library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
manipulasiinflow <- read_excel(path = "D:/Matkul Sem2/Linear Algebra/pivot inflow sumatera.xlsx")
manipulasiinflow
## # A tibble: 8 x 12
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Sumatera 57900. 65911. 98369. 8.60e4 86549. 97764. 1.04e5 1.17e5 1.34e5 1.09e5
## 2 Sumater~ 23238. 25981. 18120. 3.05e4 30254. 34427. 3.56e4 4.18e4 4.71e4 3.66e4
## 3 Sumater~  9385. 11192. 14056. 1.41e4 13309. 14078. 1.53e4 1.51e4 1.47e4 1.07e4
## 4 Jambi     1868.  2138.  3047. 5.17e3  4978.  4398. 4.40e3 5.66e3 6.49e3 5.63e3
## 5 Sumater~  7820.  9126.  8647. 1.00e4 10797. 12752. 1.31e4 1.43e4 1.48e4 1.18e4
## 6 Bengkulu  1153.  1201.  2378. 3.26e3  2791.  2889. 3.62e3 4.15e3 5.79e3 4.97e3
## 7 Lampung   7690.  6969.  3474. 9.45e3  8160.  9373. 1.21e4 1.34e4 1.70e4 1.52e4
## 8 Kep. Ba~     0      0      0  1.37e1  1177.  1544. 1.16e3 1.52e3 3.27e3 2.56e3
## # ... with 1 more variable: 2021 <dbl>
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.4     v dplyr   1.0.8
## v tidyr   1.2.0     v stringr 1.4.0
## v readr   2.1.2     v forcats 0.5.1
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
lampungtahun <- select(manipulasiinflow, '2012', '2017','2021')
lampungtahun
## # A tibble: 8 x 3
##   `2012`  `2017` `2021`
##    <dbl>   <dbl>  <dbl>
## 1 65911. 103748. 89270.
## 2 25981.  35617. 31840.
## 3 11192.  15312. 10748.
## 4  2138.   4404.  4980.
## 5  9126.  13075.  9106.
## 6  1201.   3620.  4160.
## 7  6969.  12078. 10697.
## 8     0    1164.  1259.
library(tidyverse)
sumatera2011 <- select(manipulasiinflow, '2011')
sumatera2011
## # A tibble: 8 x 1
##   `2011`
##    <dbl>
## 1 57900.
## 2 23238.
## 3  9385.
## 4  1868.
## 5  7820.
## 6  1153.
## 7  7690.
## 8     0
library(tidyverse)
sumateramin2011 <- select(manipulasiinflow, -'2011')
sumateramin2011
## # A tibble: 8 x 11
##   Provinsi `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020` `2021`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Sumatera 65911. 98369. 8.60e4 86549. 97764. 1.04e5 1.17e5 1.34e5 1.09e5 89270.
