Repository:
https://github.com/egage/EVMP
This document provides supporting information on statistical analyses of Elk Vegetation Management Plan (EVMP) data collected through the 2018 sampling season in the NPS NRR Report “Monitoring of Vegetation Response to Elk Population and Habitat Management in Rocky Mountain National Park - Analysis of Elk Vegetation Management Plan monitoring Data: 2008–2018.” Separate analyses were run for plots established in aspen, willow and upland communities and for the elk winter range (core and noncore areas) and the Kawuneeche Valley. For information on sampling and the broader analysis and interpretation of the results, refer to the body of the report, past analyses (Linda C. Zeigenfuss and Johnson 2015), and the original EVMP monitoring plan (Linda C. Zeigenfuss, Johnson, and Wiebe 2011).
The code and results presented here start from and build upon derived data produced in a separate code document focused on ingesting, compiling, and cleaning raw data provided by RMNP staff. In general, packages included in the “Tidyverse” ecosystem of R packages were used for data transformation and visualization (Wickham et al. 2019). Specialized packages particular to specific tasks (e.g., the “bayesplot” plot for visualization of Bayesian posterior distributions) were also used (Gabry et al. 2019).
Bayesian repeated measures analyses were fit separately for combined core and noncore winter range, core winter range, and noncore winter range plots with plots treated as random factors using the ‘stan_glmer’ function in the rstanrm package (Goodrich et al. 2020)(Brilleman et al. 2018). In addition, models were fit to particular subgroups of data (e.g., short saplings vs tall saplings).
Bayesian estimation was performed via MCMC adding independent weakly informed priors specific to the data type being modeled. Count data like aspen stem counts were modeled as poisson processes, while proportion data (e.g., cover) were modeled using a beta distribution (Ferrari and Cribari-Neto 2004), which constrains values from 0 to 1.
Bayesian models view a model parameter \(\theta\) as a [random variable]. In contrast, frequentist models treat model parameters as unknown constant. Rather than estimating an unknown constant, Bayesian modeling focuses on an unknown distribution of parameter values.
Using Bayes’ Law, model parameters are estimated:
\[ \begin{equation} \label{eq:bayeslaw} P(\theta | y, X) = \frac{P(y|\theta,X) \cdot P(\theta)}{P(y)} \propto P(y|\theta,X) \cdot P(\theta). \end{equation} \]
Where:
The objective is to estimate the posterior density of parameter \(P(\theta|y,X)\), typically described in terms of a point estimate of the expected value of posterior density (e.g., the median of the distribution) and a measure of the variance. To solve for \(P(\theta|y,X)\) analytically, the data likelihood \(P(y|\theta,X)\), prior \(P(\theta)\), and marginal likelihood of outcome \(P(y)\) are needed, but because there is usually no closed-form analytic solution, Markov chain Monte Carlo (MCMC) methods are used to numerically solve the posterior density by directly generating random draws of parameters.
General steps in a Bayesian analysis include:
Specify a joint distribution for the outcome(s) and unknowns, which is proportional to a posterior distribution of the unknowns conditional on the observed data.
Use Markov Chain Monte Carlo (MCMC) to draw from posterior distribution.
*Evaluation of model fit and revise the model as appropriate.
For an observation \(y\) that is assumed to follow a Poisson distribution (e.g., aspen stem count data), the likelihood for one observation can be written as:
\[\tfrac{1}{y!} \lambda^y e^{-\lambda},\]
where \(\lambda = E(y | \mathbf{x}) = g^{-1}(\eta)\) and \(\eta = \alpha + \mathbf{x}^\top \boldsymbol{\beta}\) is a linear predictor. For the Poisson distribution it is also true that \(\lambda = Var(y | \mathbf{x})\), i.e. the mean and variance are both \(\lambda\). The rate parameter \(\lambda\) must be positive, so with a Poisson GLM, the link function \(g\) maps between the positive real numbers \(\mathbb{R}^+\) (thesupport of \(\lambda\)) and the set of all real numbers \(\mathbb{R}\). When applied to a linear predictor \(\eta\) with values in \(\mathbb{R}\), the inverse link function \(g^{-1}(\eta)\) returns a positive real number.
The standard link function for a Poisson GLM is the log link \(g(x) = \ln{(x)}\). With the log link, the inverse link function is the exponential function and the likelihood for a single observation is:
\[\frac{g^{-1}(\eta)^y}{y!} e^{-g^{-1}(\eta)} = \frac{e^{\eta y}}{y!} e^{-e^\eta}.\]
With independent prior distributions, the joint posterior distribution for \(\alpha\) and \(\boldsymbol{\beta}\) in the Poisson model is proportional to the product of the priors and the \(N\) likelihood contributions:
\[f\left(\alpha,\boldsymbol{\beta} | \mathbf{y},\mathbf{X}\right) \propto f\left(\alpha\right) \times \prod_{k=1}^K f\left(\beta_k\right) \times \prod_{i=1}^N { \frac{g^{-1}(\eta_i)^{y_i}}{y_i!} e^{-g^{-1}(\eta_i)}}.\]
This is the posterior distribution drawn from when using MCMC.
The Probability of Direction (PD) was used to represent certainty associated with the most probable direction (positive or negative) of the effect (e.g., time class, fencing). The PD is correlated with the frequentist p-value, with a two-sided p-value of respectively .1, .05, and .01 approximated by a PD of 95%, 97.5%, and 99.5% (Makowski, Ben-Shachar, and Lüdecke 2019). The “region of practical equivalence” (ROPE) was used to evaluate the probability of a parameter being outside a range that can be considered as “practically no effect,” i.e., a region enclosing values that are equivalent to the null value for practical purposes (Kruschke 2018). The proportion of the 95% HDI credible interval falling within the ROPE was used as an index for an analog to frequentist “null-hypothesis” testing.
For analyses of aspen count data, entailing separate models for combined winter range, core and noncore winter range subsets of plots, a random effects model was used for inference:
_i = (+1x{1,i} +2x{2,i} + 3x{3,i} + 4x{4,i} + 5x{5,i} + _i)
_i Normal (0 , ^2)
y_i Poisson(_i)
where yi is the count of aspen stems in the ith plot; x1,i is a indicator variable that equals one if the observation in plot i was from 2013 and zero otherwise; x2,i is an indicator variable that equals one if the observation in plot i was from 2018 and zero otherwise; x3 is an indicator variable that equals one if the fenced and zero otherwise. Separate models were developed with inclusion of burning as a factor. Otherwise, analyses included both burned and unburned plots.
Interpretation of model coefficients: The intercept (exp(α)) represents the mean count of aspen in unfenced plots during the baseline year; exp(β1) is the multiplicative change in mean counts that occurred during the time interval between the baseline year and 2013; exp(β2) is the multiplicative change in mean counts that occurred during the time interval between the baseline year and 2018; and exp(β2) is the multiplicative change in mean counts that was caused by fencing.
Inferences were made on the difference between means.
So, for example, the mean of counts in year 2013 in the fenced plots could be computed as µˆfence, 2013 = exp(α + β1 + β3) and in unfenced plots as µˆopen, 2013 = exp(α + β1), and a contrast showing the difference between the means is then µˆfence, 2013 − µˆopen, 2013. Differences between year classes were computed similarly.
Bayesian repeated measures analyses of shrub height were fit separately for combined core and non-core winter range, core winter range, and non-core winter range plots. Separate models were also fit to different groups of species. Shrub height models were fit using weekly informative priors and a gamma distribution with the “stan_glmer” function in the “rstanarm” package (Goodrich et al. 2020)(Brilleman et al. 2018). Gamma regression is commonly used when the response variable is continuous and positive.
For the simplest case a GLM for a continuous outcome is simply a linear model and the likelihood for one observation is a conditionally normal probability density function.
\[\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}
\left(\frac{y - \mu}{\sigma}\right)^2},\] where \(\mu = \alpha + \mathbf{x}^\top \boldsymbol{\beta}\) is a linear predictor and \(\sigma\) is the standard deviation of the error in predicting the outcome, \(y\). A linear predictor \(\eta = \alpha + \mathbf{x}^\top \boldsymbol{\beta}\) can more generally be related to the conditional mean of the outcome via a link function \(g\). This maps the range of values on which the outcome is defined. For the gamma distribution used in the modeling of willow height, the log link function was used. The likelihood is the product of the likelihood contributions of individual observations.
Bayesian analysis requires specifying prior distributions \(f(\alpha)\) and \(f(\boldsymbol{\beta})\) for the intercept and vector of regression coefficients. Prior distributions were represented by normal distributions with a mean zero and a small standard deviation (scale)). The joint posterior distribution for \(\alpha\) and \(\boldsymbol{\beta}\) is proportional to the product of the priors and the \(N\) likelihood contributions:
\[f\left(\boldsymbol{\beta} | \mathbf{y},\mathbf{X}\right) \propto f\left(\alpha\right) \times \prod_{k=1}^K f\left(\beta_k\right) \times \prod_{i=1}^N {f(y_i|\eta_i)},\]
where \(\mathbf{X}\) is the matrix of predictors and \(\eta\) the linear predictor, i.e., the posterior distribution that stan_glmer draws from using MCMC.
Willow and upland shrub cover data were modeled using the beta distribution with the likelihood: \[ f(y_i | a, b) = \frac{y_i^{(a-1)}(1-y_i)^{(b-1)}}{B(a,b)} \] where \(B(\cdot)\) is the beta function. The shape parameters for the distribution are \(a\) and \(b\) and enter into the model according to the following transformations, \[ a = \mu\cdot\phi \\ b = (1-\mu)\cdot\phi \]
If \(g_1(\cdot)\) is some link function, the specification of the shape parameters, \(\mu = g_1^{-1}(\mathbf{X}\boldsymbol{\beta})\), where \(\boldsymbol{X}\) is a \(N\times K\) dimensional matrix of predictors, and \(\boldsymbol{\beta}\), is a \(K\) dimensional vector of parameters associated with each predictor. \(\phi\) is a scalar parameter. With the shape parameter values included, the likelihood takes the form: \[ f(y_i | \mu, \phi) = \frac{y_i^{(\mu\phi-1)}(1-y_i)^{((1-\mu)\phi-1)}}{B(\mu\phi,(1-\mu)\phi)} \]
Bayesian analysis requires specifying prior distributions \(f(\boldsymbol{\beta})\) and \(f(\phi)\) for the vector of regression coefficients and \(\phi\). When modeling \(\phi\) with a linear predictor a full Bayesian analysis requires specifying the prior distributions \(f(\boldsymbol{\beta})\) and \(f(\boldsymbol{\gamma})\).
With a single set of explanatory variables, the posterior distribution of \(\boldsymbol{\beta}\) and \(\phi\) is proportional to the product of the likelihood contributions, the \(K\) priors on the \(\beta_k\) parameters, and \(\phi\), \[ f(\boldsymbol{\beta},\phi|\mathbf{y},\mathbf{X}) \propto \prod_{i=1}^N f(y_i | a, b) \times \prod_{k=1}^K f(\beta_k) \times f(\phi) \]
With two sets of explanatory variables, the posterior distribution of \(\boldsymbol{\beta}\) and \(\boldsymbol{\gamma}\) is proportional to the product of the likelihood contribution, the \(K\) priors on the \(\beta_k\) parameters, and the \(J\) priors on the \(\gamma_j\) parameters,
\[ f(\boldsymbol{\beta},\boldsymbol{\gamma}|\mathbf{y},\mathbf{X}) \propto \prod_{i=1}^N f(y_i | a, b) \times \prod_{k=1}^K f(\beta_k) \times \prod_{j=1}^J f(\gamma_j) \]
| Aspen Saplings | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Time class | site_type | sap_size | mean | sd | min | q1 | med | q3 | max | mad | iqr | n |
| BL | AC | small saplings | 25.4 | 30.3 | 0 | 7.0 | 17.5 | 30.0 | 139 | 16.3 | 21.5 | 40 |
| 2013 | AC | small saplings | 45.0 | 82.8 | 0 | 11.0 | 22.0 | 45.0 | 523 | 22.2 | 34.0 | 45 |
| 2018 | AC | small saplings | 25.0 | 29.3 | 0 | 5.0 | 11.5 | 34.0 | 111 | 12.6 | 27.2 | 46 |
| BL | AK | small saplings | 10.1 | 6.6 | 3 | 4.5 | 9.0 | 14.5 | 22 | 6.7 | 9.0 | 8 |
| 2013 | AK | small saplings | 12.2 | 9.8 | 3 | 4.0 | 11.5 | 16.0 | 32 | 8.9 | 12.0 | 8 |
| 2018 | AK | small saplings | 14.8 | 11.3 | 0 | 6.0 | 15.0 | 20.5 | 35 | 8.9 | 11.8 | 8 |
| BL | ANC | small saplings | 11.9 | 12.4 | 0 | 3.5 | 7.5 | 16.0 | 45 | 6.7 | 11.8 | 20 |
| 2013 | ANC | small saplings | 14.4 | 12.3 | 1 | 4.0 | 14.0 | 20.0 | 53 | 14.8 | 16.0 | 21 |
| 2018 | ANC | small saplings | 21.0 | 14.8 | 2 | 6.0 | 18.0 | 33.0 | 51 | 19.3 | 27.0 | 21 |
| BL | AC | tall saplings | 0.1 | 0.3 | 0 | 0.0 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 40 |
| 2013 | AC | tall saplings | 3.6 | 10.1 | 0 | 0.0 | 0.0 | 1.0 | 49 | 0.0 | 1.0 | 45 |
| 2018 | AC | tall saplings | 5.3 | 12.6 | 0 | 0.0 | 0.0 | 3.0 | 73 | 0.0 | 3.0 | 46 |
| BL | AK | tall saplings | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 8 |
| 2013 | AK | tall saplings | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 8 |
| 2018 | AK | tall saplings | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 8 |
| BL | ANC | tall saplings | 0.8 | 2.9 | 0 | 0.0 | 0.0 | 0.0 | 13 | 0.0 | 0.0 | 20 |
| 2013 | ANC | tall saplings | 1.0 | 2.3 | 0 | 0.0 | 0.0 | 1.0 | 10 | 0.0 | 1.0 | 21 |
| 2018 | ANC | tall saplings | 1.9 | 2.8 | 0 | 0.0 | 0.0 | 3.0 | 10 | 0.0 | 3.0 | 21 |
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2.acanc.sm'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.27,5.25,6.16,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | Mean | MAP | CI | CI_low | CI_high | pd | ps | Rhat | ESS |
(Intercept) | 1.42 | 1.42 | 1.43 | 0.9 | 1.17 | 1.66 | 1 | 1 | 1.01 | 752.18 |
time_class2013 | 0.51 | 0.51 | 0.50 | 0.9 | 0.44 | 0.59 | 1 | 1 | 1.00 | 6,833.66 |
time_class2018 | 0.22 | 0.22 | 0.23 | 0.9 | 0.15 | 0.30 | 1 | 1 | 1.00 | 7,402.64 |
fencedFenced | 1.01 | 1.01 | 1.00 | 0.9 | 0.48 | 1.52 | 1 | 1 | 1.00 | 1,121.80 |
time_class2013:fencedFenced | -1.04 | -1.04 | -1.05 | 0.9 | -1.17 | -0.89 | 1 | 1 | 1.00 | 8,774.85 |
time_class2018:fencedFenced | -1.94 | -1.94 | -1.94 | 0.9 | -2.13 | -1.76 | 1 | 1 | 1.00 | 9,878.32 |
| Parameter | Median | Mean | MAP | CI | CI_low | CI_high | pd | ps | Rhat | ESS |
|---|---|---|---|---|---|---|---|---|---|---|
| (Intercept) | 1.42 | 1.42 | 1.43 | 0.9 | 1.17 | 1.66 | 1 | 1 | 1.01 | 752.18 |
| time_class2013 | 0.51 | 0.51 | 0.50 | 0.9 | 0.44 | 0.59 | 1 | 1 | 1.00 | 6833.66 |
| time_class2018 | 0.22 | 0.22 | 0.23 | 0.9 | 0.15 | 0.30 | 1 | 1 | 1.00 | 7402.64 |
| fencedFenced | 1.01 | 1.01 | 1.00 | 0.9 | 0.48 | 1.52 | 1 | 1 | 1.00 | 1121.80 |
| time_class2013:fencedFenced | -1.04 | -1.04 | -1.05 | 0.9 | -1.17 | -0.89 | 1 | 1 | 1.00 | 8774.85 |
| time_class2018:fencedFenced | -1.94 | -1.94 | -1.94 | 0.9 | -2.13 | -1.76 | 1 | 1 | 1.00 | 9878.32 |
Parameter | Median | Mean | MAP | CI | CI_low | CI_high | pd | ps | Rhat | ESS |
(Intercept) | 1.42 | 1.42 | 1.43 | 0.9 | 1.17 | 1.66 | 1 | 1 | 1.01 | 752.18 |
time_class2013 | 0.51 | 0.51 | 0.50 | 0.9 | 0.44 | 0.59 | 1 | 1 | 1.00 | 6,833.66 |
time_class2018 | 0.22 | 0.22 | 0.23 | 0.9 | 0.15 | 0.30 | 1 | 1 | 1.00 | 7,402.64 |
fencedFenced | 1.01 | 1.01 | 1.00 | 0.9 | 0.48 | 1.52 | 1 | 1 | 1.00 | 1,121.80 |
