Repository:
https://github.com/egage/EVMP

Introduction

This document provides supporting information on statistical analyses of Elk Vegetation Management Plan (EVMP) data collected through the 2018 sampling season in the NPS NRR Report “Monitoring of Vegetation Response to Elk Population and Habitat Management in Rocky Mountain National Park - Analysis of Elk Vegetation Management Plan monitoring Data: 2008–2018.” Separate analyses were run for plots established in aspen, willow and upland communities and for the elk winter range (core and noncore areas) and the Kawuneeche Valley. For information on sampling and the broader analysis and interpretation of the results, refer to the body of the report, past analyses (Linda C. Zeigenfuss and Johnson 2015), and the original EVMP monitoring plan (Linda C. Zeigenfuss, Johnson, and Wiebe 2011).

Methods

The code and results presented here start from and build upon derived data produced in a separate code document focused on ingesting, compiling, and cleaning raw data provided by RMNP staff. In general, packages included in the “Tidyverse” ecosystem of R packages were used for data transformation and visualization (Wickham et al. 2019). Specialized packages particular to specific tasks (e.g., the “bayesplot” plot for visualization of Bayesian posterior distributions) were also used (Gabry et al. 2019).

Bayesian repeated measures analyses were fit separately for combined core and noncore winter range, core winter range, and noncore winter range plots with plots treated as random factors using the ‘stan_glmer’ function in the rstanrm package (Goodrich et al. 2020)(Brilleman et al. 2018). In addition, models were fit to particular subgroups of data (e.g., short saplings vs tall saplings).

Bayesian estimation was performed via MCMC adding independent weakly informed priors specific to the data type being modeled. Count data like aspen stem counts were modeled as poisson processes, while proportion data (e.g., cover) were modeled using a beta distribution (Ferrari and Cribari-Neto 2004), which constrains values from 0 to 1.

Bayesian models view a model parameter \(\theta\) as a [random variable]. In contrast, frequentist models treat model parameters as unknown constant. Rather than estimating an unknown constant, Bayesian modeling focuses on an unknown distribution of parameter values.

Using Bayes’ Law, model parameters are estimated:

\[ \begin{equation} \label{eq:bayeslaw} P(\theta | y, X) = \frac{P(y|\theta,X) \cdot P(\theta)}{P(y)} \propto P(y|\theta,X) \cdot P(\theta). \end{equation} \]

Where:

The objective is to estimate the posterior density of parameter \(P(\theta|y,X)\), typically described in terms of a point estimate of the expected value of posterior density (e.g., the median of the distribution) and a measure of the variance. To solve for \(P(\theta|y,X)\) analytically, the data likelihood \(P(y|\theta,X)\), prior \(P(\theta)\), and marginal likelihood of outcome \(P(y)\) are needed, but because there is usually no closed-form analytic solution, Markov chain Monte Carlo (MCMC) methods are used to numerically solve the posterior density by directly generating random draws of parameters.
General steps in a Bayesian analysis include:

Specify a joint distribution for the outcome(s) and unknowns, which is proportional to a posterior distribution of the unknowns conditional on the observed data.
Use Markov Chain Monte Carlo (MCMC) to draw from posterior distribution.
*Evaluation of model fit and revise the model as appropriate.

Aspen data

For an observation \(y\) that is assumed to follow a Poisson distribution (e.g., aspen stem count data), the likelihood for one observation can be written as:

\[\tfrac{1}{y!} \lambda^y e^{-\lambda},\]

where \(\lambda = E(y | \mathbf{x}) = g^{-1}(\eta)\) and \(\eta = \alpha + \mathbf{x}^\top \boldsymbol{\beta}\) is a linear predictor. For the Poisson distribution it is also true that \(\lambda = Var(y | \mathbf{x})\), i.e. the mean and variance are both \(\lambda\). The rate parameter \(\lambda\) must be positive, so with a Poisson GLM, the link function \(g\) maps between the positive real numbers \(\mathbb{R}^+\) (thesupport of \(\lambda\)) and the set of all real numbers \(\mathbb{R}\). When applied to a linear predictor \(\eta\) with values in \(\mathbb{R}\), the inverse link function \(g^{-1}(\eta)\) returns a positive real number.

The standard link function for a Poisson GLM is the log link \(g(x) = \ln{(x)}\). With the log link, the inverse link function is the exponential function and the likelihood for a single observation is:

\[\frac{g^{-1}(\eta)^y}{y!} e^{-g^{-1}(\eta)} = \frac{e^{\eta y}}{y!} e^{-e^\eta}.\]

With independent prior distributions, the joint posterior distribution for \(\alpha\) and \(\boldsymbol{\beta}\) in the Poisson model is proportional to the product of the priors and the \(N\) likelihood contributions:

\[f\left(\alpha,\boldsymbol{\beta} | \mathbf{y},\mathbf{X}\right) \propto f\left(\alpha\right) \times \prod_{k=1}^K f\left(\beta_k\right) \times \prod_{i=1}^N { \frac{g^{-1}(\eta_i)^{y_i}}{y_i!} e^{-g^{-1}(\eta_i)}}.\]

This is the posterior distribution drawn from when using MCMC.
The Probability of Direction (PD) was used to represent certainty associated with the most probable direction (positive or negative) of the effect (e.g., time class, fencing). The PD is correlated with the frequentist p-value, with a two-sided p-value of respectively .1, .05, and .01 approximated by a PD of 95%, 97.5%, and 99.5% (Makowski, Ben-Shachar, and Lüdecke 2019). The “region of practical equivalence” (ROPE) was used to evaluate the probability of a parameter being outside a range that can be considered as “practically no effect,” i.e., a region enclosing values that are equivalent to the null value for practical purposes (Kruschke 2018). The proportion of the 95% HDI credible interval falling within the ROPE was used as an index for an analog to frequentist “null-hypothesis” testing.

For analyses of aspen count data, entailing separate models for combined winter range, core and noncore winter range subsets of plots, a random effects model was used for inference:

_i = (+1x{1,i} +2x{2,i} + 3x{3,i} + 4x{4,i} + 5x{5,i} + _i)

_i  Normal (0 , ^2)

y_i  Poisson(_i)

where yi is the count of aspen stems in the ith plot; x1,i is a indicator variable that equals one if the observation in plot i was from 2013 and zero otherwise; x2,i is an indicator variable that equals one if the observation in plot i was from 2018 and zero otherwise; x3 is an indicator variable that equals one if the fenced and zero otherwise. Separate models were developed with inclusion of burning as a factor. Otherwise, analyses included both burned and unburned plots.

Interpretation of model coefficients: The intercept (exp(α)) represents the mean count of aspen in unfenced plots during the baseline year; exp(β1) is the multiplicative change in mean counts that occurred during the time interval between the baseline year and 2013; exp(β2) is the multiplicative change in mean counts that occurred during the time interval between the baseline year and 2018; and exp(β2) is the multiplicative change in mean counts that was caused by fencing.

Inferences were made on the difference between means.

So, for example, the mean of counts in year 2013 in the fenced plots could be computed as µˆfence, 2013 = exp(α + β1 + β3) and in unfenced plots as µˆopen, 2013 = exp(α + β1), and a contrast showing the difference between the means is then µˆfence, 2013 − µˆopen, 2013. Differences between year classes were computed similarly.

Willow plot and Upland plot data

Height

Bayesian repeated measures analyses of shrub height were fit separately for combined core and non-core winter range, core winter range, and non-core winter range plots. Separate models were also fit to different groups of species. Shrub height models were fit using weekly informative priors and a gamma distribution with the “stan_glmer” function in the “rstanarm” package (Goodrich et al. 2020)(Brilleman et al. 2018). Gamma regression is commonly used when the response variable is continuous and positive.

For the simplest case a GLM for a continuous outcome is simply a linear model and the likelihood for one observation is a conditionally normal probability density function.
\[\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \left(\frac{y - \mu}{\sigma}\right)^2},\] where \(\mu = \alpha + \mathbf{x}^\top \boldsymbol{\beta}\) is a linear predictor and \(\sigma\) is the standard deviation of the error in predicting the outcome, \(y\). A linear predictor \(\eta = \alpha + \mathbf{x}^\top \boldsymbol{\beta}\) can more generally be related to the conditional mean of the outcome via a link function \(g\). This maps the range of values on which the outcome is defined. For the gamma distribution used in the modeling of willow height, the log link function was used. The likelihood is the product of the likelihood contributions of individual observations.

Bayesian analysis requires specifying prior distributions \(f(\alpha)\) and \(f(\boldsymbol{\beta})\) for the intercept and vector of regression coefficients. Prior distributions were represented by normal distributions with a mean zero and a small standard deviation (scale)). The joint posterior distribution for \(\alpha\) and \(\boldsymbol{\beta}\) is proportional to the product of the priors and the \(N\) likelihood contributions:

\[f\left(\boldsymbol{\beta} | \mathbf{y},\mathbf{X}\right) \propto f\left(\alpha\right) \times \prod_{k=1}^K f\left(\beta_k\right) \times \prod_{i=1}^N {f(y_i|\eta_i)},\]

where \(\mathbf{X}\) is the matrix of predictors and \(\eta\) the linear predictor, i.e., the posterior distribution that stan_glmer draws from using MCMC.

Cover

Willow and upland shrub cover data were modeled using the beta distribution with the likelihood: \[ f(y_i | a, b) = \frac{y_i^{(a-1)}(1-y_i)^{(b-1)}}{B(a,b)} \] where \(B(\cdot)\) is the beta function. The shape parameters for the distribution are \(a\) and \(b\) and enter into the model according to the following transformations, \[ a = \mu\cdot\phi \\ b = (1-\mu)\cdot\phi \]

If \(g_1(\cdot)\) is some link function, the specification of the shape parameters, \(\mu = g_1^{-1}(\mathbf{X}\boldsymbol{\beta})\), where \(\boldsymbol{X}\) is a \(N\times K\) dimensional matrix of predictors, and \(\boldsymbol{\beta}\), is a \(K\) dimensional vector of parameters associated with each predictor. \(\phi\) is a scalar parameter. With the shape parameter values included, the likelihood takes the form: \[ f(y_i | \mu, \phi) = \frac{y_i^{(\mu\phi-1)}(1-y_i)^{((1-\mu)\phi-1)}}{B(\mu\phi,(1-\mu)\phi)} \]

Bayesian analysis requires specifying prior distributions \(f(\boldsymbol{\beta})\) and \(f(\phi)\) for the vector of regression coefficients and \(\phi\). When modeling \(\phi\) with a linear predictor a full Bayesian analysis requires specifying the prior distributions \(f(\boldsymbol{\beta})\) and \(f(\boldsymbol{\gamma})\).

With a single set of explanatory variables, the posterior distribution of \(\boldsymbol{\beta}\) and \(\phi\) is proportional to the product of the likelihood contributions, the \(K\) priors on the \(\beta_k\) parameters, and \(\phi\), \[ f(\boldsymbol{\beta},\phi|\mathbf{y},\mathbf{X}) \propto \prod_{i=1}^N f(y_i | a, b) \times \prod_{k=1}^K f(\beta_k) \times f(\phi) \]

With two sets of explanatory variables, the posterior distribution of \(\boldsymbol{\beta}\) and \(\boldsymbol{\gamma}\) is proportional to the product of the likelihood contribution, the \(K\) priors on the \(\beta_k\) parameters, and the \(J\) priors on the \(\gamma_j\) parameters,

\[ f(\boldsymbol{\beta},\boldsymbol{\gamma}|\mathbf{y},\mathbf{X}) \propto \prod_{i=1}^N f(y_i | a, b) \times \prod_{k=1}^K f(\beta_k) \times \prod_{j=1}^J f(\gamma_j) \]

Results

Aspen

Comparison of Sapling Classes

Aspen Saplings
Time class site_type sap_size mean sd min q1 med q3 max mad iqr n
BL AC small saplings 25.4 30.3 0 7.0 17.5 30.0 139 16.3 21.5 40
2013 AC small saplings 45.0 82.8 0 11.0 22.0 45.0 523 22.2 34.0 45
2018 AC small saplings 25.0 29.3 0 5.0 11.5 34.0 111 12.6 27.2 46
BL AK small saplings 10.1 6.6 3 4.5 9.0 14.5 22 6.7 9.0 8
2013 AK small saplings 12.2 9.8 3 4.0 11.5 16.0 32 8.9 12.0 8
2018 AK small saplings 14.8 11.3 0 6.0 15.0 20.5 35 8.9 11.8 8
BL ANC small saplings 11.9 12.4 0 3.5 7.5 16.0 45 6.7 11.8 20
2013 ANC small saplings 14.4 12.3 1 4.0 14.0 20.0 53 14.8 16.0 21
2018 ANC small saplings 21.0 14.8 2 6.0 18.0 33.0 51 19.3 27.0 21
BL AC tall saplings 0.1 0.3 0 0.0 0.0 0.0 1 0.0 0.0 40
2013 AC tall saplings 3.6 10.1 0 0.0 0.0 1.0 49 0.0 1.0 45
2018 AC tall saplings 5.3 12.6 0 0.0 0.0 3.0 73 0.0 3.0 46
BL AK tall saplings 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 8
2013 AK tall saplings 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 8
2018 AK tall saplings 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 8
BL ANC tall saplings 0.8 2.9 0 0.0 0.0 0.0 13 0.0 0.0 20
2013 ANC tall saplings 1.0 2.3 0 0.0 0.0 1.0 10 0.0 1.0 21
2018 ANC tall saplings 1.9 2.8 0 0.0 0.0 3.0 10 0.0 3.0 21

Short Saplings (<=1.5m Tall)) - Combined Winter Range (AC+ANC)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2.acanc.sm' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.27,5.25,6.16,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter Median Mean MAP CI CI_low CI_high pd ps Rhat ESS
(Intercept) 1.42 1.42 1.43 0.9 1.17 1.66 1 1 1.01 752.18
time_class2013 0.51 0.51 0.50 0.9 0.44 0.59 1 1 1.00 6833.66
time_class2018 0.22 0.22 0.23 0.9 0.15 0.30 1 1 1.00 7402.64
fencedFenced 1.01 1.01 1.00 0.9 0.48 1.52 1 1 1.00 1121.80
time_class2013:fencedFenced -1.04 -1.04 -1.05 0.9 -1.17 -0.89 1 1 1.00 8774.85
time_class2018:fencedFenced -1.94 -1.94 -1.94 0.9 -2.13 -1.76 1 1 1.00 9878.32

Effect Description

Effect Existence and Significance Testing
Parameter Median CI CI_low CI_high Direction Significance Large
(Intercept) 1.42 0.9 1.17 1.66 1 1 1.00
time_class2013 0.51 0.9 0.44 0.59 1 1 1.00
time_class2018 0.22 0.9 0.15 0.30 1 1 0.06
fencedFenced 1.01 0.9 0.48 1.52 1 1 0.99
time_class2013:fencedFenced -1.04 0.9 -1.17 -0.89 1 1 1.00
time_class2018:fencedFenced -1.94 0.9 -2.13 -1.76 1 1 1.00

