I will be using a multinomial outcome variable about the time of emergency department visit. There are four times in the data: early morning (midnight-6 am), morning (6 am - noon), afternoon (noon - 6 pm), evening (6 pm - midnight). These are coded as early morning is assigned 1, morning assigned 2, afternoon assigned 3, and evening assigned 4. I will be using the variables age, sex, and race to see if the time of emergency department visit varies for these groups.
library(car)
## Loading required package: carData
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
library(questionr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.6 ✓ stringr 1.4.0
## ✓ tidyr 1.2.0 ✓ forcats 0.5.1
## ✓ readr 2.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x dplyr::recode() masks car::recode()
## x purrr::some() masks car::some()
## x tidyr::unpack() masks Matrix::unpack()
library(gtsummary)
library(VGAM)
## Loading required package: stats4
## Loading required package: splines
##
## Attaching package: 'VGAM'
## The following object is masked from 'package:tidyr':
##
## fill
## The following object is masked from 'package:survey':
##
## calibrate
## The following object is masked from 'package:car':
##
## logit
library(svyVGAM)
load("~/Downloads/Stats2-Dem7283 /Stats2/ICPSR_34565-2/DS0001/34565-0001-Data.rda")
dawn2011 <- da34565.0001
#age
dawn2011$age <- Recode(dawn2011$AGECAT, recodes= "-8:NA")
dawn2011$race <- Recode(dawn2011$RACE, recodes= "-8:NA")
dawn2011$sex <- Recode(dawn2011$SEX, recodes= "-8:NA")
dawn2011 <- dawn2011 %>%
filter(is.na(age)==F,
is.na(race)==F,
is.na(sex)==F)
modeldawn <- dawn2011 %>%
select(age, race, sex, DAYPART)
library(srvyr)
##
## Attaching package: 'srvyr'
## The following object is masked from 'package:stats':
##
## filter
options(scipen = 999)
options(survey.lonely.psu = "adjust")
des <- svydesign(ids = ~PSU,
strata = ~STRATA,
weights = ~CASEWGT,
nest = TRUE,
data=dawn2011)
library(svyVGAM)
mfit <- svy_vglm(DAYPART~age+race+sex,
family=multinomial(refLevel = 1),
design=des)
mfit %>%
tbl_regression()
## ! `broom::tidy()` failed to tidy the model.
## x No tidy method for objects of class svy_vglm
## ✓ `tidy_parameters()` used instead.
## ℹ Add `tidy_fun = broom.helpers::tidy_parameters` to quiet these messages.
## x Unable to identify the list of variables.
##
## This is usually due to an error calling `stats::model.frame(x)`or `stats::model.matrix(x)`.
## It could be the case if that type of model does not implement these methods.
## Rarely, this error may occur if the model object was created within
## a functional programming framework (e.g. using `lappy()`, `purrr::map()`, etc.).
| Characteristic | Beta | 95% CI1 | p-value |
|---|---|---|---|
| (Intercept):1 | 0.64 | 0.42, 0.86 | <0.001 |
| (Intercept):2 | 1.2 | 1.0, 1.3 | <0.001 |
| (Intercept):3 | 1.5 | 1.4, 1.7 | <0.001 |
| age(02) 6 TO 11:(2):1 | -0.16 | -0.64, 0.32 | 0.5 |
