library(quantmod)
## Zorunlu paket yükleniyor: xts
## Zorunlu paket yükleniyor: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Zorunlu paket yükleniyor: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
help("quantmod")
## starting httpd help server ... done
Yaho finance den 2 şirket kodu olarak amazon ve tesla şeçtim
getSymbols("AMZN")
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
##
## This message is shown once per session and may be disabled by setting
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## [1] "AMZN"
dim(AMZN)
## [1] 3817 6
head(AMZN)
## AMZN.Open AMZN.High AMZN.Low AMZN.Close AMZN.Volume AMZN.Adjusted
## 2007-01-03 38.68 39.06 38.05 38.70 12405100 38.70
## 2007-01-04 38.59 39.14 38.26 38.90 6318400 38.90
## 2007-01-05 38.72 38.79 37.60 38.37 6619700 38.37
## 2007-01-08 38.22 38.31 37.17 37.50 6783000 37.50
## 2007-01-09 37.60 38.06 37.34 37.78 5703000 37.78
## 2007-01-10 37.49 37.70 37.07 37.15 6527500 37.15
tail(AMZN)
## AMZN.Open AMZN.High AMZN.Low AMZN.Close AMZN.Volume AMZN.Adjusted
## 2022-02-22 3009.57 3059.65 2969.71 3003.95 3306400 3003.95
## 2022-02-23 3033.01 3035.26 2893.02 2896.54 3212200 2896.54
## 2022-02-24 2796.75 3034.98 2790.00 3027.16 5039300 3027.16
## 2022-02-25 3011.00 3079.80 2984.27 3075.77 3119800 3075.77
## 2022-02-28 3048.50 3089.00 3017.00 3071.26 2878500 3071.26
## 2022-03-01 3054.65 3081.98 2999.54 3022.84 2238900 3022.84
AMZN.OPEN O GÜNKÜ AÇILIŞ
AMZN.HİGH O GÜNKÜEN YÜKSEK
AMZN.LOW O GÜNKÜ EN DÜŞÜK
AMC.CLOSE O GÜNKÜ KAPANIŞ FİYATINI GÖSTERİRİ
chartSeries(AMZN)
getSymbols("MSFT")
## [1] "MSFT"
dim(MSFT)
## [1] 3817 6
head(MSFT)
## MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
## 2007-01-03 29.91 30.25 29.40 29.86 76935100 21.78468
## 2007-01-04 29.70 29.97 29.44 29.81 45774500 21.74821
## 2007-01-05 29.63 29.75 29.45 29.64 44607200 21.62417
## 2007-01-08 29.65 30.10 29.53 29.93 50220200 21.83575
## 2007-01-09 30.00 30.18 29.73 29.96 44636600 21.85764
## 2007-01-10 29.80 29.89 29.43 29.66 55017400 21.63877
tail(MSFT)
## MSFT.Open MSFT.High MSFT.Low MSFT.Close MSFT.Volume MSFT.Adjusted
## 2022-02-22 285.00 291.54 284.50 287.72 41736100 287.72
## 2022-02-23 290.18 291.70 280.10 280.27 37811200 280.27
## 2022-02-24 272.51 295.16 271.52 294.59 56989700 294.59
## 2022-02-25 295.14 297.63 291.65 297.31 32546700 297.31
## 2022-02-28 294.31 299.14 293.00 298.79 34585700 298.79
## 2022-03-01 296.40 299.97 292.15 294.95 31188900 294.95
MSFT.OPEN O GÜNKÜ AÇILIŞ
MSFT.HİGH O GÜNKÜEN YÜKSEK
MSFT.LOW O GÜNKÜ EN DÜŞÜK
MSFT.CLOSE O GÜNKÜ KAPANIŞ FİYATINI GÖSTERİRİ
chartSeries(MSFT, theme="white")
2 FRED verisi yada doviz şeçilecek ve grafikleri çizilecek ben 1 veri 1 de doviz seçtim