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

## # A tibble: 6 x 5
##   contrast    fenced   estimate lower.HPD upper.HPD
##   <fct>       <fct>       <dbl>     <dbl>     <dbl>
## 1 BL - 2013   Unfenced   -0.507    -0.597    -0.420
## 2 BL - 2018   Unfenced   -0.224    -0.320    -0.137
## 3 2013 - 2018 Unfenced    0.283     0.216     0.352
## 4 BL - 2013   Fenced      0.532     0.393     0.673
## 5 BL - 2018   Fenced      1.72      1.52      1.92 
## 6 2013 - 2018 Fenced      1.19      0.998     1.40

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast fenced estimate lower.HPD upper.HPD
BL - 2013 Unfenced -0.51 -0.60 -0.42
BL - 2018 Unfenced -0.22 -0.32 -0.14
2013 - 2018 Unfenced 0.28 0.22 0.35
BL - 2013 Fenced 0.53 0.39 0.67
BL - 2018 Fenced 1.72 1.52 1.92
2013 - 2018 Fenced 1.19 1.00 1.40
Pairwise contrasts
Results are given on the response scale.
contrast fenced ratio lower.HPD upper.HPD
BL / 2013 Unfenced 0.60 0.55 0.66
BL / 2018 Unfenced 0.80 0.73 0.87
2013 / 2018 Unfenced 1.33 1.24 1.42
BL / 2013 Fenced 1.70 1.48 1.95
BL / 2018 Fenced 5.58 4.53 6.78
2013 / 2018 Fenced 3.28 2.65 3.97

EMMIP

Short Saplings (<=1.5m Tall) - Core Winter Range (AC)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2.ac.sm' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.26,5.23,5.42,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) 1.605 0.006 0.211 1.335 1.607 1.869 1207 1.002
time_class2013 0.569 0.001 0.054 0.499 0.569 0.638 6635 1.000
time_class2018 0.091 0.001 0.057 0.016 0.092 0.164 6958 1.000
fencedFenced 0.829 0.010 0.383 0.359 0.819 1.321 1460 1.002
time_class2013:fencedFenced -1.102 0.001 0.089 -1.215 -1.101 -0.988 7011 1.000
time_class2018:fencedFenced -1.814 0.001 0.118 -1.966 -1.814 -1.665 7745 1.000
mean_PPD 10.670 0.002 0.233 10.374 10.672 10.964 14547 1.000
log-posterior -2887.734 0.156 6.998 -2897.009 -2887.421 -2879.003 2006 1.001
## [1] "(Intercept)" "2013"        "2018"        "Fenced"      "2013:Fenced"
## [6] "2018:Fenced"

Effect Description

Effect Existence and Significance Testing
Parameter Median CI CI_low CI_high Direction Significance Large
(Intercept) 1.61 0.9 1.28 1.96 1.00 1.00 1.00
time_class2013 0.57 0.9 0.48 0.66 1.00 1.00 1.00
time_class2018 0.09 0.9 0.00 0.19 0.94 0.76 0.00
fencedFenced 0.82 0.9 0.22 1.46 0.99 0.98 0.92
time_class2013:fencedFenced -1.10 0.9 -1.24 -0.95 1.00 1.00 1.00
time_class2018:fencedFenced -1.81 0.9 -2.00 -1.62 1.00 1.00 1.00

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast fenced estimate lower.HPD upper.HPD
BL - 2013 Unfenced -0.57 -0.67 -0.46
BL - 2018 Unfenced -0.09 -0.20 0.02
2013 - 2018 Unfenced 0.48 0.40 0.56
BL - 2013 Fenced 0.53 0.39 0.67
BL - 2018 Fenced 1.72 1.52 1.92
2013 - 2018 Fenced 1.19 0.99 1.39
Pairwise contrasts
Results are given on the response scale.
contrast fenced ratio lower.HPD upper.HPD
BL / 2013 Unfenced 0.57 0.51 0.63
BL / 2018 Unfenced 0.91 0.82 1.02
2013 / 2018 Unfenced 1.61 1.49 1.75
BL / 2013 Fenced 1.70 1.48 1.95
BL / 2018 Fenced 5.59 4.54 6.82
2013 / 2018 Fenced 3.28 2.67 3.97

EMMIP

Short Saplings (<=1.5m Tall) - Noncore Winter Range (ANC)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2.anc.sm' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.27,5.27])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) 1.123 0.004 0.176 0.900 1.123 1.349 2128 1.001
time_class2013 0.204 0.001 0.089 0.090 0.204 0.319 10674 1.000
time_class2018 0.586 0.001 0.081 0.482 0.585 0.690 10369 1.000
mean_PPD 5.283 0.002 0.239 4.978 5.280 5.591 13733 1.000
log-posterior -661.287 0.094 4.685 -667.383 -660.977 -655.549 2509 1.001

Effect Description

Effect Existence and Significance Testing
Parameter Median CI CI_low CI_high Direction Significance Large
(Intercept) 1.12 0.9 0.84 1.41 1.00 1.00 1.00
time_class2013 0.20 0.9 0.06 0.35 0.99 0.96 0.14
time_class2018 0.59 0.9 0.45 0.72 1.00 1.00 1.00

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast estimate lower.HPD upper.HPD
BL - 2013 -0.20 -0.38 -0.03
BL - 2018 -0.59 -0.74 -0.43
2013 - 2018 -0.38 -0.52 -0.23
Pairwise contrasts
Results are given on the response scale.
contrast ratio lower.HPD upper.HPD
BL / 2013 0.82 0.68 0.96
BL / 2018 0.56 0.47 0.65
2013 / 2018 0.68 0.58 0.78

EMMIP

Short Saplings (<=1.5m Tall) - Kawuneeche Valley (AK)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2.ak.sm' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.27,5.27])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) 1.066 0.004 0.251 0.758 1.070 1.371 3290 1.001
time_class2013 0.191 0.002 0.150 -0.003 0.191 0.383 9405 1.000
time_class2018 0.379 0.001 0.143 0.195 0.380 0.562 9091 1.000
mean_PPD 4.124 0.003 0.339 3.694 4.111 4.569 14475 1.000
log-posterior -352.719 0.051 3.106 -356.824 -352.366 -349.045 3672 1.000

Panel plot of above MCMC area plots

Effect Description

Effect Existence and Significance Testing
Parameter Median CI CI_low CI_high Direction Significance Large
(Intercept) 1.07 0.9 0.66 1.46 1.0 1.00 1.00
time_class2013 0.19 0.9 -0.05 0.45 0.9 0.82 0.23
time_class2018 0.38 0.9 0.14 0.61 1.0 0.99 0.71

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast estimate lower.HPD upper.HPD
BL - 2013 -0.19 -0.48 0.11
BL - 2018 -0.38 -0.66 -0.11
2013 - 2018 -0.19 -0.45 0.09
Pairwise contrasts
Results are given on the response scale.
contrast ratio lower.HPD upper.HPD
BL / 2013 0.83 0.60 1.09
BL / 2018 0.68 0.51 0.89
2013 / 2018 0.83 0.62 1.06

EMMIP

Effects of Burning on Short Saplings (<1.5m Tall) - Combined Winter Range (AC+ANC)

Summary statistics
time_class range_type burned fenced variable min q1 med q3 max
BL core winter range Unburned Unfenced stem_den_ac 0.0 0.0 161.9 1295.0 8741.2
BL core winter range Unburned Fenced stem_den_ac 0.0 0.0 809.4 1942.5 21529.3
BL core winter range Burned Unfenced stem_den_ac 0.0 0.0 161.9 161.9 161.9
BL core winter range Burned Fenced stem_den_ac 0.0 0.0 566.6 4046.9 4370.6
BL non-core winter range Unburned Unfenced stem_den_ac 0.0 0.0 323.7 809.4 6798.7
BL non-core winter range Burned Unfenced stem_den_ac 161.9 161.9 323.7 809.4 809.4
2013 core winter range Unburned Unfenced stem_den_ac 0.0 0.0 485.6 2104.4 20234.3
2013 core winter range Unburned Fenced stem_den_ac 0.0 161.9 485.6 1295.0 12302.5
2013 core winter range Burned Unfenced stem_den_ac 0.0 1375.9 4532.5 18615.6 43058.6
2013 core winter range Burned Fenced stem_den_ac 0.0 647.5 3075.6 3885.0 5341.9
2013 non-core winter range Unburned Unfenced stem_den_ac 0.0 161.9 566.6 1133.1 5341.9
2013 non-core winter range Burned Unfenced stem_den_ac 0.0 0.0 0.0 161.9 161.9
2018 core winter range Unburned Unfenced stem_den_ac 0.0 0.0 485.6 1942.5 12140.6
2018 core winter range Unburned Fenced stem_den_ac 0.0 0.0 161.9 647.5 2751.9
2018 core winter range Burned Unfenced stem_den_ac 0.0 404.7 3642.2 6717.8 9712.5
2018 core winter range Burned Fenced stem_den_ac 0.0 323.7 647.5 1133.1 1456.9
2018 non-core winter range Unburned Unfenced stem_den_ac 0.0 323.7 1052.2 1699.7 4694.4
2018 non-core winter range Burned Unfenced stem_den_ac 161.9 161.9 161.9 323.7 323.7
Effect Existence and Significance Testing
Parameter Median CI CI_low CI_high Direction Significance Large
(Intercept) 1.32 0.9 1.06 1.57 1.00 1.00 1.00
fencedFenced 1.10 0.9 0.50 1.65 1.00 1.00 0.99
time_class2013 0.32 0.9 0.24 0.41 1.00 1.00 0.69
time_class2018 0.42 0.9 0.35 0.50 1.00 1.00 1.00
burnedBurned 1.07 0.9 0.05 2.01 0.96 0.96 0.90
fencedFenced:time_class2013 -1.16 0.9 -1.32 -1.00 1.00 1.00 1.00
fencedFenced:time_class2018 -2.37 0.9 -2.58 -2.15 1.00 1.00 1.00
fencedFenced:burnedBurned -1.28 0.9 -2.78 0.18 0.92 0.91 0.86
time_class2013:burnedBurned 0.43 0.9 -0.17 1.07 0.88 0.85 0.63
time_class2018:burnedBurned -0.75 0.9 -1.37 -0.13 0.97 0.96 0.87
fencedFenced:time_class2013:burnedBurned 0.96 0.9 0.24 1.61 0.98 0.98 0.94
fencedFenced:time_class2018:burnedBurned 1.89 0.9 1.13 2.62 1.00 1.00 1.00

Probability of Direction

Pairwise contrasts
Results are given on the response scale
contrast burned fenced estimate lower.HPD upper.HPD
2013 - BL Unburned Unfenced 1.3834719 1.2578086 1.5236966
2018 - BL Unburned Unfenced 1.5249948 1.3921403 1.6772559
2018 - 2013 Unburned Unfenced 1.1022873 1.0105488 1.1940177
2013 - BL Burned Unfenced 2.1237722 1.0644596 4.5978834
2018 - BL Burned Unfenced 0.7217646 0.3594195 1.5912529
2018 - 2013 Burned Unfenced 0.3399078 0.2973678 0.3877800
2013 - BL Unburned Fenced 0.4354735 0.3674030 0.5121292
2018 - BL Unburned Fenced 0.1428292 0.1133788 0.1809495
2018 - 2013 Unburned Fenced 0.3283338 0.2591522 0.4185422
2013 - BL Burned Fenced 1.7397530 1.2831883 2.4205241
2018 - BL Burned Fenced 0.4471539 0.2910151 0.6614768
2018 - 2013 Burned Fenced 0.2578845 0.1804910 0.3727204

EMMIP

Tall Saplings (1.5-2.5m Tall) - Combined Winter Range (AC+ANC)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2.acanc.lg' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.26,5.24,6.16,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) -3.799 0.008 0.558 -4.516 -3.770 -3.109 5184 1.001
time_class2013 -0.237 0.003 0.317 -0.637 -0.241 0.172 13217 1.000
time_class2018 1.582 0.002 0.260 1.251 1.577 1.918 13698 1.000
fencedFenced 0.225 0.019 1.116 -1.172 0.234 1.622 3587 1.001
time_class2013:fencedFenced 4.767 0.009 0.810 3.790 4.700 5.821 8138 1.000
time_class2018:fencedFenced 2.746 0.009 0.790 1.796 2.682 3.762 8169 1.000
mean_PPD 1.258 0.001 0.080 1.155 1.256 1.360 13938 1.000
log-posterior -429.114 0.142 7.690 -439.142 -428.756 -419.505 2950 1.001

Effect Description

Effect Existence and Significance Testing
Parameter Median CI CI_low CI_high Direction Significance Large
(Intercept) -3.77 0.9 -4.70 -2.88 1.00 1.00 1.00
time_class2013 -0.24 0.9 -0.73 0.30 0.78 0.73 0.43
time_class2018 1.58 0.9 1.15 2.01 1.00 1.00 1.00
fencedFenced 0.23 0.9 -1.61 2.06 0.59 0.57 0.48
time_class2013:fencedFenced 4.70 0.9 3.41 6.01 1.00 1.00 1.00
time_class2018:fencedFenced 2.68 0.9 1.47 4.00 1.00 1.00 1.00

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast fenced estimate lower.HPD upper.HPD
BL - 2013 Unfenced 0.24 -0.36 0.88
BL - 2018 Unfenced -1.58 -2.08 -1.06
2013 - 2018 Unfenced -1.81 -2.26 -1.40
BL - 2013 Fenced -4.46 -6.05 -3.18
BL - 2018 Fenced -4.25 -5.80 -2.93
2013 - 2018 Fenced 0.20 -0.04 0.44
Pairwise contrasts
Results are given on the response scale.
contrast fenced ratio lower.HPD upper.HPD
BL / 2013 Unfenced 1.27 0.60 2.19
BL / 2018 Unfenced 0.21 0.11 0.32
2013 / 2018 Unfenced 0.16 0.10 0.24
BL / 2013 Fenced 0.01 0.00 0.03
BL / 2018 Fenced 0.01 0.00 0.04
2013 / 2018 Fenced 1.22 0.95 1.53

EMMIP

pl.emmip.sm <- plotF.emmip_FxTC_response(stmod_stally2.acanc.sm) +
  labs(title="Short saplings") +
  theme(legend.position = "none")

pl.emmip.lg <- plotF.emmip_FxTC_response(stmod_stally2.acanc.lg) +
  labs(title="Tall saplings") +
  theme(legend.position = c(.15, .85))

pl.emmip.sm + pl.emmip.lg +
  plot_annotation(title = "Combined winter range")

ggsave("./output/figures_exported/emmip_TCxF_acanc_lg_sm_sap.png", width = 7.25, height = 4.25) # save plot

