INTRODUCCION: El propósito de este informe radica en analizar la base de datos de deslizamientos globales con énfasis único en el subcontinente centroamericano, esto con el fin de interpretar de forma más diáfana la información que nos suministra la base de datos mencionada anteriormente. Dicho esto, los mecanismos gráficos que utilizaremos serán: Diagramas de barras en diferentes tipos, tablas de frecuencia, diagramas de Pareto, series temporales, diagramas de caja y bigote, tallo y hojas, estadísticos, entre otros…

#COSTA RICA

library(readr)
library(knitr)
df <- read.csv("https://raw.githubusercontent.com/lihkir/AnalisisEstadisticoUN/main/Data/catalog.csv")
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
colnames(df)[5] <- "Country"
colnames(df)[7] <- "State"
colnames(df)[9] <- "City"
colnames(df)[10] <- "Distance"
library(readr)
library(knitr)
df_cr <- subset (df, Country == "Costa Rica")
knitr::kable(head(df_cr))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
38 249 9/9/07 NA Costa Rica CR Heredia 21947 Heredia 0.26208 10.0000 -84.1167 (10, -84.116699999999994) Landslide Landslide Medium Rain NA NA ticotimes.net http://www.ticotimes.net/dailyarchive/2007_09/0911072.htm
44 299 10/9/07 NA Costa Rica CR San José 3072 San Ignacio 4.57763 9.7789 -84.1250 (9.7789000000000001, -84.125) Landslide Complex Medium Rain NA 4 ticotimes.net http://www.ticotimes.net/dailyarchive/2007_10/1010071.htm
45 301 10/11/07 NA Costa Rica CR Alajuela 7014 Atenas 3.08459 9.9869 -84.4070 (9.9869000000000003, -84.406999999999996) Landslide Mudslide Large Rain NA 14 Agence France-Presse, afp.google.com http://afp.google.com/article/ALeqM5hu6a8oyAM1ycq9nU_6Zyj_l7F0AA
46 302 10/11/07 NA Costa Rica CR San José 26669 9.56251 10.0214 -83.9451 (10.0214, -83.945099999999996) Landslide Landslide Large Rain NA 10 International Herald http://www.iht.com/articles/ap/2007/10/12/america/LA-GEN-Costa-Rica-Mudslide.php
51 323 10/24/07 NA Costa Rica CR Puntarenas 6540 Miramar 3.82425 Mine construction 10.0715 -84.7575 (10.0715, -84.757499999999993) Landslide Mudslide Medium Downpour NA NA Reuters - AlertNet.org http://www.reuters.com/article/companyNewsAndPR/idUSN2435152820071025
102 556 5/29/08 NA Costa Rica CR Guanacaste 4108 Bagaces 17.65521 10.4024 -85.3555 (10.4024, -85.355500000000006) Landslide Landslide Medium Tropical cyclone Tropical Storm Alma NA NA http://www.reliefweb.int/rw/RWB.NSF/db900SID/ASAZ-7FHCHL?OpenDocument
df_cr %>% 
  select(Country, State, City, Distance)
##         Country      State                  City Distance
## 38   Costa Rica    Heredia               Heredia  0.26208
## 44   Costa Rica  San José           San Ignacio  4.57763
## 45   Costa Rica   Alajuela                Atenas  3.08459
## 46   Costa Rica  San José                        9.56251
## 51   Costa Rica Puntarenas               Miramar  3.82425
## 102  Costa Rica Guanacaste               Bagaces 17.65521
## 147  Costa Rica  San José         Daniel Flores  1.85787
## 153  Costa Rica  San José            San Isidro 16.24937
## 154  Costa Rica  San José              Santiago 12.85801
## 156  Costa Rica Puntarenas               Golfito 11.74074
## 157  Costa Rica Puntarenas               Miramar  8.92048
## 229  Costa Rica Puntarenas              San Vito 18.00524
## 302  Costa Rica   Alajuela          Desamparados  6.88715
## 311  Costa Rica    Heredia              Ã\201ngeles 19.51432
## 347  Costa Rica   Alajuela          Desamparados  6.92174
## 395  Costa Rica   Alajuela          Desamparados  4.24199
## 459  Costa Rica   Alajuela            San Rafael  1.47396
## 469  Costa Rica  San José              Salitral  0.25254
## 470  Costa Rica  San José              Salitral  0.25254
## 480  Costa Rica    Heredia              Ã\201ngeles 14.81614
## 501  Costa Rica  San José               Escazú  3.67691
## 502  Costa Rica  San José            San Marcos  0.55804
## 503  Costa Rica   Alajuela            San Rafael  9.61692
## 504  Costa Rica Guanacaste              Tilarán 10.21631
## 505  Costa Rica    Cartago                Orosí 19.28722
## 506  Costa Rica Puntarenas               Golfito  7.87044
## 507  Costa Rica  San José                 Tejar  6.49523
## 508  Costa Rica  San José            San Isidro 15.64997
## 509  Costa Rica Puntarenas              Corredor  4.93053
## 510  Costa Rica Puntarenas               Parrita 13.48919
## 511  Costa Rica Puntarenas        Ciudad Cortés 20.06633
## 512  Costa Rica  San José            San Isidro 11.31047
## 513  Costa Rica  San José              Mercedes  8.21372
## 514  Costa Rica   Alajuela              Santiago  5.43516
## 529  Costa Rica    Heredia              Ã\201ngeles 19.54581
## 579  Costa Rica     Limón             Guápiles 17.23264
## 702  Costa Rica    Heredia              Ã\201ngeles 15.05161
## 780  Costa Rica   Alajuela                 Upala  0.70048
## 819  Costa Rica  San José            San Isidro 21.67452
## 828  Costa Rica    Cartago                   Cot  9.63616
## 884  Costa Rica    Heredia         Santo Domingo 21.95470
## 888  Costa Rica Guanacaste              Tilarán 12.33807
## 889  Costa Rica     Limón             Siquirres  5.36500
## 913  Costa Rica  San José         Daniel Flores  4.89954
## 1098 Costa Rica   Alajuela             Sabanilla  4.87432
## 1156 Costa Rica   Alajuela             Sabanilla 10.32968
## 1157 Costa Rica    Heredia         Santo Domingo  9.85736
## 1169 Costa Rica Guanacaste              Tilarán 12.21952
## 1173 Costa Rica Guanacaste              Tilarán 12.18115
## 1289 Costa Rica   Alajuela            La Fortuna  9.84213
## 1301 Costa Rica   Alajuela                        5.57523
## 1308 Costa Rica   Alajuela          Desamparados  5.95519
## 1342 Costa Rica   Alajuela           Rio Segundo 11.96524
## 1364 Costa Rica   Alajuela          Desamparados  5.12667
## 1383 Costa Rica    Cartago               Cartago  3.07297
## 1384 Costa Rica    Heredia Dulce Nombre de Jesus 10.01310
## 1385 Costa Rica  San José Dulce Nombre de Jesus  2.92605
## 1386 Costa Rica  San José            San Isidro 10.73752
## 1404 Costa Rica  San José            San Isidro 22.32368
## 1406 Costa Rica  San José Dulce Nombre de Jesus  8.39161
## 1461 Costa Rica   Alajuela            La Fortuna  5.96634
## 1475 Costa Rica   Alajuela                Atenas  6.80061
## 1528 Costa Rica  San José              Ã\201ngeles  9.53611
## 1529 Costa Rica  San José Dulce Nombre de Jesus  3.71407
## 1600 Costa Rica  San José              San Juan  0.72957
## 1642 Costa Rica   Alajuela         Santo Domingo  3.21979
## 1643 Costa Rica   Alajuela              Alajuela  3.08916
## 1644 Costa Rica   Alajuela               Naranjo  2.08469
## 1646 Costa Rica    Cartago                        5.15142
## 1647 Costa Rica    Cartago                   Cot  9.53493
## 1648 Costa Rica    Cartago               Cartago  2.94804
## 1649 Costa Rica Puntarenas          Buenos Aires  0.35225
## 1650 Costa Rica  San José             San José  1.16705
## 1651 Costa Rica  San José              Mercedes 10.01198
## 1652 Costa Rica  San José              Santiago  8.27042
library(ggplot2)

ggplot(data=df_cr, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="yellow")

library(ggplot2)
library(dplyr)
ggplot(data=df_cr, aes(fill=City, x="Costa Rica", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_cr, aes(fill=City, x="Costa Rica", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_cr, aes(x = "Costa Rica", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

library(qcc)
## Package 'qcc' version 2.7
## Type 'citation("qcc")' for citing this R package in publications.
Distance <- df_cr$Distance
names(Distance) <- df_cr$City 

pareto.chart(Distance, 
             ylab="Distance",
             col = heat.colors(length(Distance)),
             cumperc = seq(0, 100, by = 10),
             ylab2 = "Porcentaje acumulado",
             main = "CONCENTRACION DE LAS INUNDACIONES EN LAS CIUDADES")