## 2 Sumater~ 25981. 18120. 3.05e4 30254. 34427. 3.56e4 4.18e4 4.71e4 3.66e4 31840.
## 3 Sumater~ 11192. 14056. 1.41e4 13309. 14078. 1.53e4 1.51e4 1.47e4 1.07e4 10748.
## 4 Jambi     2138.  3047. 5.17e3  4978.  4398. 4.40e3 5.66e3 6.49e3 5.63e3  4980.
## 5 Sumater~  9126.  8647. 1.00e4 10797. 12752. 1.31e4 1.43e4 1.48e4 1.18e4  9106.
## 6 Bengkulu  1201.  2378. 3.26e3  2791.  2889. 3.62e3 4.15e3 5.79e3 4.97e3  4160.
## 7 Lampung   6969.  3474. 9.45e3  8160.  9373. 1.21e4 1.34e4 1.70e4 1.52e4 10697.
## 8 Kep. Ba~     0      0  1.37e1  1177.  1544. 1.16e3 1.52e3 3.27e3 2.56e3  1259.
library(dplyr)
sumateratahun2 <- manipulasiinflow %>% rename('2010' = '2011')
head(sumateratahun2)
## # A tibble: 6 x 12
##   Provinsi `2010` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Sumatera 57900. 65911. 98369. 86024. 86549. 97764. 1.04e5 1.17e5 1.34e5 1.09e5
## 2 Sumater~ 23238. 25981. 18120. 30503. 30254. 34427. 3.56e4 4.18e4 4.71e4 3.66e4
## 3 Sumater~  9385. 11192. 14056. 14103. 13309. 14078. 1.53e4 1.51e4 1.47e4 1.07e4
## 4 Jambi     1868.  2138.  3047.  5169.  4978.  4398. 4.40e3 5.66e3 6.49e3 5.63e3
## 5 Sumater~  7820.  9126.  8647. 10038. 10797. 12752. 1.31e4 1.43e4 1.48e4 1.18e4
## 6 Bengkulu  1153.  1201.  2378.  3262.  2791.  2889. 3.62e3 4.15e3 5.79e3 4.97e3
## # ... with 1 more variable: 2021 <dbl>
library(dplyr)
bengkulu <- manipulasiinflow %>%
    filter(Provinsi == 'bengkulu') %>%
    select('2011','2012')
bengkulu
## # A tibble: 0 x 2
## # ... with 2 variables: 2011 <dbl>, 2012 <dbl>
library(dplyr)
sumatera2 <- manipulasiinflow %>%
  filter(Provinsi == 'jambi', Provinsi == 'Bengkulu') %>%
  select('2011','2012')
sumatera2
## # A tibble: 0 x 2
## # ... with 2 variables: 2011 <dbl>, 2012 <dbl>
str(manipulasiinflow)
## tibble [8 x 12] (S3: tbl_df/tbl/data.frame)
##  $ Provinsi: chr [1:8] "Sumatera" "Sumatera Utara" "Sumatera Barat" "Jambi" ...
##  $ 2011    : num [1:8] 57900 23238 9385 1868 7820 ...
##  $ 2012    : num [1:8] 65911 25981 11192 2138 9126 ...
##  $ 2013    : num [1:8] 98369 18120 14056 3047 8647 ...
##  $ 2014    : num [1:8] 86024 30503 14103 5169 10038 ...
##  $ 2015    : num [1:8] 86549 30254 13309 4978 10797 ...
##  $ 2016    : num [1:8] 97764 34427 14078 4398 12752 ...
##  $ 2017    : num [1:8] 103748 35617 15312 4404 13075 ...
##  $ 2018    : num [1:8] 117495 41769 15058 5657 14267 ...
##  $ 2019    : num [1:8] 133762 47112 14750 6486 14812 ...
##  $ 2020    : num [1:8] 109345 36609 10696 5628 11756 ...
##  $ 2021    : num [1:8] 89270 31840 10748 4980 9106 ...
str(manipulasiinflow %>% group_by(Provinsi))
