Turk Hava Yolları

library(quantmod)
## Zorunlu paket yükleniyor: xts
## Zorunlu paket yükleniyor: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Zorunlu paket yükleniyor: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
getSymbols("THYAO.IS")
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## 
## This message is shown once per session and may be disabled by setting 
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## Warning: THYAO.IS contains missing values. Some functions will not work if
## objects contain missing values in the middle of the series. Consider using
## na.omit(), na.approx(), na.fill(), etc to remove or replace them.
## [1] "THYAO.IS"
dim(THYAO.IS)
## [1] 3904    6
head(THYAO.IS)
##            THYAO.IS.Open THYAO.IS.High THYAO.IS.Low THYAO.IS.Close
## 2007-01-05      0.779862      0.805223     0.773521       0.798883
## 2007-01-08      0.779862      0.798883     0.779862       0.786202
## 2007-01-09      0.792542      0.792542     0.773521       0.779862
## 2007-01-10      0.773521      0.805223     0.773521       0.798883
## 2007-01-11      0.824244      0.855946     0.824244       0.843265
## 2007-01-12      0.855946      0.862286     0.843265       0.843265
##            THYAO.IS.Volume THYAO.IS.Adjusted
## 2007-01-05        31381816          0.736275
## 2007-01-08         8447107          0.724588
## 2007-01-09        11883491          0.718745
## 2007-01-10        11575243          0.736275
## 2007-01-11        11341651          0.777179
## 2007-01-12        13076897          0.777179
tail(THYAO.IS)
##            THYAO.IS.Open THYAO.IS.High THYAO.IS.Low THYAO.IS.Close
## 2022-02-18         29.24         29.60        28.64          29.40
## 2022-02-21         29.90         30.04        28.92          29.44
## 2022-02-22         28.58         29.18        28.28          28.88
## 2022-02-23         29.08         29.18        28.08          28.08
## 2022-02-24         25.30         25.90        25.28          25.28
## 2022-02-25         25.16         27.54        23.92          27.30
##            THYAO.IS.Volume THYAO.IS.Adjusted
## 2022-02-18       133787733             29.40
## 2022-02-21       177077000             29.44
## 2022-02-22       140227591             28.88
## 2022-02-23       108544470             28.08
## 2022-02-24        58637916             25.28
## 2022-02-25       255281231             27.30
chartSeries(THYAO.IS, theme="white")

Apple

library(quantmod)
getSymbols("AAPL")
## [1] "AAPL"
dim(AAPL)
## [1] 3815    6
head(AAPL)
##            AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
## 2007-01-03  3.081786  3.092143 2.925000   2.992857  1238319600      2.562706
## 2007-01-04  3.001786  3.069643 2.993571   3.059286   847260400      2.619587
## 2007-01-05  3.063214  3.078571 3.014286   3.037500   834741600      2.600933
## 2007-01-08  3.070000  3.090357 3.045714   3.052500   797106800      2.613777
## 2007-01-09  3.087500  3.320714 3.041071   3.306071  3349298400      2.830903
## 2007-01-10  3.383929  3.492857 3.337500   3.464286  2952880000      2.966379
tail(AAPL)
##            AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume AAPL.Adjusted
## 2022-02-17    171.03    171.91   168.47     168.88    69589300        168.88
## 2022-02-18    169.82    170.54   166.19     167.30    82614200        167.30
## 2022-02-22    164.98    166.69   162.15     164.32    91162800        164.32
## 2022-02-23    165.54    166.15   159.75     160.07    90009200        160.07
## 2022-02-24    152.58    162.85   152.00     162.74   141147500        162.74
## 2022-02-25    163.84    165.12   160.87     164.85    91881700        164.85
chartSeries(AAPL, theme="white")

Consumer Price Index: All Items for Turkey

getSymbols("TURCPIALLMINMEI",src="FRED")
## [1] "TURCPIALLMINMEI"
## [1] "TURCPIALLMINMEI"
chartSeries(TURCPIALLMINMEI,theme="white") 

Current surplus of government enterprises

getSymbols("A108RC1Q027SBEA",src="FRED")
## [1] "A108RC1Q027SBEA"
## [1] "A108RC1Q027SBEA"
chartSeries(A108RC1Q027SBEA,theme="white")

Renewable energy consumption (% of total final energy consumption)

library(WDI)
df = WDI(indicator='EG.FEC.RNEW.ZS', country=c('UK','TR','US'), start=1990, end=2018)
## Warning in WDI(indicator = "EG.FEC.RNEW.ZS", country = c("UK", "TR", "US"), :
## Please use ISO-2, ISO-3, or World Bank regional codes. Some of the country codes
## that you requested are invalid: UK
head(df)
##   iso2c country EG.FEC.RNEW.ZS year
## 1    TR  Turkey        11.8740 2018
## 2    TR  Turkey        11.4030 2017
## 3    TR  Turkey        13.2256 2016
## 4    TR  Turkey        13.3374 2015
## 5    TR  Turkey        11.5133 2014
## 6    TR  Turkey        13.7954 2013
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
## 
##     first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Forest area

library(WDI)
df = WDI(indicator='AG.LND.FRST.K2', country=c('UK','TR','GER'), start=1990, end=2020)
## Warning in WDI(indicator = "AG.LND.FRST.K2", country = c("UK", "TR", "GER"), :
## Please use ISO-2, ISO-3, or World Bank regional codes. Some of the country codes
## that you requested are invalid: UK, GER
head(df)
##   iso2c country AG.LND.FRST.K2 year
## 1    TR  Turkey       222203.6 2020
## 2    TR  Turkey       220643.6 2019
## 3    TR  Turkey       219083.6 2018
## 4    TR  Turkey       217524.6 2017
## 5    TR  Turkey       216303.0 2016
## 6    TR  Turkey       216303.0 2015