##------------------- Telcom ----------------##

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.6     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## Warning: package 'stringr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
library(psych)
## Warning: package 'psych' was built under R version 4.1.2
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
telcom = read_excel("C:\\Users\\user\\Downloads\\activity1_data.xlsx")
telcom 
## # A tibble: 71 x 8
##    MONTH               PCOMP   TEL   GLO   PHP PHIVTA   PHMS  TBILL
##    <dttm>              <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>
##  1 2022-12-03 00:00:00 1442.  970    860 55505 238316 514214 0.0625
##  2 2022-11-03 00:00:00 1314.  755    720 55725 170921 470740 0.0644
##  3 2022-10-03 00:00:00 1399.  765    790 55330 167573 452675 0.0566
##  4 2022-09-03 00:00:00 1297.  640    695 54880 140652 445781 0.0533
##  5 2022-08-03 00:00:00 1193.  535    620 55025 162076 443137 0.0523
##  6 2022-07-03 00:00:00 1240.  530    665 54730 166045 440885 0.0524
##  7 2022-06-03 00:00:00 1223.  565    605 53480 130874 445392 0.0558
##  8 2022-05-03 00:00:00 1074.  432.   610 53225 109803 447526 0.0657
##  9 2022-04-03 00:00:00 1068.  380    550 52533 123576 442370 0.0735
## 10 2022-03-03 00:00:00 1040.  315    565 53525 157036 444956 0.0617
## # ... with 61 more rows
# Convert the TBILL into double 


final_data <-  telcom %>% 
  select(TEL,PCOMP, GLO, PHP, PHIVTA, PHMS, `TBILL`) %>% 
  mutate(`TBILL` =gsub('.{1}$', '', `TBILL`)) %>% 
  mutate(`TBILL` = as.double(`TBILL`))
head(final_data)
## # A tibble: 6 x 7
##     TEL PCOMP   GLO   PHP PHIVTA   PHMS TBILL
##   <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl>
## 1   970 1442.   860 55505 238316 514214 0.062
## 2   755 1314.   720 55725 170921 470740 0.064
## 3   765 1399.   790 55330 167573 452675 0.056
## 4   640 1297.   695 54880 140652 445781 0.053
## 5   535 1193.   620 55025 162076 443137 0.052
## 6   530 1240.   665 54730 166045 440885 0.052
final_data
## # A tibble: 71 x 7
##      TEL PCOMP   GLO   PHP PHIVTA   PHMS TBILL
##    <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl>
##  1  970  1442.   860 55505 238316 514214 0.062
##  2  755  1314.   720 55725 170921 470740 0.064
##  3  765  1399.   790 55330 167573 452675 0.056
##  4  640  1297.   695 54880 140652 445781 0.053
##  5  535  1193.   620 55025 162076 443137 0.052
##  6  530  1240.   665 54730 166045 440885 0.052
##  7  565  1223.   605 53480 130874 445392 0.055
##  8  432. 1074.   610 53225 109803 447526 0.065
##  9  380  1068.   550 52533 123576 442370 0.073
## 10  315  1040.   565 53525 157036 444956 0.061
## # ... with 61 more rows
#--------------- a. Run multiple linear regression ----------------#

## scatter plot matrix

plot(final_data, col="navy", main="Scatter plot Matrix")

#--------------- b. Create Different Models ----------------#

##--------- Model 1 Positive Correlation (Y = TEL and X = PCOMP & PHIVTA) -------##

model1 <-lm(final_data$TEL~final_data$PCOMP+final_data$PHIVTA)
model1
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PCOMP + final_data$PHIVTA)
## 
## Coefficients:
##       (Intercept)   final_data$PCOMP  final_data$PHIVTA  
##        -3.025e+02          5.439e-01          1.057e-03
## Coefficient Values 

model1[["coefficients"]][["(Intercept)"]]
## [1] -302.5038
model1[["coefficients"]][["final_data$PCOMP"]]
## [1] 0.5438577
model1[["coefficients"]][["final_data$PHIVTA"]]
## [1] 0.001057461
## Regression Equation  

## y(hat) = -3.025e+02 + 5.439e-01 * X1 + 1.057e-03 * X2 

#--------------- C. Find the R squared of each model and interpret.----------#

summary(model1)
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PCOMP + final_data$PHIVTA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -196.98 -112.12    2.18   79.82  362.34 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -3.025e+02  1.069e+02  -2.830  0.00611 ** 
## final_data$PCOMP   5.439e-01  4.122e-02  13.194  < 2e-16 ***
## final_data$PHIVTA  1.058e-03  7.371e-04   1.435  0.15597    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 123.6 on 68 degrees of freedom
## Multiple R-squared:  0.7924, Adjusted R-squared:  0.7863 
## F-statistic: 129.8 on 2 and 68 DF,  p-value: < 2.2e-16
## The r squared is 0.7924. This means that there is 79.24 percent of variation
## in the response variable which is TEL when PCOMP and PHIVTA are considered.  

## Fitted 

fittedval= -302.5038 + 0.5438577 * (final_data$PCOMP) + 0.001057461 * (final_data$PHIVTA)
fittedval
##  [1]  733.9501  592.7968  635.5931  551.8421  517.6150  547.6943  500.9195
##  [8]  397.5432  409.0837  428.9882  423.8373  458.0107  453.4175  420.7347
## [15]  426.9819  456.7812  471.2487  489.0260  495.9848  585.8622  605.3287
## [22]  645.2510  624.4657  602.4151  508.5843  436.5145  354.5317  511.6771
## [29]  603.0830  627.7302  614.3033  617.0844  634.8704  680.9117  731.4036
## [36]  791.7747  692.0997  627.2544  553.1555  613.3396  701.8151  643.9216
## [43]  700.9654  670.4407  761.6733  814.3964  780.3461  979.0609 1087.7535
## [50]  981.5077  989.6841 1013.7851 1059.7396 1152.9732 1227.9839 1192.5665
## [57] 1218.9210 1005.1567  952.0758  960.9797  997.8167  983.6923  836.1979
## [64]  557.6608  525.3416  757.7121  825.6104  961.3527 1070.1802 1113.4693
## [71] 1114.0370
new_data<-cbind(final_data,fittedval)
new_data
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL fittedval
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  733.9501
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  592.7968
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  635.5931
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  551.8421
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  517.6150
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  547.6943
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  500.9195
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  397.5432
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  409.0837
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  428.9882
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  423.8373
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  458.0107
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  453.4175
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  420.7347
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  426.9819
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  456.7812
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  471.2487
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  489.0260
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  495.9848
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  585.8622
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  605.3287
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  645.2510
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  624.4657
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  602.4151
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  508.5843
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  436.5145
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  354.5317
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  511.6771
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  603.0830
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  627.7302
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  614.3033
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  617.0844
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  634.8704
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  680.9117
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  731.4036
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  791.7747
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  692.0997
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  627.2544
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  553.1555
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  613.3396
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  701.8151
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  643.9216
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  700.9654
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  670.4407
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  761.6733
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  814.3964
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  780.3461
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  979.0609
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080 1087.7535
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  981.5077
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  989.6841
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080 1013.7851
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080 1059.7396
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084 1152.9732
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092 1227.9839
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099 1192.5665
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100 1218.9210
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121 1005.1567
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  952.0758
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132  960.9797
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134  997.8167
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134  983.6923
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  836.1979
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  557.6608
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  525.3416
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146  757.7121
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  825.6104
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143  961.3527
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150 1070.1802
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160 1113.4693
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177 1114.0370
## Residual 

