So many ways to visualize data

Treemaps

Create a treemap which explores categories of views

Load the packages and the data from flowingdata.com website

The data is a scv file that compares number of views, number of comments to various categories of Yau’s visualization creations

library(treemap)
## Warning: package 'treemap' was built under R version 4.0.5
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'forcats' was built under R version 4.0.5
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(RColorBrewer)
## Warning: package 'RColorBrewer' was built under R version 4.0.3
data <- read.csv("http://datasets.flowingdata.com/post-data.txt")
head(data)
##     id  views comments               category
## 1 5019 148896       28 Artistic Visualization
## 2 1416  81374       26          Visualization
## 3 1416  81374       26               Featured
## 4 3485  80819       37               Featured
## 5 3485  80819       37                Mapping
## 6 3485  80819       37           Data Sources

Heatmaps

Load the nba data from Yau’s website

This data appears to contain data about 2008 NBA player stats.

nba <- read.csv("http://datasets.flowingdata.com/ppg2008.csv")
nba
##                  Name  G  MIN  PTS  FGM  FGA   FGP FTM  FTA   FTP X3PM X3PA
## 1        Dwyane Wade  79 38.6 30.2 10.8 22.0 0.491 7.5  9.8 0.765  1.1  3.5
## 2       LeBron James  81 37.7 28.4  9.7 19.9 0.489 7.3  9.4 0.780  1.6  4.7
## 3        Kobe Bryant  82 36.2 26.8  9.8 20.9 0.467 5.9  6.9 0.856  1.4  4.1
## 4      Dirk Nowitzki  81 37.7 25.9  9.6 20.0 0.479 6.0  6.7 0.890  0.8  2.1
## 5      Danny Granger  67 36.2 25.8  8.5 19.1 0.447 6.0  6.9 0.878  2.7  6.7
## 6       Kevin Durant  74 39.0 25.3  8.9 18.8 0.476 6.1  7.1 0.863  1.3  3.1
## 7       Kevin Martin  51 38.2 24.6  6.7 15.9 0.420 9.0 10.3 0.867  2.3  5.4
## 8       Al Jefferson  50 36.6 23.1  9.7 19.5 0.497 3.7  5.0 0.738  0.0  0.1
## 9         Chris Paul  78 38.5 22.8  8.1 16.1 0.503 5.8  6.7 0.868  0.8  2.3
## 10   Carmelo Anthony  66 34.5 22.8  8.1 18.3 0.443 5.6  7.1 0.793  1.0  2.6
## 11        Chris Bosh  77 38.1 22.7  8.0 16.4 0.487 6.5  8.0 0.817  0.2  0.6
## 12       Brandon Roy  78 37.2 22.6  8.1 16.9 0.480 5.3  6.5 0.824  1.1  2.8
## 13    Antawn Jamison  81 38.2 22.2  8.3 17.8 0.468 4.2  5.6 0.754  1.4  3.9
## 14       Tony Parker  72 34.1 22.0  8.9 17.5 0.506 3.9  5.0 0.782  0.3  0.9
## 15  Amare Stoudemire  53 36.8 21.4  7.6 14.1 0.539 6.1  7.3 0.835  0.1  0.1
## 16       Joe Johnson  79 39.5 21.4  7.8 18.0 0.437 3.8  4.6 