getSymbols("TURPROINDMISMEI",src="FRED")
## [1] "TURPROINDMISMEI"
chartSeries(TURPROINDMISMEI)
getFX("USD/JPY")
## [1] "USD/JPY"
chartSeries(USDJPY)
Diğer sorulardaki gibi 2 veri seçmemiz gerekiyor gene
library(WDI)
seçtiğim data daki sitedeki güncellemeler 2015de kaldığı için bitiş tarihi olarak öyle yapdım
df = WDI(indicator='EG.USE.COMM.FO.ZS', country=c('FR','US','DE'), start=1960, end=2015)
head(df)
## iso2c country EG.USE.COMM.FO.ZS year
## 1 DE Germany 78.86255 2015
## 2 DE Germany 79.71053 2014
## 3 DE Germany 81.08827 2013
## 4 DE Germany 80.62522 2012
## 5 DE Germany 80.37021 2011
## 6 DE Germany 79.56035 2010
library(reshape2)
data_genis <- dcast(df, year ~ country, value.var="EG.USE.COMM.FO.ZS")
head(data_genis)
## year France Germany United States
## 1 1960 95.52018 99.02016 95.52567
## 2 1961 95.86188 99.04099 95.56680
## 3 1962 96.43237 99.19267 95.60551
## 4 1963 95.89151 99.30221 95.76932
## 5 1964 96.69443 99.39761 95.80162
## 6 1965 95.82039 99.10231 95.86016
tail(data_genis)
## year France Germany United States
## 51 2010 49.83638 79.56035 84.15059
## 52 2011 48.67699 80.37021 83.71405
## 53 2012 49.01203 80.62522 83.43718
## 54 2013 48.54358 81.08827 82.94051
## 55 2014 46.22592 79.71053 83.08904
## 56 2015 46.48797 78.86255 82.42783
df2 <- WDI(country=c('FR','US','DE'),indicator = "NY.GDP.PCAP.KD", start = 2009,end = 2015,extra = TRUE,cache = NULL,latest = NULL,)
df3 <- WDI(country = "all",indicator = "NY.GDP.PCAP.KD", start = 1960,end = 2020,extra = TRUE,cache = NULL,latest = NULL,)
View(df2)
View(df3)
pf = WDI(indicator='SP.POP.0014.TO.ZS', country=c('KR','TR','JP'), start=1960, end=2020)
head(pf)
## iso2c country SP.POP.0014.TO.ZS year
## 1 JP Japan 12.44856 2020
## 2 JP Japan 12.57303 2019
## 3 JP Japan 12.69685 2018
## 4 JP Japan 12.81439 2017
## 5 JP Japan 12.91436 2016
## 6 JP Japan 12.98938 2015
tail(pf)
## iso2c country SP.POP.0014.TO.ZS year
## 178 TR Turkey 42.50036 1965
## 179 TR Turkey 42.58883 1964
## 180 TR Turkey 42.52218 1963
## 181 TR Turkey 42.32978 1962
## 182 TR Turkey 42.10249 1961
## 183 TR Turkey 41.90168 1960
data_genis2 <- dcast(pf, year ~ country, value.var="SP.POP.0014.TO.ZS")
head(data_genis2)
## year Japan Korea, Rep. Turkey
## 1 1960 30.26390 43.23885 41.90168
## 2 1961 29.40904 43.67100 42.10249
## 3 1962 28.47836 43.78000 42.32978
## 4 1963 27.52080 43.67605 42.52218
## 5 1964 26.63051 43.52409 42.58883
## 6 1965 25.86565 43.39824 42.50036
tail(data_genis2)
## year Japan Korea, Rep. Turkey
## 56 2015 12.98938 13.78172 25.59979
## 57 2016 12.91436 13.49793 25.32427
## 58 2017 12.81439 13.22550 25.00276
## 59 2018 12.69685 12.97332 24.64941
## 60 2019 12.57303 12.74644 24.29082
## 61 2020 12.44856 12.54281 23.94206