Replacement Figure 13 (#1)

# revision2022
#### Replacement Figure 13 (#1):
## bw
pl.emmip.sm.bw <- plotF.emmip_FxTC_response_bw(stmod_stally2.acanc.sm) +
  # labs(title="Short saplings") +
  labs(y = "Stem count") +
  theme(legend.position = "none") +
  ylim(0,20)


pl.emmip.lg.bw <- plotF.emmip_FxTC_response_bw(stmod_stally2.acanc.lg) +
  # labs(title="Tall saplings") +
  # labs(y = "Stem count") +
  theme(legend.position = c(.2, .85))

pl.emmip.sm.bw + pl.emmip.lg.bw +
  # plot_annotation(title = "Combined winter range") +
  plot_annotation(tag_levels = "A")

ggsave("./output/figures_202202/emmip/Fig13_1_emmip_TCxF_acanc_lg_sm_sap_bw.png", width = 7.25, height = 3.75) # save plot

ggsave("./output/figures_202202/emmip/Fig13_1_emmip_TCxF_acanc_lg_sm_sap_bw.pdf", width = 7.25, height = 3.75) # save plot

Tall Saplings (1.5-2.5m Tall) - Core Winter Range (AC)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2.ac.lg' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.25,5.23,5.42,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) -6.161 0.016 1.126 -7.629 -6.085 -4.769 4717 1.000
time_class2013 0.352 0.015 1.084 -0.972 0.279 1.762 5356 1.000
time_class2018 3.758 0.013 0.973 2.620 3.656 5.048 5250 1.000
fencedFenced 2.541 0.024 1.450 0.717 2.515 4.434 3628 1.000
time_class2013:fencedFenced 4.227 0.018 1.301 2.561 4.246 5.864 5133 1.000
time_class2018:fencedFenced 0.618 0.017 1.210 -0.960 0.655 2.111 5275 1.000
mean_PPD 1.557 0.001 0.110 1.416 1.553 1.698 14013 1.000
log-posterior -291.934 0.118 6.258 -300.133 -291.666 -284.054 2813 1.002
## [1] "(Intercept)" "2013"        "2018"        "Fenced"      "2013:Fenced"
## [6] "2018:Fenced"

Effect Description

Effect Existence and Significance Testing
Parameter Median CI CI_low CI_high Direction Significance Large
(Intercept) -6.08 0.9 -7.98 -4.33 1.00 1.00 1.00
time_class2013 0.28 0.9 -1.43 2.07 0.61 0.59 0.49
time_class2018 3.66 0.9 2.30 5.38 1.00 1.00 1.00
fencedFenced 2.51 0.9 0.24 4.98 0.96 0.96 0.94
time_class2013:fencedFenced 4.25 0.9 2.02 6.31 1.00 1.00 1.00
time_class2018:fencedFenced 0.65 0.9 -1.31 2.66 0.71 0.70 0.62

Probability of Direction

##                    Parameter n   percent
##                  (Intercept) 1 0.1666667
##                 fencedFenced 1 0.1666667
##               time_class2013 1 0.1666667
##  time_class2013:fencedFenced 1 0.1666667
##               time_class2018 1 0.1666667
##  time_class2018:fencedFenced 1 0.1666667

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast fenced estimate lower.HPD upper.HPD
BL - 2013 Unfenced -0.28 -2.56 1.66
BL - 2018 Unfenced -3.66 -5.64 -1.90
2013 - 2018 Unfenced -3.37 -4.41 -2.40
BL - 2013 Fenced -4.49 -6.14 -3.19
BL - 2018 Fenced -4.29 -5.92 -2.97
2013 - 2018 Fenced 0.20 -0.03 0.43
Pairwise contrasts
Results are given on the response scale.
contrast fenced ratio lower.HPD upper.HPD
BL / 2013 Unfenced 0.76 0.00 3.67
BL / 2018 Unfenced 0.03 0.00 0.09
2013 / 2018 Unfenced 0.03 0.01 0.07
BL / 2013 Fenced 0.01 0.00 0.03
BL / 2018 Fenced 0.01 0.00 0.04
2013 / 2018 Fenced 1.22 0.95 1.52

EMMIP

#### Replacement Figure 13 (#2)
# (Replacement Fig 13 revsion 2022)

pl.emmip.ac.sm <- plotF.emmip_FxTC_response_bw(stmod_stally2.ac.sm) +
  # labs(title="Short saplings") +
  theme(legend.position = "none") +
  scale_color_manual(values = c("black","grey 75")) + labs(x = "Year") +
  labs(y="Stem count")

pl.emmip.ac.lg <- plotF.emmip_FxTC_response_bw(stmod_stally2.ac.lg) +
  # labs(title="Tall saplings") +
  theme(legend.position = c(.20, .85)) +
  scale_color_manual(values = c("black","grey 75")) + labs(x = "Year") +
  labs(y="Stem count")

pl.emmip.ac.sm + pl.emmip.ac.lg +
  # plot_annotation(title = "Core winter range") +
  plot_annotation(tag_levels = "A")

ggsave("./output/figures_202202/emmip/Fig13_2_emmip_TCxF_ac_lg_sm_sap.png", width = 7.25, height = 3.75) # save plot

ggsave("./output/figures_202202/emmip/Fig13_2_emmip_TCxF_ac_lg_sm_sap.pdf", width = 7.25, height = 3.75) # save plot
pl.emmip.ac.sm.bw <- plotF.emmip_FxTC_response_bw(stmod_stally2.ac.sm) +
  labs(title="Short saplings") +
  theme(legend.position = "none")

pl.emmip.ac.lg.bw <- plotF.emmip_FxTC_response_bw(stmod_stally2.ac.lg) +
  labs(title="Tall saplings") +
  theme(legend.position = c(.15, .85))

pl.emmip.ac.sm.bw + pl.emmip.ac.lg.bw +
  plot_annotation(title = "Core winter range")

ggsave("./output/figures_exported/emmip_TCxF_ac_lg_sm_sap_bw.png", width = 7.25, height = 4.25) # save plot

Tall Saplings (1.5-2.5m Tall) - Noncore Winter Range (ANC)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2.anc.lg' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.26,5.26])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) -2.601 0.011 0.706 -3.519 -2.546 -1.750 3920 1.000
time_class2013 0.206 0.003 0.330 -0.214 0.204 0.633 11797 1.000
time_class2018 0.859 0.003 0.290 0.496 0.851 1.234 12114 1.000
mean_PPD 0.632 0.001 0.101 0.508 0.629 0.766 14084 1.000
log-posterior -126.719 0.074 4.347 -132.493 -126.444 -121.384 3456 1.001

Effect Description

Effect Existence and Significance Testing
Parameter Median CI CI_low CI_high Direction Significance Large
(Intercept) -2.55 0.9 -3.70 -1.45 1.00 1.00 1.00
time_class2013 0.20 0.9 -0.36 0.72 0.73 0.68 0.39
time_class2018 0.85 0.9 0.39 1.33 1.00 1.00 0.98

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast estimate lower.HPD upper.HPD
BL - 2013 -0.20 -0.85 0.44
BL - 2018 -0.85 -1.43 -0.29
2013 - 2018 -0.65 -1.20 -0.13
Pairwise contrasts
Results are given on the response scale.
contrast ratio lower.HPD upper.HPD
BL / 2013 0.82 0.39 1.45
BL / 2018 0.43 0.21 0.69
2013 / 2018 0.52 0.28 0.84
## emmip
## fails b/c no groups to contrast
pl.emmip.anc.sm <- plotF.emmip_TC_response_bw(stmod_stally2.anc.sm) +
  labs(y = "Stem count", title="Short saplings") +
  theme(legend.position = "none") +
  ylim(0,8)

pl.emmip.anc.lg <- plotF.emmip_TC_response_bw(stmod_stally2.anc.lg) +
  labs(y="", title="Tall saplings") +
  theme(legend.position = c(.15, .85)) +
  ylim(0,8)

pl.emmip.anc.sm + pl.emmip.anc.lg +
  plot_annotation(title = "Non-core winter range")

Replacement Figure 13 (#3)

Revised figure 13 - 3

Tall Saplings (1.5-2.5m Tall) - Kawuneeche Valley (AK)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2.ak.lg' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.25,5.25])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) -5.523 0.021 2.050 -8.309 -5.258 -3.106 9246 1
time_class2013 -0.115 0.029 2.921 -3.853 -0.055 3.502 10382 1
time_class2018 -0.148 0.028 2.939 -3.930 -0.051 3.488 10640 1
mean_PPD 0.018 0.000 0.026 0.000 0.000 0.042 15306 1
log-posterior -21.672 0.033 2.596 -25.135 -21.351 -18.631 6129 1

Panel plot of above MCMC area plots

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast estimate lower.HPD upper.HPD
BL - 2013 0.06 -5.73 6.01
BL - 2018 0.05 -5.67 5.97
2013 - 2018 0.02 -6.64 6.95
Pairwise contrasts
Results are given on the response scale.
contrast ratio lower.HPD upper.HPD
BL / 2013 1.056940 1.096282e-05 158.2514
BL / 2018 1.052294 2.363998e-06 162.9399
2013 / 2018 1.015152 1.966738e-07 296.5660

Fig 21 revised 2022

Effects of Burning on Tall Saplings (1.5-2.5m Tall) - Combined Winter Range (AC+ANC)

Summary statistics
time_class range_type burned fenced variable min q1 med q3 max
BL core winter range Unburned Unfenced percent_tot 0.000000e+00 0.0000000 0.0000000 0.0000000 0.000000e+00
BL core winter range Unburned Unfenced stem_den_ac 0.000000e+00 0.0000000 0.0000000 0.0000000 0.000000e+00
BL core winter range Unburned Unfenced stem_den_ha 1.000000e-07 0.0000001 0.0000001 0.0000001 1.000000e-07
BL core winter range Unburned Unfenced stem_tally 0.000000e+00 0.0000000 0.0000000 0.0000000 0.000000e+00
BL core winter range Unburned Unfenced sum_stem 0.000000e+00 6.0000000 14.0000000 26.0000000 5.900000e+01
BL core winter range Unburned Unfenced year 2.006000e+03 2006.0000000 2007.0000000 2009.0000000 2.009000e+03
BL core winter range Unburned Fenced percent_tot 0.000000e+00 0.0000000 0.0000000 0.0000000 5.000000e-02
BL core winter range Unburned Fenced stem_den_ac 0.000000e+00 0.0000000 0.0000000 0.0000000 1.618744e+02
BL core winter range Unburned Fenced stem_den_ha 1.000000e-07 0.0000001 0.0000001 0.0000001 4.000000e+02
BL core winter range Unburned Fenced stem_tally 0.000000e+00 0.0000000 0.0000000 0.0000000 1.000000e+00
BL core winter range Unburned Fenced sum_stem 0.000000e+00 13.0000000 24.5000000 46.0000000 1.390000e+02
BL core winter range Unburned Fenced year 2.007000e+03 2007.0000000 2008.0000000 2009.0000000 2.009000e+03
BL core winter range Burned Unfenced percent_tot 0.000000e+00 0.0000000 0.1666667 0.3333333 3.333333e-01
BL core winter range Burned Unfenced stem_den_ac 0.000000e+00 0.0000000 80.9372000 161.8744000 1.618744e+02
BL core winter range Burned Unfenced stem_den_ha 1.000000e-07 0.0000001 200.0000001 400.0000001 4.000000e+02
BL core winter range Burned Unfenced stem_tally 0.000000e+00 0.0000000 0.5000000 1.0000000 1.000000e+00
BL core winter range Burned Unfenced sum_stem 3.000000e+00 3.0000000 3.0000000 3.0000000 3.000000e+00
BL core winter range Burned Unfenced year 2.009000e+03 2009.0000000 2009.0000000 2009.0000000 2.009000e+03
BL core winter range Burned Fenced percent_tot 0.000000e+00 0.0000000 0.0000000 0.0000000 0.000000e+00
BL core winter range Burned Fenced stem_den_ac 0.000000e+00 0.0000000 0.0000000 0.0000000 0.000000e+00
BL core winter range Burned Fenced stem_den_ha 1.000000e-07 0.0000001 0.0000001 0.0000001 1.000000e-07
BL core winter range Burned Fenced stem_tally 0.000000e+00 0.0000000 0.0000000 0.0000000 0.000000e+00
BL core winter range Burned Fenced sum_stem 2.700000e+01 27.0000000 29.5000000 32.0000000 3.200000e+01
BL core winter range Burned Fenced year 2.006000e+03 2006.0000000 2006.0000000 2006.0000000 2.006000e+03
2013 core winter range Unburned Unfenced percent_tot 0.000000e+00 0.0000000 0.0000000 0.0000000 5.000000e-01
2013 core winter range Unburned Unfenced stem_den_ac 0.000000e+00 0.0000000 0.0000000 0.0000000 1.618744e+02
2013 core winter range Unburned Unfenced stem_den_ha 1.000000e-07 0.0000001 0.0000001 0.0000001 4.000000e+02
2013 core winter range Unburned Unfenced stem_tally 0.000000e+00 0.0000000 0.0000000 0.0000000 1.000000e+00
2013 core winter range Unburned Unfenced sum_stem 0.000000e+00 7.0000000 22.0000000 34.0000000 1.440000e+02
2013 core winter range Unburned Unfenced year 2.013000e+03 2013.0000000 2013.0000000 2013.0000000 2.013000e+03
2013 core winter range Unburned Fenced percent_tot 0.000000e+00 0.0000000 0.1846591 0.3142857 8.000000e-01
2013 core winter range Unburned Fenced stem_den_ac 0.000000e+00 0.0000000 728.4348000 1456.8696000 4.694358e+03
2013 core winter range Unburned Fenced stem_den_ha 1.000000e-07 0.0000001 1800.0000001 3600.0000001 1.160000e+04
2013 core winter range Unburned Fenced stem_tally 0.000000e+00 0.0000000 4.5000000 9.0000000 2.900000e+01
2013 core winter range Unburned Fenced sum_stem 4.000000e+00 10.0000000 28.0000000 70.0000000 1.040000e+02
2013 core winter range Unburned Fenced year 2.013000e+03 2013.0000000 2013.0000000 2013.0000000 2.013000e+03
2013 core winter range Burned Unfenced percent_tot 0.000000e+00 0.0000000 0.0000000 0.0000000 1.908397e-03
2013 core winter range Burned Unfenced stem_den_ac 0.000000e+00 0.0000000 0.0000000 0.0000000 1.618744e+02
2013 core winter range Burned Unfenced stem_den_ha 1.000000e-07 0.0000001 0.0000001 0.0000001 4.000000e+02
2013 core winter range Burned Unfenced stem_tally 0.000000e+00 0.0000000 0.0000000 0.0000000 1.000000e+00
2013 core winter range Burned Unfenced sum_stem 1.700000e+01 92.5000000 168.5000000 346.5000000 5.240000e+02
2013 core winter range Burned Unfenced year 2.013000e+03 2013.0000000 2013.0000000 2013.0000000 2.013000e+03
2013 core winter range Burned Fenced percent_tot 0.000000e+00 0.0000000 0.0000000 0.0000000 0.000000e+00
2013 core winter range Burned Fenced stem_den_ac 0.000000e+00 0.0000000 0.0000000 0.0000000 0.000000e+00
2013 core winter range Burned Fenced stem_den_ha 1.000000e-07 0.0000001 0.0000001 0.0000001 1.000000e-07
2013 core winter range Burned Fenced stem_tally 0.000000e+00 0.0000000 0.0000000 0.0000000 0.000000e+00
2013 core winter range Burned Fenced sum_stem 4.400000e+01 44.0000000 50.0000000 52.0000000 5.200000e+01
2013 core winter range Burned Fenced year 2.013000e+03 2013.0000000 2013.0000000 2013.0000000 2.013000e+03
2018 core winter range Unburned Unfenced percent_tot 0.000000e+00 0.0000000 0.0000000 0.0000000 2.295082e-01
2018 core winter range Unburned Unfenced stem_den_ac 0.000000e+00 0.0000000 0.0000000 0.0000000 2.266242e+03
2018 core winter range Unburned Unfenced stem_den_ha 1.000000e-07 0.0000001 0.0000001 0.0000001 5.600000e+03
2018 core winter range Unburned Unfenced stem_tally 0.000000e+00 0.0000000 0.0000000 0.0000000 1.400000e+01
2018 core winter range Unburned Unfenced sum_stem 0.000000e+00 6.5000000 18.0000000 46.5000000 9.500000e+01
2018 core winter range Unburned Unfenced year 2.018000e+03 2018.0000000 2018.0000000 2018.0000000 2.018000e+03
2018 core winter range Unburned Fenced percent_tot 0.000000e+00 0.0000000 0.2222222 0.3333333 6.111111e-01
2018 core winter range Unburned Fenced stem_den_ac 0.000000e+00 0.0000000 323.7488000 1133.1208000 3.723111e+03
2018 core winter range Unburned Fenced stem_den_ha 1.000000e-07 0.0000001 800.0000001 2800.0000001 9.200000e+03
2018 core winter range Unburned Fenced stem_tally 0.000000e+00 0.0000000 2.0000000 7.0000000 2.300000e+01
2018 core winter range Unburned Fenced sum_stem 3.000000e+00 4.0000000 9.0000000 21.0000000 5.700000e+01
2018 core winter range Unburned Fenced year 2.018000e+03 2018.0000000 2018.0000000 2018.0000000 2.018000e+03
2018 core winter range Burned Unfenced percent_tot 0.000000e+00 0.0000000 0.0000000 0.1114394 2.303371e-01
2018 core winter range Burned Unfenced stem_den_ac 0.000000e+00 0.0000000 0.0000000 2994.6764000 6.636850e+03
2018 core winter range Burned Unfenced stem_den_ha 1.000000e-07 0.0000001 0.0000001 7400.0000001 1.640000e+04
2018 core winter range Burned Unfenced stem_tally 0.000000e+00 0.0000000 0.0000000 18.5000000 4.100000e+01
2018 core winter range Burned Unfenced sum_stem 2.000000e+00 39.5000000 96.5000000 147.0000000 1.780000e+02
2018 core winter range Burned Unfenced year 2.018000e+03 2018.0000000 2018.0000000 2018.0000000 2.018000e+03
2018 core winter range Burned Fenced percent_tot 7.142857e-02 0.1428571 0.2169231 0.3333333 4.400000e-01
2018 core winter range Burned Fenced stem_den_ac 1.618744e+02 323.7488000 1052.1836000 1780.6184000 2.104367e+03
2018 core winter range Burned Fenced stem_den_ha 4.000000e+02 800.0000001 2600.0000001 4400.0000001 5.200000e+03
2018 core winter range Burned Fenced stem_tally 1.000000e+00 2.0000000 6.5000000 11.0000000 1.300000e+01
2018 core winter range Burned Fenced sum_stem 1.400000e+01 14.0000000 25.0000000 39.0000000 3.900000e+01
2018 core winter range Burned Fenced year 2.018000e+03 2018.0000000 2018.0000000 2018.0000000 2.018000e+03