##                        
## Pareto chart analysis for Distance
##                            Frequency    Cum.Freq.   Percentage Cum.Percent.
##   San Isidro             22.32368000  22.32368000   3.45492296   3.45492296
##   Santo Domingo          21.95470000  44.27838000   3.39781780   6.85274076
##   San Isidro             21.67452000  65.95290000   3.35445576  10.20719651
##   Ciudad Cortés         20.06633000  86.01923000   3.10556433  13.31276084
##   Ã\201ngeles               19.54581000 105.56504000   3.02500608  16.33776693
##   Ã\201ngeles               19.51432000 125.07936000   3.02013254  19.35789946
##   Orosí                 19.28722000 144.36658000   2.98498542  22.34288488
##   San Vito               18.00524000 162.37182000   2.78657986  25.12946474
##   Bagaces                17.65521000 180.02703000   2.73240749  27.86187223
##   Guápiles              17.23264000 197.25967000   2.66700847  30.52888070
##   San Isidro             16.24937000 213.50904000   2.51483275  33.04371345
##   San Isidro             15.64997000 229.15901000   2.42206664  35.46578009
##   Ã\201ngeles               15.05161000 244.21062000   2.32946150  37.79524159
##   Ã\201ngeles               14.81614000 259.02676000   2.29301900  40.08826059
##   Parrita                13.48919000 272.51595000   2.08765366  42.17591425
##   Santiago               12.85801000 285.37396000   1.98996913  44.16588338
##   Tilarán               12.33807000 297.71203000   1.90950065  46.07538402
##   Tilarán               12.21952000 309.93155000   1.89115326  47.96653728
##   Tilarán               12.18115000 322.11270000   1.88521493  49.85175221
##   Rio Segundo            11.96524000 334.07794000   1.85179963  51.70355185
##   Golfito                11.74074000 345.81868000   1.81705490  53.52060675
##   San Isidro             11.31047000 357.12915000   1.75046419  55.27107094
##   San Isidro             10.73752000 367.86667000   1.66179162  56.93286257
##   Sabanilla              10.32968000 378.19635000   1.59867229  58.53153486
##   Tilarán               10.21631000 388.41266000   1.58112659  60.11266145
##   Dulce Nombre de Jesus  10.01310000 398.42576000   1.54967681  61.66233825
##   Mercedes               10.01198000 408.43774000   1.54950347  63.21184172
##   Santo Domingo           9.85736000 418.29510000   1.52557371  64.73741544
##   La Fortuna              9.84213000 428.13723000   1.52321664  66.26063208
##   Cot                     9.63616000 437.77339000   1.49133971  67.75197179
##   San Rafael              9.61692000 447.39031000   1.48836203  69.24033382
##                           9.56251000 456.95282000   1.47994127  70.72027510
##   Ã\201ngeles                9.53611000 466.48893000   1.47585548  72.19613057
##   Cot                     9.53493000 476.02386000   1.47567286  73.67180343
##   Miramar                 8.92048000 484.94434000   1.38057754  75.05238097
##   Dulce Nombre de Jesus   8.39161000 493.33595000   1.29872701  76.35110797
##   Santiago                8.27042000 501.60637000   1.27997104  77.63107902
##   Mercedes                8.21372000 509.82009000   1.27119587  78.90227489
##   Golfito                 7.87044000 517.69053000   1.21806816  80.12034305
##   Desamparados            6.92174000 524.61227000   1.07124267  81.19158572
##   Desamparados            6.88715000 531.49942000   1.06588935  82.25747506
##   Atenas                  6.80061000 538.30003000   1.05249599  83.30997105
##   Tejar                   6.49523000 544.79526000   1.00523387  84.31520492
##   La Fortuna              5.96634000 550.76160000   0.92338024  85.23858516
##   Desamparados            5.95519000 556.71679000   0.92165461  86.16023978
##                           5.57523000 562.29202000   0.86285013  87.02308991
##   Santiago                5.43516000 567.72718000   0.84117220  87.86426211
##   Siquirres               5.36500000 573.09218000   0.83031390  88.69457601
##                           5.15142000 578.24360000   0.79725920  89.49183521
##   Desamparados            5.12667000 583.37027000   0.79342877  90.28526397
##   Corredor                4.93053000 588.30080000   0.76307317  91.04833715
##   Daniel Flores           4.89954000 593.20034000   0.75827701  91.80661415
##   Sabanilla               4.87432000 598.07466000   0.75437384  92.56098799
##   San Ignacio             4.57763000 602.65229000   0.70845663  93.26944461
##   Desamparados            4.24199000 606.89428000   0.65651132  93.92595593
##   Miramar                 3.82425000 610.71853000   0.59185982  94.51781575
##   Dulce Nombre de Jesus   3.71407000 614.43260000   0.57480782  95.09262357
##   Escazú                 3.67691000 618.10951000   0.56905675  95.66168032
##   Santo Domingo           3.21979000 621.32930000   0.49831060  96.15999092
##   Alajuela                3.08916000 624.41846000   0.47809366  96.63808457
##   Atenas                  3.08459000 627.50305000   0.47738638  97.11547096
##   Cartago                 3.07297000 630.57602000   0.47558801  97.59105897
##   Cartago                 2.94804000 633.52406000   0.45625323  98.04731220
##   Dulce Nombre de Jesus   2.92605000 636.45011000   0.45284995  98.50016215
##   Naranjo                 2.08469000 638.53480000   0.32263692  98.82279907
##   Daniel Flores           1.85787000 640.39267000   0.28753314  99.11033220
##   San Rafael              1.47396000 641.86663000   0.22811733  99.33844953
##   San José               1.16705000 643.03368000   0.18061842  99.51906795
##   San Juan                0.72957000 643.76325000   0.11291186  99.63197981
##   Upala                   0.70048000 644.46373000   0.10840974  99.74038955
##   San Marcos              0.55804000 645.02177000   0.08636503  99.82675458
##   Buenos Aires            0.35225000 645.37402000   0.05451595  99.88127053
##   Heredia                 0.26208000 645.63610000   0.04056080  99.92183132
##   Salitral                0.25254000 645.88864000   0.03908434  99.96091566
##   Salitral                0.25254000 646.14118000   0.03908434 100.00000000
stem(df_cr$"Distance")
## 
##   The decimal point is at the |
## 
##    0 | 3334677259
##    2 | 1991112778
##    4 | 2699912446
##    6 | 0058999
##    8 | 23495566689
##   10 | 0023737
##   12 | 022395
##   14 | 816
##   16 | 227
##   18 | 0355
##   20 | 17
##   22 | 03
head(df_cr)
##      id     date time continent_code    Country country_code      State
## 38  249   9/9/07                <NA> Costa Rica           CR    Heredia
## 44  299  10/9/07                <NA> Costa Rica           CR  San José
## 45  301 10/11/07                <NA> Costa Rica           CR   Alajuela
## 46  302 10/11/07                <NA> Costa Rica           CR  San José
## 51  323 10/24/07                <NA> Costa Rica           CR Puntarenas
## 102 556  5/29/08                <NA> Costa Rica           CR Guanacaste
##     population        City Distance location_description latitude longitude
## 38       21947     Heredia  0.26208                       10.0000  -84.1167
## 44        3072 San Ignacio  4.57763                        9.7789  -84.1250
## 45        7014      Atenas  3.08459                        9.9869  -84.4070
## 46       26669              9.56251                       10.0214  -83.9451
## 51        6540     Miramar  3.82425    Mine construction  10.0715  -84.7575
## 102       4108     Bagaces 17.65521                       10.4024  -85.3555
##                                   geolocation hazard_type landslide_type
## 38                  (10, -84.116699999999994)   Landslide      Landslide
## 44              (9.7789000000000001, -84.125)   Landslide        Complex
## 45  (9.9869000000000003, -84.406999999999996)   Landslide       Mudslide
## 46             (10.0214, -83.945099999999996)   Landslide      Landslide
## 51             (10.0715, -84.757499999999993)   Landslide       Mudslide
## 102            (10.4024, -85.355500000000006)   Landslide      Landslide
##     landslide_size          trigger          storm_name injuries fatalities
## 38          Medium             Rain                           NA         NA
## 44          Medium             Rain                           NA          4
## 45           Large             Rain                           NA         14
## 46           Large             Rain                           NA         10
## 51          Medium         Downpour                           NA         NA
## 102         Medium Tropical cyclone Tropical Storm Alma       NA         NA
##                              source_name
## 38                         ticotimes.net
## 44                         ticotimes.net
## 45  Agence France-Presse, afp.google.com
## 46                  International Herald
## 51                Reuters - AlertNet.org
## 102                                     
##                                                                          source_link
## 38                         http://www.ticotimes.net/dailyarchive/2007_09/0911072.htm
## 44                         http://www.ticotimes.net/dailyarchive/2007_10/1010071.htm
## 45                  http://afp.google.com/article/ALeqM5hu6a8oyAM1ycq9nU_6Zyj_l7F0AA
## 46  http://www.iht.com/articles/ap/2007/10/12/america/LA-GEN-Costa-Rica-Mudslide.php
## 51             http://www.reuters.com/article/companyNewsAndPR/idUSN2435152820071025
## 102            http://www.reliefweb.int/rw/RWB.NSF/db900SID/ASAZ-7FHCHL?OpenDocument
knitr::kable(head(df_cr))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
38 249 9/9/07 NA Costa Rica CR Heredia 21947 Heredia 0.26208 10.0000 -84.1167 (10, -84.116699999999994) Landslide Landslide Medium Rain NA NA ticotimes.net http://www.ticotimes.net/dailyarchive/2007_09/0911072.htm
44 299 10/9/07 NA Costa Rica CR San José 3072 San Ignacio 4.57763 9.7789 -84.1250 (9.7789000000000001, -84.125) Landslide Complex Medium Rain NA 4 ticotimes.net http://www.ticotimes.net/dailyarchive/2007_10/1010071.htm
45 301 10/11/07 NA Costa Rica CR Alajuela 7014 Atenas 3.08459 9.9869 -84.4070 (9.9869000000000003, -84.406999999999996) Landslide Mudslide Large Rain NA 14 Agence France-Presse, afp.google.com http://afp.google.com/article/ALeqM5hu6a8oyAM1ycq9nU_6Zyj_l7F0AA
46 302 10/11/07 NA Costa Rica CR San José 26669 9.56251 10.0214 -83.9451 (10.0214, -83.945099999999996) Landslide Landslide Large Rain NA 10 International Herald http://www.iht.com/articles/ap/2007/10/12/america/LA-GEN-Costa-Rica-Mudslide.php
51 323 10/24/07 NA Costa Rica CR Puntarenas 6540 Miramar 3.82425 Mine construction 10.0715 -84.7575 (10.0715, -84.757499999999993) Landslide Mudslide Medium Downpour NA NA Reuters - AlertNet.org http://www.reuters.com/article/companyNewsAndPR/idUSN2435152820071025
102 556 5/29/08 NA Costa Rica CR Guanacaste 4108 Bagaces 17.65521 10.4024 -85.3555 (10.4024, -85.355500000000006) Landslide Landslide Medium Tropical cyclone Tropical Storm Alma NA NA http://www.reliefweb.int/rw/RWB.NSF/db900SID/ASAZ-7FHCHL?OpenDocument
stem(df_cr$"Distance")
## 
##   The decimal point is at the |
## 
##    0 | 3334677259
##    2 | 1991112778
##    4 | 2699912446
##    6 | 0058999
##    8 | 23495566689
##   10 | 0023737
##   12 | 022395
##   14 | 816
##   16 | 227
##   18 | 0355
##   20 | 17
##   22 | 03
stem(df_cr$"Distance", scale = 2)
## 
##   The decimal point is at the |
## 
##    0 | 3334677259
##    2 | 1991112778
##    4 | 2699912446
##    6 | 0058999
##    8 | 23495566689
##   10 | 0023737
##   12 | 022395
##   14 | 816
##   16 | 227
##   18 | 0355
##   20 | 17
##   22 | 03
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
data<- ts(df_cr$Distance, frequency=12, start=2008)
knitr::kable(head(data))
x
0.26208
4.57763
3.08459
9.56251
3.82425
17.65521
autoplot(data) + labs(title = "Gráfico de series temporales", x="date", y = "distancia", colour = "green") +theme_bw()

