Datos equipo Jessica y Paola
Crear entorno
library(tidyverse)
library(readxl)
Cargando los datos
la_union = 1
san_luis = 2
Rows: 152 Columns: 11
── Column specification ──────────────────────────────────────────────────────────────────────
Delimiter: ","
chr (1): municipio
dbl (10): codigo, edad, n_hijos, a_escolar, brif_p, upnt3_2, upnt3_3, upnt5_3, upnt5_4, ti...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
0 7 - nada autorregulado 8 15 - medianamente autorregulado 16 - Autorregulado
Análisis descriptivo
Autorregulación
brif-p = autorregulación
A menor valor mayor autorregulación
Boxplot

Si hay diferencias significativas?
t.test(brif_p ~ municipio, datos_jess_pao)
Welch Two Sample t-test
data: brif_p by municipio
t = 1.8442, df = 125.51, p-value = 0.06752
alternative hypothesis: true difference in means between group La Union and group San Luis is not equal to 0
95 percent confidence interval:
-0.3989971 11.3087431
sample estimates:
mean in group La Union mean in group San Luis
40.21311 34.75824
Dado que p-value (0.06752) es mayor que alpha (0.05) , no se dispone de evidencia suficiente para considerar que existe una diferencia entre el peso promedio de niños nacidos de madres fumadores y el de madres no fumadoras.
Consumo
Internet
upnt3_2 = uso del Internet horas a la semana upnt3_3 = uso del Internet horas al día
Teléfono móvil
upnt5_3 = uso del teléfono móvil horas a la semana upnt5_4 = uso del teléfono móvil horas al día
Análisis inferencial
H1
H1: a mayor consumo de internet en horas a la semana por parte de los cuidadores menor capacidad de autorregulación de los niños.
Agrupado
Correlación de Pearson
cor.test(datos_jess_pao$brif_p, datos_jess_pao$upnt3_3)
Pearson's product-moment correlation
data: datos_jess_pao$brif_p and datos_jess_pao$upnt3_3
t = 2.5545, df = 150, p-value = 0.01163
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.0464880 0.3519385
sample estimates:
cor
0.2041776
Por municipio
La union
datos_jess_pao_la_union <-
datos_jess_pao %>%
filter(municipio == "La Union")
cor.test(datos_jess_pao_la_union$brif_p,
datos_jess_pao_la_union$upnt3_3)
Pearson's product-moment correlation
data: datos_jess_pao_la_union$brif_p and datos_jess_pao_la_union$upnt3_3
t = 1.937, df = 59, p-value = 0.05754
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.007777789 0.467552735
sample estimates:
cor
0.2445219
La union
cor.test(datos_jess_pao_san_luis$brif_p,
datos_jess_pao_san_luis$upnt3_3)
Pearson's product-moment correlation
data: datos_jess_pao_san_luis$brif_p and datos_jess_pao_san_luis$upnt3_3
t = 2.4612, df = 89, p-value = 0.01578
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.04903748 0.43572566
sample estimates:
cor
0.252433
H2
H2: a mayor consumo del celular en horas a la semana por parte de los cuidadores menor capacidad de autorregulación de los niños.
summary(lm(brif_p ~ upnt3_3 , datos_jess_pao))
