#Aljabar Matriks dan Geometri Sampel

Keterangan

Source Image: Analisis Peubah Ganda

Source Image: Analisis Peubah Ganda

#Membuat matrix 3 x 3
A <-matrix(c(3,5,2,6,4,8,7,9,5), nrow = 3)
A
##      [,1] [,2] [,3]
## [1,]    3    6    7
## [2,]    5    4    9
## [3,]    2    8    5
B <-matrix(c(1,3,2,5,7,5,8,3,4), nrow = 3)
B
##      [,1] [,2] [,3]
## [1,]    1    5    8
## [2,]    3    7    3
## [3,]    2    5    4
C <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol = 3, byrow = TRUE,
               dimnames = list(c("row1", "row2"),
                               c("C.1", "C.2", "C.3")))
C
##      C.1 C.2 C.3
## row1   1   2   3
## row2  11  12  13
#Perkalian matrix A dan B
A%*%B
##      [,1] [,2] [,3]
## [1,]   35   92   70
## [2,]   35   98   88
## [3,]   36   91   60
#Perkalian matrix A dan matriks B dan transpose(matrix c)
A%*%B%*%t(C)
##      row1 row2
## [1,]  429 2399
## [2,]  495 2705
## [3,]  398 2268
#cross product
crossprod(A,B)
##      [,1] [,2] [,3]
## [1,]   22   60   47
## [2,]   34   98   92
## [3,]   44  123  103
#transpose matrix
 t(A)
##      [,1] [,2] [,3]
## [1,]    3    5    2
## [2,]    6    4    8
## [3,]    7    9    5
 t(C)
##     row1 row2
## C.1    1   11
## C.2    2   12
## C.3    3   13
#inverse matriks
solve(A)
##            [,1]        [,2]       [,3]
## [1,] -2.0000000  1.00000000  1.0000000
## [2,] -0.2692308  0.03846154  0.3076923
## [3,]  1.2307692 -0.46153846 -0.6923077
#Determinant matrix
det(A)
## [1] 26
#identify diagonal of matrix
diag(A)
## [1] 3 4 5
#Membuat matrix diagonal
diag(c(2,4,3),3,3) #diagonal matrix size 3x3
##      [,1] [,2] [,3]
## [1,]    2    0    0
## [2,]    0    4    0
## [3,]    0    0    3
diag(2) #create identity matrix sized 2x2
##      [,1] [,2]
## [1,]    1    0
## [2,]    0    1
#eigen value square matrix
eigen(A)
## eigen() decomposition
## $values
## [1] 16.3243746 -3.9178477 -0.4065269
## 
## $vectors
##            [,1]        [,2]       [,3]
## [1,] -0.5647567 -0.03865392 -0.8292486
## [2,] -0.6237354 -0.73949409 -0.1554778
## [3,] -0.5403739  0.67205235  0.5368178
eigen(B)
## eigen() decomposition
## $values
## [1] 12.5023175 -1.1360018  0.6336843
## 
## $vectors
##            [,1]        [,2]       [,3]
## [1,] -0.6140401 -0.94255286  0.8083083
## [2,] -0.6087174  0.33104496 -0.5151917
## [3,] -0.5024121  0.04475873  0.2849828
#Geometri Sampel

Keterangan

Source Image: Analisis Peubah Ganda

Source Image: Analisis Peubah Ganda

#a. Membuat matriks (input data)
y1<-c(35,35,40,10,6,20,35,35,35,30)
y2<-c(3.5,4.9,30,2.8,2.7,2.8,4.6,10.9,8,1.6)
y3<-c(2.8,2.7,4.38,3.21,2.73,2.81,2.88,2.9,3.28,3.2)

#convert data menjadi data frame
Ydat<-data.frame(y1,y2,y3)
Ydat
##    y1   y2   y3
## 1  35  3.5 2.80
## 2  35  4.9 2.70
## 3  40 30.0 4.38
## 4  10  2.8 3.21
## 5   6  2.7 2.73
## 6  20  2.8 2.81
## 7  35  4.6 2.88
## 8  35 10.9 2.90
## 9  35  8.0 3.28
## 10 30  1.6 3.20
#hitung mean setiap variabel
ybar<-apply(Ydat,2,mean)
ybar
##     y1     y2     y3 
## 28.100  7.180  3.089
#menghitung jarak
d1<-y1-ybar[1]
d2<-y2-ybar[2]
d3<-y3-ybar[3]
dmat<-matrix(c(d1,d2,d3),ncol=3)

#Atau matriks jarak juga bisa kita peroleh sbb:
#dmat<-Ydat-matrix(rep(ybar,10),nrow = 10,byrow = TRUE)

#Maka matriks kovarians Sn
Sn<-(1/10)*t(dmat)%*%dmat
print(dmat)
##        [,1]  [,2]   [,3]
##  [1,]   6.9 -3.68 -0.289
##  [2,]   6.9 -2.28 -0.389
##  [3,]  11.9 22.82  1.291
##  [4,] -18.1 -4.38  0.121
##  [5,] -22.1 -4.48 -0.359
##  [6,]  -8.1 -4.38 -0.279
##  [7,]   6.9 -2.58 -0.209
##  [8,]   6.9  3.72 -0.189
##  [9,]   6.9  0.82  0.191
## [10,]   1.9 -5.58  0.111
print(Sn)
##          [,1]     [,2]     [,3]
## [1,] 126.4900 44.71200 1.747100
## [2,]  44.7120 65.02360 3.308480
## [3,]   1.7471  3.30848 0.225109

Keterangan

Source Image: Analisis Peubah Ganda Source Image: Analisis Peubah Ganda

#Cara 1
S <- (10/9)*Sn
S
##            [,1]      [,2]      [,3]
## [1,] 140.544444 49.680000 1.9412222
## [2,]  49.680000 72.248444 3.6760889
## [3,]   1.941222  3.676089 0.2501211
#Cara 2
S<-cov(Ydat)
S
##            y1        y2        y3
## y1 140.544444 49.680000 1.9412222
## y2  49.680000 72.248444 3.6760889
## y3   1.941222  3.676089 0.2501211

Keterangan

Source Image: Analisis Peubah Ganda

Source Image: Analisis Peubah Ganda

#b. Matriks korelasi
#define Ds

Ds<-diag(c(sqrt(S[1,1]),sqrt(S[2,2]),sqrt(S[3,3])))
#inverse matriks Ds
invDs<-solve(Ds)
#Hitung matriks korelasi R
Rmat<-invDs%*%S%*%invDs
print(Rmat)
##           [,1]      [,2]     [,3]
## [1,] 1.0000000 0.4930154 0.327411
## [2,] 0.4930154 1.0000000 0.864762
## [3,] 0.3274110 0.8647620 1.000000
#Generalized variance adalah determinan dari matriks kovarian (unbiased):
GenVar<-det(S)
GenVar
## [1] 459.9555