library(questionr)

table <- questionr::freq(Distance, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
0.25254 2 2.7 2.7 2.7 2.7
0.26208 1 1.3 1.3 4.0 4.0
0.35225 1 1.3 1.3 5.3 5.3
0.55804 1 1.3 1.3 6.7 6.7
0.70048 1 1.3 1.3 8.0 8.0
0.72957 1 1.3 1.3 9.3 9.3
1.16705 1 1.3 1.3 10.7 10.7
1.47396 1 1.3 1.3 12.0 12.0
1.85787 1 1.3 1.3 13.3 13.3
2.08469 1 1.3 1.3 14.7 14.7
2.92605 1 1.3 1.3 16.0 16.0
2.94804 1 1.3 1.3 17.3 17.3
3.07297 1 1.3 1.3 18.7 18.7
3.08459 1 1.3 1.3 20.0 20.0
3.08916 1 1.3 1.3 21.3 21.3
3.21979 1 1.3 1.3 22.7 22.7
3.67691 1 1.3 1.3 24.0 24.0
3.71407 1 1.3 1.3 25.3 25.3
3.82425 1 1.3 1.3 26.7 26.7
4.24199 1 1.3 1.3 28.0 28.0
4.57763 1 1.3 1.3 29.3 29.3
4.87432 1 1.3 1.3 30.7 30.7
4.89954 1 1.3 1.3 32.0 32.0
4.93053 1 1.3 1.3 33.3 33.3
5.12667 1 1.3 1.3 34.7 34.7
5.15142 1 1.3 1.3 36.0 36.0
5.365 1 1.3 1.3 37.3 37.3
5.43516 1 1.3 1.3 38.7 38.7
5.57523 1 1.3 1.3 40.0 40.0
5.95519 1 1.3 1.3 41.3 41.3
5.96634 1 1.3 1.3 42.7 42.7
6.49523 1 1.3 1.3 44.0 44.0
6.80061 1 1.3 1.3 45.3 45.3
6.88715 1 1.3 1.3 46.7 46.7
6.92174 1 1.3 1.3 48.0 48.0
7.87044 1 1.3 1.3 49.3 49.3
8.21372 1 1.3 1.3 50.7 50.7
8.27042 1 1.3 1.3 52.0 52.0
8.39161 1 1.3 1.3 53.3 53.3
8.92048 1 1.3 1.3 54.7 54.7
9.53493 1 1.3 1.3 56.0 56.0
9.53611 1 1.3 1.3 57.3 57.3
9.56251 1 1.3 1.3 58.7 58.7
9.61692 1 1.3 1.3 60.0 60.0
9.63616 1 1.3 1.3 61.3 61.3
9.84213 1 1.3 1.3 62.7 62.7
9.85736 1 1.3 1.3 64.0 64.0
10.01198 1 1.3 1.3 65.3 65.3
10.0131 1 1.3 1.3 66.7 66.7
10.21631 1 1.3 1.3 68.0 68.0
10.32968 1 1.3 1.3 69.3 69.3
10.73752 1 1.3 1.3 70.7 70.7
11.31047 1 1.3 1.3 72.0 72.0
11.74074 1 1.3 1.3 73.3 73.3
11.96524 1 1.3 1.3 74.7 74.7
12.18115 1 1.3 1.3 76.0 76.0
12.21952 1 1.3 1.3 77.3 77.3
12.33807 1 1.3 1.3 78.7 78.7
12.85801 1 1.3 1.3 80.0 80.0
13.48919 1 1.3 1.3 81.3 81.3
14.81614 1 1.3 1.3 82.7 82.7
15.05161 1 1.3 1.3 84.0 84.0
15.64997 1 1.3 1.3 85.3 85.3
16.24937 1 1.3 1.3 86.7 86.7
17.23264 1 1.3 1.3 88.0 88.0
17.65521 1 1.3 1.3 89.3 89.3
18.00524 1 1.3 1.3 90.7 90.7
19.28722 1 1.3 1.3 92.0 92.0
19.51432 1 1.3 1.3 93.3 93.3
19.54581 1 1.3 1.3 94.7 94.7
20.06633 1 1.3 1.3 96.0 96.0
21.67452 1 1.3 1.3 97.3 97.3
21.9547 1 1.3 1.3 98.7 98.7
22.32368 1 1.3 1.3 100.0 100.0
Total 75 100.0 100.0 100.0 100.0
str(table)
## Classes 'freqtab' and 'data.frame':  75 obs. of  5 variables:
##  $ n      : num  2 1 1 1 1 1 1 1 1 1 ...
##  $ %      : num  2.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 ...
##  $ val%   : num  2.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 ...
##  $ %cum   : num  2.7 4 5.3 6.7 8 9.3 10.7 12 13.3 14.7 ...
##  $ val%cum: num  2.7 4 5.3 6.7 8 9.3 10.7 12 13.3 14.7 ...
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df_cr <- data.frame(x = names, y = freqs)
knitr::kable(df_cr)
x y
0.25254 2
0.26208 1
0.35225 1
0.55804 1
0.70048 1
0.72957 1
1.16705 1
1.47396 1
1.85787 1
2.08469 1
2.92605 1
2.94804 1
3.07297 1
3.08459 1
3.08916 1
3.21979 1
3.67691 1
3.71407 1
3.82425 1
4.24199 1
4.57763 1
4.87432 1
4.89954 1
4.93053 1
5.12667 1
5.15142 1
5.365 1
5.43516 1
5.57523 1
5.95519 1
5.96634 1
6.49523 1
6.80061 1
6.88715 1
6.92174 1
7.87044 1
8.21372 1
8.27042 1
8.39161 1
8.92048 1
9.53493 1
9.53611 1
9.56251 1
9.61692 1
9.63616 1
9.84213 1
9.85736 1
10.01198 1
10.0131 1
10.21631 1
10.32968 1
10.73752 1
11.31047 1
11.74074 1
11.96524 1
12.18115 1
12.21952 1
12.33807 1
12.85801 1
13.48919 1
14.81614 1
15.05161 1
15.64997 1
16.24937 1
17.23264 1
17.65521 1
18.00524 1
19.28722 1
19.51432 1
19.54581 1
20.06633 1
21.67452 1
21.9547 1
22.32368 1
library(ggplot2)
ggplot(data=df_cr, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de inundaciones") +
  ylab("Frecuencia")