| age(02) 6 TO 11:(2):2 | -0.08 | -0.53, 0.36 | 0.7 |
| age(02) 6 TO 11:(2):3 | -0.39 | -0.85, 0.07 | 0.094 |
| age(03) 12 TO 17:(3):1 | -0.73 | -1.0, -0.50 | <0.001 |
| age(03) 12 TO 17:(3):2 | -0.76 | -1.0, -0.52 | <0.001 |
| age(03) 12 TO 17:(3):3 | -0.88 | -1.1, -0.64 | <0.001 |
| age(04) 18 TO 20:(4):1 | -1.3 | -1.5, -1.0 | <0.001 |
| age(04) 18 TO 20:(4):2 | -1.3 | -1.5, -1.1 | <0.001 |
| age(04) 18 TO 20:(4):3 | -1.4 | -1.6, -1.2 | <0.001 |
| age(05) 21 TO 24:(5):1 | -0.66 | -0.91, -0.41 | <0.001 |
| age(05) 21 TO 24:(5):2 | -0.57 | -0.79, -0.35 | <0.001 |
| age(05) 21 TO 24:(5):3 | -0.88 | -1.1, -0.65 | <0.001 |
| age(06) 25 TO 29:(6):1 | -0.54 | -0.74, -0.34 | <0.001 |
| age(06) 25 TO 29:(6):2 | -0.61 | -0.83, -0.39 | <0.001 |
| age(06) 25 TO 29:(6):3 | -0.90 | -1.1, -0.73 | <0.001 |
| age(07) 30 TO 34:(7):1 | -0.33 | -0.66, -0.01 | 0.046 |
| age(07) 30 TO 34:(7):2 | -0.51 | -0.69, -0.34 | <0.001 |
| age(07) 30 TO 34:(7):3 | -0.63 | -0.92, -0.33 | <0.001 |
| age(08) 35 TO 44:(8):1 | -0.36 | -0.61, -0.11 | 0.005 |
| age(08) 35 TO 44:(8):2 | -0.45 | -0.71, -0.20 | <0.001 |
| age(08) 35 TO 44:(8):3 | -0.79 | -1.0, -0.56 | <0.001 |
| age(09) 45 TO 54:(9):1 | -0.27 | -0.43, -0.11 | <0.001 |
| age(09) 45 TO 54:(9):2 | -0.43 | -0.64, -0.21 | <0.001 |
| age(09) 45 TO 54:(9):3 | -0.87 | -1.0, -0.71 | <0.001 |
| age(10) 55 TO 64:(10):1 | 0.01 | -0.16, 0.18 | >0.9 |
| age(10) 55 TO 64:(10):2 | -0.27 | -0.47, -0.07 | 0.008 |
| age(10) 55 TO 64:(10):3 | -0.74 | -0.87, -0.62 | <0.001 |
| age(11) AGE 65 OR OLDER:(11):1 | 0.20 | -0.08, 0.47 | 0.2 |
| age(11) AGE 65 OR OLDER:(11):2 | -0.10 | -0.32, 0.12 | 0.4 |
| age(11) AGE 65 OR OLDER:(11):3 | -0.79 | -1.0, -0.59 | <0.001 |
| race(2) BLACK OR AFRICAN AMERICAN ONLY:(2):1 | -0.16 | -0.23, -0.08 | <0.001 |
| race(2) BLACK OR AFRICAN AMERICAN ONLY:(2):2 | -0.34 | -0.41, -0.27 | <0.001 |
| race(2) BLACK OR AFRICAN AMERICAN ONLY:(2):3 | -0.40 | -0.49, -0.31 | <0.001 |
| race(3) ANY HISPANIC OR LATINO:(3):1 | -0.17 | -0.25, -0.09 | <0.001 |
| race(3) ANY HISPANIC OR LATINO:(3):2 | -0.18 | -0.30, -0.06 | 0.004 |
| race(3) ANY HISPANIC OR LATINO:(3):3 | -0.16 | -0.27, -0.05 | 0.004 |
| race(4) ALL OTHER RACES:(4):1 | -0.26 | -0.48, -0.05 | 0.017 |
| race(4) ALL OTHER RACES:(4):2 | -0.45 | -0.78, -0.12 | 0.007 |
| race(4) ALL OTHER RACES:(4):3 | -0.38 | -0.62, -0.14 | 0.002 |
| sex(2) FEMALE:(2):1 | 0.11 | 0.04, 0.19 | 0.004 |
| sex(2) FEMALE:(2):2 | 0.21 | 0.14, 0.28 | <0.001 |
| sex(2) FEMALE:(2):3 | 0.13 | 0.06, 0.20 | <0.001 |
|
1
CI = Confidence Interval
|
|||
-2*mfit$fit@criterion$loglikelihood + 2*length(mfit$coef)
## [1] 12543373
The reference level is early morning so all the results are compared to that time of day.
Females are more likely to have early morning visits than males.
Black/African Americans, Hispanics, and other races are more likely to have early morning visits than non-Hispanic whites.