Pairwise contrasts
Results are given on the response scale
contrast burned fenced estimate lower.HPD upper.HPD
2013 - BL Unburned Unfenced 1.347698e+00 7.257894e-01 2.507768e+00
2018 - BL Unburned Unfenced 4.217323e+00 2.562921e+00 7.303658e+00
2018 - 2013 Unburned Unfenced 3.123271e+00 1.991909e+00 5.006520e+00
2013 - BL Burned Unfenced 1.314597e-01 7.629043e-03 3.272656e+00
2018 - BL Burned Unfenced 6.497319e+00 6.208916e-01 1.064042e+02
2018 - 2013 Burned Unfenced 4.828052e+01 1.317339e+01 2.702049e+02
2013 - BL Unburned Fenced 9.300851e+01 2.492602e+01 4.712025e+02
2018 - BL Unburned Fenced 5.217879e+01 1.440035e+01 2.750313e+02
2018 - 2013 Unburned Fenced 5.622801e-01 4.324993e-01 7.278152e-01
2013 - BL Burned Fenced 1.137793e-03 1.850106e-16 2.614599e+06
2018 - BL Burned Fenced 1.599496e+05 2.306616e+01 1.511368e+11
2018 - 2013 Burned Fenced 2.190260e+08 2.755728e+01 2.063195e+20

EMMIP

Replacement Figure 17

# small sap
plot.emmip.smsap.acanc.burned.bw <- emmip(stmod_smsap_TCxFxB_acanc, fenced ~ time_class | burned, type = "response",
  breaks = seq(0.50, 1, by = 0.10),
  CIarg = list(lwd = 1.85, alpha = 1), dotarg = list(size = 3.5, alpha = 1)) +
  theme_minimal() +
  scale_color_manual(values = c("black","grey 75")) +
  labs(color="", x = "Year", y = "Stem count", subtitle = "Short saplings")  +
  # scale_color_manual(values = c("black","grey 75")) + 
  labs(x = "Year") +
  theme(legend.position = "none")

plot.emmip.smsap.acanc.burned.bw

## tall sap
plot.emmip.lgsap.acanc.burned.bw <- emmip(stmod_lgsap_TCxFxB_acanc, fenced ~ time_class | burned, type = "response",
  breaks = seq(0.50, 1, by = 0.10),
  CIarg = list(lwd = 1.85, alpha = 1), dotarg = list(size = 3.5, alpha = 1)) +
  theme_minimal() +
  scale_color_manual(values = c("black","grey 75")) +
  labs(color="", x = "Year", y = "Stem count", subtitle = "Tall saplings")  +
  scale_color_manual(values = c("black","grey 75")) + labs(x = "Year") +
  theme(legend.position = "bottom")

plot.emmip.lgsap.acanc.burned.bw

All Stem Diameters - Combined Winter Range (AC+ANC)

## [[1]]

## 
## [[2]]

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2.acanc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.27,5.25,6.16,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) 0.932 0.005 0.145 0.744 0.934 1.118 825 1.003
time_class2013 0.489 0.001 0.045 0.432 0.489 0.547 7615 1.000
time_class2018 0.294 0.001 0.046 0.235 0.294 0.353 7248 1.000
fencedFenced 0.918 0.009 0.313 0.515 0.919 1.317 1174 1.002
time_class2013:fencedFenced -0.582 0.001 0.078 -0.682 -0.583 -0.482 8729 1.000
time_class2018:fencedFenced -1.194 0.001 0.091 -1.312 -1.193 -1.076 9005 1.000
mean_PPD 5.868 0.001 0.110 5.728 5.866 6.010 14023 1.000
log-posterior -6003.994 0.210 8.598 -6015.143 -6003.626 -5993.249 1683 1.001

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast fenced estimate lower.HPD upper.HPD
2013 - BL Unfenced 0.49 0.40 0.58
2018 - BL Unfenced 0.29 0.20 0.38
2018 - 2013 Unfenced -0.20 -0.27 -0.13
2013 - BL Fenced -0.09 -0.22 0.03
2018 - BL Fenced -0.90 -1.06 -0.75
2018 - 2013 Fenced -0.81 -0.95 -0.66
Pairwise contrasts
Results are given on the response scale.
contrast fenced ratio lower.HPD upper.HPD
2013 / BL Unfenced 1.63 1.49 1.78
2018 / BL Unfenced 1.34 1.22 1.46
2018 / 2013 Unfenced 0.82 0.77 0.88
2013 / BL Fenced 0.91 0.81 1.03
2018 / BL Fenced 0.41 0.35 0.47
2018 / 2013 Fenced 0.45 0.38 0.51

All Stem Diameters - Core Winter Range (AC)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_stally2' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.26,5.23,5.42,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) 1.108 0.007 0.210 0.842 1.108 1.375 1010 1.001
time_class2013 0.550 0.001 0.053 0.483 0.551 0.618 5452 1.000
time_class2018 0.177 0.001 0.055 0.107 0.178 0.247 5554 1.001
fencedFenced 0.730 0.011 0.373 0.264 0.728 1.208 1186 1.001
time_class2013:fencedFenced -0.643 0.001 0.081 -0.747 -0.643 -0.538 5551 1.001
time_class2018:fencedFenced -1.077 0.001 0.096 -1.199 -1.076 -0.956 6104 1.000
mean_PPD 7.027 0.001 0.148 6.838 7.026 7.218 13908 1.000
log-posterior -4871.545 0.161 7.052 -4880.799 -4871.206 -4862.852 1929 1.000

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast fenced estimate lower.HPD upper.HPD
2013 - BL Unfenced 0.55 0.44 0.65
2018 - BL Unfenced 0.18 0.07 0.29
2018 - 2013 Unfenced -0.37 -0.45 -0.30
2013 - BL Fenced -0.09 -0.22 0.03
2018 - BL Fenced -0.90 -1.05 -0.74
2018 - 2013 Fenced -0.81 -0.96 -0.66
Pairwise contrasts
Results are given on the response scale.
contrast fenced ratio lower.HPD upper.HPD
2013 / BL Unfenced 1.73 1.56 1.92
2018 / BL Unfenced 1.19 1.07 1.33
2018 / 2013 Unfenced 0.69 0.64 0.74
2013 / BL Fenced 0.91 0.80 1.03
2018 / BL Fenced 0.41 0.35 0.47
2018 / 2013 Fenced 0.45 0.38 0.52

Effects of Burning on All Stems - Core Winter Range (AC)