0.826  1.9  5.2
## 17      Devin Harris  69 36.1 21.3  6.6 15.1 0.438 7.2  8.8 0.820  0.9  3.2
## 18      Michael Redd  33 36.4 21.2  7.5 16.6 0.455 4.0  4.9 0.814  2.1  5.8
## 19        David West  76 39.3 21.0  8.0 17.0 0.472 4.8  5.5 0.884  0.1  0.3
## 20  Zachary Randolph  50 35.1 20.8  8.3 17.5 0.475 3.6  4.9 0.734  0.6  1.9
## 21      Caron Butler  67 38.6 20.8  7.3 16.2 0.453 5.1  6.0 0.858  1.0  3.1
## 22      Vince Carter  80 36.8 20.8  7.4 16.8 0.437 4.2  5.1 0.817  1.9  4.9
## 23   Stephen Jackson  59 39.7 20.7  7.0 16.9 0.414 5.0  6.0 0.826  1.7  5.2
## 24        Ben Gordon  82 36.6 20.7  7.3 16.0 0.455 4.0  4.7 0.864  2.1  5.1
## 25     Dwight Howard  79 35.7 20.6  7.1 12.4 0.572 6.4 10.7 0.594  0.0  0.0
## 26       Paul Pierce  81 37.4 20.5  6.7 14.6 0.457 5.7  6.8 0.830  1.5  3.8
## 27     Al Harrington  73 34.9 20.1  7.3 16.6 0.439 3.2  4.0 0.793  2.3  6.4
## 28    Jamal Crawford  65 38.1 19.7  6.4 15.7 0.410 4.6  5.3 0.872  2.2  6.1
## 29          Yao Ming  77 33.6 19.7  7.4 13.4 0.548 4.9  5.7 0.866  0.0  0.0
## 30 Richard Jefferson  82 35.9 19.6  6.5 14.9 0.439 5.1  6.3 0.805  1.4  3.6
## 31       Jason Terry  74 33.6 19.6  7.3 15.8 0.463 2.7  3.0 0.880  2.3  6.2
## 32    Deron Williams  68 36.9 19.4  6.8 14.5 0.471 4.8  5.6 0.849  1.0  3.3
## 33        Tim Duncan  75 33.7 19.3  7.4 14.8 0.504 4.5  6.4 0.692  0.0  0.0
## 34       Monta Ellis  25 35.6 19.0  7.8 17.2 0.451 3.1  3.8 0.830  0.3  1.0
## 35          Rudy Gay  79 37.3 18.9  7.2 16.0 0.453 3.3  4.4 0.767  1.1  3.1
## 36         Pau Gasol  81 37.1 18.9  7.3 12.9 0.567 4.2  5.4 0.781  0.0  0.0
## 37    Andre Iguodala  82 39.8 18.8  6.6 14.0 0.473 4.6  6.4 0.724  1.0  3.2
## 38    Corey Maggette  51 31.1 18.6  5.7 12.4 0.461 6.7  8.1 0.824  0.5  1.9
## 39         O.J. Mayo  82 38.0 18.5  6.9 15.6 0.438 3.0  3.4 0.879  1.8  4.6
## 40      John Salmons  79 37.5 18.3  6.5 13.8 0.472 3.6  4.4 0.830  1.6  3.8
## 41  Richard Hamilton  67 34.0 18.3  7.0 15.6 0.447 3.3  3.9 0.848  1.0  2.8
## 42         Ray Allen  79 36.3 18.2  6.3 13.2 0.480 3.0  3.2 0.952  2.5  6.2
## 43 LaMarcus Aldridge  81 37.1 18.1  7.4 15.3 0.484 3.2  4.1 0.781  0.1  0.3
## 44       Josh Howard  52 31.9 18.0  6.8 15.1 0.451 3.3  4.2 0.782  1.1  3.2
## 45  Maurice Williams  81 35.0 17.8  6.5 13.9 0.467 2.6  2.8 0.912  2.3  5.2
## 46  Shaquille O'neal  75 30.1 17.8  6.8 11.2 0.609 4.1  6.9 0.595  0.0  0.0
## 47     Rashard Lewis  79 36.2 17.7  6.1 13.8 0.439 2.8  3.4 0.836  2.8  7.0
## 48  Chauncey Billups  79 35.3 17.7  5.2 12.4 0.418 5.3  