resid1 <- final_data$TEL - fittedval
resid1
##  [1]  236.049894  162.203192  129.406896   88.157938   17.384971  -17.694280
##  [7]   64.080454   34.956836  -29.083726 -113.988181 -131.337322 -163.010700
## [13] -183.417508 -130.734702 -196.981906 -176.781162 -186.248656 -174.026043
## [19] -125.984819 -148.362153 -145.328687 -110.250990 -119.465741  -92.415104
## [25]  -91.084255   -9.014450   25.468301  -31.677070 -118.082986   47.269798
## [31]  110.696691   32.915569   55.129558   34.088278   63.596358  123.225300
## [37]  172.900255  177.745612  221.844467  196.660432   63.184927   26.078413
## [43]   74.034594   94.559345  -21.673310   85.603599  109.653908  -29.060903
## [49]  -62.753535 -141.507661 -154.684060 -128.785138 -119.739612  -42.973238
## [55]  -67.983880  -77.566468   11.078997   14.843333  -47.075808  -60.979707
## [61]    2.183337   46.307708  128.802076  362.339207  199.658417  167.287907
## [67]  124.389573   38.647338    4.819770  -58.469329  -39.037005
resid_model1 <- cbind(final_data,new_data,resid1)
resid_model1
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL    TEL   PCOMP   GLO   PHP
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  970.0 1442.37 860.0 55505
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  755.0 1313.87 720.0 55725
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  765.0 1399.07 790.0 55330
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  640.0 1297.42 695.0 54880
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  535.0 1192.83 620.0 55025
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  530.0 1240.42 665.0 54730
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  565.0 1222.80 605.0 53480
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  432.5 1073.69 610.0 53225
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  380.0 1068.13 550.0 52533
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  315.0 1039.67 565.0 53525
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  292.5 1019.33 525.0 54510
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  295.0 1056.69 530.0 53875
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  270.0 1018.41 447.5 53280
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  290.0 1047.22 435.0 53540
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  230.0 1048.53 410.0 53125
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  280.0 1129.34 465.0 52410
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  285.0 1103.36 485.0 51840
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  315.0 1123.24 510.0 51250
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  370.0 1156.35 520.0 50420
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  437.5 1315.00 670.0 50250
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  460.0 1346.09 645.0 50830
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  535.0 1403.62 640.0 51020
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  505.0 1406.22 636.0 51225
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  510.0 1361.94 596.0 51235
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  417.5 1168.08 544.0 51750
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  427.5 1128.47 456.0 52000
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  380.0  993.35 432.0 51950
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  480.0 1265.44 500.0 51365
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  485.0 1362.89 520.0 50930
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  675.0 1410.07 532.0 53540
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  725.0 1402.29 556.0 52405
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  650.0 1402.29 548.0 50500
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  690.0 1378.84 554.0 51400
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  715.0 1446.40 528.0 49500
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  795.0 1613.49 580.0 48275
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  915.0 1687.00 580.0 48275
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  865.0 1494.50 560.0 50010
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  805.0 1404.83 520.0 49600
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  775.0 1287.85 472.0 51550
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  810.0 1434.49 640.0 46165
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  765.0 1537.52 676.0 45135
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  670.0 1417.17 600.0 44835
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  775.0 1533.99 620.0 43250
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  765.0 1478.76 560.0 42645
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  740.0 1598.73 600.0 41300
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  900.0 1681.72 500.0 41140
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  890.0 1641.94 440.0 40140
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  950.0 1989.43 420.0 40573
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080 1025.0 2142.97 440.0 40410
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  840.0 1979.42 430.0 40945
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  835.0 2036.05 470.0 40250
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080  885.0 2096.20 440.0 40930
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080  940.0 2173.82 450.0 39665
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084 1110.0 2342.81 490.0 38495
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092 1160.0 2486.86 480.0 38065
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099 1115.0 2419.83 490.0 38000
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100 1230.0 2443.70 396.0 38007
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121 1020.0 2028.21 248.0 38775
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  905.0 1965.05 252.0 39070
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132  900.0 1954.15 256.0 38550
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134 1000.0 1968.78 244.0 39150
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134 1030.0 1975.36 268.0 39380
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  965.0 1755.04 196.0 40390
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  920.0 1259.64 170.0 43950
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  725.0 1192.25 172.0 43875
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146  925.0 1607.61 232.0 42030
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  950.0 1760.13 236.0 41800
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143 1000.0 2011.45 204.0 38825
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150 1075.0 2181.32 200.0 40190
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160 1055.0 2238.42 184.0 37975
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177 1075.0 2266.30 124.0 39840
##    PHIVTA   PHMS TBILL fittedval      resid1
## 1  238316 514214 0.062  733.9501  236.049894
## 2  170921 470740 0.064  592.7968  162.203192
## 3  167573 452675 0.056  635.5931  129.406896
## 4  140652 445781 0.053  551.8421   88.157938
## 5  162076 443137 0.052  517.6150   17.384971
## 6  166045 440885 0.052  547.6943  -17.694280
## 7  130874 445392 0.055  500.9195   64.080454
## 8  109803 447526 0.065  397.5432   34.956836
## 9  123576 442370 0.073  409.0837  -29.083726
## 10 157036 444956 0.061  428.9882 -113.988181
## 11 162626 442370 0.056  423.8373 -131.337322
## 12 175728 444956 0.051  458.0107 -163.010700
## 13 191072 470056 0.052  453.4175 -183.417508
## 14 145348 434771 0.052  420.7347 -130.734702
## 15 150582 420590 0.052  426.9819 -196.981906
## 16 137201 411308 0.047  456.7812 -176.781162
## 17 164244 404530 0.047  471.2487 -186.248656
## 18 170831 404147 0.047  489.0260 -174.026043
## 19 160383 405491 0.046  495.9848 -125.984819
## 20 163782 405438 0.046  585.8622 -148.362153
## 21 166201 403614 0.046  605.3287 -145.328687
## 22 174366 389816 0.063  645.2510 -110.250990
## 23 153373 373088 0.071  624.4657 -119.465741
## 24 155294 364867 0.078  602.4151  -92.415104
## 25 166265 387989 0.088  508.5843  -91.084255
## 26 118483 353080 0.095  436.5145   -9.014450
## 27 110448 350421 0.097  354.5317   25.468301
## 28 119117 353183 0.095  511.6771  -31.677070
## 29 155437 360712 0.095  603.0830 -118.082986
## 30 154480 369211 0.088  627.7302   47.269798
## 31 145784 377970 0.087  614.3033  110.696691
## 32 148414 379962 0.090  617.0844   32.915569
## 33 177294 389215 0.090  634.8704   55.129558
## 34 186087 367264 0.090  680.9117   34.088278
## 35 147900 361013 0.106  731.4036   63.596358
## 36 167184 382023 0.120  791.7747  123.225300
## 37 171929 386981 0.130  692.0997  172.900255
## 38 156725 358852 0.150  627.2544  177.745612
## 39 146816 339811 0.090  553.1555  221.844467
## 40 128312 342487 0.090  613.3396  196.660432
## 41 158991 341249 0.080  701.8151   63.184927
## 42 166140 339541 0.080  643.9216   26.078413
## 43 160003 341264 0.080  700.9654   74.034594
## 44 159542 342222 0.080  670.4407   94.559345
## 45 184116 347534 0.080  761.6733  -21.673310
## 46 191292 337505 0.080  814.3964   85.603599
## 47 179551 326894 0.080  780.3461  109.653908
## 48 188752 343054 0.080  979.0609  -29.060903
## 49 212572 394127 0.080 1087.7535  -62.753535
## 50 196214 334674 0.080  981.5077 -141.507661
## 51 174821 313796 0.080  989.6841 -154.684060
## 52 166677 307055 0.080 1013.7851 -128.785138
## 53 170214 297737 0.080 1059.7396 -119.739612
## 54 171469 298875 0.084 1152.9732  -42.973238
## 55 168318 293971 0.092 1227.9839  -67.983880
## 56 169299 305896 0.099 1192.5665  -77.566468
## 57 181945 290772 0.100 1218.9210   11.078997
## 58 193485 285161 0.121 1005.1567   14.843333
## 59 175772 285161 0.127  952.0758  -47.075808
## 60 189798 262399 0.132  960.9797  -60.979707
## 61 217109 281514 0.134  997.8167    2.183337
## 62 200368 253719 0.134  983.6923   46.307708
## 63 174200 243915 0.135  836.1979  128.802076
## 64 165585 238422 0.138  557.6608  362.339207
## 65 169681 235853 0.140  525.3416  199.658417
## 66 175803 241070 0.146  757.7121  167.287907
## 67 161570 251214 0.100  825.6104  124.389573
## 68 160681 255527 0.143  961.3527   38.647338
## 69 176230 247455 0.150 1070.1802    4.819770
## 70 187800 241935 0.160 1113.4693  -58.469329
## 71 173998 243119 0.177 1114.0370  -39.037005
sum(resid1)
## [1] -0.006847618
## The residual is -0.006847618. 

##--------- Model 2 Positive Correlation (Y = TEL and X = PCOMP & TBILL) -------##

model2 <- lm(final_data$TEL~final_data$PCOMP+final_data$TBILL)
model2
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PCOMP + final_data$TBILL)
## 
## Coefficients:
##      (Intercept)  final_data$PCOMP  final_data$TBILL  
##        -225.5783            0.4812         2200.0279
## Coefficient Values 

model2[["coefficients"]][["(Intercept)"]]
## [1] -225.5783
model2[["coefficients"]][["final_data$PCOMP"]]
## [1] 0.4811881
model2[["coefficients"]][["final_data$TBILL"]]
## [1] 2200.028
## Regression Equation  

## y(hat) = -225.5783 + 0.4811881 * X1 + 2200.028 * X2 

#--------------- C. Find the R squared of each model and interpret.----------#

summary(model2)
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PCOMP + final_data$TBILL)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -179.34  -94.14    2.81   66.84  365.13 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -225.57834   51.85112  -4.351 4.67e-05 ***
## final_data$PCOMP    0.48119    0.03732  12.894  < 2e-16 ***
## final_data$TBILL 2200.02791  473.81446   4.643 1.62e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 109.3 on 68 degrees of freedom
## Multiple R-squared:  0.8376, Adjusted R-squared:  0.8328 
## F-statistic: 175.3 on 2 and 68 DF,  p-value: < 2.2e-16
## The r squared is 0.8376. This means that there is 83.76 percent of variation
## in the response variable which is TEL when PCOMP and TBILL are considered.