time_class2013:fencedFenced | -1.04 | -1.04 | -1.05 | 0.9 | -1.17 | -0.89 | 1 | 1 | 1.00 | 8,774.85 |
time_class2018:fencedFenced | -1.94 | -1.94 | -1.94 | 0.9 | -2.13 | -1.76 | 1 | 1 | 1.00 | 9,878.32 |
| Effect Existence and Significance Testing | |||||||
|---|---|---|---|---|---|---|---|
| Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
| (Intercept) | 1.42 | 0.9 | 1.17 | 1.66 | 1 | 1 | 1.00 |
| time_class2013 | 0.51 | 0.9 | 0.44 | 0.59 | 1 | 1 | 1.00 |
| time_class2018 | 0.22 | 0.9 | 0.15 | 0.30 | 1 | 1 | 0.06 |
| fencedFenced | 1.01 | 0.9 | 0.48 | 1.52 | 1 | 1 | 0.99 |
| time_class2013:fencedFenced | -1.04 | 0.9 | -1.17 | -0.89 | 1 | 1 | 1.00 |
| time_class2018:fencedFenced | -1.94 | 0.9 | -2.13 | -1.76 | 1 | 1 | 1.00 |
## # A tibble: 6 x 5
## contrast fenced estimate lower.HPD upper.HPD
## <fct> <fct> <dbl> <dbl> <dbl>
## 1 BL - 2013 Unfenced -0.507 -0.597 -0.420
## 2 BL - 2018 Unfenced -0.224 -0.320 -0.137
## 3 2013 - 2018 Unfenced 0.283 0.216 0.352
## 4 BL - 2013 Fenced 0.532 0.393 0.673
## 5 BL - 2018 Fenced 1.72 1.52 1.92
## 6 2013 - 2018 Fenced 1.19 0.998 1.40
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log (not the response) scale. | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| BL - 2013 | Unfenced | -0.51 | -0.60 | -0.42 |
| BL - 2018 | Unfenced | -0.22 | -0.32 | -0.14 |
| 2013 - 2018 | Unfenced | 0.28 | 0.22 | 0.35 |
| BL - 2013 | Fenced | 0.53 | 0.39 | 0.67 |
| BL - 2018 | Fenced | 1.72 | 1.52 | 1.92 |
| 2013 - 2018 | Fenced | 1.19 | 1.00 | 1.40 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale. | ||||
| contrast | fenced | ratio | lower.HPD | upper.HPD |
| BL / 2013 | Unfenced | 0.60 | 0.55 | 0.66 |
| BL / 2018 | Unfenced | 0.80 | 0.73 | 0.87 |
| 2013 / 2018 | Unfenced | 1.33 | 1.24 | 1.42 |
| BL / 2013 | Fenced | 1.70 | 1.48 | 1.95 |
| BL / 2018 | Fenced | 5.58 | 4.53 | 6.78 |
| 2013 / 2018 | Fenced | 3.28 | 2.65 | 3.97 |
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2.ac.sm'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.26,5.23,5.42,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | 1.605 | 0.006 | 0.211 | 1.335 | 1.607 | 1.869 | 1207 | 1.002 |
| time_class2013 | 0.569 | 0.001 | 0.054 | 0.499 | 0.569 | 0.638 | 6635 | 1.000 |
| time_class2018 | 0.091 | 0.001 | 0.057 | 0.016 | 0.092 | 0.164 | 6958 | 1.000 |
| fencedFenced | 0.829 | 0.010 | 0.383 | 0.359 | 0.819 | 1.321 | 1460 | 1.002 |
| time_class2013:fencedFenced | -1.102 | 0.001 | 0.089 | -1.215 | -1.101 | -0.988 | 7011 | 1.000 |
| time_class2018:fencedFenced | -1.814 | 0.001 | 0.118 | -1.966 | -1.814 | -1.665 | 7745 | 1.000 |
| mean_PPD | 10.670 | 0.002 | 0.233 | 10.374 | 10.672 | 10.964 | 14547 | 1.000 |
| log-posterior | -2887.734 | 0.156 | 6.998 | -2897.009 | -2887.421 | -2879.003 | 2006 | 1.001 |
## [1] "(Intercept)" "2013" "2018" "Fenced" "2013:Fenced"
## [6] "2018:Fenced"
| Effect Existence and Significance Testing | |||||||
|---|---|---|---|---|---|---|---|
| Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
| (Intercept) | 1.61 | 0.9 | 1.28 | 1.96 | 1.00 | 1.00 | 1.00 |
| time_class2013 | 0.57 | 0.9 | 0.48 | 0.66 | 1.00 | 1.00 | 1.00 |
| time_class2018 | 0.09 | 0.9 | 0.00 | 0.19 | 0.94 | 0.76 | 0.00 |
| fencedFenced | 0.82 | 0.9 | 0.22 | 1.46 | 0.99 | 0.98 | 0.92 |
| time_class2013:fencedFenced | -1.10 | 0.9 | -1.24 | -0.95 | 1.00 | 1.00 | 1.00 |
| time_class2018:fencedFenced | -1.81 | 0.9 | -2.00 | -1.62 | 1.00 | 1.00 | 1.00 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log (not the response) scale. | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| BL - 2013 | Unfenced | -0.57 | -0.67 | -0.46 |
| BL - 2018 | Unfenced | -0.09 | -0.20 | 0.02 |
| 2013 - 2018 | Unfenced | 0.48 | 0.40 | 0.56 |
| BL - 2013 | Fenced | 0.53 | 0.39 | 0.67 |
| BL - 2018 | Fenced | 1.72 | 1.52 | 1.92 |
| 2013 - 2018 | Fenced | 1.19 | 0.99 | 1.39 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale. | ||||
| contrast | fenced | ratio | lower.HPD | upper.HPD |
| BL / 2013 | Unfenced | 0.57 | 0.51 | 0.63 |
| BL / 2018 | Unfenced | 0.91 | 0.82 | 1.02 |
| 2013 / 2018 | Unfenced | 1.61 | 1.49 | 1.75 |
| BL / 2013 | Fenced | 1.70 | 1.48 | 1.95 |
| BL / 2018 | Fenced | 5.59 | 4.54 | 6.82 |
| 2013 / 2018 | Fenced | 3.28 | 2.67 | 3.97 |
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2.anc.sm'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.27,5.27])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | 1.123 | 0.004 | 0.176 | 0.900 | 1.123 | 1.349 | 2128 | 1.001 |
| time_class2013 | 0.204 | 0.001 | 0.089 | 0.090 | 0.204 | 0.319 | 10674 | 1.000 |
| time_class2018 | 0.586 | 0.001 | 0.081 | 0.482 | 0.585 | 0.690 | 10369 | 1.000 |
| mean_PPD | 5.283 | 0.002 | 0.239 | 4.978 | 5.280 | 5.591 | 13733 | 1.000 |
| log-posterior | -661.287 | 0.094 | 4.685 | -667.383 | -660.977 | -655.549 | 2509 | 1.001 |
| Effect Existence and Significance Testing | |||||||
|---|---|---|---|---|---|---|---|
| Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
| (Intercept) | 1.12 | 0.9 | 0.84 | 1.41 | 1.00 | 1.00 | 1.00 |
| time_class2013 | 0.20 | 0.9 | 0.06 | 0.35 | 0.99 | 0.96 | 0.14 |
| time_class2018 | 0.59 | 0.9 | 0.45 | 0.72 | 1.00 | 1.00 | 1.00 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the log (not the response) scale. | |||
| contrast | estimate | lower.HPD | upper.HPD |
| BL - 2013 | -0.20 | -0.38 | -0.03 |
| BL - 2018 | -0.59 | -0.74 | -0.43 |
| 2013 - 2018 | -0.38 | -0.52 | -0.23 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the response scale. | |||
| contrast | ratio | lower.HPD | upper.HPD |
| BL / 2013 | 0.82 | 0.68 | 0.96 |
| BL / 2018 | 0.56 | 0.47 | 0.65 |
| 2013 / 2018 | 0.68 | 0.58 | 0.78 |
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2.ak.sm'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.27,5.27])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | 1.066 | 0.004 | 0.251 | 0.758 | 1.070 | 1.371 | 3290 | 1.001 |
| time_class2013 | 0.191 | 0.002 | 0.150 | -0.003 | 0.191 | 0.383 | 9405 | 1.000 |
| time_class2018 | 0.379 | 0.001 | 0.143 | 0.195 | 0.380 | 0.562 | 9091 | 1.000 |
| mean_PPD | 4.124 | 0.003 | 0.339 | 3.694 | 4.111 | 4.569 | 14475 | 1.000 |
| log-posterior | -352.719 | 0.051 | 3.106 | -356.824 | -352.366 | -349.045 | 3672 | 1.000 |
Panel plot of above MCMC area plots
| Effect Existence and Significance Testing | |||||||
|---|---|---|---|---|---|---|---|
| Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
| (Intercept) | 1.07 | 0.9 | 0.66 | 1.46 | 1.0 | 1.00 | 1.00 |
| time_class2013 | 0.19 | 0.9 | -0.05 | 0.45 | 0.9 | 0.82 | 0.23 |
| time_class2018 | 0.38 | 0.9 | 0.14 | 0.61 | 1.0 | 0.99 | 0.71 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the log (not the response) scale. | |||
| contrast | estimate | lower.HPD | upper.HPD |
| BL - 2013 | -0.19 | -0.48 | 0.11 |
| BL - 2018 | -0.38 | -0.66 | -0.11 |
| 2013 - 2018 | -0.19 | -0.45 | 0.09 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the response scale. | |||
| contrast | ratio | lower.HPD | upper.HPD |
| BL / 2013 | 0.83 | 0.60 | 1.09 |
| BL / 2018 | 0.68 | 0.51 | 0.89 |
| 2013 / 2018 | 0.83 | 0.62 | 1.06 |
| Summary statistics | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | range_type | burned | fenced | variable | min | q1 | med | q3 | max |
| BL | core winter range | Unburned | Unfenced | stem_den_ac | 0.0 | 0.0 | 161.9 | 1295.0 | 8741.2 |
| BL | core winter range | Unburned | Fenced | stem_den_ac | 0.0 | 0.0 | 809.4 | 1942.5 | 21529.3 |
| BL | core winter range | Burned | Unfenced | stem_den_ac | 0.0 | 0.0 | 161.9 | 161.9 | 161.9 |
| BL | core winter range | Burned | Fenced | stem_den_ac | 0.0 | 0.0 | 566.6 | 4046.9 | 4370.6 |
| BL | non-core winter range | Unburned | Unfenced | stem_den_ac | 0.0 | 0.0 | 323.7 | 809.4 | 6798.7 |
| BL | non-core winter range | Burned | Unfenced | stem_den_ac | 161.9 | 161.9 | 323.7 | 809.4 | 809.4 |
| 2013 | core winter range | Unburned | Unfenced | stem_den_ac | 0.0 | 0.0 | 485.6 | 2104.4 | 20234.3 |
| 2013 | core winter range | Unburned | Fenced | stem_den_ac | 0.0 | 161.9 | 485.6 | 1295.0 | 12302.5 |
| 2013 | core winter range | Burned | Unfenced | stem_den_ac | 0.0 | 1375.9 | 4532.5 | 18615.6 | 43058.6 |
| 2013 | core winter range | Burned | Fenced | stem_den_ac | 0.0 | 647.5 | 3075.6 | 3885.0 | 5341.9 |
| 2013 | non-core winter range | Unburned | Unfenced | stem_den_ac | 0.0 | 161.9 | 566.6 | 1133.1 | 5341.9 |
| 2013 | non-core winter range | Burned | Unfenced | stem_den_ac | 0.0 | 0.0 | 0.0 | 161.9 | 161.9 |
| 2018 | core winter range | Unburned | Unfenced | stem_den_ac | 0.0 | 0.0 | 485.6 | 1942.5 | 12140.6 |
| 2018 | core winter range | Unburned | Fenced | stem_den_ac | 0.0 | 0.0 | 161.9 | 647.5 | 2751.9 |
| 2018 | core winter range | Burned | Unfenced | stem_den_ac | 0.0 | 404.7 | 3642.2 | 6717.8 | 9712.5 |
| 2018 | core winter range | Burned | Fenced | stem_den_ac | 0.0 | 323.7 | 647.5 | 1133.1 | 1456.9 |
| 2018 | non-core winter range | Unburned | Unfenced | stem_den_ac | 0.0 | 323.7 | 1052.2 | 1699.7 | 4694.4 |
| 2018 | non-core winter range | Burned | Unfenced | stem_den_ac | 161.9 | 161.9 | 161.9 | 323.7 | 323.7 |
| Effect Existence and Significance Testing | |||||||
|---|---|---|---|---|---|---|---|
| Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
| (Intercept) | 1.32 | 0.9 | 1.06 | 1.57 | 1.00 | 1.00 | 1.00 |
| fencedFenced | 1.10 | 0.9 | 0.50 | 1.65 | 1.00 | 1.00 | 0.99 |
| time_class2013 | 0.32 | 0.9 | 0.24 | 0.41 | 1.00 | 1.00 | 0.69 |
| time_class2018 | 0.42 | 0.9 | 0.35 | 0.50 | 1.00 | 1.00 | 1.00 |
| burnedBurned | 1.07 | 0.9 | 0.05 | 2.01 | 0.96 | 0.96 | 0.90 |
| fencedFenced:time_class2013 | -1.16 | 0.9 | -1.32 | -1.00 | 1.00 | 1.00 | 1.00 |
| fencedFenced:time_class2018 | -2.37 | 0.9 | -2.58 | -2.15 | 1.00 | 1.00 | 1.00 |
| fencedFenced:burnedBurned | -1.28 | 0.9 | -2.78 | 0.18 | 0.92 | 0.91 | 0.86 |
| time_class2013:burnedBurned | 0.43 | 0.9 | -0.17 | 1.07 | 0.88 | 0.85 | 0.63 |
| time_class2018:burnedBurned | -0.75 | 0.9 | -1.37 | -0.13 | 0.97 | 0.96 | 0.87 |
| fencedFenced:time_class2013:burnedBurned | 0.96 | 0.9 | 0.24 | 1.61 | 0.98 | 0.98 | 0.94 |
| fencedFenced:time_class2018:burnedBurned | 1.89 | 0.9 | 1.13 | 2.62 | 1.00 | 1.00 | 1.00 |
| Pairwise contrasts | |||||
|---|---|---|---|---|---|
| Results are given on the response scale | |||||
| contrast | burned | fenced | estimate | lower.HPD | upper.HPD |
| 2013 - BL | Unburned | Unfenced | 1.3834719 | 1.2578086 | 1.5236966 |
| 2018 - BL | Unburned | Unfenced | 1.5249948 | 1.3921403 | 1.6772559 |
| 2018 - 2013 | Unburned | Unfenced | 1.1022873 | 1.0105488 | 1.1940177 |
| 2013 - BL | Burned | Unfenced | 2.1237722 | 1.0644596 | 4.5978834 |
| 2018 - BL | Burned | Unfenced | 0.7217646 | 0.3594195 | 1.5912529 |
| 2018 - 2013 | Burned | Unfenced | 0.3399078 | 0.2973678 | 0.3877800 |
| 2013 - BL | Unburned | Fenced | 0.4354735 | 0.3674030 | 0.5121292 |
| 2018 - BL | Unburned | Fenced | 0.1428292 | 0.1133788 | 0.1809495 |
| 2018 - 2013 | Unburned | Fenced | 0.3283338 | 0.2591522 | 0.4185422 |
| 2013 - BL | Burned | Fenced | 1.7397530 | 1.2831883 | 2.4205241 |
| 2018 - BL | Burned | Fenced | 0.4471539 | 0.2910151 | 0.6614768 |
| 2018 - 2013 | Burned | Fenced | 0.2578845 | 0.1804910 | 0.3727204 |
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2.acanc.lg'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.26,5.24,6.16,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | -3.799 | 0.008 | 0.558 | -4.516 | -3.770 | -3.109 | 5184 | 1.001 |
| time_class2013 | -0.237 | 0.003 | 0.317 | -0.637 | -0.241 | 0.172 | 13217 | 1.000 |
| time_class2018 | 1.582 | 0.002 | 0.260 | 1.251 | 1.577 | 1.918 | 13698 | 1.000 |
| fencedFenced | 0.225 | 0.019 | 1.116 | -1.172 | 0.234 | 1.622 | 3587 | 1.001 |
| time_class2013:fencedFenced | 4.767 | 0.009 | 0.810 | 3.790 | 4.700 | 5.821 | 8138 | 1.000 |
| time_class2018:fencedFenced | 2.746 | 0.009 | 0.790 | 1.796 | 2.682 | 3.762 | 8169 | 1.000 |
| mean_PPD | 1.258 | 0.001 | 0.080 | 1.155 | 1.256 | 1.360 | 13938 | 1.000 |
| log-posterior | -429.114 | 0.142 | 7.690 | -439.142 | -428.756 | -419.505 | 2950 | 1.001 |
| Effect Existence and Significance Testing | |||||||
|---|---|---|---|---|---|---|---|
| Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
| (Intercept) | -3.77 | 0.9 | -4.70 | -2.88 | 1.00 | 1.00 | 1.00 |
| time_class2013 | -0.24 | 0.9 | -0.73 | 0.30 | 0.78 | 0.73 | 0.43 |
| time_class2018 | 1.58 | 0.9 | 1.15 | 2.01 | 1.00 | 1.00 | 1.00 |
| fencedFenced | 0.23 | 0.9 | -1.61 | 2.06 | 0.59 | 0.57 | 0.48 |
| time_class2013:fencedFenced | 4.70 | 0.9 | 3.41 | 6.01 | 1.00 | 1.00 | 1.00 |
| time_class2018:fencedFenced | 2.68 | 0.9 | 1.47 | 4.00 | 1.00 | 1.00 | 1.00 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log (not the response) scale. | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| BL - 2013 | Unfenced | 0.24 | -0.36 | 0.88 |
| BL - 2018 | Unfenced | -1.58 | -2.08 | -1.06 |
| 2013 - 2018 | Unfenced | -1.81 | -2.26 | -1.40 |
| BL - 2013 | Fenced | -4.46 | -6.05 | -3.18 |
| BL - 2018 | Fenced | -4.25 | -5.80 | -2.93 |
| 2013 - 2018 | Fenced | 0.20 | -0.04 | 0.44 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale. | ||||
| contrast | fenced | ratio | lower.HPD | upper.HPD |
| BL / 2013 | Unfenced | 1.27 | 0.60 | 2.19 |
| BL / 2018 | Unfenced | 0.21 | 0.11 | 0.32 |
| 2013 / 2018 | Unfenced | 0.16 | 0.10 | 0.24 |
| BL / 2013 | Fenced | 0.01 | 0.00 | 0.03 |
| BL / 2018 | Fenced | 0.01 | 0.00 | 0.04 |
| 2013 / 2018 | Fenced | 1.22 | 0.95 | 1.53 |
pl.emmip.sm <- plotF.emmip_FxTC_response(stmod_stally2.acanc.sm) +
labs(title="Short saplings") +
theme(legend.position = "none")
pl.emmip.lg <- plotF.emmip_FxTC_response(stmod_stally2.acanc.lg) +
labs(title="Tall saplings") +
theme(legend.position = c(.15, .85))
pl.emmip.sm + pl.emmip.lg +
plot_annotation(title = "Combined winter range")
ggsave("./output/figures_exported/emmip_TCxF_acanc_lg_sm_sap.png", width = 7.25, height = 4.25) # save plot
# revision2022
#### Replacement Figure 13 (#1):
## bw
pl.emmip.sm.bw <- plotF.emmip_FxTC_response_bw(stmod_stally2.acanc.sm) +
# labs(title="Short saplings") +
labs(y = "Stem count") +
theme(legend.position = "none") +
ylim(0,20)
pl.emmip.lg.bw <- plotF.emmip_FxTC_response_bw(stmod_stally2.acanc.lg) +
# labs(title="Tall saplings") +
# labs(y = "Stem count") +
theme(legend.position = c(.2, .85))
pl.emmip.sm.bw + pl.emmip.lg.bw +
# plot_annotation(title = "Combined winter range") +
plot_annotation(tag_levels = "A")
ggsave("./output/figures_202202/emmip/Fig13_1_emmip_TCxF_acanc_lg_sm_sap_bw.png", width = 7.25, height = 3.75) # save plot
ggsave("./output/figures_202202/emmip/Fig13_1_emmip_TCxF_acanc_lg_sm_sap_bw.pdf", width = 7.25, height = 3.75) # save plot
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2.ac.lg'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.25,5.23,5.42,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | -6.161 | 0.016 | 1.126 | -7.629 | -6.085 | -4.769 | 4717 | 1.000 |
| time_class2013 | 0.352 | 0.015 | 1.084 | -0.972 | 0.279 | 1.762 | 5356 | 1.000 |
| time_class2018 | 3.758 | 0.013 | 0.973 | 2.620 | 3.656 | 5.048 | 5250 | 1.000 |
| fencedFenced | 2.541 | 0.024 | 1.450 | 0.717 | 2.515 | 4.434 | 3628 | 1.000 |
| time_class2013:fencedFenced | 4.227 | 0.018 | 1.301 | 2.561 | 4.246 | 5.864 | 5133 | 1.000 |
| time_class2018:fencedFenced | 0.618 | 0.017 | 1.210 | -0.960 | 0.655 | 2.111 | 5275 | 1.000 |
| mean_PPD | 1.557 | 0.001 | 0.110 | 1.416 | 1.553 | 1.698 | 14013 | 1.000 |