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.25254  4.25254  8.25254 12.25254 16.25254 20.25254 24.25254
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.25254 2 0.0266667 2
0.26208 1 0.0133333 3
0.35225 1 0.0133333 4
0.55804 1 0.0133333 5
0.70048 1 0.0133333 6
0.72957 1 0.0133333 7
1.16705 1 0.0133333 8
1.47396 1 0.0133333 9
1.85787 1 0.0133333 10
2.08469 1 0.0133333 11
2.92605 1 0.0133333 12
2.94804 1 0.0133333 13
3.07297 1 0.0133333 14
3.08459 1 0.0133333 15
3.08916 1 0.0133333 16
3.21979 1 0.0133333 17
3.67691 1 0.0133333 18
3.71407 1 0.0133333 19
3.82425 1 0.0133333 20
4.24199 1 0.0133333 21
4.57763 1 0.0133333 22
4.87432 1 0.0133333 23
4.89954 1 0.0133333 24
4.93053 1 0.0133333 25
5.12667 1 0.0133333 26
5.15142 1 0.0133333 27
5.365 1 0.0133333 28
5.43516 1 0.0133333 29
5.57523 1 0.0133333 30
5.95519 1 0.0133333 31
5.96634 1 0.0133333 32
6.49523 1 0.0133333 33
6.80061 1 0.0133333 34
6.88715 1 0.0133333 35
6.92174 1 0.0133333 36
7.87044 1 0.0133333 37
8.21372 1 0.0133333 38
8.27042 1 0.0133333 39
8.39161 1 0.0133333 40
8.92048 1 0.0133333 41
9.53493 1 0.0133333 42
9.53611 1 0.0133333 43
9.56251 1 0.0133333 44
9.61692 1 0.0133333 45
9.63616 1 0.0133333 46
9.84213 1 0.0133333 47
9.85736 1 0.0133333 48
10.01198 1 0.0133333 49
10.0131 1 0.0133333 50
10.21631 1 0.0133333 51
10.32968 1 0.0133333 52
10.73752 1 0.0133333 53
11.31047 1 0.0133333 54
11.74074 1 0.0133333 55
11.96524 1 0.0133333 56
12.18115 1 0.0133333 57
12.21952 1 0.0133333 58
12.33807 1 0.0133333 59
12.85801 1 0.0133333 60
13.48919 1 0.0133333 61
14.81614 1 0.0133333 62
15.05161 1 0.0133333 63
15.64997 1 0.0133333 64
16.24937 1 0.0133333 65
17.23264 1 0.0133333 66
17.65521 1 0.0133333 67
18.00524 1 0.0133333 68
19.28722 1 0.0133333 69
19.51432 1 0.0133333 70
19.54581 1 0.0133333 71
20.06633 1 0.0133333 72
21.67452 1 0.0133333 73
21.9547 1 0.0133333 74
22.32368 1 0.0133333 75
str(Freq_table)
## 'data.frame':    74 obs. of  4 variables:
##  $ Distance: Factor w/ 74 levels "0.25254","0.26208",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  2 1 1 1 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0267 0.0133 0.0133 0.0133 0.0133 ...
##  $ Cum_Freq: int  2 3 4 5 6 7 8 9 10 11 ...
df_cr <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_cr)
x y
0.25254 2
0.26208 1
0.35225 1
0.55804 1
0.70048 1
0.72957 1
1.16705 1
1.47396 1
1.85787 1
2.08469 1
2.92605 1
2.94804 1
3.07297 1
3.08459 1
3.08916 1
3.21979 1
3.67691 1
3.71407 1
3.82425 1
4.24199 1
4.57763 1
4.87432 1
4.89954 1
4.93053 1
5.12667 1
5.15142 1
5.365 1
5.43516 1
5.57523 1
5.95519 1
5.96634 1
6.49523 1
6.80061 1
6.88715 1
6.92174 1
7.87044 1
8.21372 1
8.27042 1
8.39161 1
8.92048 1
9.53493 1
9.53611 1
9.56251 1
9.61692 1
9.63616 1
9.84213 1
9.85736 1
10.01198 1
10.0131 1
10.21631 1
10.32968 1
10.73752 1
11.31047 1
11.74074 1
11.96524 1
12.18115 1
12.21952 1
12.33807 1
12.85801 1
13.48919 1
14.81614 1
15.05161 1
15.64997 1
16.24937 1
17.23264 1
17.65521 1
18.00524 1
19.28722 1
19.51432 1
19.54581 1
20.06633 1
21.67452 1
21.9547 1
22.32368 1
library(ggplot2)

ggplot(data=df_cr, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_cr$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
## 
## Attaching package: 'pastecs'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
stat.desc(df_cr)
##           x           y
## nbr.val  NA 74.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 75.00000000
## median   NA  1.00000000
## mean     NA  1.01351351
## SE.mean  NA  0.01351351
## CI.mean  NA  0.02693239
## var      NA  0.01351351
## std.dev  NA  0.11624764
## coef.var NA  0.11469767
boxplot(Distance, horizontal=TRUE, col='orange')