## Fitted 

fittedval= -225.5783 + 0.4811881 * (final_data$PCOMP) + 2200.028 * (final_data$TBILL)
fittedval
##  [1]  604.8747  547.4421  570.8391  515.3262  462.7988  485.6985  483.8200
##  [8]  434.0704  448.9952  408.9002  388.1127  395.0898  378.8699  392.7330
## [15]  393.3633  421.2480  408.7467  418.3127  432.0448  508.3853  523.3455
## [22]  588.4287  607.2800  601.3732  530.0904  526.4307  465.8126  592.3390
## [29]  639.2308  646.5331  640.5894  647.1895  635.9056  668.4147  784.0169
## [36]  850.1894  779.5610  780.4134  592.1223  662.6837  690.2603  632.3493
## [43]  688.5617  661.9857  719.7138  759.6476  740.5059  907.7140  981.5956
## [50]  902.8973  930.1470  959.0904  996.4403 1086.5563 1173.4717 1156.6179
## [57] 1170.3039 1016.5756  999.3839 1005.1391 1016.5790 1019.7452  915.9298
## [64]  684.1493  656.1221  869.1886  841.3781 1056.9115 1154.0511 1203.5272
## [71] 1254.3432
new_data<-cbind(final_data,fittedval)
new_data
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL fittedval
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  604.8747
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  547.4421
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  570.8391
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  515.3262
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  462.7988
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  485.6985
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  483.8200
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  434.0704
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  448.9952
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  408.9002
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  388.1127
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  395.0898
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  378.8699
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  392.7330
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  393.3633
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  421.2480
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  408.7467
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  418.3127
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  432.0448
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  508.3853
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  523.3455
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  588.4287
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  607.2800
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  601.3732
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  530.0904
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  526.4307
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  465.8126
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  592.3390
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  639.2308
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  646.5331
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  640.5894
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  647.1895
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  635.9056
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  668.4147
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  784.0169
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  850.1894
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  779.5610
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  780.4134
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  592.1223
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  662.6837
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  690.2603
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  632.3493
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  688.5617
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  661.9857
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  719.7138
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  759.6476
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  740.5059
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  907.7140
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080  981.5956
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  902.8973
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  930.1470
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080  959.0904
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080  996.4403
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084 1086.5563
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092 1173.4717
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099 1156.6179
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100 1170.3039
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121 1016.5756
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  999.3839
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132 1005.1391
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134 1016.5790
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134 1019.7452
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  915.9298
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  684.1493
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  656.1221
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146  869.1886
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  841.3781
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143 1056.9115
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150 1154.0511
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160 1203.5272
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177 1254.3432
## Residual 

resid1 <- final_data$TEL - fittedval
resid1
##  [1]  365.125284  207.557899  194.160897  124.673751   72.201243   44.301501
##  [7]   81.179951   -1.570371  -68.995189  -93.900240  -95.612734 -100.089781
## [13] -108.869929 -102.732958 -163.363314 -141.247985 -123.746718 -103.312737
## [19]  -62.044847  -70.885339  -63.345478  -53.428705 -102.280018  -91.373205
## [25] -112.590360  -98.930695  -85.812615 -112.339029 -154.230810   28.466932
## [31]   84.410603    2.810519   54.094380   46.585312   10.983145   64.810615
## [37]   85.439045   24.586621  182.877685  147.316262   74.739732   37.650720
## [43]   86.438326  103.014345   20.286209  140.352408  149.494071   42.286018
## [49]   43.404397  -62.897289  -95.146971  -74.090435  -56.440256   23.443655
## [55]  -13.471714  -41.617872   59.696140    3.424396  -94.383932 -105.139122
## [61]  -16.578960   10.254823   49.070157  235.850658   68.877868   55.811411
## [67]  108.621890  -56.911508  -79.051126 -148.527247 -179.343247
resid_model1 <- cbind(final_data,new_data,resid1)
resid_model1
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL    TEL   PCOMP   GLO   PHP
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  970.0 1442.37 860.0 55505
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  755.0 1313.87 720.0 55725
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  765.0 1399.07 790.0 55330
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  640.0 1297.42 695.0 54880
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  535.0 1192.83 620.0 55025
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  530.0 1240.42 665.0 54730
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  565.0 1222.80 605.0 53480
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  432.5 1073.69 610.0 53225
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  380.0 1068.13 550.0 52533
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  315.0 1039.67 565.0 53525
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  292.5 1019.33 525.0 54510
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  295.0 1056.69 530.0 53875
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  270.0 1018.41 447.5 53280
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  290.0 1047.22 435.0 53540
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  230.0 1048.53 410.0 53125
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  280.0 1129.34 465.0 52410
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  285.0 1103.36 485.0 51840
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  315.0 1123.24 510.0 51250
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  370.0 1156.35 520.0 50420
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  437.5 1315.00 670.0 50250
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  460.0 1346.09 645.0 50830
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  535.0 1403.62 640.0 51020
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  505.0 1406.22 636.0 51225
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  510.0 1361.94 596.0 51235
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  417.5 1168.08 544.0 51750
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  427.5 1128.47 456.0 52000
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  380.0  993.35 432.0 51950
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  480.0 1265.44 500.0 51365
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  485.0 1362.89 520.0 50930
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  675.0 1410.07 532.0 53540
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  725.0 1402.29 556.0 52405
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  650.0 1402.29 548.0 50500
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  690.0 1378.84 554.0 51400
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  715.0 1446.40 528.0 49500
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  795.0 1613.49 580.0 48275
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  915.0 1687.00 580.0 48275
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  865.0 1494.50 560.0 50010
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  805.0 1404.83 520.0 49600
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  775.0 1287.85 472.0 51550
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  810.0 1434.49 640.0 46165
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  765.0 1537.52 676.0 45135
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  670.0 1417.17 600.0 44835
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  775.0 1533.99 620.0 43250
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  765.0 1478.76 560.0 42645
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  740.0 1598.73 600.0 41300
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  900.0 1681.72 500.0 41140
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  890.0 1641.94 440.0 40140
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  950.0 1989.43 420.0 40573
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080 1025.0 2142.97 440.0 40410
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  840.0 1979.42 430.0 40945
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  835.0 2036.05 470.0 40250
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080  885.0 2096.20 440.0 40930
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080  940.0 2173.82 450.0 39665
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084 1110.0 2342.81 490.0 38495
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092 1160.0 2486.86 480.0 38065
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099 1115.0 2419.83 490.0 38000
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100 1230.0 2443.70 396.0 38007
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121 1020.0 2028.21 248.0 38775
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  905.0 1965.05 252.0 39070
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132  900.0 1954.15 256.0 38550
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134 1000.0 1968.78 244.0 39150
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134 1030.0 1975.36 268.0 39380
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  965.0 1755.04 196.0 40390
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  920.0 1259.64 170.0 43950
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  725.0 1192.25 172.0 43875
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146  925.0 1607.61 232.0 42030
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  950.0 1760.13 236.0 41800
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143 1000.0 2011.45 204.0 38825
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150 1075.0 2181.32 200.0 40190
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160 1055.0 2238.42 184.0 37975
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177 1075.0 2266.30 124.0 39840
##    PHIVTA   PHMS TBILL fittedval      resid1
## 1  238316 514214 0.062  604.8747  365.125284
## 2  170921 470740 0.064  547.4421  207.557899
## 3  167573 452675 0.056  570.8391  194.160897
## 4  140652 445781 0.053  515.3262  124.673751
## 5  162076 443137 0.052  462.7988   72.201243
## 6  166045 440885 0.052  485.6985   44.301501
## 7  130874 445392 0.055  483.8200   81.179951
## 8  109803 447526 0.065  434.0704   -1.570371
## 9  123576 442370 0.073  448.9952  -68.995189
## 10 157036 444956 0.061  408.9002  -93.900240
## 11 162626 442370 0.056  388.1127  -95.612734
## 12 175728 444956 0.051  395.0898 -100.089781
## 13 191072 470056 0.052  378.8699 -108.869929
## 14 145348 434771 0.052  392.7330 -102.732958
## 15 150582 420590 0.052  393.3633 -163.363314
## 16 137201 411308 0.047  421.2480 -141.247985
## 17 164244 404530 0.047  408.7467 -123.746718
## 18 170831 404147 0.047  418.3127 -103.312737
## 19 160383 405491 0.046  432.0448  -62.044847
## 20 163782 405438 0.046  508.3853  -70.885339
## 21 166201 403614 0.046  523.3455  -63.345478
## 22 174366 389816 0.063  588.4287  -53.428705
## 23 153373 373088 0.071  607.2800 -102.280018
## 24 155294 364867 0.078  601.3732  -91.373205
## 25 166265 387989 0.088  530.0904 -112.590360
## 26 118483 353080 0.095  526.4307  -98.930695
## 27 110448 350421 0.097  465.8126  -85.812615
## 28 119117 353183 0.095  592.3390 -112.339029
## 29 155437 360712 0.095  639.2308 -154.230810
## 30 154480 369211 0.088  646.5331   28.466932
## 31 145784 377970 0.087  640.5894   84.410603
## 32 148414 379962 0.090  647.1895    2.810519
## 33 177294 389215 0.090  635.9056   54.094380
## 34 186087 367264 0.090  668.4147   46.585312
## 35 147900 361013 0.106  784.0169   10.983145
## 36 167184 382023 0.120  850.1894   64.810615
## 37 171929 386981 0.130  779.5610   85.439045
## 38 156725 358852 0.150  780.4134   24.586621
## 39 146816 339811 0.090  592.1223  182.877685
## 40 128312 342487 0.090  662.6837  147.316262
## 41 158991 341249 0.080  690.2603   74.739732
## 42 166140 339541 0.080  632.3493   37.650720
## 43 160003 341264 0.080  688.5617   86.438326
## 44 159542 342222 0.080  661.9857  103.014345
## 45 184116 347534 0.080  719.7138   20.286209
## 46 191292 337505 0.080  759.6476  140.352408
## 47 179551 326894 0.080  740.5059  149.494071
## 48 188752 343054 0.080  907.7140   42.286018
## 49 212572 394127 0.080  981.5956   43.404397
## 50 196214 334674 0.080  902.8973  -62.897289
## 51 174821 313796 0.080  930.1470  -95.146971
## 52 166677 307055 0.080  959.0904  -74.090435
## 53 170214 297737 0.080  996.4403  -56.440256
## 54 171469 298875 0.084 1086.5563   23.443655
## 55 168318 293971 0.092 1173.4717  -13.471714
## 56 169299 305896 0.099 1156.6179  -41.617872
## 57 181945 290772 0.100 1170.3039   59.696140
## 58 193485 285161 0.121 1016.5756    3.424396
## 59 175772 285161 0.127  999.3839  -94.383932
## 60 189798 262399 0.132 1005.1391 -105.139122
## 61 217109 281514 0.134 1016.5790  -16.578960
## 62 200368 253719 0.134 1019.7452   10.254823
## 63 174200 243915 0.135  915.9298   49.070157
## 64 165585 238422 0.138  684.1493  235.850658
## 65 169681 235853 0.140  656.1221   68.877868
## 66 175803 241070 0.146  869.1886   55.811411
## 67 161570 251214 0.100  841.3781  108.621890
## 68 160681 255527 0.143 1056.9115  -56.911508
## 69 176230 247455 0.150 1154.0511  -79.051126
## 70 187800 241935 0.160 1203.5272 -148.527247
## 71 173998 243119 0.177 1254.3432 -179.343247
sum(resid1)
## [1] -0.003864812
## The residual is -0.003864812 