Agrupado
Correlación de Pearson
cor.test(datos_jess_pao$brif_p, datos_jess_pao$upnt5_3)
Pearson's product-moment correlation
data: datos_jess_pao$brif_p and datos_jess_pao$upnt5_3
t = 2.0259, df = 150, p-value = 0.04455
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.004102685 0.314233386
sample estimates:
cor
0.1631968
Por municipio
La union
datos_jess_pao_la_union <-
datos_jess_pao %>%
filter(municipio == "La Union")
cor.test(datos_jess_pao_la_union$brif_p,
datos_jess_pao_la_union$upnt5_3)
Pearson's product-moment correlation
data: datos_jess_pao_la_union$brif_p and datos_jess_pao_la_union$upnt5_3
t = 2.3117, df = 59, p-value = 0.0243
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.03922012 0.50347630
sample estimates:
cor
0.2881945
La union
datos_jess_pao_san_luis <-
datos_jess_pao %>%
filter(municipio == "San Luis")
cor.test(datos_jess_pao_san_luis$brif_p,
datos_jess_pao_san_luis$upnt5_3)
Pearson's product-moment correlation
data: datos_jess_pao_san_luis$brif_p and datos_jess_pao_san_luis$upnt5_3
t = 1.1877, df = 89, p-value = 0.2381
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.08317493 0.32255679
sample estimates:
cor
0.1249096
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCmVkaXRvcl9vcHRpb25zOiAKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCi0tLQoKRGF0b3MgZXF1aXBvIEplc3NpY2EgeSBQYW9sYQoKIyBDcmVhciBlbnRvcm5vCgpgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkocmVhZHhsKQpgYGAKCiMgQ2FyZ2FuZG8gbG9zIGRhdG9zCgpsYV91bmlvbiA9IDEKCnNhbl9sdWlzID0gMgoKYGBge3IsIGVjaG89RkFMU0V9CmRhdG9zX2plc3NfcGFvIDwtIAogIHJlYWRfY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC8xcEloQmVlcVFfd3FsazVjSTNqaWVDNTROcXkwYVZSa1hkQUNmOGxVSTJlWS9leHBvcnQ/Zm9ybWF0PWNzdiZnaWQ9MTQ5NDcyMTQ1MiIpICU+JSAKICBzZWxlY3QoLWNvZGlnbykgJT4lIAogIG11dGF0ZShhX2VzY29sYXIgPSBpZmVsc2UoYV9lc2NvbGFyID09IDUsICJwcmltYXJpYSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKGFfZXNjb2xhciA9PSAxMSAsICJiYWNoaWxsZXIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKGFfZXNjb2xhciA9PSAxMywgInTDqWNuaWNvL3RlY27Ds2xvZ28iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UoYV9lc2NvbGFyID09IDE1LCAidW5pdmVyc2l0YXJpbyIsYV9lc2NvbGFyKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApKSkgJT4lIAogIG11dGF0ZSh1cG50M18yX3JhbmdvcyA9IGlmZWxzZSh1cG50M18yID09IDEsICJkZSAxIGEgMiBob3JhcyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKHVwbnQzXzIgPT0gMiAsICJkZSAyIGEgNSBob3JhcyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UodXBudDNfMiA9PSAzLCAiZGUgNSBhIDEwIGhvcmFzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKHVwbnQzXzIgPT0gNCwgIm3DoXMgZGUgMTAgaG9yYXMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdXBudDNfMikKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKSkpICU+JSAKICBtdXRhdGUodXBudDVfM19yYW5nb3MgPSBpZmVsc2UodXBudDVfMyA9PSAxLCAiZGUgMSBhIDIgaG9yYXMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlmZWxzZSh1cG50NV