Summary statistics
time_class range_type burned fenced variable min q1 med q3 max
BL core winter range Unburned Unfenced percent_tot 0 0.000000e+00 0.000000e+00 3.333333e-01 1.000000e+00
BL core winter range Unburned Unfenced site_number 2 9.000000e+00 2.000000e+01 3.000000e+01 4.000000e+01
BL core winter range Unburned Unfenced stem_den_ac 0 0.000000e+00 0.000000e+00 3.237488e+02 8.741218e+03
BL core winter range Unburned Unfenced stem_den_ha 0 0.000000e+00 0.000000e+00 8.000000e+02 2.160000e+04
BL core winter range Unburned Unfenced stem_tally 0 0.000000e+00 0.000000e+00 2.000000e+00 5.400000e+01
BL core winter range Unburned Unfenced sum_stem 0 6.000000e+00 1.400000e+01 2.600000e+01 5.900000e+01
BL core winter range Unburned Unfenced utm_e_nad83 445348 4.464030e+05 4.465360e+05 4.473970e+05 4.505480e+05
BL core winter range Unburned Unfenced utm_n_nad83 4467366 4.468377e+06 4.472409e+06 4.473033e+06 4.473650e+06
BL core winter range Unburned Unfenced year 2006 2.006000e+03 2.007000e+03 2.009000e+03 2.009000e+03
BL core winter range Unburned Fenced percent_tot 0 0.000000e+00 3.597122e-02 3.333333e-01 1.000000e+00
BL core winter range Unburned Fenced site_number 8 3.100000e+01 3.950000e+01 6.000000e+01 6.200000e+01
BL core winter range Unburned Fenced stem_den_ac 0 0.000000e+00 0.000000e+00 9.712464e+02 2.152930e+04
BL core winter range Unburned Fenced stem_den_ha 0 0.000000e+00 0.000000e+00 2.400000e+03 5.320000e+04
BL core winter range Unburned Fenced stem_tally 0 0.000000e+00 0.000000e+00 6.000000e+00 1.330000e+02
BL core winter range Unburned Fenced sum_stem 0 1.300000e+01 2.450000e+01 4.600000e+01 1.390000e+02
BL core winter range Unburned Fenced utm_e_nad83 446665 4.481500e+05 4.483695e+05 4.495780e+05 4.500990e+05
BL core winter range Unburned Fenced utm_n_nad83 4467680 4.468965e+06 4.471327e+06 4.472678e+06 4.472916e+06
BL core winter range Unburned Fenced year 2007 2.007000e+03 2.008000e+03 2.009000e+03 2.009000e+03
BL core winter range Burned Unfenced percent_tot 0 0.000000e+00 3.333333e-01 3.333333e-01 3.333333e-01
BL core winter range Burned Unfenced site_number 27 2.700000e+01 2.700000e+01 2.700000e+01 2.700000e+01
BL core winter range Burned Unfenced stem_den_ac 0 0.000000e+00 1.618744e+02 1.618744e+02 1.618744e+02
BL core winter range Burned Unfenced stem_den_ha 0 0.000000e+00 4.000000e+02 4.000000e+02 4.000000e+02
BL core winter range Burned Unfenced stem_tally 0 0.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
BL core winter range Burned Unfenced sum_stem 3 3.000000e+00 3.000000e+00 3.000000e+00 3.000000e+00
BL core winter range Burned Unfenced utm_e_nad83 446615 4.466150e+05 4.466150e+05 4.466150e+05 4.466150e+05
BL core winter range Burned Unfenced utm_n_nad83 4467326 4.467326e+06 4.467326e+06 4.467326e+06 4.467326e+06
BL core winter range Burned Unfenced year 2009 2.009000e+03 2.009000e+03 2.009000e+03 2.009000e+03
BL core winter range Burned Fenced percent_tot 0 0.000000e+00 0.000000e+00 2.187500e-01 1.000000e+00
BL core winter range Burned Fenced site_number 10 1.000000e+01 1.450000e+01 1.900000e+01 1.900000e+01
BL core winter range Burned Fenced stem_den_ac 0 0.000000e+00 0.000000e+00 1.133121e+03 4.370609e+03
BL core winter range Burned Fenced stem_den_ha 0 0.000000e+00 0.000000e+00 2.800000e+03 1.080000e+04
BL core winter range Burned Fenced stem_tally 0 0.000000e+00 0.000000e+00 7.000000e+00 2.700000e+01
BL core winter range Burned Fenced sum_stem 27 2.700000e+01 2.950000e+01 3.200000e+01 3.200000e+01
BL core winter range Burned Fenced utm_e_nad83 446929 4.469290e+05 4.470120e+05 4.470950e+05 4.470950e+05
BL core winter range Burned Fenced utm_n_nad83 4467463 4.467463e+06 4.467476e+06 4.467489e+06 4.467489e+06
BL core winter range Burned Fenced year 2006 2.006000e+03 2.006000e+03 2.006000e+03 2.006000e+03
2013 core winter range Unburned Unfenced percent_tot 0 0.000000e+00 0.000000e+00 3.636364e-01 1.000000e+00
2013 core winter range Unburned Unfenced site_number 2 9.000000e+00 2.000000e+01 3.000000e+01 4.000000e+01
2013 core winter range Unburned Unfenced stem_den_ac 0 0.000000e+00 0.000000e+00 6.474976e+02 2.023430e+04
2013 core winter range Unburned Unfenced stem_den_ha 0 0.000000e+00 0.000000e+00 1.600000e+03 5.000000e+04
2013 core winter range Unburned Unfenced stem_tally 0 0.000000e+00 0.000000e+00 4.000000e+00 1.250000e+02
2013 core winter range Unburned Unfenced sum_stem 0 7.000000e+00 2.200000e+01 3.400000e+01 1.440000e+02
2013 core winter range Unburned Unfenced utm_e_nad83 445348 4.464030e+05 4.465360e+05 4.473970e+05 4.505480e+05
2013 core winter range Unburned Unfenced utm_n_nad83 4467366 4.468377e+06 4.472409e+06 4.473033e+06 4.473650e+06
2013 core winter range Unburned Unfenced year 2013 2.013000e+03 2.013000e+03 2.013000e+03 2.013000e+03
2013 core winter range Unburned Fenced percent_tot 0 2.884615e-02 1.666667e-01 2.788462e-01 9.411765e-01
2013 core winter range Unburned Fenced site_number 8 3.100000e+01 4.400000e+01 6.100000e+01 6.700000e+01
2013 core winter range Unburned Fenced stem_den_ac 0 1.618744e+02 4.856232e+02 1.456870e+03 1.230245e+04
2013 core winter range Unburned Fenced stem_den_ha 0 4.000000e+02 1.200000e+03 3.600000e+03 3.040000e+04
2013 core winter range Unburned Fenced stem_tally 0 1.000000e+00 3.000000e+00 9.000000e+00 7.600000e+01
2013 core winter range Unburned Fenced sum_stem 4 1.000000e+01 2.800000e+01 7.000000e+01 1.040000e+02
2013 core winter range Unburned Fenced utm_e_nad83 446665 4.477950e+05 4.483260e+05 4.495780e+05 4.500990e+05
2013 core winter range Unburned Fenced utm_n_nad83 4467489 4.468593e+06 4.471308e+06 4.472678e+06 4.472916e+06
2013 core winter range Unburned Fenced year 2013 2.013000e+03 2.013000e+03 2.013000e+03 2.013000e+03
2013 core winter range Burned Unfenced percent_tot 0 0.000000e+00 3.721374e-02 4.279044e-01 8.928571e-01
2013 core winter range Burned Unfenced site_number 27 4.500000e+01 6.350000e+01 6.450000e+01 6.500000e+01
2013 core winter range Burned Unfenced stem_den_ac 0 0.000000e+00 2.428116e+02 9.064966e+03 4.305859e+04
2013 core winter range Burned Unfenced stem_den_ha 0 0.000000e+00 6.000000e+02 2.240000e+04 1.064000e+05
2013 core winter range Burned Unfenced stem_tally 0 0.000000e+00 1.500000e+00 5.600000e+01 2.660000e+02
2013 core winter range Burned Unfenced sum_stem 17 9.250000e+01 1.685000e+02 3.465000e+02 5.240000e+02
2013 core winter range Burned Unfenced utm_e_nad83 446545 4.465800e+05 4.468505e+05 4.471050e+05 4.471240e+05
2013 core winter range Burned Unfenced utm_n_nad83 4467326 4.467333e+06 4.467378e+06 4.467427e+06 4.467439e+06
2013 core winter range Burned Unfenced year 2013 2.013000e+03 2.013000e+03 2.013000e+03 2.013000e+03
2013 core winter range Burned Fenced percent_tot 0 0.000000e+00 0.000000e+00 4.800000e-01 6.346154e-01
2013 core winter range Burned Fenced site_number 10 1.000000e+01 1.900000e+01 6.600000e+01 6.600000e+01
2013 core winter range Burned Fenced stem_den_ac 0 0.000000e+00 0.000000e+00 3.723111e+03 5.341855e+03
2013 core winter range Burned Fenced stem_den_ha 0 0.000000e+00 0.000000e+00 9.200000e+03 1.320000e+04
2013 core winter range Burned Fenced stem_tally 0 0.000000e+00 0.000000e+00 2.300000e+01 3.300000e+01
2013 core winter range Burned Fenced sum_stem 44 4.400000e+01 5.000000e+01 5.200000e+01 5.200000e+01
2013 core winter range Burned Fenced utm_e_nad83 446929 4.469290e+05 4.470050e+05 4.470950e+05 4.470950e+05
2013 core winter range Burned Fenced utm_n_nad83 4467463 4.467463e+06 4.467489e+06 4.467494e+06 4.467494e+06
2013 core winter range Burned Fenced year 2013 2.013000e+03 2.013000e+03 2.013000e+03 2.013000e+03
2018 core winter range Unburned Unfenced percent_tot 0 0.000000e+00 5.681818e-03 3.809524e-01 1.000000e+00
2018 core winter range Unburned Unfenced site_number 2 1.000000e+01 2.100000e+01 3.100000e+01 6.800000e+01
2018 core winter range Unburned Unfenced stem_den_ac 0 0.000000e+00 0.000000e+00 9.712464e+02 1.214058e+04
2018 core winter range Unburned Unfenced stem_den_ha 0 0.000000e+00 0.000000e+00 2.400000e+03 3.000000e+04
2018 core winter range Unburned Unfenced stem_tally 0 0.000000e+00 0.000000e+00 6.000000e+00 7.500000e+01
2018 core winter range Unburned Unfenced sum_stem 0 6.500000e+00 1.800000e+01 4.650000e+01 9.500000e+01
2018 core winter range Unburned Unfenced utm_e_nad83 445348 4.464100e+05 4.465395e+05 4.474950e+05 4.505480e+05
2018 core winter range Unburned Unfenced utm_n_nad83 4467366 4.468958e+06 4.472412e+06 4.473022e+06 4.473650e+06
2018 core winter range Unburned Unfenced year 2018 2.018000e+03 2.018000e+03 2.018000e+03 2.018000e+03
2018 core winter range Unburned Fenced percent_tot 0 0.000000e+00 2.000000e-01 3.333333e-01 6.666667e-01
2018 core winter range Unburned Fenced site_number 8 3.100000e+01 4.400000e+01 6.100000e+01 6.700000e+01
2018 core winter range Unburned Fenced stem_den_ac 0 0.000000e+00 3.237488e+02 6.474976e+02 3.723111e+03
2018 core winter range Unburned Fenced stem_den_ha 0 0.000000e+00 8.000000e+02 1.600000e+03 9.200000e+03
2018 core winter range Unburned Fenced stem_tally 0 0.000000e+00 2.000000e+00 4.000000e+00 2.300000e+01
2018 core winter range Unburned Fenced sum_stem 3 4.000000e+00 9.000000e+00 2.100000e+01 5.700000e+01
2018 core winter range Unburned Fenced utm_e_nad83 446665 4.477950e+05 4.483260e+05 4.495780e+05 4.500990e+05
2018 core winter range Unburned Fenced utm_n_nad83 4467489 4.468593e+06 4.471308e+06 4.472678e+06 4.472916e+06
2018 core winter range Unburned Fenced year 2018 2.018000e+03 2.018000e+03 2.018000e+03 2.018000e+03
2018 core winter range Burned Unfenced percent_tot 0 0.000000e+00 1.329911e-01 4.083072e-01 5.086207e-01
2018 core winter range Burned Unfenced site_number 27 4.500000e+01 6.350000e+01 6.450000e+01 6.500000e+01
2018 core winter range Burned Unfenced stem_den_ac 0 0.000000e+00 7.284348e+02 6.394039e+03 9.712464e+03
2018 core winter range Burned Unfenced stem_den_ha 0 0.000000e+00 1.800000e+03 1.580000e+04 2.400000e+04
2018 core winter range Burned Unfenced stem_tally 0 0.000000e+00 4.500000e+00 3.950000e+01 6.000000e+01
2018 core winter range Burned Unfenced sum_stem 2 3.950000e+01 9.650000e+01 1.470000e+02 1.780000e+02
2018 core winter range Burned Unfenced utm_e_nad83 446545 4.465800e+05 4.468505e+05 4.471050e+05 4.471240e+05
2018 core winter range Burned Unfenced utm_n_nad83 4467326 4.467333e+06 4.467378e+06 4.467427e+06 4.467439e+06
2018 core winter range Burned Unfenced year 2018 2.018000e+03 2.018000e+03 2.018000e+03 2.018000e+03
2018 core winter range Burned Fenced percent_tot 0 7.692308e-02 2.000000e-01 2.857143e-01 5.000000e-01
2018 core winter range Burned Fenced site_number 10 1.000000e+01 1.900000e+01 6.600000e+01 6.600000e+01
2018 core winter range Burned Fenced stem_den_ac 0 3.237488e+02 8.093720e+02 1.294995e+03 2.104367e+03
2018 core winter range Burned Fenced stem_den_ha 0 8.000000e+02 2.000000e+03 3.200000e+03 5.200000e+03
2018 core winter range Burned Fenced stem_tally 0 2.000000e+00 5.000000e+00 8.000000e+00 1.300000e+01
2018 core winter range Burned Fenced sum_stem 14 1.400000e+01 2.500000e+01 3.900000e+01 3.900000e+01
2018 core winter range Burned Fenced utm_e_nad83 446929 4.469290e+05 4.470050e+05 4.470950e+05 4.470950e+05
2018 core winter range Burned Fenced utm_n_nad83 4467463 4.467463e+06 4.467489e+06 4.467494e+06 4.467494e+06
2018 core winter range Burned Fenced year 2018 2.018000e+03 2.018000e+03 2.018000e+03 2.018000e+03

Pairwise contrasts
Results are given on the response scale
contrast burned fenced estimate lower.HPD upper.HPD
2013 - BL Unburned Unfenced 1.4477160 1.2918801 1.6172958
2018 - BL Unburned Unfenced 1.4501550 1.2964982 1.6266971
2018 - 2013 Unburned Unfenced 1.0015036 0.9050915 1.1108198
2013 - BL Burned Unfenced 5.3623899 1.6517603 20.5791732
2018 - BL Burned Unfenced 2.2802934 0.6827064 8.6486092
2018 - 2013 Burned Unfenced 0.4247683 0.3764684 0.4805162
2013 - BL Unburned Fenced 0.7912445 0.6862436 0.9046157
2018 - BL Unburned Fenced 0.3294917 0.2735920 0.3908882
2018 - 2013 Unburned Fenced 0.4162960 0.3487131 0.4960705
2013 - BL Burned Fenced 1.8359081 1.3606438 2.5357842
2018 - BL Burned Fenced 0.9804953 0.6969817 1.4013976
2018 - 2013 Burned Fenced 0.5334445 0.4072155 0.7056563

All Stem Diameters - Noncore Winter Range (ANC)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class + (1 | site_id)

## Priors for model 'stmod_anc_stally1' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.27,5.27])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) 0.668 0.004 0.175 0.444 0.669 0.888 1700 1.005
time_class2013 0.204 0.001 0.084 0.095 0.204 0.311 10588 1.000
time_class2018 0.605 0.001 0.077 0.505 0.604 0.703 10520 1.000
mean_PPD 3.421 0.001 0.148 3.232 3.419 3.610 13629 1.000
log-posterior -1093.668 0.097 4.799 -1099.894 -1093.304 -1087.825 2455 1.001

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast estimate lower.HPD upper.HPD
2013 - BL 0.2 0.04 0.37
2018 - BL 0.6 0.46 0.76
2018 - 2013 0.4 0.27 0.55
Pairwise contrasts
Results are given on the response scale.
contrast ratio lower.HPD upper.HPD
2013 / BL 1.23 1.03 1.44
2018 / BL 1.83 1.56 2.12
2018 / 2013 1.49 1.29 1.71
# comment 2.2 "provide analyses on single graphic...
## Plot combinations
contr.plot.ac <- emmeans(stmod_stally2, ~ time_class | fenced) %>% 
  pairs(reverse = TRUE) %>% 
  # plot(type = "response") +
  plot() +
  theme_minimal() +
  geom_vline(aes(xintercept = 0), color= "black", size=1, lty="dashed") +
  labs(title= "Core winter range", caption = "", x = "Estimate", y = "Contrast")

contr.plot.anc <- emmeans(stmod_anc_stally1, ~ time_class) %>% 
  pairs(reverse = TRUE) %>% 
  plot(type = "response") +
  theme_minimal() +
  geom_vline(aes(xintercept = 0), color= "black", size=1, lty="dashed") +
  labs(title= "Noncore winter range", caption = "Point estimate displayed: median 
HPD interval probability: 0.95, Results on log scale", x = "Estimate", y = "")

# patchwork
contr.plot.ac + contr.plot.anc 

ggsave("./output/figures_exported/revised_figs_aspen/emm_stemcnt_AC_ANC.png", width = 8, height = 3.75, dpi=300)
ggsave("./output/figures_exported/revised_figs_aspen/emm_stemcnt_AC_ANC.pdf", width = 8, height = 3.75)

All Stem Diameters - Kawuneeche Valley (AK)

Modeling and Posterior Description

Prior summary: stem_tally ~ time_class + (1 | site_id)

## Priors for model 'stmod_ak_stally1' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.28,5.28])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
Parameter mean mcse sd 10% 50% 90% n_eff Rhat
(Intercept) 0.567 0.004 0.246 0.257 0.571 0.866 3931 1
time_class2013 0.191 0.002 0.152 -0.004 0.192 0.384 10000 1
time_class2018 0.377 0.001 0.144 0.193 0.376 0.561 9863 1
mean_PPD 2.475 0.002 0.202 2.217 2.467 2.733 14246 1
log-posterior -504.307 0.049 3.034 -508.326 -503.985 -500.694 3768 1
## Priors for model 'stmod_ak_stally1' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.28,5.28])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast estimate lower.HPD upper.HPD
2013 - BL 0.19 -0.11 0.49
2018 - BL 0.38 0.09 0.66
2018 - 2013 0.18 -0.07 0.47
Pairwise contrasts
Results are given on the response scale.
contrast ratio lower.HPD upper.HPD
2013 / BL 1.21 0.88 1.60
2018 / BL 1.46 1.06 1.89
2018 / 2013 1.20 0.90 1.55