##--------- Model 3 Positive Correlation (Y = TEL and X = PHIVTA & TBILL) -------##

model3 <- lm(final_data$TEL~final_data$PHIVTA+final_data$TBILL)
model3
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PHIVTA + final_data$TBILL)
## 
## Coefficients:
##       (Intercept)  final_data$PHIVTA   final_data$TBILL  
##        -4.553e+02          4.499e-03          4.782e+03
## Coefficient Values 

model3[["coefficients"]][["(Intercept)"]]
## [1] -455.3205
model3[["coefficients"]][["final_data$PHIVTA"]]
## [1] 0.004499324
model3[["coefficients"]][["final_data$TBILL"]]
## [1] 4781.846
## Regression Equation  

## y(hat) = -455.3205 + 0.004499324 * X1 + 4781.846 * X2 

#--------------- C. Find the R squared of each model and interpret.----------#

summary(model3)
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PHIVTA + final_data$TBILL)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -383.03 -106.56  -10.43  121.81  418.07 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -4.553e+02  1.533e+02  -2.971   0.0041 ** 
## final_data$PHIVTA  4.499e-03  9.234e-04   4.873 6.91e-06 ***
## final_data$TBILL   4.782e+03  6.556e+02   7.293 4.19e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 174.7 on 68 degrees of freedom
## Multiple R-squared:  0.5853, Adjusted R-squared:  0.5731 
## F-statistic: 47.98 on 2 and 68 DF,  p-value: 1.008e-13
## The r squared is 0.5853. This means that there is 58.53 percent of variation
## in the response variable which is TEL when PHIVTA and TBILL are considered. 

## Fitted 

fittedval= -455.3205 + 0.004499324 * (final_data$PHIVTA) + 4781.846 * (final_data$TBILL)
fittedval
##  [1]  913.4149  619.7466  566.4281  430.9563  522.5679  540.4257  396.5256
##  [8]  349.5388  449.7627  542.9279  544.1699  579.2109  653.0303  447.3032
## [15]  470.8527  386.7380  508.4132  538.0503  486.2595  501.5527  512.4366
## [22]  630.4649  574.2654  616.3815  713.5621  532.0483  505.4599  534.9008
## [29]  698.3163  660.5375  616.6296  642.8083  772.7488  812.3113  717.0052
## [36]  870.7160  939.8838  967.1130  635.6184  552.3629  642.5792  674.7449
## [43]  647.1325  645.0583  755.6247  787.9119  735.0853  776.4836  883.6575
## [50]  810.0575  713.8035  677.1610  693.0751  717.8492  741.9265  779.8133
## [57]  841.4936  993.8346  942.8291 1029.8459 1162.2906 1086.9674  974.0110
## [64]  949.5948  977.5877 1033.8237  749.8199  951.4394 1054.8723 1154.7479
## [71] 1173.9396
new_data<-cbind(final_data,fittedval)
new_data
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL fittedval
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  913.4149
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  619.7466
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  566.4281
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  430.9563
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  522.5679
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  540.4257
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  396.5256
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  349.5388
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  449.7627
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  542.9279
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  544.1699
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  579.2109
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  653.0303
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  447.3032
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  470.8527
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  386.7380
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  508.4132
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  538.0503
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  486.2595
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  501.5527
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  512.4366
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  630.4649
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  574.2654
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  616.3815
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  713.5621
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  532.0483
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  505.4599
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  534.9008
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  698.3163
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  660.5375
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  616.6296
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  642.8083
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  772.7488
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  812.3113
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  717.0052
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  870.7160
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  939.8838
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  967.1130
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  635.6184
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  552.3629
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  642.5792
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  674.7449
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  647.1325
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  645.0583
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  755.6247
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  787.9119
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  735.0853
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  776.4836
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080  883.6575
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  810.0575
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  713.8035
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080  677.1610
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080  693.0751
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084  717.8492
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092  741.9265
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099  779.8133
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100  841.4936
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121  993.8346
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  942.8291
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132 1029.8459
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134 1162.2906
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134 1086.9674
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  974.0110
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  949.5948
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  977.5877
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146 1033.8237
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  749.8199
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143  951.4394
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150 1054.8723
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160 1154.7479
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177 1173.9396
## Residual 