#COLOMBIA

library(readr)
library(knitr)
df_co <- subset (df, Country == "Colombia")
knitr::kable(head(df_co))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
8 77 5/21/07 SA Colombia CO Risaralda 440118 Pereira 0.62022 4.8081 -75.6941 (4.8080999999999996, -75.694100000000006) Landslide Mudslide Large Rain NA 13 Reuters - AlertNet.org http://www.reuters.com/news/video/videoStory?videoId=53594&feedType=RSS&rpc=23
49 307 10/13/07 SA Colombia CO Cauca 9985 Suárez 8.46579 2.9437 -76.7719 (2.9437000000000002, -76.771900000000002) Landslide Mudslide Large Continuous rain NA 24 Reuters - AlertNet.org http://www.reuters.com/article/newsOne/idUSN1329387220071013
70 397 12/19/07 SA Colombia CO Tolima 4892 Ambalema 6.96130 4.8470 -74.7631 (4.8470000000000004, -74.763099999999994) Landslide Landslide Large Rain NA NA Indiamuslims.info http://www.indiamuslims.info/news/2007/dec/20/eight_people_rescued_colombian_landslide.html
103 562 5/31/08 SA Colombia CO Antioquia 1999979 Medellín 5.12170 6.2746 -75.6039 (6.2746000000000004, -75.603899999999996) Landslide Complex Large Downpour NA 27 http://english.people.com.cn/90001/90777/90852/6422291.html
110 605 6/24/08 SA Colombia CO Norte de Santander 1502 Hacarí 0.38844 8.3200 -73.1500 (8.32, -73.150000000000006) Landslide Landslide Medium Downpour NA 10 http://news.xinhuanet.com/english/2008-06/25/content_8434589.htm
117 644 7/14/08 SA Colombia CO Cundinamarca 1374 Quetame 8.58891 4.4100 -73.8600 (4.41, -73.86) Landslide Landslide Medium Downpour NA 4 http://news.xinhuanet.com/english/2008-07/15/content_8548107.htm
df_co %>% 
  select(Country, State, City, Distance)
##       Country              State                       City Distance
## 8    Colombia          Risaralda                    Pereira  0.62022
## 49   Colombia              Cauca                    Suárez  8.46579
## 70   Colombia             Tolima                   Ambalema  6.96130
## 103  Colombia          Antioquia                  Medellín  5.12170
## 110  Colombia Norte de Santander                   Hacarí   0.38844
## 117  Colombia       Cundinamarca                    Quetame  8.58891
## 119  Colombia          Antioquia                   Briceño  6.44532
## 133  Colombia          Antioquia                     Caldas  1.27637
## 134  Colombia           Córdoba                    Cereté  0.68544
## 152  Colombia           Córdoba                   Moñitos 23.49217
## 163  Colombia          Antioquia                  Medellín  4.09028
## 166  Colombia              Cauca                    Miranda  0.70558
## 180  Colombia              Huila                       Hobo 10.18040
## 191  Colombia           Córdoba                   Sahagún  0.14776
## 303  Colombia       Cundinamarca                   Girardot  0.30587
## 340  Colombia    Valle del Cauca                       Cali  1.84941
## 349  Colombia               Meta              Puerto López 22.53724
## 352  Colombia       Cundinamarca                     Soacha 10.36239
## 396  Colombia          Magdalena                   Ciénaga 51.84125
## 403  Colombia Norte de Santander                San Calixto  7.85369
## 425  Colombia          Santander                   Málaga   2.99929
## 434  Colombia          Santander                   Málaga   2.99929
## 454  Colombia          Risaralda                      Apía  8.18229
## 455  Colombia          Antioquia                    Giraldo  2.55282
## 479  Colombia            Boyacá        San Pablo de Borbur  1.53032
## 517  Colombia          Risaralda                  Quinchía  0.11421
## 518  Colombia          Antioquia                  Medellín  2.18776
## 519  Colombia              Sucre                 San Marcos 25.51411
## 520  Colombia       Cundinamarca                  La Calera  7.28959
## 523  Colombia             Caldas                Marquetalia 17.48659
## 524  Colombia             Caldas                Marquetalia  3.72195
## 525  Colombia             Caldas                  Marulanda  0.72830
## 526  Colombia Norte de Santander                  Arboledas 14.62503
## 527  Colombia          Santander                San Andrés  3.06383
## 528  Colombia          Antioquia                   Cáceres  4.29197
## 553  Colombia          Antioquia                      Bello  2.04898
## 574  Colombia            Nariño                  San Pablo  4.95353
## 594  Colombia          Santander                    Matanza  6.16385
## 619  Colombia             Caldas                Villamaría  2.36822
## 621  Colombia Norte de Santander                    Cúcuta  3.60520
## 623  Colombia             Caldas                  Manizales  1.70850
## 629  Colombia          Antioquia                  Medellín  4.19867
## 631  Colombia            Nariño                   El Tambo  0.60599
## 632  Colombia            Nariño                   El Tambo  3.81445
## 637  Colombia             Caldas                  Manizales  1.07765
## 638  Colombia             Caldas                Villamaría 15.82404
## 640  Colombia          Antioquia         Santa Rosa de Osos 18.91189
## 643  Colombia          Santander                   Florián  0.44753
## 644  Colombia       Cundinamarca San Antonio del Tequendama  6.08628
## 658  Colombia          Antioquia    Municipio de Copacabana  7.98838
## 659  Colombia          Antioquia                   Frontino  5.06960
## 690  Colombia            Boyacá                    Samacá  0.85976
## 701  Colombia            Boyacá                     Belén  2.28425
## 714  Colombia    Valle del Cauca                       Cali  8.30406
## 715  Colombia          Santander                    Lebrija  9.21217
## 716  Colombia          Santander                Piedecuesta 10.55986
## 718  Colombia          Santander    San Vicente de Chucurí  0.80432
## 753  Colombia           Bolívar         Santa Rosa del Sur 26.89879
## 821  Colombia          Antioquia                  Medellín  1.73101
## 822  Colombia    Valle del Cauca               Buenaventura 20.25692
## 826  Colombia          Antioquia            Ciudad Bolívar 24.48479
## 830  Colombia           Quindío                   Calarcá  1.35196
## 831  Colombia             Caldas                  Manizales  0.64094
## 832  Colombia             Tolima                  Cajamarca  8.56086
## 835  Colombia             Tolima                  Cajamarca  7.87303
## 836  Colombia       Cundinamarca                      Funza  9.23778
## 838  Colombia             Tolima         Carmen de Apicalá  9.65157
## 848  Colombia          Santander                 Los Santos 12.61362
## 849  Colombia       Cundinamarca                     Soacha  5.17650
## 850  Colombia              Cauca                    La Cruz  0.64469
## 851  Colombia             Caldas                   Norcasia 16.94642
## 852  Colombia            Nariño                San Lorenzo  0.37809
## 853  Colombia          Magdalena                Santa Marta  0.79694
## 854  Colombia             Caldas                   Aranzazu  2.53047
## 855  Colombia          Risaralda              Dos Quebradas  0.74201
## 859  Colombia          Antioquia                   Envigado  2.07081
## 876  Colombia          Antioquia                     Amalfi 11.11685
## 879  Colombia           Caquetá                  Florencia 15.42607
## 911  Colombia              Huila               San Agustín  6.84683
## 921  Colombia Norte de Santander                San Calixto 11.19714
## 928  Colombia              Huila                    Gigante  0.93184
## 1054 Colombia           Caquetá                  Florencia 15.16116
## 1071 Colombia              Huila                    Ã\201quira  3.14201
## 1207 Colombia            Nariño                  Cumbitara 16.97776
## 1220 Colombia    Valle del Cauca                    Palmira  7.70237
## 1221 Colombia              Huila                    Palermo  0.00003
## 1222 Colombia          Santander                Bucaramanga  1.33829
## 1290 Colombia          Magdalena                  Ariguaní 28.50569
## 1305 Colombia          Santander    San Vicente de Chucurí  1.08964
## 1344 Colombia              Cauca                   Almaguer 17.31514
## 1362 Colombia          Antioquia                    Barbosa  7.78677
## 1456 Colombia           Putumayo              San Francisco  1.47940
## 1457 Colombia          Antioquia                     Salgar  3.09014
## 1471 Colombia              Cauca                   Jambaló  8.81287
## 1565 Colombia              Huila                     Rivera 20.31227
## 1669 Colombia          Antioquia                    Mutatá 15.04256
library(ggplot2)

ggplot(data=df_co, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="yellow")

library(ggplot2)
library(dplyr)
ggplot(data=df_co, aes(fill=City, x="Colombia", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_co, aes(fill=City, x="Colombia", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_co, aes(x = "Colombia", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

library(qcc)
Distance <- df_co$Distance
names(Distance) <- df_co$City 

pareto.chart(Distance, 
             ylab="Distance",
             col = heat.colors(length(Distance)),
             cumperc = seq(0, 100, by = 10),
             ylab2 = "Porcentaje acumulado",
             main = "CONCENTRACION DE LAS INUNDACIONES EN LAS CIUDADES")