5.8 0.913  2.1  5.0
## 49     Allen Iverson  57 36.7 17.5  6.1 14.6 0.417 4.8  6.1 0.781  0.5  1.7
## 50     Nate Robinson  74 29.9 17.2  6.1 13.9 0.437 3.4  4.0 0.841  1.7  5.2
##     X3PP ORB DRB  TRB  AST STL BLK  TO  PF
## 1  0.317 1.1 3.9  5.0  7.5 2.2 1.3 3.4 2.3
## 2  0.344 1.3 6.3  7.6  7.2 1.7 1.1 3.0 1.7
## 3  0.351 1.1 4.1  5.2  4.9 1.5 0.5 2.6 2.3
## 4  0.359 1.1 7.3  8.4  2.4 0.8 0.8 1.9 2.2
## 5  0.404 0.7 4.4  5.1  2.7 1.0 1.4 2.5 3.1
## 6  0.422 1.0 5.5  6.5  2.8 1.3 0.7 3.0 1.8
## 7  0.415 0.6 3.0  3.6  2.7 1.2 0.2 2.9 2.3
## 8  0.000 3.4 7.5 11.0  1.6 0.8 1.7 1.8 2.8
## 9  0.364 0.9 4.7  5.5 11.0 2.8 0.1 3.0 2.7
## 10 0.371 1.6 5.2  6.8  3.4 1.1 0.4 3.0 3.0
## 11 0.245 2.8 7.2 10.0  2.5 0.9 1.0 2.3 2.5
## 12 0.377 1.3 3.4  4.7  5.1 1.1 0.3 1.9 1.6
## 13 0.351 2.4 6.5  8.9  1.9 1.2 0.3 1.5 2.7
## 14 0.292 0.4 2.7  3.1  6.9 0.9 0.1 2.6 1.5
## 15 0.429 2.2 5.9  8.1  2.0 0.9 1.1 2.8 3.1
## 16 0.360 0.8 3.6  4.4  5.8 1.1 0.2 2.5 2.2
## 17 0.291 0.4 2.9  3.3  6.9 1.7 0.2 3.1 2.4
## 18 0.366 0.7 2.5  3.2  2.7 1.1 0.1 1.6 1.4
## 19 0.240 2.1 6.4  8.5  2.3 0.6 0.9 2.1 2.7
## 20 0.330 3.1 6.9 10.1  2.1 0.9 0.3 2.3 2.7
## 21 0.310 1.8 4.4  6.2  4.3 1.6 0.3 3.1 2.5
## 22 0.385 0.9 4.2  5.1  4.7 1.0 0.5 2.1 2.9
## 23 0.338 1.2 3.9  5.1  6.5 1.5 0.5 3.9 2.6
## 24 0.410 0.6 2.8  3.5  3.4 0.9 0.3 2.4 2.2
## 25 0.000 4.3 9.6 13.8  1.4 1.0 2.9 3.0 3.4
## 26 0.391 0.7 5.0  5.6  3.6 1.0 0.3 2.8 2.7
## 27 0.364 1.4 4.9  6.2  1.4 1.2 0.3 2.2 3.1
## 28 0.360 0.4 2.6  3.0  4.4 0.9 0.2 2.3 1.4
## 29 1.000 2.6 7.2  9.9  1.8 0.4 1.9 3.0 3.3
## 30 0.397 0.7 3.9  4.6  2.4 0.8 0.2 2.0 3.1
## 31 0.366 0.5 1.9  2.4  3.4 1.3 0.3 1.6 1.9
## 32 0.310 0.4 2.5  2.9 10.7 1.1 0.3 3.4 2.0
## 33 0.000 2.7 8.0 10.7  3.5 0.5 1.7 2.2 2.3
## 34 0.308 0.6 3.8  4.3  3.7 1.6 0.3 2.7 2.7
## 35 0.351 1.4 4.2  5.5  1.7 1.2 0.7 2.6 2.8
## 36 0.500 3.2 6.4  9.6  3.5 0.6 1.0 1.9 2.1
## 37 0.307 1.1 4.6  5.7  5.3 1.6 0.4 2.7 1.9
## 38 0.253 1.0 4.6  5.5  1.8 0.9 0.2 2.4 3.8
## 39 0.384 0.7 3.1  3.8  3.2 1.1 0.2 2.8 2.5
## 40 0.417 0.7 3.5  4.2  3.2 1.1 0.3 2.1 2.3
## 41 0.368 0.7 2.4  3.1  4.4 0.6 0.1 2.0 2.6
## 42 0.409 0.8 2.7  3.5  2.8 0.9 0.2 1.7 2.0
## 43 0.250 2.9 4.6  7.5  1.9 1.0 1.0 1.5 2.6
## 44 0.345 1.1 3.9  5.1  1.6 1.1 0.6 1.7 2.6
## 45 0.436 0.6 2.9  3.4  4.1 0.9 0.1 2.2 2.7
## 46 0.000 2.5 5.9  8.4  1.7 0.7 1.4 2.2 3.4
## 47 0.397 1.2 4.6  5.7  2.6 1.0 0.6 2.0 2.5
## 48 0.408 0.4 2.6  3.0  6.4 1.2 0.2 2.2 2.0
## 49 0.283 0.5 2.5  3.0  5.0 1.5 0.1 2.6 1.5
## 50 0.325 1.3 2.6  3.9  4.1 1.3 0.1 1.9 2.8