resid1 <- final_data$TEL - fittedval
resid1
##  [1]   56.585150  135.253399  198.571903  209.043743   12.432071  -10.425746
##  [7]  168.474441   82.961237  -69.762721 -227.927950 -251.669941 -284.210854
## [13] -383.030327 -157.303237 -240.852699 -106.738014 -223.413233 -223.050280
## [19] -116.259497  -64.052699  -52.436564  -95.464927  -69.265386 -106.381509
## [25] -296.062053 -104.548275 -125.459899  -54.900847 -213.316295   14.462480
## [31]  108.370448    7.191688  -82.748789  -97.311345   77.994804   44.283996
## [37]  -74.883756 -162.112954  139.381608  257.637099  122.420798   -4.744869
## [43]  127.867482  119.941670  -15.624718  112.088133  154.914696  173.516416
## [49]  141.342519   29.942461  121.196499  207.838994  246.924885  392.150849
## [55]  418.073451  335.186692  388.506395   26.165430  -37.829120 -129.845869
## [61] -162.290598  -56.967415   -9.010951  -29.594813 -252.587736 -108.823673
## [67]  200.180121   48.560642   20.127731  -99.747907  -98.939619
resid_model1 <- cbind(final_data,new_data,resid1)
resid_model1
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL    TEL   PCOMP   GLO   PHP
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  970.0 1442.37 860.0 55505
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  755.0 1313.87 720.0 55725
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  765.0 1399.07 790.0 55330
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  640.0 1297.42 695.0 54880
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  535.0 1192.83 620.0 55025
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  530.0 1240.42 665.0 54730
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  565.0 1222.80 605.0 53480
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  432.5 1073.69 610.0 53225
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  380.0 1068.13 550.0 52533
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  315.0 1039.67 565.0 53525
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  292.5 1019.33 525.0 54510
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  295.0 1056.69 530.0 53875
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  270.0 1018.41 447.5 53280
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  290.0 1047.22 435.0 53540
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  230.0 1048.53 410.0 53125
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  280.0 1129.34 465.0 52410
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  285.0 1103.36 485.0 51840
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  315.0 1123.24 510.0 51250
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  370.0 1156.35 520.0 50420
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  437.5 1315.00 670.0 50250
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  460.0 1346.09 645.0 50830
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  535.0 1403.62 640.0 51020
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  505.0 1406.22 636.0 51225
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  510.0 1361.94 596.0 51235
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  417.5 1168.08 544.0 51750
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  427.5 1128.47 456.0 52000
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  380.0  993.35 432.0 51950
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  480.0 1265.44 500.0 51365
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  485.0 1362.89 520.0 50930
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  675.0 1410.07 532.0 53540
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  725.0 1402.29 556.0 52405
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  650.0 1402.29 548.0 50500
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  690.0 1378.84 554.0 51400
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  715.0 1446.40 528.0 49500
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  795.0 1613.49 580.0 48275
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  915.0 1687.00 580.0 48275
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  865.0 1494.50 560.0 50010
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  805.0 1404.83 520.0 49600
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  775.0 1287.85 472.0 51550
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  810.0 1434.49 640.0 46165
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  765.0 1537.52 676.0 45135
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  670.0 1417.17 600.0 44835
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  775.0 1533.99 620.0 43250
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  765.0 1478.76 560.0 42645
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  740.0 1598.73 600.0 41300
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  900.0 1681.72 500.0 41140
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  890.0 1641.94 440.0 40140
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  950.0 1989.43 420.0 40573
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080 1025.0 2142.97 440.0 40410
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  840.0 1979.42 430.0 40945
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  835.0 2036.05 470.0 40250
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080  885.0 2096.20 440.0 40930
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080  940.0 2173.82 450.0 39665
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084 1110.0 2342.81 490.0 38495
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092 1160.0 2486.86 480.0 38065
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099 1115.0 2419.83 490.0 38000
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100 1230.0 2443.70 396.0 38007
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121 1020.0 2028.21 248.0 38775
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  905.0 1965.05 252.0 39070
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132  900.0 1954.15 256.0 38550
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134 1000.0 1968.78 244.0 39150
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134 1030.0 1975.36 268.0 39380
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  965.0 1755.04 196.0 40390
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  920.0 1259.64 170.0 43950
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  725.0 1192.25 172.0 43875
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146  925.0 1607.61 232.0 42030
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  950.0 1760.13 236.0 41800
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143 1000.0 2011.45 204.0 38825
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150 1075.0 2181.32 200.0 40190
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160 1055.0 2238.42 184.0 37975
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177 1075.0 2266.30 124.0 39840
##    PHIVTA   PHMS TBILL fittedval      resid1
## 1  238316 514214 0.062  913.4149   56.585150
## 2  170921 470740 0.064  619.7466  135.253399
## 3  167573 452675 0.056  566.4281  198.571903
## 4  140652 445781 0.053  430.9563  209.043743
## 5  162076 443137 0.052  522.5679   12.432071
## 6  166045 440885 0.052  540.4257  -10.425746
## 7  130874 445392 0.055  396.5256  168.474441
## 8  109803 447526 0.065  349.5388   82.961237
## 9  123576 442370 0.073  449.7627  -69.762721
## 10 157036 444956 0.061  542.9279 -227.927950
## 11 162626 442370 0.056  544.1699 -251.669941
## 12 175728 444956 0.051  579.2109 -284.210854
## 13 191072 470056 0.052  653.0303 -383.030327
## 14 145348 434771 0.052  447.3032 -157.303237
## 15 150582 420590 0.052  470.8527 -240.852699
## 16 137201 411308 0.047  386.7380 -106.738014
## 17 164244 404530 0.047  508.4132 -223.413233
## 18 170831 404147 0.047  538.0503 -223.050280
## 19 160383 405491 0.046  486.2595 -116.259497
## 20 163782 405438 0.046  501.5527  -64.052699
## 21 166201 403614 0.046  512.4366  -52.436564
## 22 174366 389816 0.063  630.4649  -95.464927
## 23 153373 373088 0.071  574.2654  -69.265386
## 24 155294 364867 0.078  616.3815 -106.381509
## 25 166265 387989 0.088  713.5621 -296.062053
## 26 118483 353080 0.095  532.0483 -104.548275
## 27 110448 350421 0.097  505.4599 -125.459899
## 28 119117 353183 0.095  534.9008  -54.900847
## 29 155437 360712 0.095  698.3163 -213.316295
## 30 154480 369211 0.088  660.5375   14.462480
## 31 145784 377970 0.087  616.6296  108.370448
## 32 148414 379962 0.090  642.8083    7.191688
## 33 177294 389215 0.090  772.7488  -82.748789
## 34 186087 367264 0.090  812.3113  -97.311345
## 35 147900 361013 0.106  717.0052   77.994804
## 36 167184 382023 0.120  870.7160   44.283996
## 37 171929 386981 0.130  939.8838  -74.883756
## 38 156725 358852 0.150  967.1130 -162.112954
## 39 146816 339811 0.090  635.6184  139.381608
## 40 128312 342487 0.090  552.3629  257.637099
## 41 158991 341249 0.080  642.5792  122.420798
## 42 166140 339541 0.080  674.7449   -4.744869
## 43 160003 341264 0.080  647.1325  127.867482
## 44 159542 342222 0.080  645.0583  119.941670
## 45 184116 347534 0.080  755.6247  -15.624718
## 46 191292 337505 0.080  787.9119  112.088133
## 47 179551 326894 0.080  735.0853  154.914696
## 48 188752 343054 0.080  776.4836  173.516416
## 49 212572 394127 0.080  883.6575  141.342519
## 50 196214 334674 0.080  810.0575   29.942461
## 51 174821 313796 0.080  713.8035  121.196499
## 52 166677 307055 0.080  677.1610  207.838994
## 53 170214 297737 0.080  693.0751  246.924885
## 54 171469 298875 0.084  717.8492  392.150849
## 55 168318 293971 0.092  741.9265  418.073451
## 56 169299 305896 0.099  779.8133  335.186692
## 57 181945 290772 0.100  841.4936  388.506395
## 58 193485 285161 0.121  993.8346   26.165430
## 59 175772 285161 0.127  942.8291  -37.829120
## 60 189798 262399 0.132 1029.8459 -129.845869
## 61 217109 281514 0.134 1162.2906 -162.290598
## 62 200368 253719 0.134 1086.9674  -56.967415
## 63 174200 243915 0.135  974.0110   -9.010951
## 64 165585 238422 0.138  949.5948  -29.594813
## 65 169681 235853 0.140  977.5877 -252.587736
## 66 175803 241070 0.146 1033.8237 -108.823673
## 67 161570 251214 0.100  749.8199  200.180121
## 68 160681 255527 0.143  951.4394   48.560642
## 69 176230 247455 0.150 1054.8723   20.127731
## 70 187800 241935 0.160 1154.7479  -99.747907
## 71 173998 243119 0.177 1173.9396  -98.939619
sum(resid1)
## [1] -0.007151976
## The residual is -0.007151976.  

##--------- Model 4 Negative Correlation (Y = TEL and X = PHP & PHMS) -------##

model4 <- lm(final_data$TEL~final_data$PHP+final_data$PHMS)
model4
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PHP + final_data$PHMS)
## 
## Coefficients:
##     (Intercept)   final_data$PHP  final_data$PHMS  
##       2.354e+03       -3.445e-02       -5.507e-05
## Coefficient Values 

model4[["coefficients"]][["(Intercept)"]]
## [1] 2354.435
model4[["coefficients"]][["final_data$PHP"]]
## [1] -0.03445317
model4[["coefficients"]][["final_data$PHMS"]]
## [1] -5.507376e-05
## Regression Equation  

## y(hat) = 2.354e+03 - 3.445e-02 * X1 -5.507e-05 * X2 

#--------------- C. Find the R squared of each model and interpret.----------#

summary(model4)
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PHP + final_data$PHMS)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -270.95 -115.67  -15.60   95.61  556.21 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      2.354e+03  1.614e+02  14.590  < 2e-16 ***
## final_data$PHP  -3.445e-02  6.188e-03  -5.568 4.75e-07 ***
## final_data$PHMS -5.507e-05  5.449e-04  -0.101     0.92    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 163.4 on 68 degrees of freedom
## Multiple R-squared:  0.6375, Adjusted R-squared:  0.6268 
## F-statistic: 59.79 on 2 and 68 DF,  p-value: 1.041e-15
## The r squared is 0.6375. This means that there is 63.75 percent of variation
## in the response variable which is TEL when PHP and PHMS are considered.

## Fitted 

fittedval= 2354.435  - 0.03445317 * (final_data$PHP) - 5.507376e-05 * (final_data$PHMS)
fittedval
##  [1]  413.7921  408.6067  423.2106  439.0942  434.2441  444.5318  487.3501
##  [8]  496.0181  520.1436  485.8237  452.0297  473.7651  492.8824  485.8678
## [15]  500.9469  526.0921  546.1037  566.4521  594.9743  600.8342  580.9518
## [22]  575.1656  569.0240  569.1322  550.1154  543.4247  545.2938  565.2968
## [29]  579.8693  489.4784  528.1004  593.6240  562.1065  628.7765  671.3259
## [36]  670.1688  610.1195  625.7944  559.6594  745.0424  780.5973  791.0273
## [43]  845.5407  866.3321  912.3791  918.4439  953.4815  937.6733  940.4763
## [50]  925.3182  950.4130  927.3561  971.4525 1011.7001 1026.7850 1028.3677
## [57] 1028.9595 1002.8084  992.6448 1011.8140  990.0894  983.6959  949.4381
## [64]  827.0874  829.8129  893.0916  900.4572 1002.7178  956.1338 1032.7516
## [71]  968.4312
new_data<-cbind(final_data,fittedval)
new_data
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL fittedval
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  413.7921
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  408.6067
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  423.2106
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  439.0942
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  434.2441
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  444.5318
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  487.3501
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  496.0181
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  520.1436
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  485.8237
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  452.0297
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  473.7651
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  492.8824
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  485.8678
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  500.9469
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  526.0921
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  546.1037
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  566.4521
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  594.9743
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  600.8342
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  580.9518
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  575.1656
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  569.0240
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  569.1322
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  550.1154
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  543.4247
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  545.2938
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  565.2968
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  579.8693
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  489.4784
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  528.1004
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  593.6240
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  562.1065
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  628.7765
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  671.3259
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  670.1688
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  610.1195
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  625.7944
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  559.6594
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  745.0424
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  780.5973
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  791.0273
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  845.5407
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  866.3321
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  912.3791
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  918.4439
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  953.4815
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  937.6733
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080  940.4763
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  925.3182
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  950.4130
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080  927.3561
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080  971.4525
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084 1011.7001
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092 1026.7850
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099 1028.3677
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100 1028.9595
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121 1002.8084
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  992.6448
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132 1011.8140
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134  990.0894
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134  983.6959
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  949.4381
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  827.0874
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  829.8129
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146  893.0916
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  900.4572
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143 1002.7178
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150  956.1338
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160 1032.7516
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177  968.4312
## Residual 

