Advanced Micro Devices, Inc.

library(quantmod)
## Zorunlu paket yükleniyor: xts
## Zorunlu paket yükleniyor: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Zorunlu paket yükleniyor: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
getSymbols("AMD")
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## 
## This message is shown once per session and may be disabled by setting 
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## [1] "AMD"
dim(AMD)
## [1] 3815    6
head(AMD)
##            AMD.Open AMD.High AMD.Low AMD.Close AMD.Volume AMD.Adjusted
## 2007-01-03    20.08    20.40   19.35     19.52   28350300        19.52
## 2007-01-04    19.66    19.86   19.32     19.79   23652500        19.79
## 2007-01-05    19.54    19.91   19.54     19.71   15902400        19.71
## 2007-01-08    19.71    19.86   19.37     19.47   15814800        19.47
## 2007-01-09    19.45    19.71   19.37     19.65   14494200        19.65
## 2007-01-10    19.64    20.02   19.50     20.01   19783200        20.01
tail(AMD)
##            AMD.Open AMD.High AMD.Low AMD.Close AMD.Volume AMD.Adjusted
## 2022-02-17   116.26   116.98  112.26    112.37   98179600       112.37
## 2022-02-18   113.90   115.64  109.89    113.83  114193900       113.83
## 2022-02-22   115.27   119.20  113.61    115.65  141648500       115.65
## 2022-02-23   117.40   118.65  109.04    109.76  120299400       109.76
## 2022-02-24   104.56   116.96  104.26    116.61  142956600       116.61
## 2022-02-25   117.16   121.23  116.04    121.06  127716100       121.06
chartSeries(AMD)

chartSeries(AMD, theme="white")

NVIDIA Corporation

library(quantmod)
getSymbols("NVDA")
## [1] "NVDA"
dim(NVDA)
## [1] 3815    6
head(NVDA)
##            NVDA.Open NVDA.High NVDA.Low NVDA.Close NVDA.Volume NVDA.Adjusted
## 2007-01-03  6.178333  6.253333 5.798333   6.013333   115482000      5.523911
## 2007-01-04  5.991667  6.013333 5.838333   5.985000    79729800      5.497883
## 2007-01-05  5.843333  5.866667 5.570000   5.610000   124334400      5.153405
## 2007-01-08  5.630000  5.760000 5.533333   5.651667    65727000      5.191681
## 2007-01-09  5.660000  5.698333 5.535000   5.541667    76416600      5.090633
## 2007-01-10  5.483333  5.866667 5.400000   5.815000   110874600      5.341720
tail(NVDA)
##            NVDA.Open NVDA.High NVDA.Low NVDA.Close NVDA.Volume NVDA.Adjusted
## 2022-02-17    256.30    257.85   241.65     245.07    81059500        245.07
## 2022-02-18    246.68    249.86   231.00     236.42    75966400        236.42
## 2022-02-22    230.35    240.64   230.00     233.90    63342200        233.90
## 2022-02-23    238.02    241.55   223.01     223.87    56651100        223.87
## 2022-02-24    210.15    238.00   208.90     237.48    73580100        237.48
## 2022-02-25    237.21    242.17   233.81     241.57    52830700        241.57
chartSeries(NVDA)

chartSeries(NVDA, theme="white")

##Los Angeles County, CA’da Lisans Derecesi veya Üzeri (5 yıllık tahmin)

getSymbols("HC01ESTVC1706037",src="FRED")
## [1] "HC01ESTVC1706037"
chartSeries(HC01ESTVC1706037,theme="white") 

getFX("USD/TRY",from="2020-01-01")
## Warning in doTryCatch(return(expr), name, parentenv, handler): Oanda only
## provides historical data for the past 180 days. Symbol: USD/TRY
## [1] "USD/TRY"
chartSeries(USDTRY,theme="white")

İlaç ve Diğer Tıbbi Ürünler Harcama Fiyat Endeksi

getSymbols("PHMEPRPIHCSA",src="FRED")
## [1] "PHMEPRPIHCSA"
chartSeries(PHMEPRPIHCSA,theme="white") 

getFX("USD/TRY",from="2020-01-01")
## Warning in doTryCatch(return(expr), name, parentenv, handler): Oanda only
## provides historical data for the past 180 days. Symbol: USD/TRY
## [1] "USD/TRY"
chartSeries(USDTRY,theme="white")