## grouped_df [8 x 12] (S3: grouped_df/tbl_df/tbl/data.frame)
##  $ Provinsi: chr [1:8] "Sumatera" "Sumatera Utara" "Sumatera Barat" "Jambi" ...
##  $ 2011    : num [1:8] 57900 23238 9385 1868 7820 ...
##  $ 2012    : num [1:8] 65911 25981 11192 2138 9126 ...
##  $ 2013    : num [1:8] 98369 18120 14056 3047 8647 ...
##  $ 2014    : num [1:8] 86024 30503 14103 5169 10038 ...
##  $ 2015    : num [1:8] 86549 30254 13309 4978 10797 ...
##  $ 2016    : num [1:8] 97764 34427 14078 4398 12752 ...
##  $ 2017    : num [1:8] 103748 35617 15312 4404 13075 ...
##  $ 2018    : num [1:8] 117495 41769 15058 5657 14267 ...
##  $ 2019    : num [1:8] 133762 47112 14750 6486 14812 ...
##  $ 2020    : num [1:8] 109345 36609 10696 5628 11756 ...
##  $ 2021    : num [1:8] 89270 31840 10748 4980 9106 ...
##  - attr(*, "groups")= tibble [8 x 2] (S3: tbl_df/tbl/data.frame)
##   ..$ Provinsi: chr [1:8] "Bengkulu" "Jambi" "Kep. Bangka Belitung" "Lampung" ...
##   ..$ .rows   : list<int> [1:8] 
##   .. ..$ : int 6
##   .. ..$ : int 4
##   .. ..$ : int 8
##   .. ..$ : int 7
##   .. ..$ : int 1
##   .. ..$ : int 3
##   .. ..$ : int 5
##   .. ..$ : int 2
##   .. ..@ ptype: int(0) 
##   ..- attr(*, ".drop")= logi TRUE
sumatera3 <- manipulasiinflow %>%
    group_by(Provinsi)
sumatera3
## # A tibble: 8 x 12
## # Groups:   Provinsi [8]
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Sumatera 57900. 65911. 98369. 8.60e4 86549. 97764. 1.04e5 1.17e5 1.34e5 1.09e5
## 2 Sumater~ 23238. 25981. 18120. 3.05e4 30254. 34427. 3.56e4 4.18e4 4.71e4 3.66e4
## 3 Sumater~  9385. 11192. 14056. 1.41e4 13309. 14078. 1.53e4 1.51e4 1.47e4 1.07e4
## 4 Jambi     1868.  2138.  3047. 5.17e3  4978.  4398. 4.40e3 5.66e3 6.49e3 5.63e3
## 5 Sumater~  7820.  9126.  8647. 1.00e4 10797. 12752. 1.31e4 1.43e4 1.48e4 1.18e4
## 6 Bengkulu  1153.  1201.  2378. 3.26e3  2791.  2889. 3.62e3 4.15e3 5.79e3 4.97e3
## 7 Lampung   7690.  6969.  3474. 9.45e3  8160.  9373. 1.21e4 1.34e4 1.70e4 1.52e4
## 8 Kep. Ba~     0      0      0  1.37e1  1177.  1544. 1.16e3 1.52e3 3.27e3 2.56e3
## # ... with 1 more variable: 2021 <dbl>
manipulasiinflow %>%
    filter(Provinsi == 'jambi') %>%
    count('2011', sort = TRUE)
## # A tibble: 0 x 2
## # ... with 2 variables: "2011" <chr>, n <int>
sumatera4 <- manipulasiinflow %>%
    mutate('2010' = manipulasiinflow$'2011'/2)
sumatera4
## # A tibble: 8 x 13
##   Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 Sumatera 57900. 65911. 98369. 8.60e4 86549. 97764. 1.04e5 1.17e5 1.34e5 1.09e5
## 2 Sumater~ 23238. 25981. 18120. 3.05e4 30254. 34427. 3.56e4 4.18e4 4.71e4 3.66e4
## 3 Sumater~  9385. 11192. 14056. 1.41e4 13309. 14078. 1.53e4 1.51e4 1.47e4 1.07e4
## 4 Jambi     1868.  2138.  3047. 5.17e3  4978.  4398. 4.40e3 5.66e3 6.49e3 5.63e3
## 5 Sumater~  7820.  9126.  8647. 1.00e4 10797. 12752. 1.31e4 1.43e4 1.48e4 1.18e4
## 6 Bengkulu  1153.  1201.  2378. 3.26e3  2791.  2889. 3.62e3 4.15e3 5.79e3 4.97e3
## 7 Lampung   7690.  6969.  3474. 9.45e3  8160.  9373. 1.21e4 1.34e4 1.70e4 1.52e4
## 8 Kep. Ba~     0      0      0  1.37e1  1177.  1544. 1.16e3 1.52e3 3.27e3 2.56e3
## # ... with 2 more variables: 2021 <dbl>, 2010 <dbl>
ggplot(data = manipulasiinflow, mapping = aes(x = Provinsi, y = `2011`)) +
  geom_point()

ggplot(data = manipulasiinflow, mapping = aes(x = Provinsi, y = `2012`)) +
  geom_point()

Revrensi

https://rpubs.com/suhartono-uinmaliki/868598