Willow Macroplot Data

Willow Height - Combined Winter Range Macroplot Data

Histograms of Willow Height

Modeling and Posterior Description

Prior summary: plant_ht_cm ~ time_class*fenced + (1 | site_id)

# Get the prior summary
prior_summary(wc.wnc.stmod_TCxF)
## Priors for model 'wc.wnc.stmod_TCxF' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.70,5.00,5.75,...])
## 
## Auxiliary (shape)
##  ~ exponential(rate = 1)
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.04 fixed conditional
time_class2018 0.9 -0.1 0.1 0.00 fixed conditional
fencedFenced 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013:fencedFenced 0.9 -0.1 0.1 0.00 fixed conditional
time_class2018:fencedFenced 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

## fenced = Unfenced:
##  contrast    estimate lower.HPD upper.HPD
##  2013 - BL     0.1364    0.0825     0.186
##  2018 - BL     0.2166    0.1715     0.263
##  2018 - 2013   0.0801    0.0367     0.127
## 
## fenced = Fenced:
##  contrast    estimate lower.HPD upper.HPD
##  2013 - BL     0.4719    0.3745     0.566
##  2018 - BL     0.9345    0.8500     1.023
##  2018 - 2013   0.4627    0.3857     0.540
## 
## Point estimate displayed: median 
## Results are given on the log (not the response) scale. 
## HPD interval probability: 0.95
Pairwise contrasts
Results are given on the log scale
contrast fenced estimate lower.HPD upper.HPD
2013 - BL Unfenced 0.14 0.08 0.19
2018 - BL Unfenced 0.22 0.17 0.26
2018 - 2013 Unfenced 0.08 0.04 0.13
2013 - BL Fenced 0.47 0.37 0.57
2018 - BL Fenced 0.93 0.85 1.02
2018 - 2013 Fenced 0.46 0.39 0.54
Pairwise contrasts
Results are given on the response scale.
contrast fenced ratio lower.HPD upper.HPD
2013 / BL Unfenced 1.15 1.09 1.20
2018 / BL Unfenced 1.24 1.19 1.30
2018 / 2013 Unfenced 1.08 1.03 1.13
2013 / BL Fenced 1.60 1.45 1.76
2018 / BL Fenced 2.55 2.33 2.77
2018 / 2013 Fenced 1.59 1.47 1.71

EMMIP

#### Figure 29 (#1) revised 2022
plotF.emmip_FxTC_response_bw(wc.wnc.stmod_TCxF) +
  labs(y="Willow height (cm)") +
  theme(legend.position = "right")

# ggsave("./output/figures_202202/emmip/Fig29_1_emmip_TCxF_wcwnc_allwillowheight.png", width = 7.25, height = 3.75) 
# 
# ggsave("./output/figures_202202/emmip/Fig29_1_emmip_TCxF_wcwnc_allwillowheight.pdf", width = 7.25, height = 3.75) 
# bw
plotF.emmip_FxTC_response_bw(wc.wnc.stmod_TCxF) +
  labs(title="Combined winter range") +
  theme(legend.position = "right") +
  labs(x="Year")

ggsave("./output/figures_exported/emmip_TCxF_wcwnc_allwillowheight_bw.png", width = 5, height = 4.25) 

Effects of Burning

Prior summary height ~ time_class * burned * fenced + (1 | site_id)

## Priors for model 'stmod_ht.wc.wnc.TCxFxB' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.70,5.00,5.75,...])
## 
## Auxiliary (shape)
##  ~ exponential(rate = 1)
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

## fenced = Unfenced, burned = Burned:
##  time_class emmean lower.HPD upper.HPD
##  BL           4.26      3.88      4.64
##  2013         3.85      3.47      4.20
##  2018         4.07      3.72      4.45
## 
## fenced = Fenced, burned = Burned:
##  time_class emmean lower.HPD upper.HPD
##  BL           3.79      3.48      4.13
##  2013         4.08      3.79      4.40
##  2018         4.81      4.51      5.10
## 
## fenced = Unfenced, burned = Unburned:
##  time_class emmean lower.HPD upper.HPD
##  BL           4.70      4.55      4.84
##  2013         4.85      4.71      5.00
##  2018         4.93      4.77      5.06
## 
## fenced = Fenced, burned = Unburned:
##  time_class emmean lower.HPD upper.HPD
##  BL           4.25      3.96      4.54
##  2013         4.85      4.55      5.13
##  2018         5.11      4.83      5.39
## 
## Point estimate displayed: median 
## Results are given on the log (not the response) scale. 
## HPD interval probability: 0.95

Pairwise contrasts
Results are given on the log scale
contrast fenced estimate lower.HPD upper.HPD
2013 - BL Unfenced -0.13 -0.27 0.01
2018 - BL Unfenced 0.02 -0.12 0.16
2018 - 2013 Unfenced 0.15 0.04 0.27
2013 - BL Fenced 0.45 0.34 0.55
2018 - BL Fenced 0.94 0.84 1.04
2018 - 2013 Fenced 0.50 0.42 0.57
Pairwise contrasts
Results are given on the response scale.
contrast fenced ratio lower.HPD upper.HPD
2013 / BL Unfenced 0.88 0.76 1.01
2018 / BL Unfenced 1.02 0.88 1.17
2018 / 2013 Unfenced 1.16 1.03 1.30
2013 / BL Fenced 1.56 1.40 1.73
2018 / BL Fenced 2.56 2.31 2.82
2018 / 2013 Fenced 1.64 1.52 1.77

EMMIP

#### Figure 40 (#1)

Willow Height - Core Winter Range Macroplot Data

Histograms of Willow Height

Modeling and Posterior Description

Prior summary: plant_ht_cm ~ time_class*fenced + (1 | site_id)

## Priors for model 'stmod_ht2' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.65,5.01,5.06,...])
## 
## Auxiliary (shape)
##  ~ exponential(rate = 1)
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
## model comparison.
## Run originally and code retained. stmod_ht2 selected
loo1 <- loo(stmod_ht1,
            k_threshold = 0.7) 
loo2 <- loo(stmod_ht2,
            k_threshold = 0.7) 
comp <- loo_compare(loo2, loo1)
print(comp, simplify = FALSE, digits = 2)

Core Winter Range
Willow Height Posterior Description
Parameter Component Median MAD CI CI_low CI_high pd ps ROPE_CI ROPE_low ROPE_high ROPE_Percentage Rhat ESS
(Intercept) conditional 4.4 0.1 0.9 4.3 4.6 1.0 1.0 0.9 -0.1 0.1 0.0 1 997.1
time_class2013 conditional 0.0 0.0 0.9 -0.1 0.1 0.6 0.0 0.9 -0.1 0.1 1.0 1 5191.9
time_class2018 conditional 0.1 0.0 0.9 0.0 0.2 1.0 0.6 0.9 -0.1 0.1 0.4 1 5152.4
fencedFenced conditional -0.4 0.1 0.9 -0.6 -0.2 1.0 1.0 0.9 -0.1 0.1 0.0 1 1015.9
time_class2013:fencedFenced conditional 0.5 0.1 0.9 0.4 0.6 1.0 1.0 0.9 -0.1 0.1 0.0 1 5281.0
time_class2018:fencedFenced conditional 0.8 0.1 0.9 0.7 0.9 1.0 1.0 0.9 -0.1 0.1 0.0 1 4898.9
shape distributional 4.7 0.1 0.9 4.4 4.9 1.0 1.0 0.9 -0.1 0.1 0.0 NA NA

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.0 fixed conditional
time_class2013 0.9 -0.1 0.1 1.0 fixed conditional
time_class2018 0.9 -0.1 0.1 0.4 fixed conditional
fencedFenced 0.9 -0.1 0.1 0.0 fixed conditional
time_class2013:fencedFenced 0.9 -0.1 0.1 0.0 fixed conditional
time_class2018:fencedFenced 0.9 -0.1 0.1 0.0 fixed conditional

Contrasts

Results are given on the response scale.

Pairwise contrasts
Results are given on the log scale
contrast fenced estimate lower.HPD upper.HPD
2013 - BL Unfenced 0.01 -0.07 0.08
2018 - BL Unfenced 0.11 0.03 0.18
2018 - 2013 Unfenced 0.10 0.04 0.16
2013 - BL Fenced 0.47 0.38 0.56
2018 - BL Fenced 0.93 0.85 1.01
2018 - 2013 Fenced 0.46 0.39 0.53
Pairwise contrasts
Results are given on the response scale.
contrast fenced ratio lower.HPD upper.HPD
2013 / BL Unfenced 1.01 0.93 1.08
2018 / BL Unfenced 1.11 1.03 1.19
2018 / 2013 Unfenced 1.10 1.04 1.17
2013 / BL Fenced 1.60 1.46 1.75
2018 / BL Fenced 2.55 2.33 2.75
2018 / 2013 Fenced 1.59 1.48 1.70

plotF.emmip_FxTC_response(stmod_ht2) +
  labs(title="Core winter range") +
  theme(legend.position = "right")

ggsave("./output/figures_exported/emmip_TCxF_wc_willowht.png", width = 5, height = 4.25) # save plot

Figure 29 (#2) revised 2022

plotF.emmip_FxTC_response_bw(stmod_ht2) +
  labs(y="Willow height (cm)") +
  theme(legend.position = "right")

ggsave("./output/figures_202202/emmip/Fig29_2_emmip_TCxF_wc_allwillowheight.png", width = 7.25, height = 3.75) 

ggsave("./output/figures_202202/emmip/Fig29_2_emmip_TCxF_wc_allwillowheight.pdf", width = 7.25, height = 3.75)

Willow Height - Noncore Winter Range Macroplot Data

Histograms of Willow Height

Modeling and Posterior Description

Prior summary: plant_ht_cm ~ time_class + (1 | site_id)

## Priors for model 'nc.stmod_ht1' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.77,5.02])
## 
## Auxiliary (shape)
##  ~ exponential(rate = 1)
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.0 fixed conditional
time_class2013 0.9 -0.1 0.1 0.0 fixed conditional
time_class2018 0.9 -0.1 0.1 0.0 fixed conditional

Contrasts

Results are given on the the response scale.

Pairwise contrasts
Results are given on the log scale
contrast estimate lower.HPD upper.HPD
2013 - BL 0.22 0.15 0.29
2018 - BL 0.28 0.22 0.34
2018 - 2013 0.06 -0.01 0.13
Pairwise contrasts
Results are given on the response scale.
contrast ratio lower.HPD upper.HPD
2013 / BL 1.25 1.16 1.34
2018 / BL 1.32 1.24 1.41
2018 / 2013 1.06 0.99 1.13

Figure 30 revised 2022

plotF.emmip_TC_response_bw(nc.stmod_ht1) +
  labs(y="Willow height (cm)") +
  theme(legend.position = "right")

ggsave("./output/figures_202202/emmip/Fig30_emmip_TC_wnc_allwillowheight.png", width = 7.25, height = 3.75) 

ggsave("./output/figures_202202/emmip/Fig30_emmip_TC_wnc_allwillowheight.pdf", width = 7.25, height = 3.75) 

Willow Height - Kawuneeche Valley Macroplot Data

Histograms of Willow Height

time_class variable mean sd min q1 med q3 max mad iqr cv skewness se.skewness kurtosis n.valid pct.valid sem
2011 plant_ht_cm 47.65323 23.42608 14 30 43 59.5 168 20.7564 29.25 0.4915948 1.6734970 0.2173713 5.3253116 124 100 2.103724
2016 plant_ht_cm 56.40741 25.88473 10 40 50 75.0 155 22.2390 32.50 0.4588889 0.8201672 0.2085259 0.8220138 135 100 2.227803
2017 plant_ht_cm 55.39568 29.36567 10 35 50 70.0 145 22.2390 35.00 0.5301075 0.9429452 0.2055673 0.5114885 139 100 2.490763
2018 plant_ht_cm 60.51383 34.24835 5 35 55 85.0 150 37.0650 50.00 0.5659590 0.4952152 0.1530955 -0.6332637 253 100 2.153175

Modeling and Posterior Description

Prior summary: plant_ht_cm ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_ht_wk_TCxF' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [6.16,6.10,5.12,...])
## 
## Auxiliary (shape)
##  ~ exponential(rate = 1)
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details
#### PP check plot
ppc.plot(stmod_ht_wk_TCxF) +
  labs(caption = "WK: willow_ht~TCxF")

ggsave("./output/figures_202108/willow_height_stats/ppc_willowht_wk.png", dpi = 300, width = 4.75, height = 3.75)

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.0 fixed conditional
time_class2016 0.9 -0.1 0.1 0.3 fixed conditional
time_class2017 0.9 -0.1 0.1 0.0 fixed conditional
time_class2018 0.9 -0.1 0.1 0.0 fixed conditional
fencedFenced 0.9 -0.1 0.1 0.3 fixed conditional
time_class2016:fencedFenced 0.9 -0.1 0.1 0.0 fixed conditional
time_class2017:fencedFenced 0.9 -0.1 0.1 0.0 fixed conditional
time_class2018:fencedFenced 0.9 -0.1 0.1 0.0 fixed conditional

Contrasts

## time_class = 2011:
##  fenced   emmean lower.HPD upper.HPD
##  Unfenced   4.01      3.68      4.37
##  Fenced     3.87      3.43      4.29
## 
## time_class = 2016:
##  fenced   emmean lower.HPD upper.HPD
##  Unfenced   3.87      3.53      4.22
##  Fenced     4.31      3.89      4.73
## 
## time_class = 2017:
##  fenced   emmean lower.HPD upper.HPD
##  Unfenced   3.80      3.46      4.15
##  Fenced     4.42      4.00      4.85
## 
## time_class = 2018:
##  fenced   emmean lower.HPD upper.HPD
##  Unfenced   3.56      3.24      3.92
##  Fenced     4.55      4.14      4.97
## 
## Point estimate displayed: median 
## Results are given on the log (not the response) scale. 
## HPD interval probability: 0.95

Pairwise contrasts
Results are given on the log (not the response) scale.
contrast fenced estimate lower.HPD upper.HPD
2016 - 2011 Unfenced -0.14 -0.27 0.00
2017 - 2011 Unfenced -0.21 -0.34 -0.08
2017 - 2016 Unfenced -0.07 -0.20 0.06
2018 - 2011 Unfenced -0.45 -0.58 -0.32
2018 - 2016 Unfenced -0.31 -0.43 -0.19
2018 - 2017 Unfenced -0.24 -0.36 -0.13
2016 - 2011 Fenced 0.44 0.27 0.61
2017 - 2011 Fenced 0.55 0.38 0.73
2017 - 2016 Fenced 0.11 -0.05 0.26
2018 - 2011 Fenced 0.69 0.52 0.85
2018 - 2016 Fenced 0.24 0.10 0.39
2018 - 2017 Fenced 0.13 -0.02 0.28
Pairwise contrasts
Results are given on the response scale.
contrast ratio lower.HPD upper.HPD
2016 / 2011 1.16 1.05 1.30
2017 / 2011 1.19 1.06 1.32
2017 / 2016 1.02 0.92 1.13
2018 / 2011 1.12 1.01 1.24
2018 / 2016 0.97 0.87 1.05
2018 / 2017 0.95 0.86 1.04

