#Load Tidyverse

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

#Load NYC Flights Dataset

library(nycflights13)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
view(flights)
describe(flights)
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
##                vars      n    mean      sd median trimmed     mad  min  max
## year              1 336776 2013.00    0.00   2013 2013.00    0.00 2013 2013
## month             2 336776    6.55    3.41      7    6.56    4.45    1   12
## day               3 336776   15.71    8.77     16   15.70   11.86    1   31
## dep_time          4 328521 1349.11  488.28   1401 1346.82  634.55    1 2400
## sched_dep_time    5 336776 1344.25  467.34   1359 1341.60  613.80  106 2359
## dep_delay         6 328521   12.64   40.21     -2    3.32    5.93  -43 1301
## arr_time          7 328063 1502.05  533.26   1535 1526.42  619.73    1 2400
## sched_arr_time    8 336776 1536.38  497.46   1556 1550.67  618.24    1 2359
## arr_delay         9 327346    6.90   44.63     -5   -1.03   20.76  -86 1272
## carrier*         10 336776    7.14    4.14      6    7.00    5.93    1   16
## flight           11 336776 1971.92 1632.47   1496 1830.51 1608.62    1 8500
## tailnum*         12 334264 1814.32 1199.75   1798 1778.21 1587.86    1 4043
## origin*          13 336776    1.95    0.82      2    1.94    1.48    1    3
## dest*            14 336776   50.03   28.12     50   49.56   32.62    1  105
## air_time         15 327346  150.69   93.69    129  140.03   75.61   20  695
## distance         16 336776 1039.91  733.23    872  955.27  569.32   17 4983
## hour             17 336776   13.18    4.66     13   13.15    5.93    1   23
## minute           18 336776   26.23   19.30     29   25.64   23.72    0   59
## time_hour        19 336776     NaN      NA     NA     NaN      NA  Inf -Inf
##                range  skew kurtosis   se
## year               0   NaN      NaN 0.00
## month             11 -0.01    -1.19 0.01
## day               30  0.01    -1.19 0.02
## dep_time        2399 -0.02    -1.09 0.85
## sched_dep_time  2253 -0.01    -1.20 0.81
## dep_delay       1344  4.80    43.95 0.07
## arr_time        2399 -0.47    -0.19 0.93
## sched_arr_time  2358 -0.35    -0.38 0.86
## arr_delay       1358  3.72    29.23 0.08
## carrier*          15  0.36    -1.21 0.01
## flight          8499  0.66    -0.85 2.81
## tailnum*        4042  0.17    -1.24 2.08
## origin*            2  0.09    -1.50 0.00
## dest*            104  0.13    -1.08 0.05
## air_time         675  1.07     0.86 0.16
## distance        4966  1.13     1.19 1.26
## hour              22  0.00    -1.21 0.01
## minute            59  0.09    -1.24 0.03
## time_hour       -Inf    NA       NA   NA

#Filter: Hartsfield Jackson Atlanta International Airpot

Atlanta <- filter(flights, carrier %in% c("DL"))

Atlanta
## # A tibble: 48,110 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      554            600        -6      812            837
##  2  2013     1     1      602            610        -8      812            820
##  3  2013     1     1      606            610        -4      837            845
##  4  2013     1     1      615            615         0      833            842
##  5  2013     1     1      653            700        -7      936           1009
##  6  2013     1     1      655            655         0     1021           1030
##  7  2013     1     1      655            700        -5     1037           1045
##  8  2013     1     1      655            700        -5     1002           1020
##  9  2013     1     1      657            700        -3      959           1013
## 10  2013     1     1      658            700        -2      944            939
## # ... with 48,100 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

#Filter: March Flights

MarchATL <- filter(Atlanta, month == 3)

MarchATL
## # A tibble: 4,189 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     3     1      558            600        -2      750            759
##  2  2013     3     1      600            600         0      848            837
##  3  2013     3     1      609            615        -6      759            825
##  4  2013     3     1      611            615        -4      838            842
##  5  2013     3     1      624            630        -6      857            859
##  6  2013     3     1      652            700        -8     1016           1019
##  7  2013     3     1      653            655        -2      955           1029
##  8  2013     3     1      656            700        -4     1018            953
##  9  2013     3     1      656            700        -4     1003           1014
## 10  2013     3     1      657            700        -3      953           1034
## # ... with 4,179 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

#Filter: Putting it all together

AtlSUmStats <- select(MarchATL, dep_time, dep_delay, arr_time, arr_delay)

#Create Scatter Plot

x <- MarchATL$sched_arr_time
y <- MarchATL$arr_time
plot(x, y,
main = "Atlanta Arrivals",
     xlab = "Scheduled Arrival Time",
     ylab = "Arrival Time")