Model Data Relasional adalah suatu model basis data yang menggunakan tabel dua dimensi, yang terdiri atas baris dan kolom untuk menggambarkan sebuah berkas data. Model ini menunjukkan cara mengelola/mengorganisasikan data secara fisik dalam memory sekunder, yang akan berdampak pula pada bagaimana kita mengelompokkan data dan membentuk keseluruhan data yang terkait dalam sistem yang kita buat.
Relasional data set merupakan kumpulan item data yang memiliki perpaduan atau hubungan yang telah ditentukan sebelumnya. Berbagai item ini diatur sebagai satu set tabel menggunakan kolom dan baris. Tabel digunakan untuk menyimpan informasi tentang objek yang ditampilkan dalam database. Tiap kolom dalam tabel memuat tipe data ekskusif , dan bidang tersebut menyimpan nilai aktual atribut. Baris dalam tabel mempresentasikan perpaduan nilai terkait berdasarkan satu objek atau entitas. Tiap baris pada tabel dapat ditandai dengan pengidentifikasi unik yang disebut kunci utama (keyword), dan baris di antara beberapa tabel dapat dibuat saling terkait menggunakan kunci asing. Berikut tahapan dalam menerapkan relasional data set pada RStudio menggunakan bahasa pemrograman R.
Langkah 1 yang harus dilakukan dalam menerapkan relasional data set pada RStudio adalah dengan menginstal packages atau library tidyverse.
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Karyawan <- data.frame(NIP = c(195806041981011008, 195807101986031000, 196109031986031000, 195911301983111002, 195702191983031006, 196002161984022000, 195801261986031006, 197709092007012007, 196005061981032004, 196201121985022003, 196307191986032007,195906101988031006, 196010041986032006, 196611111994032007, 196409191995031003, 196711062007011029, 196904122009062001, 197011102009061009, 197311092010011003), 'NAMA'= c("ASEP RAHMADI, S.IP", "M. QUDRAT WIWAHANA, SH", " DRS. H. TETEN FATAHILLAH", " R. DEDI SUDRAJAT", "T. RACHMAT SAID, BA", "FADJAR DEWI, SP", " H. SUGENG PRAPTO, SH", " NIA HERLINA, SE", "R. SITI JUHRIAH, S.AP", "YAYU YULIA", "SUSSY SUHARTATI RACHMAN", "ASEP NANA RACHMAT, BA", " Hj. EUIS SUPRIATI", "DEWI RATNA SAR", " ASEP RAHAYU", " IMANUDIN", "ONENG RUSKASIH", " CUCU SUANDA", " ENDI SUHENDI"), stringsAsFactors = FALSE)
Karyawan
Pangkat <- data.frame(NIP = c(195806041981011008, 195807101986031000, 196109031986031000, 195911301983111002, 195702191983031006, 196002161984022000, 195801261986031006, 197709092007012007, 196005061981032004, 196201121985022003, 196307191986032007,195906101988031006, 196010041986032006, 196611111994032007, 196409191995031003, 196711062007011029, 196904122009062001, 197011102009061009, 197311092010011003), Pangkat = c("Pembina IVa", "Pembina IVa", " Penata Tk. I, IIId", " Penata Tk. I, IIId", " Penata Tk. I, IIId", " Penata Tk. I, IIId", " Penata Tk. I, IIId", "Penata IIIb", " Penata Tk. I, IIId", "Penata Muda Tk. I, IIIc", "Penata IIIb", "Penata Muda Tk. I, IIIc", " Penata IIIb", "Penata Muda IIIa", "Penata Muda IIIa", " Pengatur IIb", "Pengatur Muda IIa", "Pengatur Muda IIa", "Juru Ic"), stringsAsFactors = FALSE)
Pangkat
Jabatan <- data.frame(NIP = c(195806041981011008, 195807101986031000, 196109031986031000, 195911301983111002, 195702191983031006, 196002161984022000, 195801261986031006, 197709092007012007, 196005061981032004, 196201121985022003, 196307191986032007,195906101988031006, 196010041986032006, 196611111994032007, 196409191995031003, 196711062007011029, 196904122009062001, 197011102009061009, 197311092010011003), Jabatan = c("CAMAT", "SEKRETARIS KECAMATAN", "KASI TRANTIBUM", "KASI PEMERINTAHAN", " KASI PEMELIHARAAN PRASARANA UMUM", " KASI PEMBERDAYAAN MASYARAKAT", " KASI SOSIAL BUDAYA", "KASUBAG PROGRAM", " KASUBAG KEUANGAN", "KASUBAG UMUM KEPEGAWAIAN", "BENDAHARA BARANG", " PELAKSANA", " ARSIPARIS", "BENDAHARA PENERIMAAN", "BENDAHARA PENGELUARAN", " SEKDES CIKADUT", "SEKDES MANDALAMEKAR", "SEKDES CIBURIAL", " SEKDES MEKARMANIK
"), stringsAsFactors = FALSE)
Jabatan
Karyawan <- data.frame(NIP = c(195806041981011008, 195807101986031000, 196109031986031000, 195911301983111002, 195702191983031006, 196002161984022000, 195801261986031006, 197709092007012007, 196005061981032004, 196201121985022003, 196307191986032007,195906101988031006, 196010041986032006, 196611111994032007, 196409191995031003, 196711062007011029, 196904122009062001, 197011102009061009, 197311092010011003), 'NAMA'= c("ASEP RAHMADI, S.IP", "M. QUDRAT WIWAHANA, SH", " DRS. H. TETEN FATAHILLAH", " R. DEDI SUDRAJAT", "T. RACHMAT SAID, BA", "FADJAR DEWI, SP", " H. SUGENG PRAPTO, SH", " NIA HERLINA, SE", "R. SITI JUHRIAH, S.AP", "YAYU YULIA", "SUSSY SUHARTATI RACHMAN", "ASEP NANA RACHMAT, BA", " Hj. EUIS SUPRIATI", "DEWI RATNA SAR", " ASEP RAHAYU", " IMANUDIN", "ONENG RUSKASIH", " CUCU SUANDA", " ENDI SUHENDI"), stringsAsFactors = FALSE)
Karyawan
innerjoin <- Karyawan %>%
inner_join(Jabatan, by = "NIP")
innerjoin
1.A left joint
leftjoin <- left_join(Karyawan,Jabatan)
## Joining, by = "NIP"
2.A right joint
rightjoin <- right_join(Karyawan,Jabatan)
## Joining, by = "NIP"
3.A full joint
fulljoin <- full_join(Pangkat,Jabatan)
## Joining, by = "NIP"
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.