| log-posterior | -291.934 | 0.118 | 6.258 | -300.133 | -291.666 | -284.054 | 2813 | 1.002 |
Parameter | Median | Mean | MAP | CI | CI_low | CI_high | pd | ps | Rhat | ESS |
(Intercept) | -6.08 | -6.16 | -5.82 | 0.9 | -7.98 | -4.33 | 1.00 | 1.00 | 1 | 4,717.47 |
time_class2013 | 0.28 | 0.35 | 0.13 | 0.9 | -1.43 | 2.07 | 0.61 | 0.57 | 1 | 5,356.03 |
time_class2018 | 3.66 | 3.76 | 3.39 | 0.9 | 2.30 | 5.38 | 1.00 | 1.00 | 1 | 5,250.04 |
fencedFenced | 2.51 | 2.54 | 2.23 | 0.9 | 0.24 | 4.98 | 0.96 | 0.96 | 1 | 3,628.27 |
time_class2013:fencedFenced | 4.25 | 4.23 | 4.26 | 0.9 | 2.02 | 6.31 | 1.00 | 1.00 | 1 | 5,132.71 |
time_class2018:fencedFenced | 0.65 | 0.62 | 0.70 | 0.9 | -1.31 | 2.66 | 0.71 | 0.68 | 1 | 5,274.91 |
## [1] "(Intercept)" "2013" "2018" "Fenced" "2013:Fenced"
## [6] "2018:Fenced"
| Effect Existence and Significance Testing | |||||||
|---|---|---|---|---|---|---|---|
| Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
| (Intercept) | -6.08 | 0.9 | -7.98 | -4.33 | 1.00 | 1.00 | 1.00 |
| time_class2013 | 0.28 | 0.9 | -1.43 | 2.07 | 0.61 | 0.59 | 0.49 |
| time_class2018 | 3.66 | 0.9 | 2.30 | 5.38 | 1.00 | 1.00 | 1.00 |
| fencedFenced | 2.51 | 0.9 | 0.24 | 4.98 | 0.96 | 0.96 | 0.94 |
| time_class2013:fencedFenced | 4.25 | 0.9 | 2.02 | 6.31 | 1.00 | 1.00 | 1.00 |
| time_class2018:fencedFenced | 0.65 | 0.9 | -1.31 | 2.66 | 0.71 | 0.70 | 0.62 |
## Parameter n percent
## (Intercept) 1 0.1666667
## fencedFenced 1 0.1666667
## time_class2013 1 0.1666667
## time_class2013:fencedFenced 1 0.1666667
## time_class2018 1 0.1666667
## time_class2018:fencedFenced 1 0.1666667
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log (not the response) scale. | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| BL - 2013 | Unfenced | -0.28 | -2.56 | 1.66 |
| BL - 2018 | Unfenced | -3.66 | -5.64 | -1.90 |
| 2013 - 2018 | Unfenced | -3.37 | -4.41 | -2.40 |
| BL - 2013 | Fenced | -4.49 | -6.14 | -3.19 |
| BL - 2018 | Fenced | -4.29 | -5.92 | -2.97 |
| 2013 - 2018 | Fenced | 0.20 | -0.03 | 0.43 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale. | ||||
| contrast | fenced | ratio | lower.HPD | upper.HPD |
| BL / 2013 | Unfenced | 0.76 | 0.00 | 3.67 |
| BL / 2018 | Unfenced | 0.03 | 0.00 | 0.09 |
| 2013 / 2018 | Unfenced | 0.03 | 0.01 | 0.07 |
| BL / 2013 | Fenced | 0.01 | 0.00 | 0.03 |
| BL / 2018 | Fenced | 0.01 | 0.00 | 0.04 |
| 2013 / 2018 | Fenced | 1.22 | 0.95 | 1.52 |
#### Replacement Figure 13 (#2)
# (Replacement Fig 13 revsion 2022)
pl.emmip.ac.sm <- plotF.emmip_FxTC_response_bw(stmod_stally2.ac.sm) +
# labs(title="Short saplings") +
theme(legend.position = "none") +
scale_color_manual(values = c("black","grey 75")) + labs(x = "Year") +
labs(y="Stem count")
pl.emmip.ac.lg <- plotF.emmip_FxTC_response_bw(stmod_stally2.ac.lg) +
# labs(title="Tall saplings") +
theme(legend.position = c(.20, .85)) +
scale_color_manual(values = c("black","grey 75")) + labs(x = "Year") +
labs(y="Stem count")
pl.emmip.ac.sm + pl.emmip.ac.lg +
# plot_annotation(title = "Core winter range") +
plot_annotation(tag_levels = "A")
ggsave("./output/figures_202202/emmip/Fig13_2_emmip_TCxF_ac_lg_sm_sap.png", width = 7.25, height = 3.75) # save plot
ggsave("./output/figures_202202/emmip/Fig13_2_emmip_TCxF_ac_lg_sm_sap.pdf", width = 7.25, height = 3.75) # save plot
pl.emmip.ac.sm.bw <- plotF.emmip_FxTC_response_bw(stmod_stally2.ac.sm) +
labs(title="Short saplings") +
theme(legend.position = "none")
pl.emmip.ac.lg.bw <- plotF.emmip_FxTC_response_bw(stmod_stally2.ac.lg) +
labs(title="Tall saplings") +
theme(legend.position = c(.15, .85))
pl.emmip.ac.sm.bw + pl.emmip.ac.lg.bw +
plot_annotation(title = "Core winter range")
ggsave("./output/figures_exported/emmip_TCxF_ac_lg_sm_sap_bw.png", width = 7.25, height = 4.25) # save plot
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2.anc.lg'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.26,5.26])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | -2.601 | 0.011 | 0.706 | -3.519 | -2.546 | -1.750 | 3920 | 1.000 |
| time_class2013 | 0.206 | 0.003 | 0.330 | -0.214 | 0.204 | 0.633 | 11797 | 1.000 |
| time_class2018 | 0.859 | 0.003 | 0.290 | 0.496 | 0.851 | 1.234 | 12114 | 1.000 |
| mean_PPD | 0.632 | 0.001 | 0.101 | 0.508 | 0.629 | 0.766 | 14084 | 1.000 |
| log-posterior | -126.719 | 0.074 | 4.347 | -132.493 | -126.444 | -121.384 | 3456 | 1.001 |
| Effect Existence and Significance Testing | |||||||
|---|---|---|---|---|---|---|---|
| Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
| (Intercept) | -2.55 | 0.9 | -3.70 | -1.45 | 1.00 | 1.00 | 1.00 |
| time_class2013 | 0.20 | 0.9 | -0.36 | 0.72 | 0.73 | 0.68 | 0.39 |
| time_class2018 | 0.85 | 0.9 | 0.39 | 1.33 | 1.00 | 1.00 | 0.98 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the log (not the response) scale. | |||
| contrast | estimate | lower.HPD | upper.HPD |
| BL - 2013 | -0.20 | -0.85 | 0.44 |
| BL - 2018 | -0.85 | -1.43 | -0.29 |
| 2013 - 2018 | -0.65 | -1.20 | -0.13 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the response scale. | |||
| contrast | ratio | lower.HPD | upper.HPD |
| BL / 2013 | 0.82 | 0.39 | 1.45 |
| BL / 2018 | 0.43 | 0.21 | 0.69 |
| 2013 / 2018 | 0.52 | 0.28 | 0.84 |
## emmip
## fails b/c no groups to contrast
pl.emmip.anc.sm <- plotF.emmip_TC_response_bw(stmod_stally2.anc.sm) +
labs(y = "Stem count", title="Short saplings") +
theme(legend.position = "none") +
ylim(0,8)
pl.emmip.anc.lg <- plotF.emmip_TC_response_bw(stmod_stally2.anc.lg) +
labs(y="", title="Tall saplings") +
theme(legend.position = c(.15, .85)) +
ylim(0,8)
pl.emmip.anc.sm + pl.emmip.anc.lg +
plot_annotation(title = "Non-core winter range")
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2.ak.lg'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.25,5.25])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | -5.523 | 0.021 | 2.050 | -8.309 | -5.258 | -3.106 | 9246 | 1 |
| time_class2013 | -0.115 | 0.029 | 2.921 | -3.853 | -0.055 | 3.502 | 10382 | 1 |
| time_class2018 | -0.148 | 0.028 | 2.939 | -3.930 | -0.051 | 3.488 | 10640 | 1 |
| mean_PPD | 0.018 | 0.000 | 0.026 | 0.000 | 0.000 | 0.042 | 15306 | 1 |
| log-posterior | -21.672 | 0.033 | 2.596 | -25.135 | -21.351 | -18.631 | 6129 | 1 |
Panel plot of above MCMC area plots
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -5.26 | 0.9 | -8.65 | -2.26 | 1.00 | 1.0 | 1.00 |
time_class2013 | -0.06 | 0.9 | -4.89 | 4.81 | 0.51 | 0.5 | 0.46 |
time_class2018 | -0.05 | 0.9 | -4.93 | 4.72 | 0.51 | 0.5 | 0.47 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the log (not the response) scale. | |||
| contrast | estimate | lower.HPD | upper.HPD |
| BL - 2013 | 0.06 | -5.73 | 6.01 |
| BL - 2018 | 0.05 | -5.67 | 5.97 |
| 2013 - 2018 | 0.02 | -6.64 | 6.95 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the response scale. | |||
| contrast | ratio | lower.HPD | upper.HPD |
| BL / 2013 | 1.056940 | 1.096282e-05 | 158.2514 |
| BL / 2018 | 1.052294 | 2.363998e-06 | 162.9399 |
| 2013 / 2018 | 1.015152 | 1.966738e-07 | 296.5660 |
| Summary statistics | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | range_type | burned | fenced | variable | min | q1 | med | q3 | max |
| BL | core winter range | Unburned | Unfenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000e+00 |
| BL | core winter range | Unburned | Unfenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000e+00 |
| BL | core winter range | Unburned | Unfenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 0.0000001 | 0.0000001 | 1.000000e-07 |
| BL | core winter range | Unburned | Unfenced | stem_tally | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000e+00 |
| BL | core winter range | Unburned | Unfenced | sum_stem | 0.000000e+00 | 6.0000000 | 14.0000000 | 26.0000000 | 5.900000e+01 |
| BL | core winter range | Unburned | Unfenced | year | 2.006000e+03 | 2006.0000000 | 2007.0000000 | 2009.0000000 | 2.009000e+03 |
| BL | core winter range | Unburned | Fenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 5.000000e-02 |
| BL | core winter range | Unburned | Fenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 1.618744e+02 |
| BL | core winter range | Unburned | Fenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 0.0000001 | 0.0000001 | 4.000000e+02 |
| BL | core winter range | Unburned | Fenced | stem_tally | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000e+00 |
| BL | core winter range | Unburned | Fenced | sum_stem | 0.000000e+00 | 13.0000000 | 24.5000000 | 46.0000000 | 1.390000e+02 |
| BL | core winter range | Unburned | Fenced | year | 2.007000e+03 | 2007.0000000 | 2008.0000000 | 2009.0000000 | 2.009000e+03 |
| BL | core winter range | Burned | Unfenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.1666667 | 0.3333333 | 3.333333e-01 |
| BL | core winter range | Burned | Unfenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 80.9372000 | 161.8744000 | 1.618744e+02 |
| BL | core winter range | Burned | Unfenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 200.0000001 | 400.0000001 | 4.000000e+02 |
| BL | core winter range | Burned | Unfenced | stem_tally | 0.000000e+00 | 0.0000000 | 0.5000000 | 1.0000000 | 1.000000e+00 |
| BL | core winter range | Burned | Unfenced | sum_stem | 3.000000e+00 | 3.0000000 | 3.0000000 | 3.0000000 | 3.000000e+00 |
| BL | core winter range | Burned | Unfenced | year | 2.009000e+03 | 2009.0000000 | 2009.0000000 | 2009.0000000 | 2.009000e+03 |
| BL | core winter range | Burned | Fenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000e+00 |
| BL | core winter range | Burned | Fenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000e+00 |
| BL | core winter range | Burned | Fenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 0.0000001 | 0.0000001 | 1.000000e-07 |
| BL | core winter range | Burned | Fenced | stem_tally | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000e+00 |
| BL | core winter range | Burned | Fenced | sum_stem | 2.700000e+01 | 27.0000000 | 29.5000000 | 32.0000000 | 3.200000e+01 |
| BL | core winter range | Burned | Fenced | year | 2.006000e+03 | 2006.0000000 | 2006.0000000 | 2006.0000000 | 2.006000e+03 |
| 2013 | core winter range | Unburned | Unfenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 5.000000e-01 |
| 2013 | core winter range | Unburned | Unfenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 1.618744e+02 |
| 2013 | core winter range | Unburned | Unfenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 0.0000001 | 0.0000001 | 4.000000e+02 |
| 2013 | core winter range | Unburned | Unfenced | stem_tally | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000e+00 |
| 2013 | core winter range | Unburned | Unfenced | sum_stem | 0.000000e+00 | 7.0000000 | 22.0000000 | 34.0000000 | 1.440000e+02 |
| 2013 | core winter range | Unburned | Unfenced | year | 2.013000e+03 | 2013.0000000 | 2013.0000000 | 2013.0000000 | 2.013000e+03 |
| 2013 | core winter range | Unburned | Fenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.1846591 | 0.3142857 | 8.000000e-01 |
| 2013 | core winter range | Unburned | Fenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 728.4348000 | 1456.8696000 | 4.694358e+03 |
| 2013 | core winter range | Unburned | Fenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 1800.0000001 | 3600.0000001 | 1.160000e+04 |
| 2013 | core winter range | Unburned | Fenced | stem_tally | 0.000000e+00 | 0.0000000 | 4.5000000 | 9.0000000 | 2.900000e+01 |
| 2013 | core winter range | Unburned | Fenced | sum_stem | 4.000000e+00 | 10.0000000 | 28.0000000 | 70.0000000 | 1.040000e+02 |
| 2013 | core winter range | Unburned | Fenced | year | 2.013000e+03 | 2013.0000000 | 2013.0000000 | 2013.0000000 | 2.013000e+03 |
| 2013 | core winter range | Burned | Unfenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 1.908397e-03 |
| 2013 | core winter range | Burned | Unfenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 1.618744e+02 |
| 2013 | core winter range | Burned | Unfenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 0.0000001 | 0.0000001 | 4.000000e+02 |
| 2013 | core winter range | Burned | Unfenced | stem_tally | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000e+00 |
| 2013 | core winter range | Burned | Unfenced | sum_stem | 1.700000e+01 | 92.5000000 | 168.5000000 | 346.5000000 | 5.240000e+02 |
| 2013 | core winter range | Burned | Unfenced | year | 2.013000e+03 | 2013.0000000 | 2013.0000000 | 2013.0000000 | 2.013000e+03 |
| 2013 | core winter range | Burned | Fenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000e+00 |
| 2013 | core winter range | Burned | Fenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000e+00 |
| 2013 | core winter range | Burned | Fenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 0.0000001 | 0.0000001 | 1.000000e-07 |
| 2013 | core winter range | Burned | Fenced | stem_tally | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000e+00 |
| 2013 | core winter range | Burned | Fenced | sum_stem | 4.400000e+01 | 44.0000000 | 50.0000000 | 52.0000000 | 5.200000e+01 |
| 2013 | core winter range | Burned | Fenced | year | 2.013000e+03 | 2013.0000000 | 2013.0000000 | 2013.0000000 | 2.013000e+03 |
| 2018 | core winter range | Unburned | Unfenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 2.295082e-01 |
| 2018 | core winter range | Unburned | Unfenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 2.266242e+03 |
| 2018 | core winter range | Unburned | Unfenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 0.0000001 | 0.0000001 | 5.600000e+03 |
| 2018 | core winter range | Unburned | Unfenced | stem_tally | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.0000000 | 1.400000e+01 |
| 2018 | core winter range | Unburned | Unfenced | sum_stem | 0.000000e+00 | 6.5000000 | 18.0000000 | 46.5000000 | 9.500000e+01 |
| 2018 | core winter range | Unburned | Unfenced | year | 2.018000e+03 | 2018.0000000 | 2018.0000000 | 2018.0000000 | 2.018000e+03 |
| 2018 | core winter range | Unburned | Fenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.2222222 | 0.3333333 | 6.111111e-01 |
| 2018 | core winter range | Unburned | Fenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 323.7488000 | 1133.1208000 | 3.723111e+03 |
| 2018 | core winter range | Unburned | Fenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 800.0000001 | 2800.0000001 | 9.200000e+03 |
| 2018 | core winter range | Unburned | Fenced | stem_tally | 0.000000e+00 | 0.0000000 | 2.0000000 | 7.0000000 | 2.300000e+01 |
| 2018 | core winter range | Unburned | Fenced | sum_stem | 3.000000e+00 | 4.0000000 | 9.0000000 | 21.0000000 | 5.700000e+01 |
| 2018 | core winter range | Unburned | Fenced | year | 2.018000e+03 | 2018.0000000 | 2018.0000000 | 2018.0000000 | 2.018000e+03 |
| 2018 | core winter range | Burned | Unfenced | percent_tot | 0.000000e+00 | 0.0000000 | 0.0000000 | 0.1114394 | 2.303371e-01 |
| 2018 | core winter range | Burned | Unfenced | stem_den_ac | 0.000000e+00 | 0.0000000 | 0.0000000 | 2994.6764000 | 6.636850e+03 |
| 2018 | core winter range | Burned | Unfenced | stem_den_ha | 1.000000e-07 | 0.0000001 | 0.0000001 | 7400.0000001 | 1.640000e+04 |
| 2018 | core winter range | Burned | Unfenced | stem_tally | 0.000000e+00 | 0.0000000 | 0.0000000 | 18.5000000 | 4.100000e+01 |
| 2018 | core winter range | Burned | Unfenced | sum_stem | 2.000000e+00 | 39.5000000 | 96.5000000 | 147.0000000 | 1.780000e+02 |
| 2018 | core winter range | Burned | Unfenced | year | 2.018000e+03 | 2018.0000000 | 2018.0000000 | 2018.0000000 | 2.018000e+03 |