##                             
## Pareto chart analysis for Distance
##                                 Frequency    Cum.Freq.   Percentage
##   Ciénaga                   5.184125e+01 5.184125e+01 7.082466e+00
##   Ariguaní                  2.850569e+01 8.034694e+01 3.894400e+00
##   Santa Rosa del Sur         2.689879e+01 1.072457e+02 3.674868e+00
##   San Marcos                 2.551411e+01 1.327598e+02 3.485696e+00
##   Ciudad Bolívar            2.448479e+01 1.572446e+02 3.345072e+00
##   Moñitos                   2.349217e+01 1.807368e+02 3.209462e+00
##   Puerto López              2.253724e+01 2.032740e+02 3.079001e+00
##   Rivera                     2.031227e+01 2.235863e+02 2.775029e+00
##   Buenaventura               2.025692e+01 2.438432e+02 2.767467e+00
##   Santa Rosa de Osos         1.891189e+01 2.627551e+02 2.583711e+00
##   Marquetalia                1.748659e+01 2.802417e+02 2.388989e+00
##   Almaguer                   1.731514e+01 2.975568e+02 2.365566e+00
##   Cumbitara                  1.697776e+01 3.145346e+02 2.319474e+00
##   Norcasia                   1.694642e+01 3.314810e+02 2.315192e+00
##   Villamaría                1.582404e+01 3.473051e+02 2.161854e+00
##   Florencia                  1.542607e+01 3.627311e+02 2.107484e+00
##   Florencia                  1.516116e+01 3.778923e+02 2.071293e+00
##   Mutatá                    1.504256e+01 3.929349e+02 2.055090e+00
##   Arboledas                  1.462503e+01 4.075599e+02 1.998047e+00
##   Los Santos                 1.261362e+01 4.201735e+02 1.723252e+00
##   San Calixto                1.119714e+01 4.313707e+02 1.529735e+00
##   Amalfi                     1.111685e+01 4.424875e+02 1.518766e+00
##   Piedecuesta                1.055986e+01 4.530474e+02 1.442671e+00
##   Soacha                     1.036239e+01 4.634098e+02 1.415693e+00
##   Hobo                       1.018040e+01 4.735901e+02 1.390829e+00
##   Carmen de Apicalá         9.651570e+00 4.832417e+02 1.318582e+00
##   Funza                      9.237780e+00 4.924795e+02 1.262050e+00
##   Lebrija                    9.212170e+00 5.016917e+02 1.258551e+00
##   Jambaló                   8.812870e+00 5.105045e+02 1.204000e+00
##   Quetame                    8.588910e+00 5.190934e+02 1.173403e+00
##   Cajamarca                  8.560860e+00 5.276543e+02 1.169571e+00
##   Suárez                    8.465790e+00 5.361201e+02 1.156582e+00
##   Cali                       8.304060e+00 5.444242e+02 1.134487e+00
##   Apía                      8.182290e+00 5.526064e+02 1.117851e+00
##   Municipio de Copacabana    7.988380e+00 5.605948e+02 1.091359e+00
##   Cajamarca                  7.873030e+00 5.684679e+02 1.075600e+00
##   San Calixto                7.853690e+00 5.763216e+02 1.072958e+00
##   Barbosa                    7.786770e+00 5.841083e+02 1.063816e+00
##   Palmira                    7.702370e+00 5.918107e+02 1.052285e+00
##   La Calera                  7.289590e+00 5.991003e+02 9.958918e-01
##   Ambalema                   6.961300e+00 6.060616e+02 9.510413e-01
##   San Agustín               6.846830e+00 6.129084e+02 9.354026e-01
##   Briceño                   6.445320e+00 6.193537e+02 8.805490e-01
##   Matanza                    6.163850e+00 6.255176e+02 8.420950e-01
##   San Antonio del Tequendama 6.086280e+00 6.316039e+02 8.314975e-01
##   Soacha                     5.176500e+00 6.367804e+02 7.072049e-01
##   Medellín                  5.121700e+00 6.419021e+02 6.997182e-01
##   Frontino                   5.069600e+00 6.469717e+02 6.926004e-01
##   San Pablo                  4.953530e+00 6.519252e+02 6.767431e-01
##   Cáceres                   4.291970e+00 6.562172e+02 5.863619e-01
##   Medellín                  4.198670e+00 6.604158e+02 5.736154e-01
##   Medellín                  4.090280e+00 6.645061e+02 5.588073e-01
##   El Tambo                   3.814450e+00 6.683206e+02 5.211239e-01
##   Marquetalia                3.721950e+00 6.720425e+02 5.084867e-01
##   Cúcuta                    3.605200e+00 6.756477e+02 4.925365e-01
##   Ã\201quira                    3.142010e+00 6.787897e+02 4.292562e-01
##   Salgar                     3.090140e+00 6.818799e+02 4.221698e-01
##   San Andrés                3.063830e+00 6.849437e+02 4.185754e-01
##   Málaga                    2.999290e+00 6.879430e+02 4.097581e-01
##   Málaga                    2.999290e+00 6.909423e+02 4.097581e-01
##   Giraldo                    2.552820e+00 6.934951e+02 3.487621e-01
##   Aranzazu                   2.530470e+00 6.960256e+02 3.457086e-01
##   Villamaría                2.368220e+00 6.983938e+02 3.235423e-01
##   Belén                     2.284250e+00 7.006780e+02 3.120705e-01
##   Medellín                  2.187760e+00 7.028658e+02 2.988882e-01
##   Envigado                   2.070810e+00 7.049366e+02 2.829106e-01
##   Bello                      2.048980e+00 7.069856e+02 2.799283e-01
##   Cali                       1.849410e+00 7.088350e+02 2.526633e-01
##   Medellín                  1.731010e+00 7.105660e+02 2.364877e-01
##   Manizales                  1.708500e+00 7.122745e+02 2.334125e-01
##   San Pablo de Borbur        1.530320e+00 7.138048e+02 2.090698e-01
##   San Francisco              1.479400e+00 7.152842e+02 2.021132e-01
##   Calarcá                   1.351960e+00 7.166362e+02 1.847025e-01
##   Bucaramanga                1.338290e+00 7.179745e+02 1.828350e-01
##   Caldas                     1.276370e+00 7.192508e+02 1.743756e-01
##   San Vicente de Chucurí    1.089640e+00 7.203405e+02 1.488648e-01
##   Manizales                  1.077650e+00 7.214181e+02 1.472268e-01
##   Gigante                    9.318400e-01 7.223500e+02 1.273064e-01
##   Samacá                    8.597600e-01 7.232097e+02 1.174590e-01
##   San Vicente de Chucurí    8.043200e-01 7.240140e+02 1.098849e-01
##   Santa Marta                7.969400e-01 7.248110e+02 1.088766e-01
##   Dos Quebradas              7.420100e-01 7.255530e+02 1.013722e-01
##   Marulanda                  7.283000e-01 7.262813e+02 9.949914e-02
##   Miranda                    7.055800e-01 7.269869e+02 9.639518e-02
##   Cereté                    6.854400e-01 7.276723e+02 9.364368e-02
##   La Cruz                    6.446900e-01 7.283170e+02 8.807648e-02
##   Manizales                  6.409400e-01 7.289579e+02 8.756417e-02
##   Pereira                    6.202200e-01 7.295782e+02 8.473343e-02
##   El Tambo                   6.059900e-01 7.301842e+02 8.278935e-02
##   Florián                   4.475300e-01 7.306317e+02 6.114081e-02
##   Hacarí                    3.884400e-01 7.310201e+02 5.306803e-02
##   San Lorenzo                3.780900e-01 7.313982e+02 5.165403e-02
##   Girardot                   3.058700e-01 7.317041e+02 4.178745e-02
##   Sahagún                   1.477600e-01 7.318519e+02 2.018673e-02
##   Quinchía                  1.142100e-01 7.319661e+02 1.560318e-02
##   Palermo                    3.000000e-05 7.319661e+02 4.098551e-06
##                             
## Pareto chart analysis for Distance
##                              Cum.Percent.
##   Ciénaga                   7.082466e+00
##   Ariguaní                  1.097687e+01
##   Santa Rosa del Sur         1.465173e+01
##   San Marcos                 1.813743e+01
##   Ciudad Bolívar            2.148250e+01
##   Moñitos                   2.469196e+01
##   Puerto López              2.777096e+01
##   Rivera                     3.054599e+01
##   Buenaventura               3.331346e+01
##   Santa Rosa de Osos         3.589717e+01
##   Marquetalia                3.828616e+01
##   Almaguer                   4.065173e+01
##   Cumbitara                  4.297120e+01
##   Norcasia                   4.528639e+01
##   Villamaría                4.744825e+01
##   Florencia                  4.955573e+01
##   Florencia                  5.162702e+01
##   Mutatá                    5.368211e+01
##   Arboledas                  5.568016e+01
##   Los Santos                 5.740341e+01
##   San Calixto                5.893315e+01
##   Amalfi                     6.045191e+01
##   Piedecuesta                6.189458e+01
##   Soacha                     6.331028e+01
##   Hobo                       6.470111e+01
##   Carmen de Apicalá         6.601969e+01
##   Funza                      6.728174e+01
##   Lebrija                    6.854029e+01
##   Jambaló                   6.974429e+01
##   Quetame                    7.091769e+01
##   Cajamarca                  7.208726e+01
##   Suárez                    