Yenilenebilir Enerji Grubu, Inc. (REGI)

library(quantmod)
## Zorunlu paket yükleniyor: xts
## Zorunlu paket yükleniyor: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Zorunlu paket yükleniyor: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
getSymbols("REGI")
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## 
## This message is shown once per session and may be disabled by setting 
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## [1] "REGI"
dim(REGI)
## [1] 2545    6
head(REGI)
##            REGI.Open REGI.High REGI.Low REGI.Close REGI.Volume REGI.Adjusted
## 2012-01-19     10.10     10.29     9.90      10.10     3599000         10.10
## 2012-01-20     10.10     10.10     9.50       9.73      440100          9.73
## 2012-01-23      9.61      9.64     8.65       9.49      278900          9.49
## 2012-01-24      9.47      9.86     9.47       9.85       77800          9.85
## 2012-01-25      9.80     10.00     9.80       9.82       76800          9.82
## 2012-01-26     10.04     10.04     9.77       9.81       28100          9.81
tail(REGI)
##            REGI.Open REGI.High REGI.Low REGI.Close REGI.Volume REGI.Adjusted
## 2022-02-18     34.15     34.71    33.20      33.40      475600         33.40
## 2022-02-22     33.96     34.10    32.54      32.62      659000         32.62
## 2022-02-23     40.11     41.65    38.25      41.11     3357400         41.11
## 2022-02-24     39.80     43.77    39.22      43.06     2102900         43.06
## 2022-02-25     42.47     43.95    42.44      43.81     1603900         43.81
## 2022-02-28     60.94     61.61    60.25      61.50    12802700         61.50
chartSeries(REGI)

chartSeries(REGI, theme="white")

3D Systems Corporation (DDD)

library(quantmod)
getSymbols("DDD")
## [1] "DDD"
dim(DDD)
## [1] 3816    6
head(DDD)
##            DDD.Open DDD.High  DDD.Low DDD.Close DDD.Volume DDD.Adjusted
## 2007-01-03 5.346667 5.346667 4.986667  5.070000     381600     5.070000
## 2007-01-04 5.070000 5.070000 4.793333  4.926667     394800     4.926667
## 2007-01-05 4.893333 4.896667 4.826667  4.833333     329400     4.833333
## 2007-01-08 4.810000 4.856667 4.773333  4.846667     369900     4.846667
## 2007-01-09 4.816667 4.890000 4.760000  4.860000     312600     4.860000
## 2007-01-10 4.836667 5.016667 4.816667  4.986667     177600     4.986667
tail(DDD)
##            DDD.Open DDD.High DDD.Low DDD.Close DDD.Volume DDD.Adjusted
## 2022-02-18    18.23    18.37   17.38     17.59    1439600        17.59
## 2022-02-22    16.95    17.68   16.84     17.09    1454100        17.09
## 2022-02-23    17.23    17.83   16.40     16.44    1581400        16.44
## 2022-02-24    15.50    17.28   15.38     17.26    2487300        17.26
## 2022-02-25    17.25    17.45   16.63     17.44    1313200        17.44
## 2022-02-28    17.38    18.08   17.23     17.82    3418200        17.82
chartSeries(DDD)

chartSeries(DDD, theme="white")

Eczacılık Ürünleri (Reçetesiz İlaçlar) Harcama Fiyat Endeksi

getSymbols("PHPRDRPIHCSA",src="FRED")
## [1] "PHPRDRPIHCSA"
chartSeries(PHPRDRPIHCSA,theme="white") 

getFX("USD/TRY",from="2020-01-01")
## Warning in doTryCatch(return(expr), name, parentenv, handler): Oanda only
## provides historical data for the past 180 days. Symbol: USD/TRY
## [1] "USD/TRY"
chartSeries(USDTRY,theme="white")

Sağlık Harcamaları Fiyat Endeksi, MEPS Hesap

getSymbols("HLTHSCPIMEPS",src="FRED")
## [1] "HLTHSCPIMEPS"
chartSeries(HLTHSCPIMEPS,theme="white") 

getFX("USD/TRY",from="2020-01-01")
## Warning in doTryCatch(return(expr), name, parentenv, handler): Oanda only
## provides historical data for the past 180 days. Symbol: USD/TRY
## [1] "USD/TRY"
chartSeries(USDTRY,theme="white")