| 2018 | core winter range | Burned | Fenced | percent_tot | 7.142857e-02 | 0.1428571 | 0.2169231 | 0.3333333 | 4.400000e-01 |
| 2018 | core winter range | Burned | Fenced | stem_den_ac | 1.618744e+02 | 323.7488000 | 1052.1836000 | 1780.6184000 | 2.104367e+03 |
| 2018 | core winter range | Burned | Fenced | stem_den_ha | 4.000000e+02 | 800.0000001 | 2600.0000001 | 4400.0000001 | 5.200000e+03 |
| 2018 | core winter range | Burned | Fenced | stem_tally | 1.000000e+00 | 2.0000000 | 6.5000000 | 11.0000000 | 1.300000e+01 |
| 2018 | core winter range | Burned | Fenced | sum_stem | 1.400000e+01 | 14.0000000 | 25.0000000 | 39.0000000 | 3.900000e+01 |
| 2018 | core winter range | Burned | Fenced | year | 2.018000e+03 | 2018.0000000 | 2018.0000000 | 2018.0000000 | 2.018000e+03 |
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -4.06 | 0.9 | -5.06 | -3.13 | 1.00 | 1.00 | 1.00 |
fencedFenced | 0.54 | 0.9 | -1.42 | 2.56 | 0.68 | 0.66 | 0.58 |
time_class2013 | 0.30 | 0.9 | -0.19 | 0.84 | 0.83 | 0.78 | 0.50 |
time_class2018 | 1.44 | 0.9 | 1.00 | 1.87 | 1.00 | 1.00 | 1.00 |
burnedBurned | 2.30 | 0.9 | -0.63 | 5.08 | 0.90 | 0.89 | 0.87 |
fencedFenced:time_class2013 | 4.23 | 0.9 | 2.96 | 5.63 | 1.00 | 1.00 | 1.00 |
fencedFenced:time_class2018 | 2.51 | 0.9 | 1.24 | 3.87 | 1.00 | 1.00 | 1.00 |
fencedFenced:burnedBurned | -9.14 | 0.9 | -20.78 | 0.13 | 0.97 | 0.97 | 0.96 |
time_class2013:burnedBurned | -2.32 | 0.9 | -4.80 | 0.28 | 0.92 | 0.91 | 0.89 |
time_class2018:burnedBurned | 0.43 | 0.9 | -1.75 | 2.63 | 0.64 | 0.62 | 0.54 |
fencedFenced:time_class2013:burnedBurned | -9.10 | 0.9 | -32.51 | 9.76 | 0.79 | 0.79 | 0.79 |
fencedFenced:time_class2018:burnedBurned | 7.46 | 0.9 | -1.55 | 18.57 | 0.94 | 0.94 | 0.93 |
| Pairwise contrasts | |||||
|---|---|---|---|---|---|
| Results are given on the response scale | |||||
| contrast | burned | fenced | estimate | lower.HPD | upper.HPD |
| 2013 - BL | Unburned | Unfenced | 1.347698e+00 | 7.257894e-01 | 2.507768e+00 |
| 2018 - BL | Unburned | Unfenced | 4.217323e+00 | 2.562921e+00 | 7.303658e+00 |
| 2018 - 2013 | Unburned | Unfenced | 3.123271e+00 | 1.991909e+00 | 5.006520e+00 |
| 2013 - BL | Burned | Unfenced | 1.314597e-01 | 7.629043e-03 | 3.272656e+00 |
| 2018 - BL | Burned | Unfenced | 6.497319e+00 | 6.208916e-01 | 1.064042e+02 |
| 2018 - 2013 | Burned | Unfenced | 4.828052e+01 | 1.317339e+01 | 2.702049e+02 |
| 2013 - BL | Unburned | Fenced | 9.300851e+01 | 2.492602e+01 | 4.712025e+02 |
| 2018 - BL | Unburned | Fenced | 5.217879e+01 | 1.440035e+01 | 2.750313e+02 |
| 2018 - 2013 | Unburned | Fenced | 5.622801e-01 | 4.324993e-01 | 7.278152e-01 |
| 2013 - BL | Burned | Fenced | 1.137793e-03 | 1.850106e-16 | 2.614599e+06 |
| 2018 - BL | Burned | Fenced | 1.599496e+05 | 2.306616e+01 | 1.511368e+11 |
| 2018 - 2013 | Burned | Fenced | 2.190260e+08 | 2.755728e+01 | 2.063195e+20 |
# small sap
plot.emmip.smsap.acanc.burned.bw <- emmip(stmod_smsap_TCxFxB_acanc, fenced ~ time_class | burned, type = "response",
breaks = seq(0.50, 1, by = 0.10),
CIarg = list(lwd = 1.85, alpha = 1), dotarg = list(size = 3.5, alpha = 1)) +
theme_minimal() +
scale_color_manual(values = c("black","grey 75")) +
labs(color="", x = "Year", y = "Stem count", subtitle = "Short saplings") +
# scale_color_manual(values = c("black","grey 75")) +
labs(x = "Year") +
theme(legend.position = "none")
plot.emmip.smsap.acanc.burned.bw
## tall sap
plot.emmip.lgsap.acanc.burned.bw <- emmip(stmod_lgsap_TCxFxB_acanc, fenced ~ time_class | burned, type = "response",
breaks = seq(0.50, 1, by = 0.10),
CIarg = list(lwd = 1.85, alpha = 1), dotarg = list(size = 3.5, alpha = 1)) +
theme_minimal() +
scale_color_manual(values = c("black","grey 75")) +
labs(color="", x = "Year", y = "Stem count", subtitle = "Tall saplings") +
scale_color_manual(values = c("black","grey 75")) + labs(x = "Year") +
theme(legend.position = "bottom")
plot.emmip.lgsap.acanc.burned.bw
## [[1]]
##
## [[2]]
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2.acanc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.27,5.25,6.16,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | 0.932 | 0.005 | 0.145 | 0.744 | 0.934 | 1.118 | 825 | 1.003 |
| time_class2013 | 0.489 | 0.001 | 0.045 | 0.432 | 0.489 | 0.547 | 7615 | 1.000 |
| time_class2018 | 0.294 | 0.001 | 0.046 | 0.235 | 0.294 | 0.353 | 7248 | 1.000 |
| fencedFenced | 0.918 | 0.009 | 0.313 | 0.515 | 0.919 | 1.317 | 1174 | 1.002 |
| time_class2013:fencedFenced | -0.582 | 0.001 | 0.078 | -0.682 | -0.583 | -0.482 | 8729 | 1.000 |
| time_class2018:fencedFenced | -1.194 | 0.001 | 0.091 | -1.312 | -1.193 | -1.076 | 9005 | 1.000 |
| mean_PPD | 5.868 | 0.001 | 0.110 | 5.728 | 5.866 | 6.010 | 14023 | 1.000 |
| log-posterior | -6003.994 | 0.210 | 8.598 | -6015.143 | -6003.626 | -5993.249 | 1683 | 1.001 |
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 0.93 | 0.9 | 0.69 | 1.17 | 1 | 1 | 1.00 |
time_class2013 | 0.49 | 0.9 | 0.41 | 0.56 | 1 | 1 | 1.00 |
time_class2018 | 0.29 | 0.9 | 0.22 | 0.37 | 1 | 1 | 0.45 |
fencedFenced | 0.92 | 0.9 | 0.41 | 1.44 | 1 | 1 | 0.98 |
time_class2013:fencedFenced | -0.58 | 0.9 | -0.71 | -0.45 | 1 | 1 | 1.00 |
time_class2018:fencedFenced | -1.19 | 0.9 | -1.35 | -1.05 | 1 | 1 | 1.00 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log (not the response) scale. | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| 2013 - BL | Unfenced | 0.49 | 0.40 | 0.58 |
| 2018 - BL | Unfenced | 0.29 | 0.20 | 0.38 |
| 2018 - 2013 | Unfenced | -0.20 | -0.27 | -0.13 |
| 2013 - BL | Fenced | -0.09 | -0.22 | 0.03 |
| 2018 - BL | Fenced | -0.90 | -1.06 | -0.75 |
| 2018 - 2013 | Fenced | -0.81 | -0.95 | -0.66 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale. | ||||
| contrast | fenced | ratio | lower.HPD | upper.HPD |
| 2013 / BL | Unfenced | 1.63 | 1.49 | 1.78 |
| 2018 / BL | Unfenced | 1.34 | 1.22 | 1.46 |
| 2018 / 2013 | Unfenced | 0.82 | 0.77 | 0.88 |
| 2013 / BL | Fenced | 0.91 | 0.81 | 1.03 |
| 2018 / BL | Fenced | 0.41 | 0.35 | 0.47 |
| 2018 / 2013 | Fenced | 0.45 | 0.38 | 0.51 |
Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_stally2'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.26,5.23,5.42,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | 1.108 | 0.007 | 0.210 | 0.842 | 1.108 | 1.375 | 1010 | 1.001 |
| time_class2013 | 0.550 | 0.001 | 0.053 | 0.483 | 0.551 | 0.618 | 5452 | 1.000 |
| time_class2018 | 0.177 | 0.001 | 0.055 | 0.107 | 0.178 | 0.247 | 5554 | 1.001 |
| fencedFenced | 0.730 | 0.011 | 0.373 | 0.264 | 0.728 | 1.208 | 1186 | 1.001 |
| time_class2013:fencedFenced | -0.643 | 0.001 | 0.081 | -0.747 | -0.643 | -0.538 | 5551 | 1.001 |
| time_class2018:fencedFenced | -1.077 | 0.001 | 0.096 | -1.199 | -1.076 | -0.956 | 6104 | 1.000 |
| mean_PPD | 7.027 | 0.001 | 0.148 | 6.838 | 7.026 | 7.218 | 13908 | 1.000 |
| log-posterior | -4871.545 | 0.161 | 7.052 | -4880.799 | -4871.206 | -4862.852 | 1929 | 1.000 |
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 1.11 | 0.9 | 0.77 | 1.46 | 1.00 | 1.00 | 1.00 |
time_class2013 | 0.55 | 0.9 | 0.46 | 0.64 | 1.00 | 1.00 | 1.00 |
time_class2018 | 0.18 | 0.9 | 0.08 | 0.27 | 1.00 | 0.99 | 0.01 |
fencedFenced | 0.73 | 0.9 | 0.12 | 1.34 | 0.98 | 0.97 | 0.88 |
time_class2013:fencedFenced | -0.64 | 0.9 | -0.78 | -0.51 | 1.00 | 1.00 | 1.00 |
time_class2018:fencedFenced | -1.08 | 0.9 | -1.23 | -0.92 | 1.00 | 1.00 | 1.00 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log (not the response) scale. | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| 2013 - BL | Unfenced | 0.55 | 0.44 | 0.65 |
| 2018 - BL | Unfenced | 0.18 | 0.07 | 0.29 |
| 2018 - 2013 | Unfenced | -0.37 | -0.45 | -0.30 |
| 2013 - BL | Fenced | -0.09 | -0.22 | 0.03 |
| 2018 - BL | Fenced | -0.90 | -1.05 | -0.74 |
| 2018 - 2013 | Fenced | -0.81 | -0.96 | -0.66 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale. | ||||
| contrast | fenced | ratio | lower.HPD | upper.HPD |
| 2013 / BL | Unfenced | 1.73 | 1.56 | 1.92 |
| 2018 / BL | Unfenced | 1.19 | 1.07 | 1.33 |
| 2018 / 2013 | Unfenced | 0.69 | 0.64 | 0.74 |
| 2013 / BL | Fenced | 0.91 | 0.80 | 1.03 |
| 2018 / BL | Fenced | 0.41 | 0.35 | 0.47 |
| 2018 / 2013 | Fenced | 0.45 | 0.38 | 0.52 |
| Summary statistics | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | range_type | burned | fenced | variable | min | q1 | med | q3 | max |
| BL | core winter range | Unburned | Unfenced | percent_tot | 0 | 0.000000e+00 | 0.000000e+00 | 3.333333e-01 | 1.000000e+00 |
| BL | core winter range | Unburned | Unfenced | site_number | 2 | 9.000000e+00 | 2.000000e+01 | 3.000000e+01 | 4.000000e+01 |
| BL | core winter range | Unburned | Unfenced | stem_den_ac | 0 | 0.000000e+00 | 0.000000e+00 | 3.237488e+02 | 8.741218e+03 |
| BL | core winter range | Unburned | Unfenced | stem_den_ha | 0 | 0.000000e+00 | 0.000000e+00 | 8.000000e+02 | 2.160000e+04 |
| BL | core winter range | Unburned | Unfenced | stem_tally | 0 | 0.000000e+00 | 0.000000e+00 | 2.000000e+00 | 5.400000e+01 |
| BL | core winter range | Unburned | Unfenced | sum_stem | 0 | 6.000000e+00 | 1.400000e+01 | 2.600000e+01 | 5.900000e+01 |
| BL | core winter range | Unburned | Unfenced | utm_e_nad83 | 445348 | 4.464030e+05 | 4.465360e+05 | 4.473970e+05 | 4.505480e+05 |
| BL | core winter range | Unburned | Unfenced | utm_n_nad83 | 4467366 | 4.468377e+06 | 4.472409e+06 | 4.473033e+06 | 4.473650e+06 |
| BL | core winter range | Unburned | Unfenced | year | 2006 | 2.006000e+03 | 2.007000e+03 | 2.009000e+03 | 2.009000e+03 |
| BL | core winter range | Unburned | Fenced | percent_tot | 0 | 0.000000e+00 | 3.597122e-02 | 3.333333e-01 | 1.000000e+00 |
| BL | core winter range | Unburned | Fenced | site_number | 8 | 3.100000e+01 | 3.950000e+01 | 6.000000e+01 | 6.200000e+01 |
| BL | core winter range | Unburned | Fenced | stem_den_ac | 0 | 0.000000e+00 | 0.000000e+00 | 9.712464e+02 | 2.152930e+04 |
| BL | core winter range | Unburned | Fenced | stem_den_ha | 0 | 0.000000e+00 | 0.000000e+00 | 2.400000e+03 | 5.320000e+04 |
| BL | core winter range | Unburned | Fenced | stem_tally | 0 | 0.000000e+00 | 0.000000e+00 | 6.000000e+00 | 1.330000e+02 |
| BL | core winter range | Unburned | Fenced | sum_stem | 0 | 1.300000e+01 | 2.450000e+01 | 4.600000e+01 | 1.390000e+02 |
| BL | core winter range | Unburned | Fenced | utm_e_nad83 | 446665 | 4.481500e+05 | 4.483695e+05 | 4.495780e+05 | 4.500990e+05 |
| BL | core winter range | Unburned | Fenced | utm_n_nad83 | 4467680 | 4.468965e+06 | 4.471327e+06 | 4.472678e+06 | 4.472916e+06 |
| BL | core winter range | Unburned | Fenced | year | 2007 | 2.007000e+03 | 2.008000e+03 | 2.009000e+03 | 2.009000e+03 |
| BL | core winter range | Burned | Unfenced | percent_tot | 0 | 0.000000e+00 | 3.333333e-01 | 3.333333e-01 | 3.333333e-01 |
| BL | core winter range | Burned | Unfenced | site_number | 27 | 2.700000e+01 | 2.700000e+01 | 2.700000e+01 | 2.700000e+01 |
| BL | core winter range | Burned | Unfenced | stem_den_ac | 0 | 0.000000e+00 | 1.618744e+02 | 1.618744e+02 | 1.618744e+02 |
| BL | core winter range | Burned | Unfenced | stem_den_ha | 0 | 0.000000e+00 | 4.000000e+02 | 4.000000e+02 | 4.000000e+02 |
| BL | core winter range | Burned | Unfenced | stem_tally | 0 | 0.000000e+00 | 1.000000e+00 | 1.000000e+00 | 1.000000e+00 |
| BL | core winter range | Burned | Unfenced | sum_stem | 3 | 3.000000e+00 | 3.000000e+00 | 3.000000e+00 | 3.000000e+00 |
| BL | core winter range | Burned | Unfenced | utm_e_nad83 | 446615 | 4.466150e+05 | 4.466150e+05 | 4.466150e+05 | 4.466150e+05 |
| BL | core winter range | Burned | Unfenced | utm_n_nad83 | 4467326 | 4.467326e+06 | 4.467326e+06 | 4.467326e+06 | 4.467326e+06 |
| BL | core winter range | Burned | Unfenced | year | 2009 | 2.009000e+03 | 2.009000e+03 | 2.009000e+03 | 2.009000e+03 |
| BL | core winter range | Burned | Fenced | percent_tot | 0 | 0.000000e+00 | 0.000000e+00 | 2.187500e-01 | 1.000000e+00 |
| BL | core winter range | Burned | Fenced | site_number | 10 | 1.000000e+01 | 1.450000e+01 | 1.900000e+01 | 1.900000e+01 |
| BL | core winter range | Burned | Fenced | stem_den_ac | 0 | 0.000000e+00 | 0.000000e+00 | 1.133121e+03 | 4.370609e+03 |
| BL | core winter range | Burned | Fenced | stem_den_ha | 0 | 0.000000e+00 | 0.000000e+00 | 2.800000e+03 | 1.080000e+04 |
| BL | core winter range | Burned | Fenced | stem_tally | 0 | 0.000000e+00 | 0.000000e+00 | 7.000000e+00 | 2.700000e+01 |
| BL | core winter range | Burned | Fenced | sum_stem | 27 | 2.700000e+01 | 2.950000e+01 | 3.200000e+01 | 3.200000e+01 |
| BL | core winter range | Burned | Fenced | utm_e_nad83 | 446929 | 4.469290e+05 | 4.470120e+05 | 4.470950e+05 | 4.470950e+05 |
| BL | core winter range | Burned | Fenced | utm_n_nad83 | 4467463 | 4.467463e+06 | 4.467476e+06 | 4.467489e+06 | 4.467489e+06 |
| BL | core winter range | Burned | Fenced | year | 2006 | 2.006000e+03 | 2.006000e+03 | 2.006000e+03 | 2.006000e+03 |
| 2013 | core winter range | Unburned | Unfenced | percent_tot | 0 | 0.000000e+00 | 0.000000e+00 | 3.636364e-01 | 1.000000e+00 |
| 2013 | core winter range | Unburned | Unfenced | site_number | 2 | 9.000000e+00 | 2.000000e+01 | 3.000000e+01 | 4.000000e+01 |
| 2013 | core winter range | Unburned | Unfenced | stem_den_ac | 0 | 0.000000e+00 | 0.000000e+00 | 6.474976e+02 | 2.023430e+04 |
| 2013 | core winter range | Unburned | Unfenced | stem_den_ha | 0 | 0.000000e+00 | 0.000000e+00 | 1.600000e+03 | 5.000000e+04 |
| 2013 | core winter range | Unburned | Unfenced | stem_tally | 0 | 0.000000e+00 | 0.000000e+00 | 4.000000e+00 | 1.250000e+02 |
| 2013 | core winter range | Unburned | Unfenced | sum_stem | 0 | 7.000000e+00 | 2.200000e+01 | 3.400000e+01 | 1.440000e+02 |
| 2013 | core winter range | Unburned | Unfenced | utm_e_nad83 | 445348 | 4.464030e+05 | 4.465360e+05 | 4.473970e+05 | 4.505480e+05 |
| 2013 | core winter range | Unburned | Unfenced | utm_n_nad83 | 4467366 | 4.468377e+06 | 4.472409e+06 | 4.473033e+06 | 4.473650e+06 |
| 2013 | core winter range | Unburned | Unfenced | year | 2013 | 2.013000e+03 | 2.013000e+03 | 2.013000e+03 | 2.013000e+03 |
| 2013 | core winter range | Unburned | Fenced | percent_tot | 0 | 2.884615e-02 | 1.666667e-01 | 2.788462e-01 | 9.411765e-01 |
| 2013 | core winter range | Unburned | Fenced | site_number | 8 | 3.100000e+01 | 4.400000e+01 | 6.100000e+01 | 6.700000e+01 |
| 2013 | core winter range | Unburned | Fenced | stem_den_ac | 0 | 1.618744e+02 | 4.856232e+02 | 1.456870e+03 | 1.230245e+04 |
| 2013 | core winter range | Unburned | Fenced | stem_den_ha | 0 | 4.000000e+02 | 1.200000e+03 | 3.600000e+03 | 3.040000e+04 |
| 2013 | core winter range | Unburned | Fenced | stem_tally | 0 | 1.000000e+00 | 3.000000e+00 | 9.000000e+00 | 7.600000e+01 |
| 2013 | core winter range | Unburned | Fenced | sum_stem | 4 | 1.000000e+01 | 2.800000e+01 | 7.000000e+01 | 1.040000e+02 |
| 2013 | core winter range | Unburned | Fenced | utm_e_nad83 | 446665 | 4.477950e+05 | 4.483260e+05 | 4.495780e+05 | 4.500990e+05 |
| 2013 | core winter range | Unburned | Fenced | utm_n_nad83 | 4467489 | 4.468593e+06 | 4.471308e+06 | 4.472678e+06 | 4.472916e+06 |
| 2013 | core winter range | Unburned | Fenced | year | 2013 | 2.013000e+03 | 2.013000e+03 | 2.013000e+03 | 2.013000e+03 |
| 2013 | core winter range | Burned | Unfenced | percent_tot | 0 | 0.000000e+00 | 3.721374e-02 | 4.279044e-01 | 8.928571e-01 |
| 2013 | core winter range | Burned | Unfenced | site_number | 27 | 4.500000e+01 | 6.350000e+01 | 6.450000e+01 | 6.500000e+01 |
