 2.925000   2.992857  1238319600      2.562706
## 2007-01-04  3.001786  3.069643 2.993571   3.059286   847260400      2.619588
## 2007-01-05  3.063214  3.078571 3.014286   3.037500   834741600      2.600933
## 2007-01-08  3.070000  3.090357 3.045714   3.052500   797106800      2.613777
## 2007-01-09  3.087500  3.320714 3.041071   3.306071  3349298400      2.830903
## 2007-01-10  3.383929  3.492857 3.337500   3.464286  2952880000      2.966379
tail(AAPL)
##            AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
## 2022-02-22    164.98    166.69   162.15     164.32    91162800        164.32
## 2022-02-23    165.54    166.15   159.75     160.07    90009200        160.07
## 2022-02-24    152.58    162.85   152.00     162.74   141147500        162.74
## 2022-02-25    163.84    165.12   160.87     164.85    91974200        164.85
## 2022-02-28    163.06    165.42   162.43     165.12    94869100        165.12
## 2022-03-01    164.70    166.60   161.97     163.20    83361500        163.20
chartSeries(AAPL)

getSymbols("INTDSRTRM193N",src="FRED")
## [1] "INTDSRTRM193N"
chartSeries(INTDSRTRM193N) 

getSymbols("TURGDPNQDSMEI",src="FRED")
## [1] "TURGDPNQDSMEI"
chartSeries(TURGDPNQDSMEI)

library(WDI)
df = WDI(indicator='NY.GDP.MKTP.CD', country=c('MX','TR','US'), start=1960, end=2018)
head(df)
##   iso2c country NY.GDP.MKTP.CD year
## 1    MX  Mexico   1.222408e+12 2018
## 2    MX  Mexico   1.158913e+12 2017
## 3    MX  Mexico   1.078491e+12 2016
## 4    MX  Mexico   1.171868e+12 2015
## 5    MX  Mexico   1.315351e+12 2014
## 6    MX  Mexico   1.274443e+12 2013
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
## 
##     first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
df <- df %>%
  rename(ulkekodu = 1,
         ulke = 2,
         cıro = 3,
         sene = 4)
library(reshape2)
data_genis <- dcast(df, sene ~ ulke, value.var="cıro")
head(data_genis)
##   sene    Mexico      Turkey United States
## 1 1960 1.304e+10 13995067818     5.433e+11
## 2 1961 1.416e+10  7988888889     5.633e+11
## 3 1962 1.520e+10  8922222222     6.051e+11
## 4 1963 1.696e+10 10355555556     6.386e+11
## 5 1964 2.008e+10 11177777778     6.858e+11
## 6 1965 2.184e+10 11966666667     7.437e+11
tsveri <- ts(data_genis, start=1960, frequency=1)
head(tsveri)
##      sene    Mexico      Turkey United States
## [1,] 1960 1.304e+10 13995067818     5.433e+11
## [2,] 1961 1.416e+10  7988888889     5.633e+11
## [3,] 1962 1.520e+10  8922222222     6.051e+11
## [4,] 1963 1.696e+10 10355555556     6.386e+11
## [5,] 1964 2.008e+10 11177777778     6.858e+11
## [6,] 1965 2.184e+10 11966666667     7.437e+11
library(ggplot2)
library(ggfortify)
autoplot(tsveri[,"Turkey"]) +
  ggtitle("GSYIH (carı ABD doları) - Turkıye ") +
  xlab("Sene") +
  ylab("")

autoplot(tsveri[,"Turkey"], ts.colour = 'red', ts.linetype = 'dashed')

plot(tsveri[,"Turkey"])

plot(tsveri[,2:4])

plot(tsveri[,2:4], plot.type = "single")

data_uzun <- melt(data_genis, id.vars = "sene")
ggplot(data_uzun,                           
       aes(x = sene,
           y = value,
           col = variable)) +
  geom_line()

df = WDI(indicator='SP.DYN.LE00.IN', country=c('MX','TR','US'), start=1960, end=2018)
head(df)
##   iso2c country SP.DYN.LE00.IN year
## 1    MX  Mexico         74.992 2018
## 2    MX  Mexico         74.947 2017
## 3    MX  Mexico         74.917 2016
## 4    MX  Mexico         74.904 2015
## 5    MX  Mexico         74.908 2014
## 6    MX  Mexico         74.930 2013
library(dplyr)
df <- df %>%
  rename(ulkekodu = 1,
         ulke = 2,
         yasamsuresı = 3,
         sene = 4)
data_genis <- dcast(df, sene ~ ulke, value.var="yasamsuresı")
head(data_genis)
##   sene Mexico Turkey United States
## 1 1960 57.077 45.369      69.77073
## 2 1961 57.668 46.093      70.27073
## 3 1962 58.193 46.830      70.11951
## 4 1963 58.656 47.573      69.91707
## 5 1964 59.069 48.312      70.16585
## 6 1965 59.447 49.035      70.21463
tsveri <- ts(data_genis, start=1960, frequency=1)
head(tsveri)
##      sene Mexico Turkey United States
## [1,] 1960 57.077 45.369      69.77073
## [2,] 1961 57.668 46.093      70.27073
## [3,] 1962 58.193 46.830      70.11951
## [4,] 1963 58.656 47.573      69.91707
## [5,] 1964 59.069 48.312      70.16585
## [6,] 1965 59.447 49.035      70.21463
autoplot(tsveri[,"Turkey"]) +
  ggtitle("Doğumda beklenen yaşam süresi, toplam (yıl) - Türkiye") +
  xlab("Sene") +
  ylab("")