Create a cool-color heatmap of the nba 2008 data

nba <- nba[order(nba$PTS),]  # that does , mean?
row.names(nba) <- nba$Name
nba <- nba[,2:19]
nba_matrix <- data.matrix(nba)
nba_heatmap <- heatmap(nba_matrix, Rowv= NA, Colv = NA,
                       col = cm.colors(256), scale="column", margins = c(5,10),
                       xlab = "NBA Player Stats",
                       ylab = "NBA Player",
                       main = "NBA Player Stats in 2008")

Change the heatmap colors to heat colors

nba_heatmap <- heatmap(nba_matrix, Rowv= NA, Colv = NA,
                       col = heat.colors(256), scale="column", 
                       margins = c(5,10),
                       xlab = "NBA Player Stats",
                       ylab = "NBA Player",
                       main = "NBA Player Stats in 2008")

Use the viridis colors

Try using direction = -1 and then try removing it; you will see that it reverses the heatmap levels.

library(viridis)
## Warning: package 'viridis' was built under R version 4.0.5
## Loading required package: viridisLite
## Warning: package 'viridisLite' was built under R version 4.0.5
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv = NA, 
                       col = viridis(25, direction = -1), 
                       scale="column", margins=c(5,10),
                        xlab = "NBA Player Stats",
                       ylab = "NBA Players",
                       main = "NBA Player Stats in 2008")

Treemap again

library(treemap)
library(tidyverse)
library(RColorBrewer)
data <- read.csv("http://datasets.flowingdata.com/post-data.txt")
head(data)
##     id  views comments               category
## 1 5019 148896       28 Artistic Visualization
## 2 1416  81374       26          Visualization
## 3 1416  81374       26               Featured
## 4 3485  80819       37               Featured
## 5 3485  80819       37                Mapping
## 6 3485  80819       37           Data Sources

Code for creating a treemap

treemap(data, index = "category", vSize = "views", vColor = "comments", type ="value", palette = "RdYlBu" )

**** I cannot run the treemap function in the chunk. But it worked in other console. I don’t know why.

treemap(data,index ="category", vSize = "views", vColor ="comments", type = "manual", palette= "RdYlBu")