| 2013 | core winter range | Burned | Unfenced | stem_den_ac | 0 | 0.000000e+00 | 2.428116e+02 | 9.064966e+03 | 4.305859e+04 |
| 2013 | core winter range | Burned | Unfenced | stem_den_ha | 0 | 0.000000e+00 | 6.000000e+02 | 2.240000e+04 | 1.064000e+05 |
| 2013 | core winter range | Burned | Unfenced | stem_tally | 0 | 0.000000e+00 | 1.500000e+00 | 5.600000e+01 | 2.660000e+02 |
| 2013 | core winter range | Burned | Unfenced | sum_stem | 17 | 9.250000e+01 | 1.685000e+02 | 3.465000e+02 | 5.240000e+02 |
| 2013 | core winter range | Burned | Unfenced | utm_e_nad83 | 446545 | 4.465800e+05 | 4.468505e+05 | 4.471050e+05 | 4.471240e+05 |
| 2013 | core winter range | Burned | Unfenced | utm_n_nad83 | 4467326 | 4.467333e+06 | 4.467378e+06 | 4.467427e+06 | 4.467439e+06 |
| 2013 | core winter range | Burned | Unfenced | year | 2013 | 2.013000e+03 | 2.013000e+03 | 2.013000e+03 | 2.013000e+03 |
| 2013 | core winter range | Burned | Fenced | percent_tot | 0 | 0.000000e+00 | 0.000000e+00 | 4.800000e-01 | 6.346154e-01 |
| 2013 | core winter range | Burned | Fenced | site_number | 10 | 1.000000e+01 | 1.900000e+01 | 6.600000e+01 | 6.600000e+01 |
| 2013 | core winter range | Burned | Fenced | stem_den_ac | 0 | 0.000000e+00 | 0.000000e+00 | 3.723111e+03 | 5.341855e+03 |
| 2013 | core winter range | Burned | Fenced | stem_den_ha | 0 | 0.000000e+00 | 0.000000e+00 | 9.200000e+03 | 1.320000e+04 |
| 2013 | core winter range | Burned | Fenced | stem_tally | 0 | 0.000000e+00 | 0.000000e+00 | 2.300000e+01 | 3.300000e+01 |
| 2013 | core winter range | Burned | Fenced | sum_stem | 44 | 4.400000e+01 | 5.000000e+01 | 5.200000e+01 | 5.200000e+01 |
| 2013 | core winter range | Burned | Fenced | utm_e_nad83 | 446929 | 4.469290e+05 | 4.470050e+05 | 4.470950e+05 | 4.470950e+05 |
| 2013 | core winter range | Burned | Fenced | utm_n_nad83 | 4467463 | 4.467463e+06 | 4.467489e+06 | 4.467494e+06 | 4.467494e+06 |
| 2013 | core winter range | Burned | Fenced | year | 2013 | 2.013000e+03 | 2.013000e+03 | 2.013000e+03 | 2.013000e+03 |
| 2018 | core winter range | Unburned | Unfenced | percent_tot | 0 | 0.000000e+00 | 5.681818e-03 | 3.809524e-01 | 1.000000e+00 |
| 2018 | core winter range | Unburned | Unfenced | site_number | 2 | 1.000000e+01 | 2.100000e+01 | 3.100000e+01 | 6.800000e+01 |
| 2018 | core winter range | Unburned | Unfenced | stem_den_ac | 0 | 0.000000e+00 | 0.000000e+00 | 9.712464e+02 | 1.214058e+04 |
| 2018 | core winter range | Unburned | Unfenced | stem_den_ha | 0 | 0.000000e+00 | 0.000000e+00 | 2.400000e+03 | 3.000000e+04 |
| 2018 | core winter range | Unburned | Unfenced | stem_tally | 0 | 0.000000e+00 | 0.000000e+00 | 6.000000e+00 | 7.500000e+01 |
| 2018 | core winter range | Unburned | Unfenced | sum_stem | 0 | 6.500000e+00 | 1.800000e+01 | 4.650000e+01 | 9.500000e+01 |
| 2018 | core winter range | Unburned | Unfenced | utm_e_nad83 | 445348 | 4.464100e+05 | 4.465395e+05 | 4.474950e+05 | 4.505480e+05 |
| 2018 | core winter range | Unburned | Unfenced | utm_n_nad83 | 4467366 | 4.468958e+06 | 4.472412e+06 | 4.473022e+06 | 4.473650e+06 |
| 2018 | core winter range | Unburned | Unfenced | year | 2018 | 2.018000e+03 | 2.018000e+03 | 2.018000e+03 | 2.018000e+03 |
| 2018 | core winter range | Unburned | Fenced | percent_tot | 0 | 0.000000e+00 | 2.000000e-01 | 3.333333e-01 | 6.666667e-01 |
| 2018 | core winter range | Unburned | Fenced | site_number | 8 | 3.100000e+01 | 4.400000e+01 | 6.100000e+01 | 6.700000e+01 |
| 2018 | core winter range | Unburned | Fenced | stem_den_ac | 0 | 0.000000e+00 | 3.237488e+02 | 6.474976e+02 | 3.723111e+03 |
| 2018 | core winter range | Unburned | Fenced | stem_den_ha | 0 | 0.000000e+00 | 8.000000e+02 | 1.600000e+03 | 9.200000e+03 |
| 2018 | core winter range | Unburned | Fenced | stem_tally | 0 | 0.000000e+00 | 2.000000e+00 | 4.000000e+00 | 2.300000e+01 |
| 2018 | core winter range | Unburned | Fenced | sum_stem | 3 | 4.000000e+00 | 9.000000e+00 | 2.100000e+01 | 5.700000e+01 |
| 2018 | core winter range | Unburned | Fenced | utm_e_nad83 | 446665 | 4.477950e+05 | 4.483260e+05 | 4.495780e+05 | 4.500990e+05 |
| 2018 | core winter range | Unburned | Fenced | utm_n_nad83 | 4467489 | 4.468593e+06 | 4.471308e+06 | 4.472678e+06 | 4.472916e+06 |
| 2018 | core winter range | Unburned | Fenced | year | 2018 | 2.018000e+03 | 2.018000e+03 | 2.018000e+03 | 2.018000e+03 |
| 2018 | core winter range | Burned | Unfenced | percent_tot | 0 | 0.000000e+00 | 1.329911e-01 | 4.083072e-01 | 5.086207e-01 |
| 2018 | core winter range | Burned | Unfenced | site_number | 27 | 4.500000e+01 | 6.350000e+01 | 6.450000e+01 | 6.500000e+01 |
| 2018 | core winter range | Burned | Unfenced | stem_den_ac | 0 | 0.000000e+00 | 7.284348e+02 | 6.394039e+03 | 9.712464e+03 |
| 2018 | core winter range | Burned | Unfenced | stem_den_ha | 0 | 0.000000e+00 | 1.800000e+03 | 1.580000e+04 | 2.400000e+04 |
| 2018 | core winter range | Burned | Unfenced | stem_tally | 0 | 0.000000e+00 | 4.500000e+00 | 3.950000e+01 | 6.000000e+01 |
| 2018 | core winter range | Burned | Unfenced | sum_stem | 2 | 3.950000e+01 | 9.650000e+01 | 1.470000e+02 | 1.780000e+02 |
| 2018 | core winter range | Burned | Unfenced | utm_e_nad83 | 446545 | 4.465800e+05 | 4.468505e+05 | 4.471050e+05 | 4.471240e+05 |
| 2018 | core winter range | Burned | Unfenced | utm_n_nad83 | 4467326 | 4.467333e+06 | 4.467378e+06 | 4.467427e+06 | 4.467439e+06 |
| 2018 | core winter range | Burned | Unfenced | year | 2018 | 2.018000e+03 | 2.018000e+03 | 2.018000e+03 | 2.018000e+03 |
| 2018 | core winter range | Burned | Fenced | percent_tot | 0 | 7.692308e-02 | 2.000000e-01 | 2.857143e-01 | 5.000000e-01 |
| 2018 | core winter range | Burned | Fenced | site_number | 10 | 1.000000e+01 | 1.900000e+01 | 6.600000e+01 | 6.600000e+01 |
| 2018 | core winter range | Burned | Fenced | stem_den_ac | 0 | 3.237488e+02 | 8.093720e+02 | 1.294995e+03 | 2.104367e+03 |
| 2018 | core winter range | Burned | Fenced | stem_den_ha | 0 | 8.000000e+02 | 2.000000e+03 | 3.200000e+03 | 5.200000e+03 |
| 2018 | core winter range | Burned | Fenced | stem_tally | 0 | 2.000000e+00 | 5.000000e+00 | 8.000000e+00 | 1.300000e+01 |
| 2018 | core winter range | Burned | Fenced | sum_stem | 14 | 1.400000e+01 | 2.500000e+01 | 3.900000e+01 | 3.900000e+01 |
| 2018 | core winter range | Burned | Fenced | utm_e_nad83 | 446929 | 4.469290e+05 | 4.470050e+05 | 4.470950e+05 | 4.470950e+05 |
| 2018 | core winter range | Burned | Fenced | utm_n_nad83 | 4467463 | 4.467463e+06 | 4.467489e+06 | 4.467494e+06 | 4.467494e+06 |
| 2018 | core winter range | Burned | Fenced | year | 2018 | 2.018000e+03 | 2.018000e+03 | 2.018000e+03 | 2.018000e+03 |
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 0.91 | 0.9 | 0.56 | 1.24 | 1.00 | 1.00 | 1.00 |
fencedFenced | 0.92 | 0.9 | 0.27 | 1.57 | 0.99 | 0.99 | 0.94 |
time_class2013 | 0.37 | 0.9 | 0.28 | 0.47 | 1.00 | 1.00 | 0.89 |
time_class2018 | 0.37 | 0.9 | 0.28 | 0.47 | 1.00 | 1.00 | 0.90 |
burnedBurned | 0.57 | 0.9 | -0.79 | 1.99 | 0.76 | 0.74 | 0.63 |
fencedFenced:time_class2013 | -0.60 | 0.9 | -0.76 | -0.46 | 1.00 | 1.00 | 1.00 |
fencedFenced:time_class2018 | -1.48 | 0.9 | -1.66 | -1.31 | 1.00 | 1.00 | 1.00 |
fencedFenced:burnedBurned | -0.75 | 0.9 | -2.58 | 1.05 | 0.75 | 0.74 | 0.66 |
time_class2013:burnedBurned | 1.31 | 0.9 | 0.36 | 2.50 | 0.99 | 0.99 | 0.96 |
time_class2018:burnedBurned | 0.45 | 0.9 | -0.54 | 1.59 | 0.77 | 0.75 | 0.59 |
fencedFenced:time_class2013:burnedBurned | -0.47 | 0.9 | -1.58 | 0.63 | 0.77 | 0.75 | 0.60 |
fencedFenced:time_class2018:burnedBurned | 0.64 | 0.9 | -0.47 | 1.75 | 0.81 | 0.80 | 0.69 |
| Pairwise contrasts | |||||
|---|---|---|---|---|---|
| Results are given on the response scale | |||||
| contrast | burned | fenced | estimate | lower.HPD | upper.HPD |
| 2013 - BL | Unburned | Unfenced | 1.4477160 | 1.2918801 | 1.6172958 |
| 2018 - BL | Unburned | Unfenced | 1.4501550 | 1.2964982 | 1.6266971 |
| 2018 - 2013 | Unburned | Unfenced | 1.0015036 | 0.9050915 | 1.1108198 |
| 2013 - BL | Burned | Unfenced | 5.3623899 | 1.6517603 | 20.5791732 |
| 2018 - BL | Burned | Unfenced | 2.2802934 | 0.6827064 | 8.6486092 |
| 2018 - 2013 | Burned | Unfenced | 0.4247683 | 0.3764684 | 0.4805162 |
| 2013 - BL | Unburned | Fenced | 0.7912445 | 0.6862436 | 0.9046157 |
| 2018 - BL | Unburned | Fenced | 0.3294917 | 0.2735920 | 0.3908882 |
| 2018 - 2013 | Unburned | Fenced | 0.4162960 | 0.3487131 | 0.4960705 |
| 2013 - BL | Burned | Fenced | 1.8359081 | 1.3606438 | 2.5357842 |
| 2018 - BL | Burned | Fenced | 0.9804953 | 0.6969817 | 1.4013976 |
| 2018 - 2013 | Burned | Fenced | 0.5334445 | 0.4072155 | 0.7056563 |
Prior summary: stem_tally ~ time_class + (1 | site_id)
## Priors for model 'stmod_anc_stally1'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.27,5.27])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | 0.668 | 0.004 | 0.175 | 0.444 | 0.669 | 0.888 | 1700 | 1.005 |
| time_class2013 | 0.204 | 0.001 | 0.084 | 0.095 | 0.204 | 0.311 | 10588 | 1.000 |
| time_class2018 | 0.605 | 0.001 | 0.077 | 0.505 | 0.604 | 0.703 | 10520 | 1.000 |
| mean_PPD | 3.421 | 0.001 | 0.148 | 3.232 | 3.419 | 3.610 | 13629 | 1.000 |
| log-posterior | -1093.668 | 0.097 | 4.799 | -1099.894 | -1093.304 | -1087.825 | 2455 | 1.001 |
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 0.67 | 0.9 | 0.36 | 0.94 | 1.00 | 1.00 | 0.98 |
time_class2013 | 0.20 | 0.9 | 0.06 | 0.34 | 0.99 | 0.97 | 0.12 |
time_class2018 | 0.60 | 0.9 | 0.48 | 0.73 | 1.00 | 1.00 | 1.00 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the log (not the response) scale. | |||
| contrast | estimate | lower.HPD | upper.HPD |
| 2013 - BL | 0.2 | 0.04 | 0.37 |
| 2018 - BL | 0.6 | 0.46 | 0.76 |
| 2018 - 2013 | 0.4 | 0.27 | 0.55 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the response scale. | |||
| contrast | ratio | lower.HPD | upper.HPD |
| 2013 / BL | 1.23 | 1.03 | 1.44 |
| 2018 / BL | 1.83 | 1.56 | 2.12 |
| 2018 / 2013 | 1.49 | 1.29 | 1.71 |
# comment 2.2 "provide analyses on single graphic...
## Plot combinations
contr.plot.ac <- emmeans(stmod_stally2, ~ time_class | fenced) %>%
pairs(reverse = TRUE) %>%
# plot(type = "response") +
plot() +
theme_minimal() +
geom_vline(aes(xintercept = 0), color= "black", size=1, lty="dashed") +
labs(title= "Core winter range", caption = "", x = "Estimate", y = "Contrast")
contr.plot.anc <- emmeans(stmod_anc_stally1, ~ time_class) %>%
pairs(reverse = TRUE) %>%
plot(type = "response") +
theme_minimal() +
geom_vline(aes(xintercept = 0), color= "black", size=1, lty="dashed") +
labs(title= "Noncore winter range", caption = "Point estimate displayed: median
HPD interval probability: 0.95, Results on log scale", x = "Estimate", y = "")
# patchwork
contr.plot.ac + contr.plot.anc
ggsave("./output/figures_exported/revised_figs_aspen/emm_stemcnt_AC_ANC.png", width = 8, height = 3.75, dpi=300)
ggsave("./output/figures_exported/revised_figs_aspen/emm_stemcnt_AC_ANC.pdf", width = 8, height = 3.75)
Prior summary: stem_tally ~ time_class + (1 | site_id)
## Priors for model 'stmod_ak_stally1'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.28,5.28])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
| Parameter | mean | mcse | sd | 10% | 50% | 90% | n_eff | Rhat |
|---|---|---|---|---|---|---|---|---|
| (Intercept) | 0.567 | 0.004 | 0.246 | 0.257 | 0.571 | 0.866 | 3931 | 1 |
| time_class2013 | 0.191 | 0.002 | 0.152 | -0.004 | 0.192 | 0.384 | 10000 | 1 |
| time_class2018 | 0.377 | 0.001 | 0.144 | 0.193 | 0.376 | 0.561 | 9863 | 1 |
| mean_PPD | 2.475 | 0.002 | 0.202 | 2.217 | 2.467 | 2.733 | 14246 | 1 |
| log-posterior | -504.307 | 0.049 | 3.034 | -508.326 | -503.985 | -500.694 | 3768 | 1 |
## Priors for model 'stmod_ak_stally1'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.28,5.28])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 0.57 | 0.9 | 0.16 | 0.97 | 0.99 | 0.98 | 0.87 |
time_class2013 | 0.19 | 0.9 | -0.06 | 0.44 | 0.89 | 0.82 | 0.24 |
time_class2018 | 0.38 | 0.9 | 0.14 | 0.62 | 1.00 | 0.99 | 0.70 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the log (not the response) scale. | |||
| contrast | estimate | lower.HPD | upper.HPD |
| 2013 - BL | 0.19 | -0.11 | 0.49 |
| 2018 - BL | 0.38 | 0.09 | 0.66 |
| 2018 - 2013 | 0.18 | -0.07 | 0.47 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the response scale. | |||
| contrast | ratio | lower.HPD | upper.HPD |
| 2013 / BL | 1.21 | 0.88 | 1.60 |
| 2018 / BL | 1.46 | 1.06 | 1.89 |
| 2018 / 2013 | 1.20 | 0.90 | 1.55 |
Histograms of Willow Height
Prior summary: plant_ht_cm ~ time_class*fenced + (1 | site_id)
# Get the prior summary
prior_summary(wc.wnc.stmod_TCxF)
## Priors for model 'wc.wnc.stmod_TCxF'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.70,5.00,5.75,...])
##
## Auxiliary (shape)
## ~ exponential(rate = 1)
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 4.61 | 0.9 | 4.49 | 4.72 | 1 | 1 | 1.00 |
time_class2013 | 0.14 | 0.9 | 0.09 | 0.18 | 1 | 1 | 0.00 |
time_class2018 | 0.22 | 0.9 | 0.18 | 0.26 | 1 | 1 | 0.00 |
fencedFenced | -0.56 | 0.9 | -0.79 | -0.33 | 1 | 1 | 0.97 |
time_class2013:fencedFenced | 0.34 | 0.9 | 0.24 | 0.43 | 1 | 1 | 0.74 |
time_class2018:fencedFenced | 0.72 | 0.9 | 0.64 | 0.80 | 1 | 1 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.04 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| fencedFenced | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013:fencedFenced | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2018:fencedFenced | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
## fenced = Unfenced:
## contrast estimate lower.HPD upper.HPD
## 2013 - BL 0.1364 0.0825 0.186
## 2018 - BL 0.2166 0.1715 0.263
## 2018 - 2013 0.0801 0.0367 0.127
##
## fenced = Fenced:
## contrast estimate lower.HPD upper.HPD
## 2013 - BL 0.4719 0.3745 0.566
## 2018 - BL 0.9345 0.8500 1.023
## 2018 - 2013 0.4627 0.3857 0.540
##
## Point estimate displayed: median
## Results are given on the log (not the response) scale.
## HPD interval probability: 0.95
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log scale | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| 2013 - BL | Unfenced | 0.14 | 0.08 | 0.19 |
| 2018 - BL | Unfenced | 0.22 | 0.17 | 0.26 |
| 2018 - 2013 | Unfenced | 0.08 | 0.04 | 0.13 |
| 2013 - BL | Fenced | 0.47 | 0.37 | 0.57 |
| 2018 - BL | Fenced | 0.93 | 0.85 | 1.02 |
| 2018 - 2013 | Fenced | 0.46 | 0.39 | 0.54 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale. | ||||
| contrast | fenced | ratio | lower.HPD | upper.HPD |
| 2013 / BL | Unfenced | 1.15 | 1.09 | 1.20 |
| 2018 / BL | Unfenced | 1.24 | 1.19 | 1.30 |
| 2018 / 2013 | Unfenced | 1.08 | 1.03 | 1.13 |
| 2013 / BL | Fenced | 1.60 | 1.45 | 1.76 |
| 2018 / BL | Fenced | 2.55 | 2.33 | 2.77 |
| 2018 / 2013 | Fenced | 1.59 | 1.47 | 1.71 |
#### Figure 29 (#1) revised 2022
plotF.emmip_FxTC_response_bw(wc.wnc.stmod_TCxF) +
labs(y="Willow height (cm)") +
theme(legend.position = "right")
# ggsave("./output/figures_202202/emmip/Fig29_1_emmip_TCxF_wcwnc_allwillowheight.png", width = 7.25, height = 3.75)
#
# ggsave("./output/figures_202202/emmip/Fig29_1_emmip_TCxF_wcwnc_allwillowheight.pdf", width = 7.25, height = 3.75)
# bw
plotF.emmip_FxTC_response_bw(wc.wnc.stmod_TCxF) +
labs(title="Combined winter range") +
theme(legend.position = "right") +
labs(x="Year")
ggsave("./output/figures_exported/emmip_TCxF_wcwnc_allwillowheight_bw.png", width = 5, height = 4.25)
Prior summary height ~ time_class * burned * fenced + (1 | site_id)