resid1 <- final_data$TEL - fittedval
resid1
##  [1]  556.207899  346.393320  341.789410  200.905805  100.755900   85.468189
##  [7]   77.649944  -63.518087 -140.143641 -170.823676 -159.529724 -178.765066
## [13] -222.882351 -195.867804 -270.946871 -246.092082 -261.103679 -251.452143
## [19] -224.974255 -163.334212 -120.951828  -40.165634  -64.024008  -59.132237
## [25] -132.615439 -115.924717 -165.293816  -85.296807  -94.869286  185.521560
## [31]  196.899603   56.376021  127.893471   86.223524  123.674125  244.831225
## [37]  254.880530  179.205561  215.340583   64.957640  -15.597307 -121.027324
## [43]  -70.540706 -101.332113 -172.379075  -18.443917  -63.481474   12.326740
## [49]   84.523656  -85.318199 -115.412982  -42.356079  -31.452516   98.299949
## [55]  133.215004   86.632303  201.040540   17.191555  -87.644760 -111.813997
## [61]    9.910640   46.304094   15.561852   92.912618 -104.812855   31.908366
## [67]   49.542806   -2.717842  118.866180   22.248401  106.568770
resid_model1 <- cbind(final_data,new_data,resid1)
resid_model1
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL    TEL   PCOMP   GLO   PHP
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  970.0 1442.37 860.0 55505
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  755.0 1313.87 720.0 55725
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  765.0 1399.07 790.0 55330
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  640.0 1297.42 695.0 54880
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  535.0 1192.83 620.0 55025
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  530.0 1240.42 665.0 54730
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  565.0 1222.80 605.0 53480
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  432.5 1073.69 610.0 53225
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  380.0 1068.13 550.0 52533
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  315.0 1039.67 565.0 53525
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  292.5 1019.33 525.0 54510
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  295.0 1056.69 530.0 53875
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  270.0 1018.41 447.5 53280
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  290.0 1047.22 435.0 53540
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  230.0 1048.53 410.0 53125
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  280.0 1129.34 465.0 52410
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  285.0 1103.36 485.0 51840
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  315.0 1123.24 510.0 51250
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  370.0 1156.35 520.0 50420
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  437.5 1315.00 670.0 50250
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  460.0 1346.09 645.0 50830
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  535.0 1403.62 640.0 51020
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  505.0 1406.22 636.0 51225
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  510.0 1361.94 596.0 51235
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  417.5 1168.08 544.0 51750
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  427.5 1128.47 456.0 52000
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  380.0  993.35 432.0 51950
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  480.0 1265.44 500.0 51365
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  485.0 1362.89 520.0 50930
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  675.0 1410.07 532.0 53540
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  725.0 1402.29 556.0 52405
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  650.0 1402.29 548.0 50500
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  690.0 1378.84 554.0 51400
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  715.0 1446.40 528.0 49500
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  795.0 1613.49 580.0 48275
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  915.0 1687.00 580.0 48275
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  865.0 1494.50 560.0 50010
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  805.0 1404.83 520.0 49600
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  775.0 1287.85 472.0 51550
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  810.0 1434.49 640.0 46165
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  765.0 1537.52 676.0 45135
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  670.0 1417.17 600.0 44835
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  775.0 1533.99 620.0 43250
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  765.0 1478.76 560.0 42645
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  740.0 1598.73 600.0 41300
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  900.0 1681.72 500.0 41140
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  890.0 1641.94 440.0 40140
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  950.0 1989.43 420.0 40573
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080 1025.0 2142.97 440.0 40410
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  840.0 1979.42 430.0 40945
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  835.0 2036.05 470.0 40250
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080  885.0 2096.20 440.0 40930
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080  940.0 2173.82 450.0 39665
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084 1110.0 2342.81 490.0 38495
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092 1160.0 2486.86 480.0 38065
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099 1115.0 2419.83 490.0 38000
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100 1230.0 2443.70 396.0 38007
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121 1020.0 2028.21 248.0 38775
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  905.0 1965.05 252.0 39070
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132  900.0 1954.15 256.0 38550
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134 1000.0 1968.78 244.0 39150
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134 1030.0 1975.36 268.0 39380
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  965.0 1755.04 196.0 40390
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  920.0 1259.64 170.0 43950
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  725.0 1192.25 172.0 43875
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146  925.0 1607.61 232.0 42030
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  950.0 1760.13 236.0 41800
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143 1000.0 2011.45 204.0 38825
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150 1075.0 2181.32 200.0 40190
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160 1055.0 2238.42 184.0 37975
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177 1075.0 2266.30 124.0 39840
##    PHIVTA   PHMS TBILL fittedval      resid1
## 1  238316 514214 0.062  413.7921  556.207899
## 2  170921 470740 0.064  408.6067  346.393320
## 3  167573 452675 0.056  423.2106  341.789410
## 4  140652 445781 0.053  439.0942  200.905805
## 5  162076 443137 0.052  434.2441  100.755900
## 6  166045 440885 0.052  444.5318   85.468189
## 7  130874 445392 0.055  487.3501   77.649944
## 8  109803 447526 0.065  496.0181  -63.518087
## 9  123576 442370 0.073  520.1436 -140.143641
## 10 157036 444956 0.061  485.8237 -170.823676
## 11 162626 442370 0.056  452.0297 -159.529724
## 12 175728 444956 0.051  473.7651 -178.765066
## 13 191072 470056 0.052  492.8824 -222.882351
## 14 145348 434771 0.052  485.8678 -195.867804
## 15 150582 420590 0.052  500.9469 -270.946871
## 16 137201 411308 0.047  526.0921 -246.092082
## 17 164244 404530 0.047  546.1037 -261.103679
## 18 170831 404147 0.047  566.4521 -251.452143
## 19 160383 405491 0.046  594.9743 -224.974255
## 20 163782 405438 0.046  600.8342 -163.334212
## 21 166201 403614 0.046  580.9518 -120.951828
## 22 174366 389816 0.063  575.1656  -40.165634
## 23 153373 373088 0.071  569.0240  -64.024008
## 24 155294 364867 0.078  569.1322  -59.132237
## 25 166265 387989 0.088  550.1154 -132.615439
## 26 118483 353080 0.095  543.4247 -115.924717
## 27 110448 350421 0.097  545.2938 -165.293816
## 28 119117 353183 0.095  565.2968  -85.296807
## 29 155437 360712 0.095  579.8693  -94.869286
## 30 154480 369211 0.088  489.4784  185.521560
## 31 145784 377970 0.087  528.1004  196.899603
## 32 148414 379962 0.090  593.6240   56.376021
## 33 177294 389215 0.090  562.1065  127.893471
## 34 186087 367264 0.090  628.7765   86.223524
## 35 147900 361013 0.106  671.3259  123.674125
## 36 167184 382023 0.120  670.1688  244.831225
## 37 171929 386981 0.130  610.1195  254.880530
## 38 156725 358852 0.150  625.7944  179.205561
## 39 146816 339811 0.090  559.6594  215.340583
## 40 128312 342487 0.090  745.0424   64.957640
## 41 158991 341249 0.080  780.5973  -15.597307
## 42 166140 339541 0.080  791.0273 -121.027324
## 43 160003 341264 0.080  845.5407  -70.540706
## 44 159542 342222 0.080  866.3321 -101.332113
## 45 184116 347534 0.080  912.3791 -172.379075
## 46 191292 337505 0.080  918.4439  -18.443917
## 47 179551 326894 0.080  953.4815  -63.481474
## 48 188752 343054 0.080  937.6733   12.326740
## 49 212572 394127 0.080  940.4763   84.523656
## 50 196214 334674 0.080  925.3182  -85.318199
## 51 174821 313796 0.080  950.4130 -115.412982
## 52 166677 307055 0.080  927.3561  -42.356079
## 53 170214 297737 0.080  971.4525  -31.452516
## 54 171469 298875 0.084 1011.7001   98.299949
## 55 168318 293971 0.092 1026.7850  133.215004
## 56 169299 305896 0.099 1028.3677   86.632303
## 57 181945 290772 0.100 1028.9595  201.040540
## 58 193485 285161 0.121 1002.8084   17.191555
## 59 175772 285161 0.127  992.6448  -87.644760
## 60 189798 262399 0.132 1011.8140 -111.813997
## 61 217109 281514 0.134  990.0894    9.910640
## 62 200368 253719 0.134  983.6959   46.304094
## 63 174200 243915 0.135  949.4381   15.561852
## 64 165585 238422 0.138  827.0874   92.912618
## 65 169681 235853 0.140  829.8129 -104.812855
## 66 175803 241070 0.146  893.0916   31.908366
## 67 161570 251214 0.100  900.4572   49.542806
## 68 160681 255527 0.143 1002.7178   -2.717842
## 69 176230 247455 0.150  956.1338  118.866180
## 70 187800 241935 0.160 1032.7516   22.248401
## 71 173998 243119 0.177  968.4312  106.568770
sum(resid1)
## [1] -0.01072414
## The residual is -0.01072414. 