8zID09IDIgLCAiZGUgMiBhIDUgaG9yYXMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKHVwbnQ1XzMgPT0gMywgImRlIDUgYSAxMCBob3JhcyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlmZWxzZSh1cG50NV8zID09IDQsICJtw6FzIGRlIDEwIGhvcmFzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHVwbnQ1XzMpCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICkpKSAlPiUgCiAgbXV0YXRlKHVwbnQzXzJfcmFuZ29zID0gaWZlbHNlKHVwbnQzXzIgPT0gMSwgImRlIDEgYSAyIGhvcmFzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UodXBudDNfMiA9PSAyICwgImRlIDIgYSA1IGhvcmFzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlmZWxzZSh1cG50M18yID09IDMsICJkZSA1IGEgMTAgaG9yYXMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UodXBudDNfMiA9PSA0LCAibcOhcyBkZSAxMCBob3JhcyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB1cG50M18yKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApKSkgJT4lIAogIG11dGF0ZSh0aWVuZGFfcmFuZ29zID0gaWZlbHNlKHRpZW5kYSA8PSA3LCAibmFkYSBhdXRvcnJlZ3VsYWRvIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UodGllbmRhID49IDggJiB0aWVuZGEgPD0gMTUgLCAibWVkaWFuYW1lbnRlIGF1dG9ycmVndWxhZG8iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKHRpZW5kYSA+PSAxNiwgIkF1dG9ycmVndWxhZG8iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGllbmRhKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICApKQpgYGAKCgowIDcgLSBuYWRhIGF1dG9ycmVndWxhZG8KOCAxNSAtIG1lZGlhbmFtZW50ZSBhdXRvcnJlZ3VsYWRvCjE2IC0gIEF1dG9ycmVndWxhZG8KCgojIEFuw6FsaXNpcyBkZXNjcmlwdGl2bwoKIyMgQW7DoWxpc2lzIGRlbW9ncsOhZmljbwoKIyMjIEVkYWQKCmBgYHtyfQpkYXRvc19qZXNzX3BhbyAlPiUgCiAgZ3JvdXBfYnkobXVuaWNpcGlvKSAlPiUgCiAgc3VtbWFyaXplKGVkYWRfY3VlbnRhID0gbigpLAogICAgICAgICAgICBlZGFkX21lYW4gPSBtZWFuKGVkYWQpLCAKICAgICAgICAgICAgZWRhZF9zZCA9IHNkKGVkYWQpKQogIApgYGAKIyMjIGhpam9zCgpgYGB7cn0KZGF0b3NfamVzc19wYW8gJT4lIAogIGdyb3VwX2J5KG11bmljaXBpbykgJT4lIAogIGNvdW50KG5faGlqb3MpCmBgYAojIyMgRXNjb2xhcmlkYWQKCmBgYHtyfQpkYXRvc19qZXNzX3BhbyAlPiUgCiAgZ3JvdXBfYnkobXVuaWNpcGlvKSAlPiUgCiAgY291bnQoYV9lc2NvbGFyKQpgYGAKCiMjIEF1dG9ycmVndWxhY2nDs24KCmJyaWYtcCA9IGF1dG9ycmVndWxhY2nDs24KCmBgYHtyfQpkYXRvc19qZXNzX3BhbyAlPiUgCiAgZ3JvdXBfYnkobXVuaWNpcGlvKSAlPiUgCiAgc3VtbWFyaXplKGJyaWZfcF9tZWFuID0gbWVhbihicmlmX3ApLAogICAgICAgICAgICBicmlmX3Bfc2QgPSBzZChicmlmX3ApKQpgYGAKQSBtZW5vciB2YWxvciBtYXlvciBhdXRvcnJlZ3VsYWNpw7NuCgpCb3hwbG90CgpgYGB7cn0KZGF0b3NfamVzc19wYW8gJT4lIAogIGdncGxvdChhZXMoeCA9IGJyaWZfcCwgCiAgICAgICAgICAgICB5ID0gbXVuaWNpcGlvKSkgKwogIGdlb21fYm94cGxvdCgpCmBgYApTaSBoYXkgZGlmZXJlbmNpYXMgc2lnbmlmaWNhdGl2YXM/CgpgYGB7cn0KdC50ZXN0KGJyaWZfcCB+IG11bmljaXBpbywgZGF0b3NfamVzc19wYW8pCmBgYApEYWRvIHF1ZSBwLXZhbHVlICgwLjA2NzUyKSBlcyBtYXlvciBxdWUgYWxwaGEgKDAuMDUpICwgbm8gc2UgZGlzcG9uZSBkZSBldmlkZW5jaWEgc3VmaWNpZW50ZSBwYXJhIGNvbnNpZGVyYXIgcXVlIGV4aXN0ZSB1bmEgZGlmZXJlbmNpYSBlbnRyZSBlbCBwZXNvIHByb21lZGlvIGRlIG5pw7FvcyBuYWNpZG9zIGRlIG1hZHJlcyBmdW1hZG9yZXMgeSBlbCBkZSBtYWRyZXMgbm8gZnVtYWRvcmFzLgoKIyMgQ29uc3VtbwoKIyMjIEludGVybmV0IAoKdXBudDNfMiA9IHVzbyBkZWwgSW50ZXJuZXQgaG9yYXMgYSBsYSBzZW1hbmEKdXBudDNfMyA9IHVzbyBkZWwgSW50ZXJuZXQgaG9yYXMgYWwgZMOtYQoKCmBgYHtyfQpkYXRvc19qZXNzX3BhbyAlPiUgCiAgZ3JvdXBfYnkobXVuaWNpcGlvKSAlPiUgCiAgY291bnQodXBudDNfMl9yYW5nb3MpICU+JSAKICBtdXRhdGUocG9yY2VudGFqZSA9IG4gLyA2MSAqIDEwMCkKYGBgCmBgYHtyfQpkYXRvc19qZXNzX3BhbyAlPiUgCiAgZ3JvdXBfYnkobXVuaWNpcGlvKSAlPiUgCiAgY291bnQodXBudDNfMykKYGBgCiMjIyBUZWzDqWZvbm8gbcOzdmlsCgp1cG50NV8zID0gdXNvIGRlbCB0ZWzDqWZvbm8gbcOzdmlsIGhvcmFzIGEgbGEgc2VtYW5hCnVwbnQ1XzQgPSB1c28gZGVsIHRlbMOpZm9ubyBtw7N2aWwgaG9yYXMgYWwgZMOtYQoKYGBge3J9CmRhdG9zX2plc3NfcGFvICU+JSAKICBncm91cF9ieShtdW5pY2lwaW8pICU+JSAKICBjb3VudCh1cG50NV8zX3JhbmdvcykgJT4lIAogIG11dGF0ZShwb3JjZW50YWplID0gbiAvIDYxICogMTAwKSAjIGhheSBxdWUgY29ycmVnaXIKYGBgCmBgYHtyfQpkYXRvc19qZXNzX3BhbyAlPiUgCiAgZ3JvdXBfYnkobXVuaWNpcGlvKSAlPiUgCiAgY291bnQodXBudDVfNCkKYGBgCiMjIFRpZW5kYXMKCmBgYHtyfQpkYXRvc19qZXNzX3BhbyAlPiUgCiAgZ3JvdXBfYnkobXVuaWNpcGlvKSAlPiUgCiAgY291bnQodGllbmRhX3JhbmdvcykgICMgcmV2aXNhciBwb3JjZW50YWplcyBkZSBjYWRhIHBvYmxhY2nDs24KYGBgCgojIEFuw6FsaXNpcyBpbmZlcmVuY2lhbAoKIyMgSDEKCkgxOiBhIG1heW9yIGNvbnN1bW8gZGUgaW50ZXJuZXQgZW4gaG9yYXMgYSBsYSBzZW1hbmEgcG9yIHBhcnRlIGRlIGxvcyBjdWlkYWRvcmVzIG1lbm9yIGNhcGFjaWRhZCBkZSBhdXRvcnJlZ3VsYWNpw7NuIGRlIGxvcyBuacOxb3MuIAoKIyMgQWdydXBhZG8KCkNvcnJlbGFjacOzbiBkZSBQZWFyc29uCgpgYGB7cn0KY29yLnRlc3QoZGF0b3NfamVzc19wYW8kYnJpZl9wLCBkYXRvc19qZXNzX3BhbyR1cG50M18zKSAKYGBgCiMjIFBvciBtdW5pY2lwaW8KCiMjIyBMYSB1bmlvbgoKYGBge3J9CmRhdG9zX2plc3NfcGFvX2xhX3VuaW9uIDwtIAogIGRhdG9zX2plc3NfcGFvICU+JSAKICBmaWx0ZXIobXVuaWNpcGlvID09ICJMYSBVbmlvbiIpCiAgCmNvci50ZXN0KGRhdG9zX2plc3NfcGFvX2xhX3VuaW9uJGJyaWZfcCwgCiAgICAgICAgIGRhdG9zX2plc3NfcGFvX2xhX3VuaW9uJHVwbnQzXzMpIApgYGAKIyMjIExhIHVuaW9uCgpgYGB7cn0KZGF0b3NfamVzc19wYW9fc2FuX2x1aXMgPC0gCiAgZGF0b3NfamVzc19wYW8gJT4lIAogIGZpbHRlcihtdW5pY2lwaW8gPT0gIlNhbiBMdWlzIikKICAKY29yLnRlc3QoZGF0b3NfamVzc19wYW9fc2FuX2x1aXMkYnJpZl9wLCAKICAgICAgICAgZGF0b3NfamVzc19wYW9fc2FuX2x1aXMkdXBudDNfMykgCmBgYAojIyBIMgoKSDI6IGEgbWF5b3IgY29uc3VtbyBkZWwgY2VsdWxhciBlbiBob3JhcyBhIGxhIHNlbWFuYSBwb3IgcGFydGUgZGUgbG9zIGN1aWRhZG9yZXMgbWVub3IgY2FwYWNpZGFkIGRlIGF1dG9ycmVndWxhY2nDs24gZGUgbG9zIG5pw7Fvcy4gCgoKCmBgYHtyfQpzdW1tYXJ5KGxtKGJyaWZfcCB+IHVwbnQzXzMgLCBkYXRvc19qZXNzX3BhbykpCmBgYAojIyBBZ3J1cGFkbwoKQ29ycmVsYWNpw7NuIGRlIFBlYXJzb24KCmBgYHtyfQpjb3IudGVzdChkYXRvc19qZXNzX3BhbyRicmlmX3AsIGRhdG9zX2plc3NfcGFvJHVwbnQ1XzMpIApgYGAKIyMgUG9yIG11bmljaXBpbwoKIyMjIExhIHVuaW9uCgpgYGB7cn0KZGF0b3NfamVzc19wYW9fbGFfdW5pb24gPC0gCiAgZGF0b3NfamVzc19wYW8gJT4lIAogIGZpbHRlcihtdW5pY2lwaW8gPT0gIkxhIFVuaW9uIikKICAKY29yLnRlc3QoZGF0b3NfamVzc19wYW9fbGFfdW5pb24kYnJpZl9wLCAKICAgICAgICAgZGF0b3NfamVzc19wYW9fbGFfdW5pb24kdXBudDVfMykgCmBgYAojIyMgTGEgdW5pb24KCmBgYHtyfQpkYXRvc19qZXNzX3Bhb19zYW5fbHVpcyA8LSAKICBkYXRvc19qZXNzX3BhbyAlPiUgCiAgZmlsdGVyKG11bmljaXBpbyA9PSAiU2FuIEx1aXMiKQogIApjb3IudGVzdChkYXRvc19qZXNzX3Bhb19zYW5fbHVpcyRicmlmX3AsIAogICAgICAgICBkYXRvc19qZXNzX3Bhb19zYW5fbHVpcyR1cG50NV8zKSAKYGBgCgoKCgoKCgo=