## Priors for model 'stmod_ht.wc.wnc.TCxFxB'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.70,5.00,5.75,...])
##
## Auxiliary (shape)
## ~ exponential(rate = 1)
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 4.26 | 0.9 | 3.93 | 4.57 | 1.00 | 1.00 | 1.00 |
time_class2013 | -0.41 | 0.9 | -0.65 | -0.18 | 1.00 | 0.99 | 0.79 |
time_class2018 | -0.18 | 0.9 | -0.41 | 0.05 | 0.91 | 0.83 | 0.20 |
fencedFenced | -0.47 | 0.9 | -0.87 | -0.05 | 0.96 | 0.95 | 0.75 |
burnedUnburned | 0.44 | 0.9 | 0.09 | 0.78 | 0.98 | 0.97 | 0.75 |
time_class2013:fencedFenced | 0.71 | 0.9 | 0.43 | 0.98 | 1.00 | 1.00 | 0.99 |
time_class2018:fencedFenced | 1.20 | 0.9 | 0.92 | 1.47 | 1.00 | 1.00 | 1.00 |
time_class2013:burnedUnburned | 0.57 | 0.9 | 0.33 | 0.80 | 1.00 | 1.00 | 0.97 |
time_class2018:burnedUnburned | 0.41 | 0.9 | 0.18 | 0.65 | 1.00 | 1.00 | 0.79 |
fencedFenced:burnedUnburned | 0.02 | 0.9 | -0.49 | 0.50 | 0.53 | 0.47 | 0.18 |
time_class2013:fencedFenced:burnedUnburned | -0.26 | 0.9 | -0.56 | 0.04 | 0.93 | 0.89 | 0.43 |
time_class2018:fencedFenced:burnedUnburned | -0.57 | 0.9 | -0.87 | -0.30 | 1.00 | 1.00 | 0.94 |
shape | 4.11 | 0.9 | 3.96 | 4.26 | 1.00 | 1.00 | 1.00 |
mean_PPD | 109.34 | 0.9 | 107.03 | 111.72 | 1.00 | 1.00 | 1.00 |
log-posterior | -20,390.11 | 0.9 | -20,407.36 | -20,373.64 | 1.00 | 1.00 | 1.00 |
## fenced = Unfenced, burned = Burned:
## time_class emmean lower.HPD upper.HPD
## BL 4.26 3.88 4.64
## 2013 3.85 3.47 4.20
## 2018 4.07 3.72 4.45
##
## fenced = Fenced, burned = Burned:
## time_class emmean lower.HPD upper.HPD
## BL 3.79 3.48 4.13
## 2013 4.08 3.79 4.40
## 2018 4.81 4.51 5.10
##
## fenced = Unfenced, burned = Unburned:
## time_class emmean lower.HPD upper.HPD
## BL 4.70 4.55 4.84
## 2013 4.85 4.71 5.00
## 2018 4.93 4.77 5.06
##
## fenced = Fenced, burned = Unburned:
## time_class emmean lower.HPD upper.HPD
## BL 4.25 3.96 4.54
## 2013 4.85 4.55 5.13
## 2018 5.11 4.83 5.39
##
## Point estimate displayed: median
## Results are given on the log (not the response) scale.
## HPD interval probability: 0.95
contrast | fenced | burned | ratio | lower.HPD | upper.HPD |
2013 / BL | Unfenced | Burned | 0.6624587 | 0.4962514 | 0.8614994 |
2018 / BL | Unfenced | Burned | 0.8316968 | 0.6207222 | 1.0745543 |
2018 / 2013 | Unfenced | Burned | 1.2566171 | 0.9856195 | 1.5476439 |
2013 / BL | Fenced | Burned | 1.3437544 | 1.1207996 | 1.6094740 |
2018 / BL | Fenced | Burned | 2.7717576 | 2.3184327 | 3.2766476 |
2018 / 2013 | Fenced | Burned | 2.0603921 | 1.8429320 | 2.3041937 |
2013 / BL | Unfenced | Unburned | 1.1679140 | 1.1087494 | 1.2318834 |
2018 / BL | Unfenced | Unburned | 1.2554628 | 1.1982139 | 1.3188118 |
2018 / 2013 | Unfenced | Unburned | 1.0748250 | 1.0265208 | 1.1264215 |
2013 / BL | Fenced | Unburned | 1.8138428 | 1.6113339 | 2.0356028 |
2018 / BL | Fenced | Unburned | 2.3696965 | 2.1386354 | 2.6189121 |
2018 / 2013 | Fenced | Unburned | 1.3071400 | 1.1750807 | 1.4435665 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log scale | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| 2013 - BL | Unfenced | -0.13 | -0.27 | 0.01 |
| 2018 - BL | Unfenced | 0.02 | -0.12 | 0.16 |
| 2018 - 2013 | Unfenced | 0.15 | 0.04 | 0.27 |
| 2013 - BL | Fenced | 0.45 | 0.34 | 0.55 |
| 2018 - BL | Fenced | 0.94 | 0.84 | 1.04 |
| 2018 - 2013 | Fenced | 0.50 | 0.42 | 0.57 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale. | ||||
| contrast | fenced | ratio | lower.HPD | upper.HPD |
| 2013 / BL | Unfenced | 0.88 | 0.76 | 1.01 |
| 2018 / BL | Unfenced | 1.02 | 0.88 | 1.17 |
| 2018 / 2013 | Unfenced | 1.16 | 1.03 | 1.30 |
| 2013 / BL | Fenced | 1.56 | 1.40 | 1.73 |
| 2018 / BL | Fenced | 2.56 | 2.31 | 2.82 |
| 2018 / 2013 | Fenced | 1.64 | 1.52 | 1.77 |
#### Figure 40 (#1)
Histograms of Willow Height
Prior summary: plant_ht_cm ~ time_class*fenced + (1 | site_id)
## Priors for model 'stmod_ht2'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.65,5.01,5.06,...])
##
## Auxiliary (shape)
## ~ exponential(rate = 1)
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
## model comparison.
## Run originally and code retained. stmod_ht2 selected
loo1 <- loo(stmod_ht1,
k_threshold = 0.7)
loo2 <- loo(stmod_ht2,
k_threshold = 0.7)
comp <- loo_compare(loo2, loo1)
print(comp, simplify = FALSE, digits = 2)
| Core Winter Range | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Willow Height Posterior Description | ||||||||||||||
| Parameter | Component | Median | MAD | CI | CI_low | CI_high | pd | ps | ROPE_CI | ROPE_low | ROPE_high | ROPE_Percentage | Rhat | ESS |
| (Intercept) | conditional | 4.4 | 0.1 | 0.9 | 4.3 | 4.6 | 1.0 | 1.0 | 0.9 | -0.1 | 0.1 | 0.0 | 1 | 997.1 |
| time_class2013 | conditional | 0.0 | 0.0 | 0.9 | -0.1 | 0.1 | 0.6 | 0.0 | 0.9 | -0.1 | 0.1 | 1.0 | 1 | 5191.9 |
| time_class2018 | conditional | 0.1 | 0.0 | 0.9 | 0.0 | 0.2 | 1.0 | 0.6 | 0.9 | -0.1 | 0.1 | 0.4 | 1 | 5152.4 |
| fencedFenced | conditional | -0.4 | 0.1 | 0.9 | -0.6 | -0.2 | 1.0 | 1.0 | 0.9 | -0.1 | 0.1 | 0.0 | 1 | 1015.9 |
| time_class2013:fencedFenced | conditional | 0.5 | 0.1 | 0.9 | 0.4 | 0.6 | 1.0 | 1.0 | 0.9 | -0.1 | 0.1 | 0.0 | 1 | 5281.0 |
| time_class2018:fencedFenced | conditional | 0.8 | 0.1 | 0.9 | 0.7 | 0.9 | 1.0 | 1.0 | 0.9 | -0.1 | 0.1 | 0.0 | 1 | 4898.9 |
| shape | distributional | 4.7 | 0.1 | 0.9 | 4.4 | 4.9 | 1.0 | 1.0 | 0.9 | -0.1 | 0.1 | 0.0 | NA | NA |
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 4.44 | 0.9 | 4.28 | 4.58 | 1.00 | 1.00 | 1.00 |
time_class2013 | 0.01 | 0.9 | -0.06 | 0.07 | 0.55 | 0.12 | 0.00 |
time_class2018 | 0.11 | 0.9 | 0.04 | 0.17 | 1.00 | 0.93 | 0.00 |
fencedFenced | -0.40 | 0.9 | -0.64 | -0.18 | 1.00 | 0.99 | 0.76 |
time_class2013:fencedFenced | 0.47 | 0.9 | 0.37 | 0.57 | 1.00 | 1.00 | 1.00 |
time_class2018:fencedFenced | 0.83 | 0.9 | 0.74 | 0.92 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 1.0 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.4 | fixed | conditional |
| fencedFenced | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| time_class2013:fencedFenced | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| time_class2018:fencedFenced | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
Results are given on the response scale.
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log scale | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| 2013 - BL | Unfenced | 0.01 | -0.07 | 0.08 |
| 2018 - BL | Unfenced | 0.11 | 0.03 | 0.18 |
| 2018 - 2013 | Unfenced | 0.10 | 0.04 | 0.16 |
| 2013 - BL | Fenced | 0.47 | 0.38 | 0.56 |
| 2018 - BL | Fenced | 0.93 | 0.85 | 1.01 |
| 2018 - 2013 | Fenced | 0.46 | 0.39 | 0.53 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale. | ||||
| contrast | fenced | ratio | lower.HPD | upper.HPD |
| 2013 / BL | Unfenced | 1.01 | 0.93 | 1.08 |
| 2018 / BL | Unfenced | 1.11 | 1.03 | 1.19 |
| 2018 / 2013 | Unfenced | 1.10 | 1.04 | 1.17 |
| 2013 / BL | Fenced | 1.60 | 1.46 | 1.75 |
| 2018 / BL | Fenced | 2.55 | 2.33 | 2.75 |
| 2018 / 2013 | Fenced | 1.59 | 1.48 | 1.70 |
plotF.emmip_FxTC_response(stmod_ht2) +
labs(title="Core winter range") +
theme(legend.position = "right")
ggsave("./output/figures_exported/emmip_TCxF_wc_willowht.png", width = 5, height = 4.25) # save plot
plotF.emmip_FxTC_response_bw(stmod_ht2) +
labs(y="Willow height (cm)") +
theme(legend.position = "right")
ggsave("./output/figures_202202/emmip/Fig29_2_emmip_TCxF_wc_allwillowheight.png", width = 7.25, height = 3.75)
ggsave("./output/figures_202202/emmip/Fig29_2_emmip_TCxF_wc_allwillowheight.pdf", width = 7.25, height = 3.75)
Histograms of Willow Height
Prior summary: plant_ht_cm ~ time_class + (1 | site_id)
## Priors for model 'nc.stmod_ht1'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.77,5.02])
##
## Auxiliary (shape)
## ~ exponential(rate = 1)
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 4.85 | 0.9 | 4.68 | 5.03 | 1 | 1 | 1.00 |
time_class2013 | 0.22 | 0.9 | 0.16 | 0.28 | 1 | 1 | 0.02 |
time_class2018 | 0.28 | 0.9 | 0.23 | 0.33 | 1 | 1 | 0.25 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
Results are given on the the response scale.
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the log scale | |||
| contrast | estimate | lower.HPD | upper.HPD |
| 2013 - BL | 0.22 | 0.15 | 0.29 |
| 2018 - BL | 0.28 | 0.22 | 0.34 |
| 2018 - 2013 | 0.06 | -0.01 | 0.13 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the response scale. | |||
| contrast | ratio | lower.HPD | upper.HPD |
| 2013 / BL | 1.25 | 1.16 | 1.34 |
| 2018 / BL | 1.32 | 1.24 | 1.41 |
| 2018 / 2013 | 1.06 | 0.99 | 1.13 |
plotF.emmip_TC_response_bw(nc.stmod_ht1) +
labs(y="Willow height (cm)") +
theme(legend.position = "right")
ggsave("./output/figures_202202/emmip/Fig30_emmip_TC_wnc_allwillowheight.png", width = 7.25, height = 3.75)
ggsave("./output/figures_202202/emmip/Fig30_emmip_TC_wnc_allwillowheight.pdf", width = 7.25, height = 3.75)
Histograms of Willow Height
| time_class | variable | mean | sd | min | q1 | med | q3 | max | mad | iqr | cv | skewness | se.skewness | kurtosis | n.valid | pct.valid | sem |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2011 | plant_ht_cm | 47.65323 | 23.42608 | 14 | 30 | 43 | 59.5 | 168 | 20.7564 | 29.25 | 0.4915948 | 1.6734970 | 0.2173713 | 5.3253116 | 124 | 100 | 2.103724 |
| 2016 | plant_ht_cm | 56.40741 | 25.88473 | 10 | 40 | 50 | 75.0 | 155 | 22.2390 | 32.50 | 0.4588889 | 0.8201672 | 0.2085259 | 0.8220138 | 135 | 100 | 2.227803 |
| 2017 | plant_ht_cm | 55.39568 | 29.36567 | 10 | 35 | 50 | 70.0 | 145 | 22.2390 | 35.00 | 0.5301075 | 0.9429452 | 0.2055673 | 0.5114885 | 139 | 100 | 2.490763 |
| 2018 | plant_ht_cm | 60.51383 | 34.24835 | 5 | 35 | 55 | 85.0 | 150 | 37.0650 | 50.00 | 0.5659590 | 0.4952152 | 0.1530955 | -0.6332637 | 253 | 100 | 2.153175 |
Prior summary: plant_ht_cm ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_ht_wk_TCxF'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [6.16,6.10,5.12,...])
##
## Auxiliary (shape)
## ~ exponential(rate = 1)
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
#### PP check plot
ppc.plot(stmod_ht_wk_TCxF) +
labs(caption = "WK: willow_ht~TCxF")
ggsave("./output/figures_202108/willow_height_stats/ppc_willowht_wk.png", dpi = 300, width = 4.75, height = 3.75)
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 4.01 | 0.9 | 3.74 | 4.30 | 1.00 | 1.00 | 1.00 |
time_class2016 | -0.14 | 0.9 | -0.25 | -0.02 | 0.97 | 0.89 | 0.01 |
time_class2017 | -0.21 | 0.9 | -0.31 | -0.09 | 1.00 | 0.99 | 0.09 |
time_class2018 | -0.45 | 0.9 | -0.56 | -0.34 | 1.00 | 1.00 | 0.99 |
fencedFenced | -0.14 | 0.9 | -0.60 | 0.29 | 0.71 | 0.64 | 0.26 |
time_class2016:fencedFenced | 0.58 | 0.9 | 0.39 | 0.76 | 1.00 | 1.00 | 0.99 |
time_class2017:fencedFenced | 0.76 | 0.9 | 0.57 | 0.94 | 1.00 | 1.00 | 1.00 |
time_class2018:fencedFenced | 1.13 | 0.9 | 0.96 | 1.30 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| time_class2016 | 0.9 | -0.1 | 0.1 | 0.3 | fixed | conditional |
| time_class2017 | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| fencedFenced | 0.9 | -0.1 | 0.1 | 0.3 | fixed | conditional |
| time_class2016:fencedFenced | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| time_class2017:fencedFenced | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