#### Figure 41

COVER

Willow Cover - Combined Winter Range Macroplot Data

# munge
canopy.all.willow.sum <- canopy.all.willow.sum %>% 
  mutate(burned = case_when(burned == "Y" ~ "Burned",
                            burned == "N" ~ "Unburned",
                            is.na(burned) ~ "Unburned",
                            TRUE ~ burned)) %>% 
  mutate(fenced = case_when(site_id == "WK01" ~ "Fenced",
                            site_id == "WK02" ~ "Fenced",
                            site_id == "WK03" ~ "Unfenced",
                            site_id == "WK04" ~ "Unfenced",
                            site_id == "WK05" ~ "Fenced",
                            site_id == "WK06" ~ "Unfenced",
                            site_id == "WK07" ~ "Unfenced",
                            site_id == "WK08" ~ "Unfenced",
                            site_id == "WK09" ~ "Unfenced",
                            site_id == "WK10" ~ "Fenced",
                            TRUE ~ fenced)) %>% 
  mutate(time_class = as_factor(time_class)) %>%
  mutate(fenced = as_factor(fenced)) %>%
  mutate(burned = as_factor(burned)) %>% 
  mutate(time_class = fct_rev(time_class))
Combined WC and WNC macroplot data: willow cover - fenced + time_class
time_class fenced variable mean sd min med max n.valid pct.valid
2013 Unfenced cover_allwillow 0.31 0.30 0.00 0.25 1 60 100
2013 Fenced cover_allwillow 0.29 0.30 0.00 0.18 1 28 100
2018 Unfenced cover_allwillow 0.45 0.35 0.00 0.41 1 66 100
2018 Fenced cover_allwillow 0.55 0.35 0.05 0.56 1 28 100
BL Unfenced cover_allwillow 0.33 0.27 0.00 0.27 1 51 100
BL Fenced cover_allwillow 0.17 0.24 0.00 0.11 1 17 100
Combined WC and WNC macroplot data: willow cover ~ burned + fenced + time_class
time_class fenced burned variable mean sd min med max n.valid pct.valid
2013 Unfenced Unburned cover_allwillow 0.34 0.29 0.00 0.27 1.00 51 100
2013 Unfenced Burned cover_allwillow 0.11 0.23 0.01 0.02 0.72 9 100
2013 Fenced Unburned cover_allwillow 0.43 0.30 0.02 0.48 1.00 15 100
2013 Fenced Burned cover_allwillow 0.12 0.21 0.00 0.04 0.79 13 100
2018 Unfenced Unburned cover_allwillow 0.49 0.33 0.00 0.47 1.00 58 100
2018 Unfenced Burned cover_allwillow 0.15 0.34 0.00 0.03 1.00 8 100
2018 Fenced Unburned cover_allwillow 0.69 0.33 0.14 0.76 1.00 15 100
2018 Fenced Burned cover_allwillow 0.39 0.29 0.05 0.26 1.00 13 100
BL Unfenced Unburned cover_allwillow 0.34 0.27 0.00 0.27 1.00 50 100
BL Unfenced Burned cover_allwillow 0.03 NA 0.03 0.03 0.03 1 100
BL Fenced Unburned cover_allwillow 0.27 0.27 0.01 0.20 1.00 10 100
BL Fenced Burned cover_allwillow 0.03 0.03 0.00 0.02 0.09 7 100
WK macroplot data: willow cover ~ fenced * time_class
time_class fenced variable mean sd min med max n.valid pct.valid
2016 Unfenced cover_allwillow 0.23 0.23 0.04 0.18 0.54 4 100
2016 Fenced cover_allwillow 0.31 0.20 0.19 0.20 0.54 3 100
2018 Unfenced cover_allwillow 0.26 0.25 0.02 0.17 0.53 5 100
2018 Fenced cover_allwillow 0.46 0.27 0.14 0.48 0.75 4 100
2017 Unfenced cover_allwillow 0.23 0.24 0.02 0.16 0.58 4 100
2017 Fenced cover_allwillow 0.34 0.25 0.17 0.23 0.62 3 100
BL Unfenced cover_allwillow 0.20 0.17 0.04 0.17 0.42 5 100
BL Fenced cover_allwillow 0.13 0.13 0.04 0.06 0.28 3 100

Modeling and Posterior Description

Prior summary: cover_allwillow ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_cov.wc.wnc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.15,5.61,5.49,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log odds ratio, not the response scale
contrast fenced estimate lower.HPD upper.HPD
2018 - 2013 Unfenced 0.47 0.13 0.81
BL - 2013 Unfenced -0.34 -0.74 0.06
BL - 2018 Unfenced -0.81 -1.20 -0.40
2018 - 2013 Fenced 1.97 1.44 2.48
BL - 2013 Fenced -0.66 -1.32 0.01
BL - 2018 Fenced -2.63 -3.30 -1.95
Pairwise contrasts
Results are given on the response scale
contrast fenced odds.ratio lower.HPD upper.HPD
2018 / 2013 Unfenced 1.59 1.11 2.22
BL / 2013 Unfenced 0.71 0.46 1.03
BL / 2018 Unfenced 0.45 0.29 0.65
2018 / 2013 Fenced 7.20 3.93 11.56
BL / 2013 Fenced 0.52 0.23 0.93
BL / 2018 Fenced 0.07 0.03 0.13
EMMIP

#### Fig 39 - 1

Effects of Burning - Combined Range

Prior summary cover_allwillow ~ time_class * burned * fenced + (1 | site_id)

## Priors for model 'stmod_cov.wc.wnc.TCxFxB' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.15,5.61,6.19,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

EMMIP

Figure 40 (#2)

Willow Cover - Core Winter Range Macroplot Data

WC macroplot data: willow cover ~ WC: all willow cover - time_class
time_class variable mean sd min med max n.valid pct.valid
2013 cover_allwillow 0.24 0.27 0 0.14 1 61 100
2018 cover_allwillow 0.44 0.35 0 0.33 1 62 100
BL cover_allwillow 0.22 0.24 0 0.18 1 36 100
WC macroplot data: All willow cover - burned + time_class
time_class burned variable mean sd min med max n.valid pct.valid
2013 Unburned cover_allwillow 0.31 0.27 0 0.27 1.00 39 100
2013 Burned cover_allwillow 0.12 0.22 0 0.03 0.79 22 100
2018 Unburned cover_allwillow 0.51 0.35 0 0.46 1.00 41 100
2018 Burned cover_allwillow 0.30 0.33 0 0.20 1.00 21 100
BL Unburned cover_allwillow 0.27 0.25 0 0.22 1.00 28 100
BL Burned cover_allwillow 0.03 0.03 0 0.02 0.09 8 100

Modeling and Posterior Description

Prior summary: cover_allwillow ~ time_class * fenced + (1 | site_id)

## Priors for model 'stmod_cov.wc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.11,5.95,5.00,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

#### Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Results are given on the the response scale.

Pairwise contrasts
Results are given on the log odds ratio, not the response scale
contrast fenced estimate lower.HPD upper.HPD
2018 - 2013 Unfenced 0.39 -0.08 0.84
BL - 2013 Unfenced -0.10 -0.68 0.45
BL - 2018 Unfenced -0.49 -1.05 0.04
2018 - 2013 Fenced 2.04 1.51 2.56
BL - 2013 Fenced -0.71 -1.39 -0.08
BL - 2018 Fenced -2.75 -3.43 -2.07
Pairwise contrasts
Results are given on the response scale
contrast fenced odds.ratio lower.HPD upper.HPD
2018 / 2013 Unfenced 1.48 0.89 2.27
BL / 2013 Unfenced 0.91 0.48 1.51
BL / 2018 Unfenced 0.61 0.31 0.99
2018 / 2013 Fenced 7.69 4.09 12.12
BL / 2013 Fenced 0.49 0.21 0.86
BL / 2018 Fenced 0.06 0.03 0.11

EMMIP

#### Figure 39 (#2)

Willow Cover - Noncore Winter Range Macroplot Data

WNC macroplot data: willow cover
time_class fenced variable mean sd min med max n.valid pct.valid
2013 Unfenced cover_allwillow 0.43 0.32 0.02 0.37 1 27 100
2018 Unfenced cover_allwillow 0.56 0.33 0.01 0.53 1 32 100
BL Unfenced cover_allwillow 0.37 0.28 0.03 0.30 1 32 100

Modeling and Posterior Description

Prior summary: cover_allwillow ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.wnc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.21,5.21])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

Pairwise contrasts
Results are given on the log odds ratio, not the response scale
contrast estimate lower.HPD upper.HPD
2018 - 2013 0.49 -0.04 1.05
BL - 2013 -0.54 -1.11 0.05
BL - 2018 -1.03 -1.61 -0.48
Pairwise contrasts
Results are given on the response scale
contrast odds.ratio lower.HPD upper.HPD
2018 / 2013 1.63 0.84 2.63
BL / 2013 0.58 0.29 0.98
BL / 2018 0.36 0.18 0.59

Figure 39 (#3). Modeled mean percent willow canopy cover (points) and credible intervals (bars) for all willow species on the noncore elk winter range of Rocky Mountain National Park. All noncore plots were unfenced. BL = baseline data (collected 2006-2008).

Willow Cover - Kawuneeche Valley Macroplot Data

WNC macroplot data: willow cover
time_class fenced variable mean sd min med max n.valid pct.valid
2016 Unfenced cover_allwillow 0.23 0.23 0.04 0.18 0.54 4 100
2016 Fenced cover_allwillow 0.31 0.20 0.19 0.20 0.54 3 100
2018 Unfenced cover_allwillow 0.26 0.25 0.02 0.17 0.53 5 100
2018 Fenced cover_allwillow 0.46 0.27 0.14 0.48 0.75 4 100
2017 Unfenced cover_allwillow 0.23 0.24 0.02 0.16 0.58 4 100
2017 Fenced cover_allwillow 0.34 0.25 0.17 0.23 0.62 3 100
BL Unfenced cover_allwillow 0.20 0.17 0.04 0.17 0.42 5 100
BL Fenced cover_allwillow 0.13 0.13 0.04 0.06 0.28 3 100
WNC macroplot data: willow cover
time_class variable mean sd min med max n.valid pct.valid
2016 cover_allwillow 0.27 0.20 0.04 0.20 0.54 7 100
2018 cover_allwillow 0.35 0.26 0.02 0.34 0.75 9 100
2017 cover_allwillow 0.28 0.23 0.02 0.21 0.62 7 100
BL cover_allwillow 0.17 0.15 0.04 0.12 0.42 8 100

Modeling and Posterior Description

## # A tibble: 4 x 1
##   time_class
##   <fct>     
## 1 BL        
## 2 2018      
## 3 2016      
## 4 2017

Prior summary

## Priors for model 'stmod_cov.wk' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0,0,...], scale = [2.5,2.5,2.5,...])
##   Adjusted prior:
##     ~ normal(location = [0,0,0,...], scale = [5.42,5.88,5.62,...])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Contrasts

emmip

Figure 43

Wild Basin Comparisons

location variable mean sd min med max n.valid
Fishermans Nook mean 290.0 7.1 285.0 290.0 295.0 2
Hollowell Park mean 223.6 124.0 83.5 194.9 508.8 12
Wild Basin mean 216.6 112.5 10.0 210.0 413.3 27
Lower Hidden Valley mean 216.4 NA 216.4 216.4 216.4 1
McGraw Ranch mean 183.1 76.6 94.3 170.8 309.2 8
Hidden Valley mean 160.5 104.8 67.2 116.7 377.5 9
Upper Beaver Meadows mean 154.7 90.2 55.0 146.6 280.0 8
Horseshoe Park mean 143.2 63.2 49.0 168.6 226.8 12
Moraine Park mean 120.1 62.3 30.0 122.0 270.0 33
Endovalley mean 112.0 69.8 57.0 90.7 287.2 9
Kawuneeche mean 67.0 32.0 25.0 73.5 111.7 9
site_type mean sd min med max n.valid
WB 216.6 112.5 10.0 210.0 413.3 27
WNC 199.7 104.4 67.2 179.8 508.8 32
WC 127.9 67.4 30.0 118.7 287.2 62
WK 67.0 32.0 25.0 73.5 111.7 9

Modeling and Posterior Description

## stan_aov
##  family:       gaussian [identity]
##  formula:      mean ~ site_type
##  observations: 130
##  predictors:   4
## ------
##              Median MAD_SD
## (Intercept)   214.2   16.7
## site_typeWC   -85.0   19.3
## site_typeWK  -143.3   32.1
## site_typeWNC  -16.3   22.6
## 
## Auxiliary parameter(s):
##               Median MAD_SD
## R2             0.2    0.1  
## log-fit_ratio  0.0    0.1  
## sigma         86.7    5.4  
## 
## ANOVA-like table:
##                   Median  MAD_SD 
## Mean Sq site_type 89489.5 28094.6
## 
## ------
## * For help interpreting the printed output see ?print.stanreg
## * For info on the priors used see ?prior_summary.stanreg
## 
## Model Info:
##  function:     stan_lmer
##  family:       gaussian [identity]
##  formula:      mean ~ 1 + (1 | site_type)
##  algorithm:    sampling
##  sample:       14000 (posterior sample size)
##  priors:       see help('prior_summary')
##  observations: 130
##  groups:       site_type (4)
## 
## Estimates:
##                                            mean     sd       10%      50%   
## (Intercept)                                  12.1     39.2     -5.0      0.8
## b[(Intercept) site_type:WB]                 202.4     42.8    168.8    211.2
## b[(Intercept) site_type:WC]                 115.3     40.5     86.0    125.0
## b[(Intercept) site_type:WK]                  53.8     46.4      4.5     60.6
## b[(Intercept) site_type:WNC]                186.3     42.1    153.5    195.2
## sigma                                        87.3      5.6     80.4     87.1
## Sigma[site_type:(Intercept),(Intercept)]  54338.8  59684.2  13351.1  36556.1
##                                            90%   
## (Intercept)                                  37.6
## b[(Intercept) site_type:WB]                 236.3
## b[(Intercept) site_type:WC]                 142.4
## b[(Intercept) site_type:WK]                 100.8
## b[(Intercept) site_type:WNC]                218.3
## sigma                                        94.6
## Sigma[site_type:(Intercept),(Intercept)] 112230.4
## 
## Fit Diagnostics:
##            mean   sd    10%   50%   90%
## mean_PPD 158.8   10.9 144.9 158.8 172.9
## 
## The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).
## 
## MCMC diagnostics
##                                          mcse   Rhat   n_eff
## (Intercept)                                 1.6    1.0   597
## b[(Intercept) site_type:WB]                 1.6    1.0   709
## b[(Intercept) site_type:WC]                 1.6    1.0   617
## b[(Intercept) site_type:WK]                 1.5    1.0   899
## b[(Intercept) site_type:WNC]                1.6    1.0   669
## sigma                                       0.1    1.0  6680
## Sigma[site_type:(Intercept),(Intercept)] 1172.7    1.0  2590
## mean_PPD                                    0.1    1.0 13129
## log-posterior                               0.1    1.0   887
## 
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).
Parameter Effects Component Median Mean MAP CI CI_low CI_high pd ps Rhat ESS
(Intercept) fixed conditional 7.663099e-01 12.12726 3.875211e-01 0.95 -30.094037 122.02677 0.5865714 0.1807857 1.003529 596.6051
b[(Intercept) site_type:WB] random conditional 2.111739e+02 202.37520 2.124639e+02 0.95 92.706889 263.08201 0.9959286 0.9944286 1.002704 709.4914
b[(Intercept) site_type:WC] random conditional 1.249533e+02 115.33694 1.279367e+02 0.95 4.978789 162.88107 0.9618571 0.9547143 1.003050 616.9764
b[(Intercept) site_type:WK] random conditional 6.060418e+01 53.82350 6.819934e+01 0.95 -51.921102 132.75646 0.9077143 0.8863571 1.001695 899.2485
b[(Intercept) site_type:WNC] random conditional 1.952327e+02 186.32204 1.977933e+02 0.95 75.950557 243.44464 0.9937857 0.9923571 1.002482 669.2157
Sigma[site_type:(Intercept),(Intercept)] random conditional 3.655611e+04 54338.82343 1.931836e+04 0.95 585.611229 159846.31186 1.0000000 1.0000000 1.001544 2590.1329
sigma fixed sigma 8.708692e+01 87.34466 8.634923e+01 0.95 76.780007 98.54709 1.0000000 1.0000000 NA NA