##--------- Model 5 (Y = TEL and X = PHMS & GLo) -------##

model5 <- lm(final_data$TEL~final_data$PHMS+final_data$GLO)
model5
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PHMS + final_data$GLO)
## 
## Coefficients:
##     (Intercept)  final_data$PHMS   final_data$GLO  
##      1786.98288         -0.00396          0.70331
## Coefficient Values 

model5[["coefficients"]][["(Intercept)"]]
## [1] 1786.983
model5[["coefficients"]][["final_data$PHMS"]]
## [1] -0.003960381
model5[["coefficients"]][["final_data$GLO"]]
## [1] 0.7033058
## Regression Equation  

## y(hat) = 1786.98288 - 0.00396 * X1 + 0.70331 * X2 

#--------------- C. Find the R squared of each model and interpret.----------#

summary(model5)
## 
## Call:
## lm(formula = final_data$TEL ~ final_data$PHMS + final_data$GLO)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -323.01 -128.85    1.84   97.39  614.66 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.787e+03  1.232e+02  14.500  < 2e-16 ***
## final_data$PHMS -3.960e-03  5.367e-04  -7.378 2.94e-10 ***
## final_data$GLO   7.033e-01  2.320e-01   3.032  0.00344 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 185 on 68 degrees of freedom
## Multiple R-squared:  0.535,  Adjusted R-squared:  0.5214 
## F-statistic: 39.12 on 2 and 68 DF,  p-value: 4.922e-12
## The r squared is 0.535. This means that there is 53.5 percent of variation
## in the response variable which is TEL when PHMS and GLO are considered. 

## Fitted 

fittedval= 1786.983 - 0.003960381 * (final_data$PHMS) + 0.7033058 * (final_data$GLO)
fittedval
##  [1] 355.3426 429.0534 549.8291 510.3179 468.0412 508.6088 448.5610 443.6261
##  [9] 421.8474 422.1555 404.2648 397.5398 240.1115 371.0622 409.6417 485.0838
## [17] 525.9934 545.0929 546.8032 652.5089 642.1500 693.2788 756.7149 761.1409
## [25] 632.9971 709.3591 703.0104 739.8967 724.1451 698.9255 681.1158 667.6003
## [33] 635.1747 703.8231 765.1513 681.9437 648.2420 731.5114 773.1623 880.7197
## [41] 910.9417 864.2548 871.4971 825.5047 832.5994 801.9875 801.8128 723.7469
## [49] 535.5445 763.9679 874.7850 880.3828 924.3187 947.9440 960.3326 920.1381
## [57] 913.9242 832.0566 834.8699 927.8293 843.6869 970.6450 958.8346 962.3030
## [65] 973.8839 995.4209 958.0600 918.4731 947.6281 958.2365 911.3491
new_data<-cbind(final_data,fittedval)
new_data
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL fittedval
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  355.3426
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  429.0534
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  549.8291
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  510.3179
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  468.0412
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  508.6088
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  448.5610
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  443.6261
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  421.8474
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  422.1555
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  404.2648
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  397.5398
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  240.1115
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  371.0622
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  409.6417
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  485.0838
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  525.9934
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  545.0929
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  546.8032
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  652.5089
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  642.1500
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  693.2788
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  756.7149
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  761.1409
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  632.9971
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  709.3591
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  703.0104
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  739.8967
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  724.1451
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  698.9255
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  681.1158
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  667.6003
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  635.1747
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  703.8231
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  765.1513
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  681.9437
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  648.2420
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  731.5114
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  773.1623
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  880.7197
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  910.9417
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  864.2548
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  871.4971
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  825.5047
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  832.5994
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  801.9875
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  801.8128
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  723.7469
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080  535.5445
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  763.9679
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  874.7850
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080  880.3828
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080  924.3187
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084  947.9440
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092  960.3326
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099  920.1381
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100  913.9242
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121  832.0566
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  834.8699
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132  927.8293
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134  843.6869
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134  970.6450
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  958.8346
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  962.3030
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  973.8839
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146  995.4209
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  958.0600
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143  918.4731
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150  947.6281
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160  958.2365
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177  911.3491
## Residual 