| time_class2018:fencedFenced | 0.9 | -0.1 | 0.1 | 0.0 | fixed | conditional |
## time_class = 2011:
## fenced emmean lower.HPD upper.HPD
## Unfenced 4.01 3.68 4.37
## Fenced 3.87 3.43 4.29
##
## time_class = 2016:
## fenced emmean lower.HPD upper.HPD
## Unfenced 3.87 3.53 4.22
## Fenced 4.31 3.89 4.73
##
## time_class = 2017:
## fenced emmean lower.HPD upper.HPD
## Unfenced 3.80 3.46 4.15
## Fenced 4.42 4.00 4.85
##
## time_class = 2018:
## fenced emmean lower.HPD upper.HPD
## Unfenced 3.56 3.24 3.92
## Fenced 4.55 4.14 4.97
##
## Point estimate displayed: median
## Results are given on the log (not the response) scale.
## HPD interval probability: 0.95
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log (not the response) scale. | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| 2016 - 2011 | Unfenced | -0.14 | -0.27 | 0.00 |
| 2017 - 2011 | Unfenced | -0.21 | -0.34 | -0.08 |
| 2017 - 2016 | Unfenced | -0.07 | -0.20 | 0.06 |
| 2018 - 2011 | Unfenced | -0.45 | -0.58 | -0.32 |
| 2018 - 2016 | Unfenced | -0.31 | -0.43 | -0.19 |
| 2018 - 2017 | Unfenced | -0.24 | -0.36 | -0.13 |
| 2016 - 2011 | Fenced | 0.44 | 0.27 | 0.61 |
| 2017 - 2011 | Fenced | 0.55 | 0.38 | 0.73 |
| 2017 - 2016 | Fenced | 0.11 | -0.05 | 0.26 |
| 2018 - 2011 | Fenced | 0.69 | 0.52 | 0.85 |
| 2018 - 2016 | Fenced | 0.24 | 0.10 | 0.39 |
| 2018 - 2017 | Fenced | 0.13 | -0.02 | 0.28 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the response scale. | |||
| contrast | ratio | lower.HPD | upper.HPD |
| 2016 / 2011 | 1.16 | 1.05 | 1.30 |
| 2017 / 2011 | 1.19 | 1.06 | 1.32 |
| 2017 / 2016 | 1.02 | 0.92 | 1.13 |
| 2018 / 2011 | 1.12 | 1.01 | 1.24 |
| 2018 / 2016 | 0.97 | 0.87 | 1.05 |
| 2018 / 2017 | 0.95 | 0.86 | 1.04 |
#### Figure 41
# munge
canopy.all.willow.sum <- canopy.all.willow.sum %>%
mutate(burned = case_when(burned == "Y" ~ "Burned",
burned == "N" ~ "Unburned",
is.na(burned) ~ "Unburned",
TRUE ~ burned)) %>%
mutate(fenced = case_when(site_id == "WK01" ~ "Fenced",
site_id == "WK02" ~ "Fenced",
site_id == "WK03" ~ "Unfenced",
site_id == "WK04" ~ "Unfenced",
site_id == "WK05" ~ "Fenced",
site_id == "WK06" ~ "Unfenced",
site_id == "WK07" ~ "Unfenced",
site_id == "WK08" ~ "Unfenced",
site_id == "WK09" ~ "Unfenced",
site_id == "WK10" ~ "Fenced",
TRUE ~ fenced)) %>%
mutate(time_class = as_factor(time_class)) %>%
mutate(fenced = as_factor(fenced)) %>%
mutate(burned = as_factor(burned)) %>%
mutate(time_class = fct_rev(time_class))
| Combined WC and WNC macroplot data: willow cover - fenced + time_class | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | fenced | variable | mean | sd | min | med | max | n.valid | pct.valid |
| 2013 | Unfenced | cover_allwillow | 0.31 | 0.30 | 0.00 | 0.25 | 1 | 60 | 100 |
| 2013 | Fenced | cover_allwillow | 0.29 | 0.30 | 0.00 | 0.18 | 1 | 28 | 100 |
| 2018 | Unfenced | cover_allwillow | 0.45 | 0.35 | 0.00 | 0.41 | 1 | 66 | 100 |
| 2018 | Fenced | cover_allwillow | 0.55 | 0.35 | 0.05 | 0.56 | 1 | 28 | 100 |
| BL | Unfenced | cover_allwillow | 0.33 | 0.27 | 0.00 | 0.27 | 1 | 51 | 100 |
| BL | Fenced | cover_allwillow | 0.17 | 0.24 | 0.00 | 0.11 | 1 | 17 | 100 |
| Combined WC and WNC macroplot data: willow cover ~ burned + fenced + time_class | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| time_class | fenced | burned | variable | mean | sd | min | med | max | n.valid | pct.valid |
| 2013 | Unfenced | Unburned | cover_allwillow | 0.34 | 0.29 | 0.00 | 0.27 | 1.00 | 51 | 100 |
| 2013 | Unfenced | Burned | cover_allwillow | 0.11 | 0.23 | 0.01 | 0.02 | 0.72 | 9 | 100 |
| 2013 | Fenced | Unburned | cover_allwillow | 0.43 | 0.30 | 0.02 | 0.48 | 1.00 | 15 | 100 |
| 2013 | Fenced | Burned | cover_allwillow | 0.12 | 0.21 | 0.00 | 0.04 | 0.79 | 13 | 100 |
| 2018 | Unfenced | Unburned | cover_allwillow | 0.49 | 0.33 | 0.00 | 0.47 | 1.00 | 58 | 100 |
| 2018 | Unfenced | Burned | cover_allwillow | 0.15 | 0.34 | 0.00 | 0.03 | 1.00 | 8 | 100 |
| 2018 | Fenced | Unburned | cover_allwillow | 0.69 | 0.33 | 0.14 | 0.76 | 1.00 | 15 | 100 |
| 2018 | Fenced | Burned | cover_allwillow | 0.39 | 0.29 | 0.05 | 0.26 | 1.00 | 13 | 100 |
| BL | Unfenced | Unburned | cover_allwillow | 0.34 | 0.27 | 0.00 | 0.27 | 1.00 | 50 | 100 |
| BL | Unfenced | Burned | cover_allwillow | 0.03 | NA | 0.03 | 0.03 | 0.03 | 1 | 100 |
| BL | Fenced | Unburned | cover_allwillow | 0.27 | 0.27 | 0.01 | 0.20 | 1.00 | 10 | 100 |
| BL | Fenced | Burned | cover_allwillow | 0.03 | 0.03 | 0.00 | 0.02 | 0.09 | 7 | 100 |
| WK macroplot data: willow cover ~ fenced * time_class | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | fenced | variable | mean | sd | min | med | max | n.valid | pct.valid |
| 2016 | Unfenced | cover_allwillow | 0.23 | 0.23 | 0.04 | 0.18 | 0.54 | 4 | 100 |
| 2016 | Fenced | cover_allwillow | 0.31 | 0.20 | 0.19 | 0.20 | 0.54 | 3 | 100 |
| 2018 | Unfenced | cover_allwillow | 0.26 | 0.25 | 0.02 | 0.17 | 0.53 | 5 | 100 |
| 2018 | Fenced | cover_allwillow | 0.46 | 0.27 | 0.14 | 0.48 | 0.75 | 4 | 100 |
| 2017 | Unfenced | cover_allwillow | 0.23 | 0.24 | 0.02 | 0.16 | 0.58 | 4 | 100 |
| 2017 | Fenced | cover_allwillow | 0.34 | 0.25 | 0.17 | 0.23 | 0.62 | 3 | 100 |
| BL | Unfenced | cover_allwillow | 0.20 | 0.17 | 0.04 | 0.17 | 0.42 | 5 | 100 |
| BL | Fenced | cover_allwillow | 0.13 | 0.13 | 0.04 | 0.06 | 0.28 | 3 | 100 |
Prior summary: cover_allwillow ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_cov.wc.wnc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.15,5.61,5.49,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -0.48 | 0.9 | -0.92 | -0.05 | 0.97 | 0.95 | 0.75 |
time_class2018 | 0.47 | 0.9 | 0.17 | 0.75 | 1.00 | 0.99 | 0.83 |
time_classBL | -0.34 | 0.9 | -0.68 | -0.01 | 0.95 | 0.92 | 0.58 |
fencedFenced | -0.59 | 0.9 | -1.39 | 0.20 | 0.89 | 0.87 | 0.73 |
time_class2018:fencedFenced | 1.51 | 0.9 | 1.01 | 2.05 | 1.00 | 1.00 | 1.00 |
time_classBL:fencedFenced | -0.32 | 0.9 | -0.98 | 0.31 | 0.80 | 0.76 | 0.52 |
(phi) | 4.56 | 0.9 | 3.62 | 5.52 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.41 | 0.9 | 0.39 | 0.44 | 1.00 | 1.00 | 1.00 |
log-posterior | 245.25 | 0.9 | 225.95 | 264.28 | 1.00 | 1.00 | 1.00 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log odds ratio, not the response scale | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| 2018 - 2013 | Unfenced | 0.47 | 0.13 | 0.81 |
| BL - 2013 | Unfenced | -0.34 | -0.74 | 0.06 |
| BL - 2018 | Unfenced | -0.81 | -1.20 | -0.40 |
| 2018 - 2013 | Fenced | 1.97 | 1.44 | 2.48 |
| BL - 2013 | Fenced | -0.66 | -1.32 | 0.01 |
| BL - 2018 | Fenced | -2.63 | -3.30 | -1.95 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale | ||||
| contrast | fenced | odds.ratio | lower.HPD | upper.HPD |
| 2018 / 2013 | Unfenced | 1.59 | 1.11 | 2.22 |
| BL / 2013 | Unfenced | 0.71 | 0.46 | 1.03 |
| BL / 2018 | Unfenced | 0.45 | 0.29 | 0.65 |
| 2018 / 2013 | Fenced | 7.20 | 3.93 | 11.56 |
| BL / 2013 | Fenced | 0.52 | 0.23 | 0.93 |
| BL / 2018 | Fenced | 0.07 | 0.03 | 0.13 |
#### Fig 39 - 1
Prior summary cover_allwillow ~ time_class * burned * fenced + (1 | site_id)
## Priors for model 'stmod_cov.wc.wnc.TCxFxB'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.15,5.61,6.19,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -0.21 | 0.9 | -0.65 | 0.22 | 0.79 | 0.74 | 0.36 |
time_class2018 | 0.47 | 0.9 | 0.16 | 0.76 | 0.99 | 0.99 | 0.82 |
time_classBL | -0.39 | 0.9 | -0.71 | -0.03 | 0.97 | 0.95 | 0.66 |
burnedBurned | -2.04 | 0.9 | -3.28 | -0.84 | 1.00 | 1.00 | 0.99 |
fencedFenced | -0.02 | 0.9 | -1.01 | 0.92 | 0.51 | 0.48 | 0.32 |
time_class2018:burnedBurned | 0.10 | 0.9 | -0.87 | 1.07 | 0.56 | 0.53 | 0.37 |
time_classBL:burnedBurned | 1.11 | 0.9 | -1.78 | 3.50 | 0.76 | 0.75 | 0.70 |
time_class2018:fencedFenced | 1.76 | 0.9 | 1.08 | 2.44 | 1.00 | 1.00 | 1.00 |
time_classBL:fencedFenced | -0.43 | 0.9 | -1.20 | 0.33 | 0.82 | 0.79 | 0.61 |
burnedBurned:fencedFenced | 0.22 | 0.9 | -1.46 | 2.01 | 0.59 | 0.57 | 0.47 |
time_class2018:burnedBurned:fencedFenced | -0.56 | 0.9 | -1.87 | 0.76 | 0.76 | 0.74 | 0.63 |
time_classBL:burnedBurned:fencedFenced | -0.64 | 0.9 | -3.47 | 2.25 | 0.64 | 0.63 | 0.58 |
(phi) | 4.68 | 0.9 | 3.74 | 5.66 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.41 | 0.9 | 0.39 | 0.44 | 1.00 | 1.00 | 1.00 |
log-posterior | 240.19 | 0.9 | 221.09 | 259.48 | 1.00 | 1.00 | 1.00 |
| WC macroplot data: willow cover ~ WC: all willow cover - time_class | ||||||||
|---|---|---|---|---|---|---|---|---|
| time_class | variable | mean | sd | min | med | max | n.valid | pct.valid |
| 2013 | cover_allwillow | 0.24 | 0.27 | 0 | 0.14 | 1 | 61 | 100 |
| 2018 | cover_allwillow | 0.44 | 0.35 | 0 | 0.33 | 1 | 62 | 100 |
| BL | cover_allwillow | 0.22 | 0.24 | 0 | 0.18 | 1 | 36 | 100 |
| WC macroplot data: All willow cover - burned + time_class | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | burned | variable | mean | sd | min | med | max | n.valid | pct.valid |
| 2013 | Unburned | cover_allwillow | 0.31 | 0.27 | 0 | 0.27 | 1.00 | 39 | 100 |
| 2013 | Burned | cover_allwillow | 0.12 | 0.22 | 0 | 0.03 | 0.79 | 22 | 100 |
| 2018 | Unburned | cover_allwillow | 0.51 | 0.35 | 0 | 0.46 | 1.00 | 41 | 100 |
| 2018 | Burned | cover_allwillow | 0.30 | 0.33 | 0 | 0.20 | 1.00 | 21 | 100 |
| BL | Unburned | cover_allwillow | 0.27 | 0.25 | 0 | 0.22 | 1.00 | 28 | 100 |
| BL | Burned | cover_allwillow | 0.03 | 0.03 | 0 | 0.02 | 0.09 | 8 | 100 |
Prior summary: cover_allwillow ~ time_class * fenced + (1 | site_id)
## Priors for model 'stmod_cov.wc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.11,5.95,5.00,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
#### Effect Description
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -1.18 | 0.9 | -1.71 | -0.58 | 1.00 | 1.00 | 1.00 |
time_class2018 | 0.39 | 0.9 | 0.00 | 0.78 | 0.95 | 0.92 | 0.65 |
time_classBL | -0.10 | 0.9 | -0.57 | 0.38 | 0.63 | 0.57 | 0.24 |
fencedFenced | 0.06 | 0.9 | -0.76 | 0.93 | 0.55 | 0.51 | 0.32 |
time_class2018:fencedFenced | 1.65 | 0.9 | 1.08 | 2.24 | 1.00 | 1.00 | 1.00 |
time_classBL:fencedFenced | -0.62 | 0.9 | -1.30 | 0.11 | 0.92 | 0.91 | 0.77 |
(phi) | 5.36 | 0.9 | 3.88 | 6.88 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.35 | 0.9 | 0.33 | 0.38 | 1.00 | 1.00 | 1.00 |
log-posterior | 151.12 | 0.9 | 135.39 | 167.30 | 1.00 | 1.00 | 1.00 |
Results are given on the the response scale.
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the log odds ratio, not the response scale | ||||
| contrast | fenced | estimate | lower.HPD | upper.HPD |
| 2018 - 2013 | Unfenced | 0.39 | -0.08 | 0.84 |
| BL - 2013 | Unfenced | -0.10 | -0.68 | 0.45 |
| BL - 2018 | Unfenced | -0.49 | -1.05 | 0.04 |
| 2018 - 2013 | Fenced | 2.04 | 1.51 | 2.56 |
| BL - 2013 | Fenced | -0.71 | -1.39 | -0.08 |
| BL - 2018 | Fenced | -2.75 | -3.43 | -2.07 |
| Pairwise contrasts | ||||
|---|---|---|---|---|
| Results are given on the response scale | ||||
| contrast | fenced | odds.ratio | lower.HPD | upper.HPD |
| 2018 / 2013 | Unfenced | 1.48 | 0.89 | 2.27 |
| BL / 2013 | Unfenced | 0.91 | 0.48 | 1.51 |
| BL / 2018 | Unfenced | 0.61 | 0.31 | 0.99 |
| 2018 / 2013 | Fenced | 7.69 | 4.09 | 12.12 |
| BL / 2013 | Fenced | 0.49 | 0.21 | 0.86 |
| BL / 2018 | Fenced | 0.06 | 0.03 | 0.11 |
#### Figure 39 (#2)
| WNC macroplot data: willow cover | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | fenced | variable | mean | sd | min | med | max | n.valid | pct.valid |
| 2013 | Unfenced | cover_allwillow | 0.43 | 0.32 | 0.02 | 0.37 | 1 | 27 | 100 |
| 2018 | Unfenced | cover_allwillow | 0.56 | 0.33 | 0.01 | 0.53 | 1 | 32 | 100 |
| BL | Unfenced | cover_allwillow | 0.37 | 0.28 | 0.03 | 0.30 | 1 | 32 | 100 |
Prior summary: cover_allwillow ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.wnc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.21,5.21])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | 0.32 | 0.9 | -0.25 | 0.92 | 0.81 | 0.77 | 0.52 |
time_class2018 | 0.49 | 0.9 | 0.04 | 0.95 | 0.96 | 0.94 | 0.76 |
time_classBL | -0.54 | 0.9 | -1.02 | -0.05 | 0.97 | 0.95 | 0.80 |
(phi) | 3.05 | 0.9 | 2.14 | 4.04 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.52 | 0.9 | 0.47 | 0.57 | 1.00 | 1.00 | 1.00 |
log-posterior | 82.36 | 0.9 | 71.31 | 92.65 | 1.00 | 1.00 | 1.00 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the log odds ratio, not the response scale | |||
| contrast | estimate | lower.HPD | upper.HPD |
| 2018 - 2013 | 0.49 | -0.04 | 1.05 |
| BL - 2013 | -0.54 | -1.11 | 0.05 |
| BL - 2018 | -1.03 | -1.61 | -0.48 |
| Pairwise contrasts | |||
|---|---|---|---|
| Results are given on the response scale | |||
| contrast | odds.ratio | lower.HPD | upper.HPD |
| 2018 / 2013 | 1.63 | 0.84 | 2.63 |
| BL / 2013 | 0.58 | 0.29 | 0.98 |
| BL / 2018 | 0.36 | 0.18 | 0.59 |
| WNC macroplot data: willow cover | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | fenced | variable | mean | sd | min | med | max | n.valid | pct.valid |
| 2016 | Unfenced | cover_allwillow | 0.23 | 0.23 | 0.04 | 0.18 | 0.54 | 4 | 100 |
| 2016 | Fenced | cover_allwillow | 0.31 | 0.20 | 0.19 | 0.20 | 0.54 | 3 | 100 |
| 2018 | Unfenced | cover_allwillow | 0.26 | 0.25 | 0.02 | 0.17 | 0.53 | 5 | 100 |
| 2018 | Fenced | cover_allwillow | 0.46 | 0.27 | 0.14 | 0.48 | 0.75 | 4 | 100 |
| 2017 | Unfenced | cover_allwillow | 0.23 | 0.24 | 0.02 | 0.16 | 0.58 | 4 | 100 |
| 2017 | Fenced | cover_allwillow | 0.34 | 0.25 | 0.17 | 0.23 | 0.62 | 3 | 100 |
| BL | Unfenced | cover_allwillow | 0.20 | 0.17 | 0.04 | 0.17 | 0.42 | 5 | 100 |
| BL | Fenced | cover_allwillow | 0.13 | 0.13 | 0.04 | 0.06 | 0.28 | 3 | 100 |
| WNC macroplot data: willow cover | ||||||||
|---|---|---|---|---|---|---|---|---|
| time_class | variable | mean | sd | min | med | max | n.valid | pct.valid |
| 2016 | cover_allwillow | 0.27 | 0.20 | 0.04 | 0.20 | 0.54 | 7 | 100 |
| 2018 | cover_allwillow | 0.35 | 0.26 | 0.02 | 0.34 | 0.75 | 9 | 100 |
| 2017 | cover_allwillow | 0.28 | 0.23 | 0.02 | 0.21 | 0.62 | 7 | 100 |
| BL | cover_allwillow | 0.17 | 0.15 | 0.04 | 0.12 | 0.42 | 8 | 100 |
## # A tibble: 4 x 1
## time_class
## <fct>
## 1 BL
## 2 2018
## 3 2016
## 4 2017
Prior summary
## Priors for model 'stmod_cov.wk'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
## Adjusted prior:
## ~ normal(location = [0,0,0,...], scale = [5.42,5.88,5.62,...])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -3.39 | 0.9 | -4.47 | -2.40 | 1.00 | 1.00 | 1.00 |
time_class2018 | 0.01 | 0.9 | -1.16 | 1.10 | 0.51 | 0.48 | 0.33 |
time_class2017 | -0.02 | 0.9 | -1.23 | 1.19 | 0.51 | 0.48 | 0.35 |
time_classBL | -0.01 | 0.9 | -1.18 | 1.10 | 0.50 | 0.47 | 0.33 |
fencedFenced | 0.11 | 0.9 | -1.21 | 1.46 | 0.56 | 0.53 | 0.41 |
time_class2018:fencedFenced | 0.11 | 0.9 | -1.58 | 1.85 | 0.54 | 0.52 | 0.43 |
time_class2017:fencedFenced | 0.02 | 0.9 | -1.83 | 1.88 | 0.51 | 0.49 | 0.40 |
time_classBL:fencedFenced | -0.24 | 0.9 | -2.05 | 1.56 | 0.58 | 0.56 | 0.48 |
(phi) | 6.37 | 0.9 | 2.57 | 10.92 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.04 | 0.9 | 0.01 | 0.07 | 1.00 | 0.25 | 0.00 |
log-posterior | 83.93 | 0.9 | 78.11 | 89.00 | 1.00 | 1.00 | 1.00 |
| location | variable | mean | sd | min | med | max | n.valid |
|---|---|---|---|---|---|---|---|
| Fishermans Nook | mean | 290.0 | 7.1 | 285.0 | 290.0 | 295.0 | 2 |
| Hollowell Park | mean | 223.6 | 124.0 | 83.5 | 194.9 | 508.8 | 12 |
| Wild Basin | mean | 216.6 | 112.5 | 10.0 | 210.0 | 413.3 | 27 |
| Lower Hidden Valley | mean | 216.4 | NA | 216.4 | 216.4 | 216.4 | 1 |
| McGraw Ranch | mean | 183.1 | 76.6 | 94.3 | 170.8 | 309.2 | 8 |
| Hidden Valley | mean | 160.5 | 104.8 | 67.2 | 116.7 | 377.5 | 9 |
| Upper Beaver Meadows | mean | 154.7 | 90.2 | 55.0 | 146.6 | 280.0 | 8 |
| Horseshoe Park | mean | 143.2 | 63.2 | 49.0 | 168.6 | 226.8 | 12 |
| Moraine Park | mean | 120.1 | 62.3 | 30.0 | 122.0 | 270.0 | 33 |
| Endovalley | mean | 112.0 | 69.8 | 57.0 | 90.7 | 287.2 | 9 |
| Kawuneeche | mean | 67.0 | 32.0 | 25.0 | 73.5 | 111.7 | 9 |
| site_type | mean | sd | min | med | max | n.valid |
|---|---|---|---|---|---|---|
| WB | 216.6 | 112.5 | 10.0 | 210.0 | 413.3 | 27 |
| WNC | 199.7 | 104.4 | 67.2 | 179.8 | 508.8 | 32 |
| WC | 127.9 | 67.4 | 30.0 | 118.7 | 287.2 | 62 |
| WK | 67.0 | 32.0 | 25.0 | 73.5 | 111.7 | 9 |
## stan_aov
## family: gaussian [identity]
## formula: mean ~ site_type
## observations: 130
## predictors: 4
## ------
## Median MAD_SD
## (Intercept) 214.2 16.7
## site_typeWC -85.0 19.3
## site_typeWK -143.3 32.1
## site_typeWNC -16.3 22.6
##
## Auxiliary parameter(s):
## Median MAD_SD
## R2 0.2 0.1
## log-fit_ratio 0.0 0.1
## sigma 86.7 5.4
##
## ANOVA-like table:
## Median MAD_SD
## Mean Sq site_type 89489.5 28094.6
##
## ------
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
##
## Model Info:
## function: stan_lmer
## family: gaussian [identity]
## formula: mean ~ 1 + (1 | site_type)
## algorithm: sampling
## sample: 14000 (posterior sample size)
## priors: see help('prior_summary')
## observations: 130
## groups: site_type (4)
##
## Estimates:
## mean sd 10% 50%
## (Intercept) 12.1 39.2 -5.0 0.8
## b[(Intercept) site_type:WB] 202.4 42.8 168.8 211.2
## b[(Intercept) site_type:WC] 115.3 40.5 86.0 125.0
## b[(Intercept) site_type:WK] 53.8 46.4 4.5 60.6
## b[(Intercept) site_type:WNC] 186.3 42.1 153.5 195.2
## sigma 87.3 5.6 80.4 87.1
## Sigma[site_type:(Intercept),(Intercept)] 54338.8 59684.2 13351.1 36556.1
## 90%
## (Intercept) 37.6
## b[(Intercept) site_type:WB] 236.3
## b[(Intercept) site_type:WC] 142.4
## b[(Intercept) site_type:WK] 100.8
## b[(Intercept) site_type:WNC] 218.3
## sigma 94.6
## Sigma[site_type:(Intercept),(Intercept)] 112230.4
##
## Fit Diagnostics:
## mean sd 10% 50% 90%
## mean_PPD 158.8 10.9 144.9 158.8 172.9
##
## The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).
##
## MCMC diagnostics
## mcse Rhat n_eff
## (Intercept) 1.6 1.0 597
## b[(Intercept) site_type:WB] 1.6 1.0 709
## b[(Intercept) site_type:WC] 1.6 1.0 617
## b[(Intercept) site_type:WK] 1.5 1.0 899
## b[(Intercept) site_type:WNC] 1.6 1.0 669
## sigma 0.1 1.0 6680
## Sigma[site_type:(Intercept),(Intercept)] 1172.7 1.0 2590
## mean_PPD 0.1 1.0 13129
## log-posterior 0.1 1.0 887
##
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).