7.324384e+01
##   Cali                       7.437833e+01
##   Apía                      7.549618e+01
##   Municipio de Copacabana    7.658754e+01
##   Cajamarca                  7.766314e+01
##   San Calixto                7.873610e+01
##   Barbosa                    7.979992e+01
##   Palmira                    8.085220e+01
##   La Calera                  8.184809e+01
##   Ambalema                   8.279913e+01
##   San Agustín               8.373454e+01
##   Briceño                   8.461509e+01
##   Matanza                    8.545718e+01
##   San Antonio del Tequendama 8.628868e+01
##   Soacha                     8.699588e+01
##   Medellín                  8.769560e+01
##   Frontino                   8.838820e+01
##   San Pablo                  8.906494e+01
##   Cáceres                   8.965131e+01
##   Medellín                  9.022492e+01
##   Medellín                  9.078373e+01
##   El Tambo                   9.130485e+01
##   Marquetalia                9.181334e+01
##   Cúcuta                    9.230588e+01
##   Ã\201quira                    9.273513e+01
##   Salgar                     9.315730e+01
##   San Andrés                9.357588e+01
##   Málaga                    9.398564e+01
##   Málaga                    9.439539e+01
##   Giraldo                    9.474416e+01
##   Aranzazu                   9.508986e+01
##   Villamaría                9.541341e+01
##   Belén                     9.572548e+01
##   Medellín                  9.602437e+01
##   Envigado                   9.630728e+01
##   Bello                      9.658720e+01
##   Cali                       9.683987e+01
##   Medellín                  9.707635e+01
##   Manizales                  9.730977e+01
##   San Pablo de Borbur        9.751884e+01
##   San Francisco              9.772095e+01
##   Calarcá                   9.790565e+01
##   Bucaramanga                9.808849e+01
##   Caldas                     9.826286e+01
##   San Vicente de Chucurí    9.841173e+01
##   Manizales                  9.855896e+01
##   Gigante                    9.868626e+01
##   Samacá                    9.880372e+01
##   San Vicente de Chucurí    9.891361e+01
##   Santa Marta                9.902248e+01
##   Dos Quebradas              9.912385e+01
##   Marulanda                  9.922335e+01
##   Miranda                    9.931975e+01
##   Cereté                    9.941339e+01
##   La Cruz                    9.950147e+01
##   Manizales                  9.958903e+01
##   Pereira                    9.967377e+01
##   El Tambo                   9.975656e+01
##   Florián                   9.981770e+01
##   Hacarí                    9.987076e+01
##   San Lorenzo                9.992242e+01
##   Girardot                   9.996421e+01
##   Sahagún                   9.998439e+01
##   Quinchía                  1.000000e+02
##   Palermo                    1.000000e+02
stem(df_co$"Distance")
## 
##   The decimal point is 1 digit(s) to the right of the |
## 
##   0 | 00000001111111111111111112222222223333333444444555566677788888888999
##   1 | 00011135555677779
##   2 | 00334679
##   3 | 
##   4 | 
##   5 | 2
head(df_co)
##      id     date time continent_code  Country country_code              State
## 8    77  5/21/07                  SA Colombia           CO          Risaralda
## 49  307 10/13/07                  SA Colombia           CO              Cauca
## 70  397 12/19/07                  SA Colombia           CO             Tolima
## 103 562  5/31/08                  SA Colombia           CO          Antioquia
## 110 605  6/24/08                  SA Colombia           CO Norte de Santander
## 117 644  7/14/08                  SA Colombia           CO       Cundinamarca
##     population      City Distance location_description latitude longitude
## 8       440118   Pereira  0.62022                        4.8081  -75.6941
## 49        9985   Suárez  8.46579                        2.9437  -76.7719
## 70        4892  Ambalema  6.96130                        4.8470  -74.7631
## 103    1999979 Medellín  5.12170                        6.2746  -75.6039
## 110       1502  Hacarí   0.38844                        8.3200  -73.1500
## 117       1374   Quetame  8.58891                        4.4100  -73.8600
##                                   geolocation hazard_type landslide_type
## 8   (4.8080999999999996, -75.694100000000006)   Landslide       Mudslide
## 49  (2.9437000000000002, -76.771900000000002)   Landslide       Mudslide
## 70  (4.8470000000000004, -74.763099999999994)   Landslide      Landslide
## 103 (6.2746000000000004, -75.603899999999996)   Landslide        Complex
## 110               (8.32, -73.150000000000006)   Landslide      Landslide
## 117                            (4.41, -73.86)   Landslide      Landslide
##     landslide_size         trigger storm_name injuries fatalities
## 8            Large            Rain                  NA         13
## 49           Large Continuous rain                  NA         24
## 70           Large            Rain                  NA         NA
## 103          Large        Downpour                  NA         27
## 110         Medium        Downpour                  NA         10
## 117         Medium        Downpour                  NA          4
##                source_name
## 8   Reuters - AlertNet.org
## 49  Reuters - AlertNet.org
## 70       Indiamuslims.info
## 103                       
## 110                       
## 117                       
##                                                                                     source_link
## 8                http://www.reuters.com/news/video/videoStory?videoId=53594&feedType=RSS&rpc=23
## 49                                 http://www.reuters.com/article/newsOne/idUSN1329387220071013
## 70  http://www.indiamuslims.info/news/2007/dec/20/eight_people_rescued_colombian_landslide.html
## 103                                 http://english.people.com.cn/90001/90777/90852/6422291.html
## 110                            http://news.xinhuanet.com/english/2008-06/25/content_8434589.htm
## 117                            http://news.xinhuanet.com/english/2008-07/15/content_8548107.htm
knitr::kable(head(df_co))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
8 77 5/21/07 SA Colombia CO Risaralda 440118 Pereira 0.62022 4.8081 -75.6941 (4.8080999999999996, -75.694100000000006) Landslide Mudslide Large Rain NA 13 Reuters - AlertNet.org http://www.reuters.com/news/video/videoStory?videoId=53594&feedType=RSS&rpc=23
49 307 10/13/07 SA Colombia CO Cauca 9985 Suárez 8.46579 2.9437 -76.7719 (2.9437000000000002, -76.771900000000002) Landslide Mudslide Large Continuous rain NA 24 Reuters - AlertNet.org http://www.reuters.com/article/newsOne/idUSN1329387220071013
70 397 12/19/07 SA Colombia CO Tolima 4892 Ambalema 6.96130 4.8470 -74.7631 (4.8470000000000004, -74.763099999999994) Landslide Landslide Large Rain NA NA Indiamuslims.info http://www.indiamuslims.info/news/2007/dec/20/eight_people_rescued_colombian_landslide.html
103 562 5/31/08 SA Colombia CO Antioquia 1999979 Medellín 5.12170 6.2746 -75.6039 (6.2746000000000004, -75.603899999999996) Landslide Complex Large Downpour NA 27 http://english.people.com.cn/90001/90777/90852/6422291.html
110 605 6/24/08 SA Colombia CO Norte de Santander 1502 Hacarí 0.38844 8.3200 -73.1500 (8.32, -73.150000000000006) Landslide Landslide Medium Downpour NA 10 http://news.xinhuanet.com/english/2008-06/25/content_8434589.htm
117 644 7/14/08 SA Colombia CO Cundinamarca 1374 Quetame 8.58891 4.4100 -73.8600 (4.41, -73.86) Landslide Landslide Medium Downpour NA 4 http://news.xinhuanet.com/english/2008-07/15/content_8548107.htm
stem(df_co$"Distance")
## 
##   The decimal point is 1 digit(s) to the right of the |
## 
##   0 | 00000001111111111111111112222222223333333444444555566677788888888999
##   1 | 00011135555677779
##   2 | 00334679
##   3 | 
##   4 | 
##   5 | 2
stem(df_co$"Distance", scale = 2)
## 
##   The decimal point is 1 digit(s) to the right of the |
## 
##   0 | 00000001111111111111111112222222223333333444444
##   0 | 55556667778888888899999
##   1 | 0001113
##   1 | 5555677779
##   2 | 00334
##   2 | 679
##   3 | 
##   3 | 
##   4 | 
##   4 | 
##   5 | 2
library(forecast)
data<- ts(df_co$Distance, frequency=12, start=2008)
knitr::kable(head(data))
x
0.62022
8.46579
6.96130
5.12170
0.38844
8.58891
autoplot(data) + labs(title = "Gráfico de series temporales", x="date", y = "distancia", colour = "green") +theme_bw()