ElektriÄŸe eriÅŸim

library(WDI)
dk = WDI(indicator='EG.ELC.ACCS.ZS', country=c('MX','TR','BR'), start=2010, end=2019)
head(dk)
##   iso2c country EG.ELC.ACCS.ZS year
## 1    BR  Brazil       99.80000 2019
## 2    BR  Brazil       99.70000 2018
## 3    BR  Brazil       99.80000 2017
## 4    BR  Brazil       99.70000 2016
## 5    BR  Brazil       99.71090 2015
## 6    BR  Brazil       99.65025 2014
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
## 
##     first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
dk <- dk %>%
  rename(ulkekodu = 1,
         ulke = 2,
         elektrik = 3,
         sene = 4)
library(reshape2)
data_genis <- dcast(dk, sene ~ ulke, value.var="elektrik")
head(data_genis)
##   sene   Brazil   Mexico Turkey
## 1 2010 99.35217 99.23670    100
## 2 2011 99.32869 99.06409    100
## 3 2012 99.51949 99.11164    100
## 4 2013 99.57515 99.23203    100
## 5 2014 99.65025 99.17293    100
## 6 2015 99.71090 99.00000    100
tsveri <- ts(data_genis, start=2010, frequency=1)
head(tsveri)
##      sene   Brazil   Mexico Turkey
## [1,] 2010 99.35217 99.23670    100
## [2,] 2011 99.32869 99.06409    100
## [3,] 2012 99.51949 99.11164    100
## [4,] 2013 99.57515 99.23203    100
## [5,] 2014 99.65025 99.17293    100
## [6,] 2015 99.71090 99.00000    100
library(ggplot2)
library(ggfortify)
autoplot(tsveri[,"Turkey"]) +
  ggtitle("Türkiye'nin elektriğe erişimi") +
  xlab("Sene") +
  ylab("")

plot(tsveri[,2:4])

data_uzun <- melt(data_genis, id.vars = "sene") 
ggplot(data_uzun,                           
       aes(x = sene,
           y = value,
           col = variable)) +
  geom_line()

Orman alanı (arazi alanının yüzdesi)

library(WDI)
dk = WDI(indicator='AG.LND.FRST.ZS', country=c('MX','TR','BR'), start=2010, end=2019)
head(dk)
##   iso2c country AG.LND.FRST.ZS year
## 1    BR  Brazil       59.55853 2019
## 2    BR  Brazil       59.70843 2018
## 3    BR  Brazil       59.83288 2017
## 4    BR  Brazil       60.07103 2016
## 5    BR  Brazil       60.28671 2015
## 6    BR  Brazil       60.47087 2014
library(dplyr)
dk <- dk %>%
  rename(ulkekodu = 1,
         ulke = 2,
         orman = 3,
         sene = 4)
library(reshape2)
data_genis <- dcast(dk, sene ~ ulke, value.var="orman")
head(data_genis)
##   sene   Brazil   Mexico   Turkey
## 1 2010 61.20748 34.43674 27.39379
## 2 2011 61.02333 34.37374 27.53599
## 3 2012 60.83917 34.31073 27.67819
## 4 2013 60.65502 34.24773 27.82040
## 5 2014 60.47087 34.18472 27.96260
## 6 2015 60.28671 34.12172 28.10480
tsveri <- ts(data_genis, start=2010, frequency=1)
head(tsveri)
##      sene   Brazil   Mexico   Turkey
## [1,] 2010 61.20748 34.43674 27.39379
## [2,] 2011 61.02333 34.37374 27.53599
## [3,] 2012 60.83917 34.31073 27.67819
## [4,] 2013 60.65502 34.24773 27.82040
## [5,] 2014 60.47087 34.18472 27.96260
## [6,] 2015 60.28671 34.12172 28.10480
library(ggplot2)
library(ggfortify)
autoplot(tsveri[,"Turkey"]) +
  ggtitle("Türkiye'nin orman alanına erişimi") +
  xlab("Sene") +
  ylab("")

plot(tsveri[,2:4])

data_uzun <- melt(data_genis, id.vars = "sene") 
ggplot(data_uzun,                           
       aes(x = sene,
           y = value,
           col = variable)) +
  geom_line()