Upland Data

## [[1]]

## 
## [[2]]

Upland Shrub Cover, Pooled Shrub Species - Combined Winter Range

Upland cover - site type + time_class
time_class site_type variable mean sd min med max n.valid pct.valid
BL core range perc_cover 13.32 8.76 2.00 11.00 31.00 21 100
BL non-core range perc_cover 21.21 15.03 1.33 19.50 47.33 20 100
2013 core range perc_cover 10.75 8.11 0.33 8.83 24.33 20 100
2013 non-core range perc_cover 24.32 19.75 1.67 19.00 66.33 22 100
2018 core range perc_cover 13.61 8.04 1.67 12.67 34.33 18 100
2018 non-core range perc_cover 20.06 15.11 0.33 18.67 56.67 22 100

Summary by Range Type

Modeling and Posterior Description

Prior summary: cover ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.allshr' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.25,5.32])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.50 fixed conditional
time_class2018 0.9 -0.1 0.1 0.46 fixed conditional
(phi) 0.9 -0.1 0.1 0.00 fixed conditional
mean_PPD 0.9 -0.1 0.1 0.00 fixed conditional
log-posterior 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.

Upland Shrub Cover, Pooled Shrub Species - Core Winter Range

Upland cover - site type + time_class
time_class site_type variable mean sd min med max n.valid pct.valid
BL core range perc_cover 13.32 8.76 2.00 11.00 31.00 21 100
BL non-core range perc_cover 21.21 15.03 1.33 19.50 47.33 20 100
2013 core range perc_cover 10.75 8.11 0.33 8.83 24.33 20 100
2013 non-core range perc_cover 24.32 19.75 1.67 19.00 66.33 22 100
2018 core range perc_cover 13.61 8.04 1.67 12.67 34.33 18 100
2018 non-core range perc_cover 20.06 15.11 0.33 18.67 56.67 22 100

Modeling and Posterior Description

Prior summary: cover ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.allshr.uc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.25,5.32])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.50 fixed conditional
time_class2018 0.9 -0.1 0.1 0.46 fixed conditional
(phi) 0.9 -0.1 0.1 0.00 fixed conditional
mean_PPD 0.9 -0.1 0.1 0.00 fixed conditional
log-posterior 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.

Upland Shrub Cover, Pooled Shrub Species - Noncore Winter Range

Modeling and Posterior Description

Prior summary: cover ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.allshr.unc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.25,5.32])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.50 fixed conditional
time_class2018 0.9 -0.1 0.1 0.46 fixed conditional
(phi) 0.9 -0.1 0.1 0.00 fixed conditional
mean_PPD 0.9 -0.1 0.1 0.00 fixed conditional
log-posterior 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.

Individual Species

shrub_species n percent
PUTR 79 0.26072607
RICE 52 0.17161716
CHNA 39 0.12871287
ARTR 35 0.11551155
ROWO 24 0.07920792
JUCO 19 0.06270627
PRVI 13 0.04290429
CEFE 8 0.02640264
SYRO 5 0.01650165
ACGL 3 0.00990099
RIXX 3 0.00990099
RUDE 3 0.00990099
DAFR 2 0.00660066
JUSC 2 0.00660066
MARE 2 0.00660066
PHMO 2 0.00660066
SYOR 2 0.00660066
XXXX 2 0.00660066
ALIN 1 0.00330033
AMAL 1 0.00330033
CEXX 1 0.00330033
JAAM 1 0.00330033
PRXX 1 0.00330033
PSME 1 0.00330033
SHCA 1 0.00330033
UNKN 1 0.00330033

Upland Shrub Cover, Purshia tridentata - Combined Winter Range

PUTR cover ~ site type + time_class
time_class site_type variable mean sd min med max n.valid pct.valid
BL core range perc_cover 7.23 4.40 1.00 6.67 14.00 13 100
BL non-core range perc_cover 12.41 5.09 5.33 12.67 20.67 13 100
2013 core range perc_cover 9.12 4.37 3.67 7.67 18.33 11 100
2013 non-core range perc_cover 15.31 10.12 2.00 14.00 30.67 15 100
2018 core range perc_cover 8.95 6.30 1.67 6.00 20.33 13 100
2018 non-core range perc_cover 13.02 8.26 2.00 13.83 25.00 14 100

Modeling and Posterior Description

Prior summary: cover ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.putr' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.29,5.24])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.29 fixed conditional
time_class2018 0.9 -0.1 0.1 0.37 fixed conditional
(phi) 0.9 -0.1 0.1 0.00 fixed conditional
mean_PPD 0.9 -0.1 0.1 0.00 fixed conditional
log-posterior 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.

Upland Shrub Cover, Purshia tridentata - Core Winter Range

Upland cover - site type + time_class
time_class site_type variable mean sd min med max n.valid pct.valid
BL core range perc_cover 7.23 4.40 1.00 6.67 14.00 13 100
BL non-core range perc_cover 12.41 5.09 5.33 12.67 20.67 13 100
2013 core range perc_cover 9.12 4.37 3.67 7.67 18.33 11 100
2013 non-core range perc_cover 15.31 10.12 2.00 14.00 30.67 15 100
2018 core range perc_cover 8.95 6.30 1.67 6.00 20.33 13 100
2018 non-core range perc_cover 13.02 8.26 2.00 13.83 25.00 14 100

Modeling and Posterior Description

Prior summary: cover ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.putr.uc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.29,5.24])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.29 fixed conditional
time_class2018 0.9 -0.1 0.1 0.37 fixed conditional
(phi) 0.9 -0.1 0.1 0.00 fixed conditional
mean_PPD 0.9 -0.1 0.1 0.00 fixed conditional
log-posterior 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.

Upland Shrub Cover, Purshia tridentata - Noncore Winter Range

Modeling and Posterior Description

Prior summary: cover ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.putr.unc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.29,5.24])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.29 fixed conditional
time_class2018 0.9 -0.1 0.1 0.37 fixed conditional
(phi) 0.9 -0.1 0.1 0.00 fixed conditional
mean_PPD 0.9 -0.1 0.1 0.00 fixed conditional
log-posterior 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.

Upland Shrub Cover, Ribes cereum - Combined Winter Range

Upland cover ~ site type + time_class
time_class site_type variable mean sd min med max n.valid pct.valid
BL core range perc_cover 7.19 6.28 0.33 10.00 15.67 9 100
BL non-core range perc_cover 3.96 2.97 1.00 3.50 8.67 8 100
2013 core range perc_cover 3.67 3.94 0.33 2.00 13.33 9 100
2013 non-core range perc_cover 6.03 6.85 0.33 3.00 20.00 10 100
2018 core range perc_cover 2.38 3.54 0.33 1.33 11.00 8 100
2018 non-core range perc_cover 3.67 4.52 0.33 1.33 12.33 8 100

Modeling and Posterior Description

Prior summary: cover ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.rice' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.14,5.36])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.27 fixed conditional
time_class2018 0.9 -0.1 0.1 0.17 fixed conditional
(phi) 0.9 -0.1 0.1 0.00 fixed conditional
mean_PPD 0.9 -0.1 0.1 0.91 fixed conditional
log-posterior 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.

Upland Shrub Cover, Ribes cereum - Core Winter Range

Upland cover - site type + time_class
time_class site_type variable mean sd min med max n.valid pct.valid
BL core range perc_cover 7.19 6.28 0.33 10.00 15.67 9 100
BL non-core range perc_cover 3.96 2.97 1.00 3.50 8.67 8 100
2013 core range perc_cover 3.67 3.94 0.33 2.00 13.33 9 100
2013 non-core range perc_cover 6.03 6.85 0.33 3.00 20.00 10 100
2018 core range perc_cover 2.38 3.54 0.33 1.33 11.00 8 100
2018 non-core range perc_cover 3.67 4.52 0.33 1.33 12.33 8 100

Modeling and Posterior Description

Prior summary: cover ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.rice.uc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.14,5.36])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.27 fixed conditional
time_class2018 0.9 -0.1 0.1 0.17 fixed conditional
(phi) 0.9 -0.1 0.1 0.00 fixed conditional
mean_PPD 0.9 -0.1 0.1 0.91 fixed conditional
log-posterior 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.

Upland Shrub Cover, Ribes cereum - Noncore Winter Range

Modeling and Posterior Description

Prior summary: cover ~ time_class + (1 | site_id)

## Priors for model 'stmod_cov.rice.unc' 
## ------
## Intercept (after predictors centered)
##  ~ normal(location = 0, scale = 2.5)
## 
## Coefficients
##   Specified prior:
##     ~ normal(location = [0,0], scale = [2.5,2.5])
##   Adjusted prior:
##     ~ normal(location = [0,0], scale = [5.04,5.31])
## 
## Covariance
##  ~ decov(reg. = 1, conc. = 1, shape = 1, scale = 1)
## ------
## See help('prior_summary.stanreg') for more details

Effect Description

Probability of Direction

Region of Practical Equivalence (ROPE)

Percent in ROPE
Parameter CI ROPE_low ROPE_high ROPE_Percentage Effects Component
(Intercept) 0.9 -0.1 0.1 0.00 fixed conditional
time_class2013 0.9 -0.1 0.1 0.18 fixed conditional
time_class2018 0.9 -0.1 0.1 0.16 fixed conditional
(phi) 0.9 -0.1 0.1 0.00 fixed conditional
mean_PPD 0.9 -0.1 0.1 0.44 fixed conditional
log-posterior 0.9 -0.1 0.1 0.00 fixed conditional

Contrasts

EMM summaries with type = “response,” the tests and confidence intervals are done before back-transforming. The ratios estimated are ratios of geometric means. A model with a log response is in fact a model for relative effects of any of its linear predictors, and this back-transformation to ratios goes hand-in-hand with that.

Purshia tridenta

Ribes cereum

Combined range

Core range

Noncore range

References

Gabry J., Mahr T. 2021. “bayesplot: Plotting for Bayesian Models.” R package version 1.8.1, <URL: https://mc-stan.org/bayesplot/>.

Gabray, J., Goodrich, B. 2020a. Estimating Generalized Linear Models for Continuous Data with rstanarm. ver:2020-07-20 <URL:https://mc-stan.org/rstanarm/articles/continuous.html/>.

Gabray, J., Goodrich, B. 2020b. Estimating Generalized Linear Models for Count Data with rstanarm. ver:2020-07-20 <URL:https://mc-stan.org/rstanarm/articles/count.html/>.

Gabray, J., Goodrich, B. 2020c. Modeling Rates/Proportions using Beta Regression with rstanarm. version 2020-07-20 <URL:https://mc-stan.org/rstanarm/articles/betareg.html/>.

Gabry J., Simpson D., Vehtari A., Betancourt M., Gelman A. 2019. “Visualization in Bayesian workflow.” J.R. Stat. Soc. A, 182, 389-402. doi: 10.1111/rssa.12378 (URL: https://doi.org/10.1111/rssa.12378).

Gelman, A., Hill, J., Vehtari, A. 2020. Regression and other stories. Cambridge University Press.

Goodrich B, Gabry J, Ali I & Brilleman S. 2020. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm

Lenth, R.V. 2021. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.3. https://CRAN.R-project.org/package=emmeans

Brilleman, SL, MJ Crowther, M Moreno-Betancur, J Buros Novik, and R Wolfe. 2018. “StatCon 2018. 10-12 Jan 2018.” In. Pacific Grove, CA, USA. https://github.com/stan-dev/stancon_talks/.
Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. 2019. “Visualization in Bayesian Workflow.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 182 (2): 389–402. https://doi.org/10.1111/rssa.12378.
Goodrich, B, J Gabry, I Ali, and S Brilleman. 2020. “Rstanarm: Bayesian Applied Regression Modeling via Stan. R Package Version 2.19.3 Https://Mc-Stan.org/Rstanarm.”
Kruschke, John K. 2018. “Rejecting or Accepting Parameter Values in Bayesian Estimation.” Advances in Methods and Practices in Psychological Science 1 (2): 270–80. https://doi.org/10.1177/2515245918771304.
Makowski, Dominique, Mattan Ben-Shachar, and Daniel Lüdecke. 2019. “bayestestR: Describing Effects and Their Uncertainty, Existence and Significance Within the Bayesian Framework.” Journal of Open Source Software 4 (40): 1541.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garrett Grolemund, Alex Hayes, Lionel Henry, and Jim Hester. 2019. “Welcome to the Tidyverse.” Journal of Open Source Software 4 (43): 1686.
Zeigenfuss, Linda C., and Therese L. Johnson. 2015. “Monitoring of Vegetation Response to Elk Population and Habitat Management in Rocky Mountain National Park, 200814.” Reston, VA. https://doi.org/10.3133/ofr20151216.
Zeigenfuss, Linda C, Therese L Johnson, and Zachary Wiebe. 2011. “Monitoring Plan for Vegetation Responses to Elk Management in Rocky Mountain National Park.”