Data
Search for Best Configuration
M1 <- 2000001
M2 <- 3000000
Xsum <- numeric(0)
Xsum <- sapply(M1:M2, red_and_black)
# Values_mat <- numeric(0)
# for(k in M1:M2){
# set.seed(k)
# N <- nrow(class_roll)
# class_roll$group <-
# sample(1:N) %%
# 2 %>%
# factor(levels = c(0, 1), labels = c("Red", "Black"))
# Xsum <- c(Xsum, red_and_black(class_roll)$Xsum)
# Values_mat <- rbind(Values_mat, red_and_black(class_roll)$Values)
# }
# colnames(Values_mat) <- paste0("X", 1:6)
# Values_mat
# pairs(Values_mat)
# cor(Values_mat) %>%
# round(4)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.79 16.34 20.36 21.02 24.97 64.21
Xsum %>%
sd %>%
round(2)
## [1] 6.51
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 2000760 2014441 2018477 2029864 2042204 2042736 2052251 2071601 2076542 2080866
## 4.66 3.75 4.90 4.10 4.85 4.89 4.52 3.46 4.75 4.60
## 2082556 2085788 2097100 2098547 2122846 2127932 2138166 2138541 2158792 2161640
## 4.99 4.80 4.97 4.87 4.98 4.97 4.29 4.95 5.00 4.14
## 2166995 2171637 2171850 2176868 2190015 2192180 2204839 2214558 2223092 2223907
## 3.99 4.14 4.73 4.92 4.54 4.31 4.43 4.96 4.41 3.90
## 2227929 2233162 2236335 2244555 2251094 2258880 2283820 2286599 2295920 2328641
## 4.73 4.03 4.51 4.26 3.98 3.21 5.00 4.66 4.21 4.40
## 2347653 2365976 2366585 2377204 2389545 2403306 2408775 2412611 2426702 2439270
## 3.55 4.78 4.46 4.83 4.78 4.79 4.59 4.93 4.14 3.56
## 2442371 2442967 2443789 2467279 2473795 2477515 2497882 2500302 2503320 2512864
## 4.92 4.77 4.54 4.17 4.56 2.79 4.47 4.16 4.44 4.72
## 2514818 2526394 2527829 2540068 2541043 2548534 2548872 2553029 2563987 2571823
## 4.91 4.89 4.78 4.95 3.46 4.12 4.34 4.90 4.83 4.84
## 2577651 2580740 2600744 2627257 2655362 2660227 2665371 2669069 2677086 2677379
## 4.70 3.58 4.19 4.84 4.95 4.57 4.08 4.80 3.58 4.32
## 2682230 2701444 2703444 2706325 2716266 2719347 2722204 2722888 2739826 2755452
## 4.62 4.94 4.71 3.42 3.92 4.72 4.89 4.45 4.52 4.80
## 2755948 2757971 2772469 2779852 2787555 2802699 2816544 2819951 2827825 2830032
## 3.70 4.88 4.10 4.54 3.19 4.81 4.46 4.90 3.79 4.82
## 2849275 2852313 2857002 2873258 2876493 2880033 2881274 2882982 2894363 2898534
## 3.46 4.73 4.60 4.02 2.93 3.79 4.73 4.71 4.15 4.64
## 2923509 2932750 2933819 2947620 2951547 2952124 2959045 2961850 2963440 2977515
## 4.93 4.92 4.76 4.48 4.51 4.67 3.46 4.79 4.86 4.77
## 2977786 2982046 2988878
## 4.92 4.94 4.06
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "2477515"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.791057
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
20 |
38 |
62 |
75 |
48 |
135 |
25 |
Black |
21 |
33 |
59 |
79 |
53 |
134 |
25 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.8047835
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
210 |
193 |
Black |
210 |
194 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.001344824
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.1448054
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.005753858
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
42 |
31 |
32 |
43 |
32 |
48 |
40 |
41 |
42 |
51 |
Black |
39 |
34 |
36 |
42 |
32 |
50 |
44 |
36 |
40 |
51 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 1.096424
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
70 |
63 |
29 |
241 |
Black |
78 |
58 |
31 |
237 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.7379454
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.791057