| Parameter | Effects | Component | Median | Mean | MAP | CI | CI_low | CI_high | pd | ps | Rhat | ESS |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (Intercept) | fixed | conditional | 7.663099e-01 | 12.12726 | 3.875211e-01 | 0.95 | -30.094037 | 122.02677 | 0.5865714 | 0.1807857 | 1.003529 | 596.6051 |
| b[(Intercept) site_type:WB] | random | conditional | 2.111739e+02 | 202.37520 | 2.124639e+02 | 0.95 | 92.706889 | 263.08201 | 0.9959286 | 0.9944286 | 1.002704 | 709.4914 |
| b[(Intercept) site_type:WC] | random | conditional | 1.249533e+02 | 115.33694 | 1.279367e+02 | 0.95 | 4.978789 | 162.88107 | 0.9618571 | 0.9547143 | 1.003050 | 616.9764 |
| b[(Intercept) site_type:WK] | random | conditional | 6.060418e+01 | 53.82350 | 6.819934e+01 | 0.95 | -51.921102 | 132.75646 | 0.9077143 | 0.8863571 | 1.001695 | 899.2485 |
| b[(Intercept) site_type:WNC] | random | conditional | 1.952327e+02 | 186.32204 | 1.977933e+02 | 0.95 | 75.950557 | 243.44464 | 0.9937857 | 0.9923571 | 1.002482 | 669.2157 |
| Sigma[site_type:(Intercept),(Intercept)] | random | conditional | 3.655611e+04 | 54338.82343 | 1.931836e+04 | 0.95 | 585.611229 | 159846.31186 | 1.0000000 | 1.0000000 | 1.001544 | 2590.1329 |
| sigma | fixed | sigma | 8.708692e+01 | 87.34466 | 8.634923e+01 | 0.95 | 76.780007 | 98.54709 | 1.0000000 | 1.0000000 | NA | NA |
## [[1]]
##
## [[2]]
| Upland cover - site type + time_class | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | site_type | variable | mean | sd | min | med | max | n.valid | pct.valid |
| BL | core range | perc_cover | 13.32 | 8.76 | 2.00 | 11.00 | 31.00 | 21 | 100 |
| BL | non-core range | perc_cover | 21.21 | 15.03 | 1.33 | 19.50 | 47.33 | 20 | 100 |
| 2013 | core range | perc_cover | 10.75 | 8.11 | 0.33 | 8.83 | 24.33 | 20 | 100 |
| 2013 | non-core range | perc_cover | 24.32 | 19.75 | 1.67 | 19.00 | 66.33 | 22 | 100 |
| 2018 | core range | perc_cover | 13.61 | 8.04 | 1.67 | 12.67 | 34.33 | 18 | 100 |
| 2018 | non-core range | perc_cover | 20.06 | 15.11 | 0.33 | 18.67 | 56.67 | 22 | 100 |
Summary by Range Type
Prior summary: cover ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.allshr'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.25,5.32])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -1.65 | 0.9 | -1.94 | -1.39 | 1.00 | 1.00 | 1.00 |
time_class2013 | 0.02 | 0.9 | -0.24 | 0.30 | 0.55 | 0.43 | 0.04 |
time_class2018 | -0.06 | 0.9 | -0.34 | 0.22 | 0.63 | 0.53 | 0.08 |
(phi) | 10.29 | 0.9 | 7.63 | 13.29 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.18 | 0.9 | 0.16 | 0.21 | 1.00 | 1.00 | 0.00 |
log-posterior | 47.38 | 0.9 | 34.08 | 60.58 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.50 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.46 | fixed | conditional |
| (phi) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| mean_PPD | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| log-posterior | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.
| Upland cover - site type + time_class | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | site_type | variable | mean | sd | min | med | max | n.valid | pct.valid |
| BL | core range | perc_cover | 13.32 | 8.76 | 2.00 | 11.00 | 31.00 | 21 | 100 |
| BL | non-core range | perc_cover | 21.21 | 15.03 | 1.33 | 19.50 | 47.33 | 20 | 100 |
| 2013 | core range | perc_cover | 10.75 | 8.11 | 0.33 | 8.83 | 24.33 | 20 | 100 |
| 2013 | non-core range | perc_cover | 24.32 | 19.75 | 1.67 | 19.00 | 66.33 | 22 | 100 |
| 2018 | core range | perc_cover | 13.61 | 8.04 | 1.67 | 12.67 | 34.33 | 18 | 100 |
| 2018 | non-core range | perc_cover | 20.06 | 15.11 | 0.33 | 18.67 | 56.67 | 22 | 100 |
Prior summary: cover ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.allshr.uc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.25,5.32])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -1.65 | 0.9 | -1.94 | -1.39 | 1.00 | 1.00 | 1.00 |
time_class2013 | 0.02 | 0.9 | -0.24 | 0.30 | 0.55 | 0.43 | 0.04 |
time_class2018 | -0.06 | 0.9 | -0.34 | 0.22 | 0.63 | 0.53 | 0.08 |
(phi) | 10.29 | 0.9 | 7.63 | 13.29 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.18 | 0.9 | 0.16 | 0.21 | 1.00 | 1.00 | 0.00 |
log-posterior | 47.38 | 0.9 | 34.08 | 60.58 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.50 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.46 | fixed | conditional |
| (phi) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| mean_PPD | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| log-posterior | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.
Prior summary: cover ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.allshr.unc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.25,5.32])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -1.65 | 0.9 | -1.94 | -1.39 | 1.00 | 1.00 | 1.00 |
time_class2013 | 0.02 | 0.9 | -0.24 | 0.30 | 0.55 | 0.43 | 0.04 |
time_class2018 | -0.06 | 0.9 | -0.34 | 0.22 | 0.63 | 0.53 | 0.08 |
(phi) | 10.29 | 0.9 | 7.63 | 13.29 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.18 | 0.9 | 0.16 | 0.21 | 1.00 | 1.00 | 0.00 |
log-posterior | 47.38 | 0.9 | 34.08 | 60.58 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.50 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.46 | fixed | conditional |
| (phi) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| mean_PPD | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| log-posterior | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.
| shrub_species | n | percent |
|---|---|---|
| PUTR | 79 | 0.26072607 |
| RICE | 52 | 0.17161716 |
| CHNA | 39 | 0.12871287 |
| ARTR | 35 | 0.11551155 |
| ROWO | 24 | 0.07920792 |
| JUCO | 19 | 0.06270627 |
| PRVI | 13 | 0.04290429 |
| CEFE | 8 | 0.02640264 |
| SYRO | 5 | 0.01650165 |
| ACGL | 3 | 0.00990099 |
| RIXX | 3 | 0.00990099 |
| RUDE | 3 | 0.00990099 |
| DAFR | 2 | 0.00660066 |
| JUSC | 2 | 0.00660066 |
| MARE | 2 | 0.00660066 |
| PHMO | 2 | 0.00660066 |
| SYOR | 2 | 0.00660066 |
| XXXX | 2 | 0.00660066 |
| ALIN | 1 | 0.00330033 |
| AMAL | 1 | 0.00330033 |
| CEXX | 1 | 0.00330033 |
| JAAM | 1 | 0.00330033 |
| PRXX | 1 | 0.00330033 |
| PSME | 1 | 0.00330033 |
| SHCA | 1 | 0.00330033 |
| UNKN | 1 | 0.00330033 |
| PUTR cover ~ site type + time_class | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | site_type | variable | mean | sd | min | med | max | n.valid | pct.valid |
| BL | core range | perc_cover | 7.23 | 4.40 | 1.00 | 6.67 | 14.00 | 13 | 100 |
| BL | non-core range | perc_cover | 12.41 | 5.09 | 5.33 | 12.67 | 20.67 | 13 | 100 |
| 2013 | core range | perc_cover | 9.12 | 4.37 | 3.67 | 7.67 | 18.33 | 11 | 100 |
| 2013 | non-core range | perc_cover | 15.31 | 10.12 | 2.00 | 14.00 | 30.67 | 15 | 100 |
| 2018 | core range | perc_cover | 8.95 | 6.30 | 1.67 | 6.00 | 20.33 | 13 | 100 |
| 2018 | non-core range | perc_cover | 13.02 | 8.26 | 2.00 | 13.83 | 25.00 | 14 | 100 |
Prior summary: cover ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.putr'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.29,5.24])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -1.99 | 0.9 | -2.27 | -1.68 | 1.00 | 1.00 | 1.00 |
time_class2013 | 0.16 | 0.9 | -0.21 | 0.55 | 0.75 | 0.68 | 0.27 |
time_class2018 | 0.03 | 0.9 | -0.34 | 0.41 | 0.56 | 0.47 | 0.12 |
(phi) | 9.32 | 0.9 | 6.68 | 12.09 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.13 | 0.9 | 0.10 | 0.16 | 1.00 | 1.00 | 0.00 |
log-posterior | 26.21 | 0.9 | 16.92 | 34.96 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.29 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.37 | fixed | conditional |
| (phi) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| mean_PPD | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| log-posterior | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.
| Upland cover - site type + time_class | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | site_type | variable | mean | sd | min | med | max | n.valid | pct.valid |
| BL | core range | perc_cover | 7.23 | 4.40 | 1.00 | 6.67 | 14.00 | 13 | 100 |
| BL | non-core range | perc_cover | 12.41 | 5.09 | 5.33 | 12.67 | 20.67 | 13 | 100 |
| 2013 | core range | perc_cover | 9.12 | 4.37 | 3.67 | 7.67 | 18.33 | 11 | 100 |
| 2013 | non-core range | perc_cover | 15.31 | 10.12 | 2.00 | 14.00 | 30.67 | 15 | 100 |
| 2018 | core range | perc_cover | 8.95 | 6.30 | 1.67 | 6.00 | 20.33 | 13 | 100 |
| 2018 | non-core range | perc_cover | 13.02 | 8.26 | 2.00 | 13.83 | 25.00 | 14 | 100 |
Prior summary: cover ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.putr.uc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.29,5.24])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -1.99 | 0.9 | -2.27 | -1.68 | 1.00 | 1.00 | 1.00 |
time_class2013 | 0.16 | 0.9 | -0.21 | 0.55 | 0.75 | 0.68 | 0.27 |
time_class2018 | 0.03 | 0.9 | -0.34 | 0.41 | 0.56 | 0.47 | 0.12 |
(phi) | 9.32 | 0.9 | 6.68 | 12.09 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.13 | 0.9 | 0.10 | 0.16 | 1.00 | 1.00 | 0.00 |
log-posterior | 26.21 | 0.9 | 16.92 | 34.96 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.29 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.37 | fixed | conditional |
| (phi) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| mean_PPD | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| log-posterior | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.
Prior summary: cover ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.putr.unc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.29,5.24])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -1.99 | 0.9 | -2.27 | -1.68 | 1.00 | 1.00 | 1.00 |
time_class2013 | 0.16 | 0.9 | -0.21 | 0.55 | 0.75 | 0.68 | 0.27 |
time_class2018 | 0.03 | 0.9 | -0.34 | 0.41 | 0.56 | 0.47 | 0.12 |
(phi) | 9.32 | 0.9 | 6.68 | 12.09 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.13 | 0.9 | 0.10 | 0.16 | 1.00 | 1.00 | 0.00 |
log-posterior | 26.21 | 0.9 | 16.92 | 34.96 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.29 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.37 | fixed | conditional |
| (phi) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| mean_PPD | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| log-posterior | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.
| Upland cover ~ site type + time_class | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | site_type | variable | mean | sd | min | med | max | n.valid | pct.valid |
| BL | core range | perc_cover | 7.19 | 6.28 | 0.33 | 10.00 | 15.67 | 9 | 100 |
| BL | non-core range | perc_cover | 3.96 | 2.97 | 1.00 | 3.50 | 8.67 | 8 | 100 |
| 2013 | core range | perc_cover | 3.67 | 3.94 | 0.33 | 2.00 | 13.33 | 9 | 100 |
| 2013 | non-core range | perc_cover | 6.03 | 6.85 | 0.33 | 3.00 | 20.00 | 10 | 100 |
| 2018 | core range | perc_cover | 2.38 | 3.54 | 0.33 | 1.33 | 11.00 | 8 | 100 |
| 2018 | non-core range | perc_cover | 3.67 | 4.52 | 0.33 | 1.33 | 12.33 | 8 | 100 |
Prior summary: cover ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.rice'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.14,5.36])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -2.37 | 0.9 | -2.83 | -1.92 | 1.00 | 1.00 | 1.00 |
time_class2013 | -0.05 | 0.9 | -0.57 | 0.49 | 0.57 | 0.51 | 0.23 |
time_class2018 | -0.32 | 0.9 | -0.88 | 0.25 | 0.82 | 0.78 | 0.52 |
(phi) | 6.34 | 0.9 | 3.88 | 8.82 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.08 | 0.9 | 0.05 | 0.11 | 1.00 | 0.95 | 0.00 |
log-posterior | 41.58 | 0.9 | 34.32 | 48.32 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.27 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.17 | fixed | conditional |
| (phi) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| mean_PPD | 0.9 | -0.1 | 0.1 | 0.91 | fixed | conditional |
| log-posterior | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.
| Upland cover - site type + time_class | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| time_class | site_type | variable | mean | sd | min | med | max | n.valid | pct.valid |
| BL | core range | perc_cover | 7.19 | 6.28 | 0.33 | 10.00 | 15.67 | 9 | 100 |
| BL | non-core range | perc_cover | 3.96 | 2.97 | 1.00 | 3.50 | 8.67 | 8 | 100 |
| 2013 | core range | perc_cover | 3.67 | 3.94 | 0.33 | 2.00 | 13.33 | 9 | 100 |
| 2013 | non-core range | perc_cover | 6.03 | 6.85 | 0.33 | 3.00 | 20.00 | 10 | 100 |
| 2018 | core range | perc_cover | 2.38 | 3.54 | 0.33 | 1.33 | 11.00 | 8 | 100 |
| 2018 | non-core range | perc_cover | 3.67 | 4.52 | 0.33 | 1.33 | 12.33 | 8 | 100 |
Prior summary: cover ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.rice.uc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.14,5.36])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -2.37 | 0.9 | -2.83 | -1.92 | 1.00 | 1.00 | 1.00 |
time_class2013 | -0.05 | 0.9 | -0.57 | 0.49 | 0.57 | 0.51 | 0.23 |
time_class2018 | -0.32 | 0.9 | -0.88 | 0.25 | 0.82 | 0.78 | 0.52 |
(phi) | 6.34 | 0.9 | 3.88 | 8.82 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.08 | 0.9 | 0.05 | 0.11 | 1.00 | 0.95 | 0.00 |
log-posterior | 41.58 | 0.9 | 34.32 | 48.32 | 1.00 | 1.00 | 1.00 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.27 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.17 | fixed | conditional |
| (phi) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| mean_PPD | 0.9 | -0.1 | 0.1 | 0.91 | fixed | conditional |
| log-posterior | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.
Prior summary: cover ~ time_class + (1 | site_id)
## Priors for model 'stmod_cov.rice.unc'
## ------
## Intercept (after predictors centered)
## ~ normal(location = 0, scale = 2.5)
##
## Coefficients
## Specified prior:
## ~ normal(location = [0,0], scale = [2.5,2.5])
## Adjusted prior:
## ~ normal(location = [0,0], scale = [5.04,5.31])
##
## Covariance
## ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter | Median | CI | CI_low | CI_high | Direction | Significance | Large |
(Intercept) | -2.12 | 0.9 | -2.82 | -1.38 | 1.00 | 1.00 | 1.00 |
time_class2013 | 0.08 | 0.9 | -0.73 | 0.93 | 0.56 | 0.52 | 0.33 |
time_class2018 | -0.16 | 0.9 | -1.04 | 0.73 | 0.63 | 0.59 | 0.40 |
(phi) | 3.63 | 0.9 | 1.81 | 5.73 | 1.00 | 1.00 | 1.00 |
mean_PPD | 0.11 | 0.9 | 0.05 | 0.18 | 1.00 | 0.97 | 0.00 |
log-posterior | 9.85 | 0.9 | 4.01 | 15.04 | 0.99 | 0.99 | 0.99 |
| Percent in ROPE | ||||||
|---|---|---|---|---|---|---|
| Parameter | CI | ROPE_low | ROPE_high | ROPE_Percentage | Effects | Component |
| (Intercept) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| time_class2013 | 0.9 | -0.1 | 0.1 | 0.18 | fixed | conditional |
| time_class2018 | 0.9 | -0.1 | 0.1 | 0.16 | fixed | conditional |
| (phi) | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
| mean_PPD | 0.9 | -0.1 | 0.1 | 0.44 | fixed | conditional |
| log-posterior | 0.9 | -0.1 | 0.1 | 0.00 | fixed | conditional |
EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.
Combined range
Core range
Noncore range
Gabry J., Mahr T. 2021. “bayesplot: Plotting for Bayesian Models.” R package version 1.8.1, <URL: https://mc-stan.org/bayesplot/>.
Gabray, J., Goodrich, B. 2020a. Estimating Generalized Linear Models for Continuous Data with rstanarm. ver:2020-07-20 <URL:https://mc-stan.org/rstanarm/articles/continuous.html/>.
Gabray, J., Goodrich, B. 2020b. Estimating Generalized Linear Models for Count Data with rstanarm. ver:2020-07-20 <URL:https://mc-stan.org/rstanarm/articles/count.html/>.
Gabray, J., Goodrich, B. 2020c. Modeling Rates/Proportions using Beta Regression with rstanarm. version 2020-07-20 <URL:https://mc-stan.org/rstanarm/articles/betareg.html/>.
Gabry J., Simpson D., Vehtari A., Betancourt M., Gelman A. 2019. “Visualization in Bayesian workflow.” J.R. Stat. Soc. A, 182, 389-402. doi: 10.1111/rssa.12378 (URL: https://doi.org/10.1111/rssa.12378).
Gelman, A., Hill, J., Vehtari, A. 2020. Regression and other stories. Cambridge University Press.
Goodrich B, Gabry J, Ali I & Brilleman S. 2020. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm
Lenth, R.V. 2021. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.3. https://CRAN.R-project.org/package=emmeans