Use the dataset NYCFlights13 to create a heatmap that explores Late Arrivals

# install.packages("nycflights13")
library(nycflights13)
## Warning: package 'nycflights13' was built under R version 4.0.5
library(RColorBrewer)
flights <- flights
view(flights)     
summary(flights)
##       year          month             day           dep_time    sched_dep_time
##  Min.   :2013   Min.   : 1.000   Min.   : 1.00   Min.   :   1   Min.   : 106  
##  1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 907   1st Qu.: 906  
##  Median :2013   Median : 7.000   Median :16.00   Median :1401   Median :1359  
##  Mean   :2013   Mean   : 6.549   Mean   :15.71   Mean   :1349   Mean   :1344  
##  3rd Qu.:2013   3rd Qu.:10.000   3rd Qu.:23.00   3rd Qu.:1744   3rd Qu.:1729  
##  Max.   :2013   Max.   :12.000   Max.   :31.00   Max.   :2400   Max.   :2359  
##                                                  NA's   :8255                 
##    dep_delay          arr_time    sched_arr_time   arr_delay       
##  Min.   : -43.00   Min.   :   1   Min.   :   1   Min.   : -86.000  
##  1st Qu.:  -5.00   1st Qu.:1104   1st Qu.:1124   1st Qu.: -17.000  
##  Median :  -2.00   Median :1535   Median :1556   Median :  -5.000  
##  Mean   :  12.64   Mean   :1502   Mean   :1536   Mean   :   6.895  
##  3rd Qu.:  11.00   3rd Qu.:1940   3rd Qu.:1945   3rd Qu.:  14.000  
##  Max.   :1301.00   Max.   :2400   Max.   :2359   Max.   :1272.000  
##  NA's   :8255      NA's   :8713                  NA's   :9430      
##    carrier              flight       tailnum             origin         
##  Length:336776      Min.   :   1   Length:336776      Length:336776     
##  Class :character   1st Qu.: 553   Class :character   Class :character  
##  Mode  :character   Median :1496   Mode  :character   Mode  :character  
##                     Mean   :1972                                        
##                     3rd Qu.:3465                                        
##                     Max.   :8500                                        
##                                                                         
##      dest              air_time        distance         hour      
##  Length:336776      Min.   : 20.0   Min.   :  17   Min.   : 1.00  
##  Class :character   1st Qu.: 82.0   1st Qu.: 502   1st Qu.: 9.00  
##  Mode  :character   Median :129.0   Median : 872   Median :13.00  
##                     Mean   :150.7   Mean   :1040   Mean   :13.18  
##                     3rd Qu.:192.0   3rd Qu.:1389   3rd Qu.:17.00  
##                     Max.   :695.0   Max.   :4983   Max.   :23.00  
##                     NA's   :9430                                  
##      minute        time_hour                  
##  Min.   : 0.00   Min.   :2013-01-01 05:00:00  
##  1st Qu.: 8.00   1st Qu.:2013-04-04 13:00:00  
##  Median :29.00   Median :2013-07-03 10:00:00  
##  Mean   :26.23   Mean   :2013-07-03 05:22:54  
##  3rd Qu.:44.00   3rd Qu.:2013-10-01 07:00:00  
##  Max.   :59.00   Max.   :2013-12-31 23:00:00  
## 
# nycflights13::flights
by_tailnum <- group_by(flights, tailnum)
delay <- summarise(by_tailnum,
                   count = n(),
                   dist = mean(distance, na.rm = TRUE),
                   delay = mean(arr_delay, na.rm = TRUE))
delay <- filter(delay, count > 20, dist < 2000)

# Interestingly, the average delay is only slightly related to the average distance flown by a plane.

ggplot(delay, aes(dist, delay)) +
  geom_point(aes(size = count), alpha = 1/2) +
  geom_smooth() +
  scale_size_area()
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
## Warning: Removed 1 rows containing missing values (geom_point).