Ölüm oranı, 5 yaş altı (1.000 canlı doğumda)

library(WDI)
dk = WDI(indicator='SH.DYN.MORT', country=c('MX','TR','BR'), start=2010, end=2019)
head(dk)
##   iso2c country SH.DYN.MORT year
## 1    BR  Brazil        14.9 2019
## 2    BR  Brazil        15.2 2018
## 3    BR  Brazil        15.4 2017
## 4    BR  Brazil        16.7 2016
## 5    BR  Brazil        15.9 2015
## 6    BR  Brazil        16.3 2014
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
## 
##     first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dk <- dk %>%
  rename(ulkekodu = 1,
         ulke = 2,
         ölüm = 3,
         sene = 4)
library(reshape2)
data_genis <- dcast(dk, sene ~ ulke, value.var="ölüm")
head(data_genis)
##   sene Brazil Mexico Turkey
## 1 2010   18.6   19.2   18.1
## 2 2011   17.9   18.5   16.9
## 3 2012   17.2   17.9   15.8
## 4 2013   16.7   17.3   14.7
## 5 2014   16.3   16.8   13.8
## 6 2015   15.9   16.2   13.0
tsveri <- ts(data_genis, start=2010, frequency=1)
head(tsveri)
##      sene Brazil Mexico Turkey
## [1,] 2010   18.6   19.2   18.1
## [2,] 2011   17.9   18.5   16.9
## [3,] 2012   17.2   17.9   15.8
## [4,] 2013   16.7   17.3   14.7
## [5,] 2014   16.3   16.8   13.8
## [6,] 2015   15.9   16.2   13.0
library(ggplot2)
library(ggfortify)
autoplot(tsveri[,"Turkey"]) +
  ggtitle("Türkiye'nin ölüm oranı") +
  xlab("Sene") +
  ylab("")

plot(tsveri[,2:4])

data_uzun <- melt(data_genis, id.vars = "sene") 
ggplot(data_uzun,                           
       aes(x = sene,
           y = value,
           col = variable)) +
  geom_line()

Mal ve hizmet ihracatı (GSYİH’nın yüzdesi)

library(WDI)
dk = WDI(indicator='NE.EXP.GNFS.ZS', country=c('MX','TR','BR'), start=2010, end=2019)
head(dk)
##   iso2c country NE.EXP.GNFS.ZS year
## 1    BR  Brazil       14.10536 2019
## 2    BR  Brazil       14.63500 2018
## 3    BR  Brazil       12.51897 2017
## 4    BR  Brazil       12.46668 2016
## 5    BR  Brazil       12.90019 2015
## 6    BR  Brazil       11.01194 2014
library(dplyr)
dk <- dk %>%
  rename(ulkekodu = 1,
         ulke = 2,
         malvehızmet = 3,
         sene = 4)
library(reshape2)
data_genis <- dcast(dk, sene ~ ulke, value.var="malvehızmet")
head(data_genis)
##   sene   Brazil   Mexico   Turkey
## 1 2010 10.86558 29.69766 21.19413
## 2 2011 11.58251 31.03671 22.99370
## 3 2012 11.87754 32.26557 24.36088
## 4 2013 11.74223 31.30565 23.79301
## 5 2014 11.01194 31.87344 25.20554
## 6 2015 12.90019 34.52489 24.53128
tsveri <- ts(data_genis, start=2010, frequency=1)
head(tsveri)
##      sene   Brazil   Mexico   Turkey
## [1,] 2010 10.86558 29.69766 21.19413
## [2,] 2011 11.58251 31.03671 22.99370
## [3,] 2012 11.87754 32.26557 24.36088
## [4,] 2013 11.74223 31.30565 23.79301
## [5,] 2014 11.01194 31.87344 25.20554
## [6,] 2015 12.90019 34.52489 24.53128
library(ggplot2)
library(ggfortify)
autoplot(tsveri[,"Turkey"]) +
  ggtitle("Türkiye'nin mal ve hizmet  oranı") +
  xlab("Sene") +
  ylab("")

plot(tsveri[,2:4])

data_uzun <- melt(data_genis, id.vars = "sene") 
ggplot(data_uzun,                           
       aes(x = sene,
           y = value,
           col = variable)) +
  geom_line()