resid1 <- final_data$TEL - fittedval
resid1
##  [1]  614.657368  325.946576  215.170887  129.682072   66.958759   21.391220
##  [7]  116.439005  -11.126071  -41.847447 -107.155489 -111.764802 -102.539786
## [13]   29.888506  -81.062215 -179.641733 -205.083809 -240.993387 -230.092858
## [19] -176.803164 -215.008934 -182.150024 -158.278832 -251.714862 -251.140922
## [25] -215.497091 -281.859121 -323.010435 -259.896657 -239.145065  -23.925456
## [31]   43.884182  -17.600293   54.825278   11.176905   29.848662  233.056267
## [37]  216.757952   73.488627    1.837690  -70.719704 -145.941665 -194.254755
## [43]  -96.497134  -60.504741  -92.599430   98.012489   88.187235  226.253108
## [49]  489.455530   76.032057  -39.785010    4.617236   15.681348  162.056029
## [55]  199.667379  194.861864  316.075807  187.943368   70.130145  -27.829271
## [61]  156.313082   59.354953    6.165395  -42.303027 -248.883858  -70.420898
## [67]   -8.060016   81.526893  127.371920   96.763510  163.650949
resid_model1 <- cbind(final_data,new_data,resid1)
resid_model1
##       TEL   PCOMP   GLO   PHP PHIVTA   PHMS TBILL    TEL   PCOMP   GLO   PHP
## 1   970.0 1442.37 860.0 55505 238316 514214 0.062  970.0 1442.37 860.0 55505
## 2   755.0 1313.87 720.0 55725 170921 470740 0.064  755.0 1313.87 720.0 55725
## 3   765.0 1399.07 790.0 55330 167573 452675 0.056  765.0 1399.07 790.0 55330
## 4   640.0 1297.42 695.0 54880 140652 445781 0.053  640.0 1297.42 695.0 54880
## 5   535.0 1192.83 620.0 55025 162076 443137 0.052  535.0 1192.83 620.0 55025
## 6   530.0 1240.42 665.0 54730 166045 440885 0.052  530.0 1240.42 665.0 54730
## 7   565.0 1222.80 605.0 53480 130874 445392 0.055  565.0 1222.80 605.0 53480
## 8   432.5 1073.69 610.0 53225 109803 447526 0.065  432.5 1073.69 610.0 53225
## 9   380.0 1068.13 550.0 52533 123576 442370 0.073  380.0 1068.13 550.0 52533
## 10  315.0 1039.67 565.0 53525 157036 444956 0.061  315.0 1039.67 565.0 53525
## 11  292.5 1019.33 525.0 54510 162626 442370 0.056  292.5 1019.33 525.0 54510
## 12  295.0 1056.69 530.0 53875 175728 444956 0.051  295.0 1056.69 530.0 53875
## 13  270.0 1018.41 447.5 53280 191072 470056 0.052  270.0 1018.41 447.5 53280
## 14  290.0 1047.22 435.0 53540 145348 434771 0.052  290.0 1047.22 435.0 53540
## 15  230.0 1048.53 410.0 53125 150582 420590 0.052  230.0 1048.53 410.0 53125
## 16  280.0 1129.34 465.0 52410 137201 411308 0.047  280.0 1129.34 465.0 52410
## 17  285.0 1103.36 485.0 51840 164244 404530 0.047  285.0 1103.36 485.0 51840
## 18  315.0 1123.24 510.0 51250 170831 404147 0.047  315.0 1123.24 510.0 51250
## 19  370.0 1156.35 520.0 50420 160383 405491 0.046  370.0 1156.35 520.0 50420
## 20  437.5 1315.00 670.0 50250 163782 405438 0.046  437.5 1315.00 670.0 50250
## 21  460.0 1346.09 645.0 50830 166201 403614 0.046  460.0 1346.09 645.0 50830
## 22  535.0 1403.62 640.0 51020 174366 389816 0.063  535.0 1403.62 640.0 51020
## 23  505.0 1406.22 636.0 51225 153373 373088 0.071  505.0 1406.22 636.0 51225
## 24  510.0 1361.94 596.0 51235 155294 364867 0.078  510.0 1361.94 596.0 51235
## 25  417.5 1168.08 544.0 51750 166265 387989 0.088  417.5 1168.08 544.0 51750
## 26  427.5 1128.47 456.0 52000 118483 353080 0.095  427.5 1128.47 456.0 52000
## 27  380.0  993.35 432.0 51950 110448 350421 0.097  380.0  993.35 432.0 51950
## 28  480.0 1265.44 500.0 51365 119117 353183 0.095  480.0 1265.44 500.0 51365
## 29  485.0 1362.89 520.0 50930 155437 360712 0.095  485.0 1362.89 520.0 50930
## 30  675.0 1410.07 532.0 53540 154480 369211 0.088  675.0 1410.07 532.0 53540
## 31  725.0 1402.29 556.0 52405 145784 377970 0.087  725.0 1402.29 556.0 52405
## 32  650.0 1402.29 548.0 50500 148414 379962 0.090  650.0 1402.29 548.0 50500
## 33  690.0 1378.84 554.0 51400 177294 389215 0.090  690.0 1378.84 554.0 51400
## 34  715.0 1446.40 528.0 49500 186087 367264 0.090  715.0 1446.40 528.0 49500
## 35  795.0 1613.49 580.0 48275 147900 361013 0.106  795.0 1613.49 580.0 48275
## 36  915.0 1687.00 580.0 48275 167184 382023 0.120  915.0 1687.00 580.0 48275
## 37  865.0 1494.50 560.0 50010 171929 386981 0.130  865.0 1494.50 560.0 50010
## 38  805.0 1404.83 520.0 49600 156725 358852 0.150  805.0 1404.83 520.0 49600
## 39  775.0 1287.85 472.0 51550 146816 339811 0.090  775.0 1287.85 472.0 51550
## 40  810.0 1434.49 640.0 46165 128312 342487 0.090  810.0 1434.49 640.0 46165
## 41  765.0 1537.52 676.0 45135 158991 341249 0.080  765.0 1537.52 676.0 45135
## 42  670.0 1417.17 600.0 44835 166140 339541 0.080  670.0 1417.17 600.0 44835
## 43  775.0 1533.99 620.0 43250 160003 341264 0.080  775.0 1533.99 620.0 43250
## 44  765.0 1478.76 560.0 42645 159542 342222 0.080  765.0 1478.76 560.0 42645
## 45  740.0 1598.73 600.0 41300 184116 347534 0.080  740.0 1598.73 600.0 41300
## 46  900.0 1681.72 500.0 41140 191292 337505 0.080  900.0 1681.72 500.0 41140
## 47  890.0 1641.94 440.0 40140 179551 326894 0.080  890.0 1641.94 440.0 40140
## 48  950.0 1989.43 420.0 40573 188752 343054 0.080  950.0 1989.43 420.0 40573
## 49 1025.0 2142.97 440.0 40410 212572 394127 0.080 1025.0 2142.97 440.0 40410
## 50  840.0 1979.42 430.0 40945 196214 334674 0.080  840.0 1979.42 430.0 40945
## 51  835.0 2036.05 470.0 40250 174821 313796 0.080  835.0 2036.05 470.0 40250
## 52  885.0 2096.20 440.0 40930 166677 307055 0.080  885.0 2096.20 440.0 40930
## 53  940.0 2173.82 450.0 39665 170214 297737 0.080  940.0 2173.82 450.0 39665
## 54 1110.0 2342.81 490.0 38495 171469 298875 0.084 1110.0 2342.81 490.0 38495
## 55 1160.0 2486.86 480.0 38065 168318 293971 0.092 1160.0 2486.86 480.0 38065
## 56 1115.0 2419.83 490.0 38000 169299 305896 0.099 1115.0 2419.83 490.0 38000
## 57 1230.0 2443.70 396.0 38007 181945 290772 0.100 1230.0 2443.70 396.0 38007
## 58 1020.0 2028.21 248.0 38775 193485 285161 0.121 1020.0 2028.21 248.0 38775
## 59  905.0 1965.05 252.0 39070 175772 285161 0.127  905.0 1965.05 252.0 39070
## 60  900.0 1954.15 256.0 38550 189798 262399 0.132  900.0 1954.15 256.0 38550
## 61 1000.0 1968.78 244.0 39150 217109 281514 0.134 1000.0 1968.78 244.0 39150
## 62 1030.0 1975.36 268.0 39380 200368 253719 0.134 1030.0 1975.36 268.0 39380
## 63  965.0 1755.04 196.0 40390 174200 243915 0.135  965.0 1755.04 196.0 40390
## 64  920.0 1259.64 170.0 43950 165585 238422 0.138  920.0 1259.64 170.0 43950
## 65  725.0 1192.25 172.0 43875 169681 235853 0.140  725.0 1192.25 172.0 43875
## 66  925.0 1607.61 232.0 42030 175803 241070 0.146  925.0 1607.61 232.0 42030
## 67  950.0 1760.13 236.0 41800 161570 251214 0.100  950.0 1760.13 236.0 41800
## 68 1000.0 2011.45 204.0 38825 160681 255527 0.143 1000.0 2011.45 204.0 38825
## 69 1075.0 2181.32 200.0 40190 176230 247455 0.150 1075.0 2181.32 200.0 40190
## 70 1055.0 2238.42 184.0 37975 187800 241935 0.160 1055.0 2238.42 184.0 37975
## 71 1075.0 2266.30 124.0 39840 173998 243119 0.177 1075.0 2266.30 124.0 39840
##    PHIVTA   PHMS TBILL fittedval      resid1
## 1  238316 514214 0.062  355.3426  614.657368
## 2  170921 470740 0.064  429.0534  325.946576
## 3  167573 452675 0.056  549.8291  215.170887
## 4  140652 445781 0.053  510.3179  129.682072
## 5  162076 443137 0.052  468.0412   66.958759
## 6  166045 440885 0.052  508.6088   21.391220
## 7  130874 445392 0.055  448.5610  116.439005
## 8  109803 447526 0.065  443.6261  -11.126071
## 9  123576 442370 0.073  421.8474  -41.847447
## 10 157036 444956 0.061  422.1555 -107.155489
## 11 162626 442370 0.056  404.2648 -111.764802
## 12 175728 444956 0.051  397.5398 -102.539786
## 13 191072 470056 0.052  240.1115   29.888506
## 14 145348 434771 0.052  371.0622  -81.062215
## 15 150582 420590 0.052  409.6417 -179.641733
## 16 137201 411308 0.047  485.0838 -205.083809
## 17 164244 404530 0.047  525.9934 -240.993387
## 18 170831 404147 0.047  545.0929 -230.092858
## 19 160383 405491 0.046  546.8032 -176.803164
## 20 163782 405438 0.046  652.5089 -215.008934
## 21 166201 403614 0.046  642.1500 -182.150024
## 22 174366 389816 0.063  693.2788 -158.278832
## 23 153373 373088 0.071  756.7149 -251.714862
## 24 155294 364867 0.078  761.1409 -251.140922
## 25 166265 387989 0.088  632.9971 -215.497091
## 26 118483 353080 0.095  709.3591 -281.859121
## 27 110448 350421 0.097  703.0104 -323.010435
## 28 119117 353183 0.095  739.8967 -259.896657
## 29 155437 360712 0.095  724.1451 -239.145065
## 30 154480 369211 0.088  698.9255  -23.925456
## 31 145784 377970 0.087  681.1158   43.884182
## 32 148414 379962 0.090  667.6003  -17.600293
## 33 177294 389215 0.090  635.1747   54.825278
## 34 186087 367264 0.090  703.8231   11.176905
## 35 147900 361013 0.106  765.1513   29.848662
## 36 167184 382023 0.120  681.9437  233.056267
## 37 171929 386981 0.130  648.2420  216.757952
## 38 156725 358852 0.150  731.5114   73.488627
## 39 146816 339811 0.090  773.1623    1.837690
## 40 128312 342487 0.090  880.7197  -70.719704
## 41 158991 341249 0.080  910.9417 -145.941665
## 42 166140 339541 0.080  864.2548 -194.254755
## 43 160003 341264 0.080  871.4971  -96.497134
## 44 159542 342222 0.080  825.5047  -60.504741
## 45 184116 347534 0.080  832.5994  -92.599430
## 46 191292 337505 0.080  801.9875   98.012489
## 47 179551 326894 0.080  801.8128   88.187235
## 48 188752 343054 0.080  723.7469  226.253108
## 49 212572 394127 0.080  535.5445  489.455530
## 50 196214 334674 0.080  763.9679   76.032057
## 51 174821 313796 0.080  874.7850  -39.785010
## 52 166677 307055 0.080  880.3828    4.617236
## 53 170214 297737 0.080  924.3187   15.681348
## 54 171469 298875 0.084  947.9440  162.056029
## 55 168318 293971 0.092  960.3326  199.667379
## 56 169299 305896 0.099  920.1381  194.861864
## 57 181945 290772 0.100  913.9242  316.075807
## 58 193485 285161 0.121  832.0566  187.943368
## 59 175772 285161 0.127  834.8699   70.130145
## 60 189798 262399 0.132  927.8293  -27.829271
## 61 217109 281514 0.134  843.6869  156.313082
## 62 200368 253719 0.134  970.6450   59.354953
## 63 174200 243915 0.135  958.8346    6.165395
## 64 165585 238422 0.138  962.3030  -42.303027
## 65 169681 235853 0.140  973.8839 -248.883858
## 66 175803 241070 0.146  995.4209  -70.420898
## 67 161570 251214 0.100  958.0600   -8.060016
## 68 160681 255527 0.143  918.4731   81.526893
## 69 176230 247455 0.150  947.6281  127.371920
## 70 187800 241935 0.160  958.2365   96.763510
## 71 173998 243119 0.177  911.3491  163.650949
sum(resid1)
## [1] -0.007712218
## The residual is -0.007712218. 

#------------ d. What is your final model? Why, discuss. -----------#

## Of all the model I created, my final model will be the model 1 
## Which includes the TEL as the response variable and "The Philippine 
# Composite Index (PCOMP) and "Philippine Visitor Travel Arrivals (PHIVTA)" 
## as the predictor variable. Based on the correlation matrix, both of the 
## independent variables are positively correlated with the dependents variable. 
## This means that when the PCOMP and PHIVTA are increasing the TEL is also
## increasing. This model can be used to predict the value of the y.