## Use RColorBrewer to change the palette to RdYlBu

Streamgraphs

Load devtools and libraries to create the following streamgraphs

devtools::install_github("hrbrmstr/streamgraph")
## Skipping install of 'streamgraph' from a github remote, the SHA1 (76f7173e) has not changed since last install.
##   Use `force = TRUE` to force installation
#install.packages("babynames")

#devtools::session_info()
library(dplyr)
library(streamgraph)
library(babynames)
## Warning: package 'babynames' was built under R version 4.0.5

Here is a trivial streamgraph using simulated names over time

# Create data:
year=rep(seq(1990,2016) , each = 10)    # repeat each year from 1990 to 2016 10 times
name=rep(letters[1:10] , 27)            # repeat the first 10 alphabet letters 27 times
value=sample(seq(0, 1, 0.0001) , length(year))   # sample 270 values from 0.0000 to 1.0000
data=data.frame(year, name, value)

# Basic stream graph: just give the 3 arguments

streamgraph(data, key="name", value="value", date="year")

Now look at the babynames dataset

ncol(babynames)
## [1] 5
head(babynames)
## # A tibble: 6 x 5
##    year sex   name          n   prop
##   <dbl> <chr> <chr>     <int>  <dbl>
## 1  1880 F     Mary       7065 0.0724
## 2  1880 F     Anna       2604 0.0267
## 3  1880 F     Emma       2003 0.0205
## 4  1880 F     Elizabeth  1939 0.0199
## 5  1880 F     Minnie     1746 0.0179
## 6  1880 F     Margaret   1578 0.0162
str(babynames)
## tibble [1,924,665 x 5] (S3: tbl_df/tbl/data.frame)
##  $ year: num [1:1924665] 1880 1880 1880 1880 1880 1880 1880 1880 1880 1880 ...
##  $ sex : chr [1:1924665] "F" "F" "F" "F" ...
##  $ name: chr [1:1924665] "Mary" "Anna" "Emma" "Elizabeth" ...
##  $ n   : int [1:1924665] 7065 2604 2003 1939 1746 1578 1472 1414 1320 1288 ...
##  $ prop: num [1:1924665] 0.0724 0.0267 0.0205 0.0199 0.0179 ...

Babynames streamgraph

Mouse over the colors and years to look at the pattern of various names

babynames %>%
  filter(grepl(pattern = "^Ra" , name))  %>% # grepl = grep logical
  group_by(year, name) %>%     # row number 27,095 decrease to 24,620. Why?
  tally(n)   %>%   # tally() = df %>% summarise(n = n())
  streamgraph("name","n","year")

Alluvials

Load the alluvial package

# install.packages("alluvial")
library(alluvial)
## Warning: package 'alluvial' was built under R version 4.0.5

Refugees is a prebuilt dataset in the alluvial package

If you want to save the prebuilt dataset to your folder, use the write_csv function

# install.packages("ggalluvial")
library(ggalluvial)
## Warning: package 'ggalluvial' was built under R version 4.0.5
Refugee <- Refugees
write_csv(Refugees, "refugees.csv")

Create the alluvial to show UNHCR-recognised refugess in the top 10 countries from 2003-2013

For help understanding the package ggalluvial, in a chunk, use the syntax:

?ggalluvial
## starting httpd help server ... done
Refugees <- Refugees
library(ggalluvial)
ggalluv <- ggplot(Refugees, aes(x = year, y = refugees, alluvium = country)) +
  theme_bw() +
  geom_alluvium(aes(fill = country), 
                width = .1, alpha = .75, decreasing = F, curve_type = "quintic") +   # I tried the different curve type but the 'sigmoid' looks better.
  scale_fill_brewer(palette = "Spectral") +
  scale_x_continuous(lim = c(2002,2013)) +
  ggtitle("UNHCR-Recognised Refugees\nTop 10 Countries (2003-2013)\n") +
  ylab("Number of Refugees")
ggalluv

Create multiple plots by country using facet_wrap()

Code from “https://corybrunson.github.io/ggalluvial/reference/geom_alluvium.html

ggplot(transform(alluvial::Refugees, id = 1),
       aes(y = refugees, x = year, alluvium = id)) +
  facet_wrap(~ country) +
  geom_alluvium(aes(fill = country), alpha = .75) +
  scale_x_continuous(breaks = seq(2004, 2012, 4))
## Warning in f(...): Some differentiation aesthetics vary within alluvia, and will be diffused by their first value.
## Consider using `geom_flow()` instead.