library(questionr)

table <- questionr::freq(Distance, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
2.99929 2 2.1 2.1 2.1 2.1
3e-05 1 1.0 1.0 3.1 3.1
0.11421 1 1.0 1.0 4.2 4.2
0.14776 1 1.0 1.0 5.2 5.2
0.30587 1 1.0 1.0 6.2 6.2
0.37809 1 1.0 1.0 7.3 7.3
0.38844 1 1.0 1.0 8.3 8.3
0.44753 1 1.0 1.0 9.4 9.4
0.60599 1 1.0 1.0 10.4 10.4
0.62022 1 1.0 1.0 11.5 11.5
0.64094 1 1.0 1.0 12.5 12.5
0.64469 1 1.0 1.0 13.5 13.5
0.68544 1 1.0 1.0 14.6 14.6
0.70558 1 1.0 1.0 15.6 15.6
0.7283 1 1.0 1.0 16.7 16.7
0.74201 1 1.0 1.0 17.7 17.7
0.79694 1 1.0 1.0 18.7 18.7
0.80432 1 1.0 1.0 19.8 19.8
0.85976 1 1.0 1.0 20.8 20.8
0.93184 1 1.0 1.0 21.9 21.9
1.07765 1 1.0 1.0 22.9 22.9
1.08964 1 1.0 1.0 24.0 24.0
1.27637 1 1.0 1.0 25.0 25.0
1.33829 1 1.0 1.0 26.0 26.0
1.35196 1 1.0 1.0 27.1 27.1
1.4794 1 1.0 1.0 28.1 28.1
1.53032 1 1.0 1.0 29.2 29.2
1.7085 1 1.0 1.0 30.2 30.2
1.73101 1 1.0 1.0 31.2 31.2
1.84941 1 1.0 1.0 32.3 32.3
2.04898 1 1.0 1.0 33.3 33.3
2.07081 1 1.0 1.0 34.4 34.4
2.18776 1 1.0 1.0 35.4 35.4
2.28425 1 1.0 1.0 36.5 36.5
2.36822 1 1.0 1.0 37.5 37.5
2.53047 1 1.0 1.0 38.5 38.5
2.55282 1 1.0 1.0 39.6 39.6
3.06383 1 1.0 1.0 40.6 40.6
3.09014 1 1.0 1.0 41.7 41.7
3.14201 1 1.0 1.0 42.7 42.7
3.6052 1 1.0 1.0 43.7 43.7
3.72195 1 1.0 1.0 44.8 44.8
3.81445 1 1.0 1.0 45.8 45.8
4.09028 1 1.0 1.0 46.9 46.9
4.19867 1 1.0 1.0 47.9 47.9
4.29197 1 1.0 1.0 49.0 49.0
4.95353 1 1.0 1.0 50.0 50.0
5.0696 1 1.0 1.0 51.0 51.0
5.1217 1 1.0 1.0 52.1 52.1
5.1765 1 1.0 1.0 53.1 53.1
6.08628 1 1.0 1.0 54.2 54.2
6.16385 1 1.0 1.0 55.2 55.2
6.44532 1 1.0 1.0 56.2 56.2
6.84683 1 1.0 1.0 57.3 57.3
6.9613 1 1.0 1.0 58.3 58.3
7.28959 1 1.0 1.0 59.4 59.4
7.70237 1 1.0 1.0 60.4 60.4
7.78677 1 1.0 1.0 61.5 61.5
7.85369 1 1.0 1.0 62.5 62.5
7.87303 1 1.0 1.0 63.5 63.5
7.98838 1 1.0 1.0 64.6 64.6
8.18229 1 1.0 1.0 65.6 65.6
8.30406 1 1.0 1.0 66.7 66.7
8.46579 1 1.0 1.0 67.7 67.7
8.56086 1 1.0 1.0 68.7 68.7
8.58891 1 1.0 1.0 69.8 69.8
8.81287 1 1.0 1.0 70.8 70.8
9.21217 1 1.0 1.0 71.9 71.9
9.23778 1 1.0 1.0 72.9 72.9
9.65157 1 1.0 1.0 74.0 74.0
10.1804 1 1.0 1.0 75.0 75.0
10.36239 1 1.0 1.0 76.0 76.0
10.55986 1 1.0 1.0 77.1 77.1
11.11685 1 1.0 1.0 78.1 78.1
11.19714 1 1.0 1.0 79.2 79.2
12.61362 1 1.0 1.0 80.2 80.2
14.62503 1 1.0 1.0 81.2 81.2
15.04256 1 1.0 1.0 82.3 82.3
15.16116 1 1.0 1.0 83.3 83.3
15.42607 1 1.0 1.0 84.4 84.4
15.82404 1 1.0 1.0 85.4 85.4
16.94642 1 1.0 1.0 86.5 86.5
16.97776 1 1.0 1.0 87.5 87.5
17.31514 1 1.0 1.0 88.5 88.5
17.48659 1 1.0 1.0 89.6 89.6
18.91189 1 1.0 1.0 90.6 90.6
20.25692 1 1.0 1.0 91.7 91.7
20.31227 1 1.0 1.0 92.7 92.7
22.53724 1 1.0 1.0 93.7 93.7
23.49217 1 1.0 1.0 94.8 94.8
24.48479 1 1.0 1.0 95.8 95.8
25.51411 1 1.0 1.0 96.9 96.9
26.89879 1 1.0 1.0 97.9 97.9
28.50569 1 1.0 1.0 99.0 99.0
51.84125 1 1.0 1.0 100.0 100.0
Total 96 100.0 100.0 100.0 100.0
str(table)
## Classes 'freqtab' and 'data.frame':  96 obs. of  5 variables:
##  $ n      : num  2 1 1 1 1 1 1 1 1 1 ...
##  $ %      : num  2.1 1 1 1 1 1 1 1 1 1 ...
##  $ val%   : num  2.1 1 1 1 1 1 1 1 1 1 ...
##  $ %cum   : num  2.1 3.1 4.2 5.2 6.2 7.3 8.3 9.4 10.4 11.5 ...
##  $ val%cum: num  2.1 3.1 4.2 5.2 6.2 7.3 8.3 9.4 10.4 11.5 ...
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df_co <- data.frame(x = names, y = freqs)
knitr::kable(df_co)
x y
2.99929 2
3e-05 1
0.11421 1
0.14776 1
0.30587 1
0.37809 1
0.38844 1
0.44753 1
0.60599 1
0.62022 1
0.64094 1
0.64469 1
0.68544 1
0.70558 1
0.7283 1
0.74201 1
0.79694 1
0.80432 1
0.85976 1
0.93184 1
1.07765 1
1.08964 1
1.27637 1
1.33829 1
1.35196 1
1.4794 1
1.53032 1
1.7085 1
1.73101 1
1.84941 1
2.04898 1
2.07081 1
2.18776 1
2.28425 1
2.36822 1
2.53047 1
2.55282 1
3.06383 1
3.09014 1
3.14201 1
3.6052 1
3.72195 1
3.81445 1
4.09028 1
4.19867 1
4.29197 1
4.95353 1
5.0696 1
5.1217 1
5.1765 1
6.08628 1
6.16385 1
6.44532 1
6.84683 1
6.9613 1
7.28959 1
7.70237 1
7.78677 1
7.85369 1
7.87303 1
7.98838 1
8.18229 1
8.30406 1
8.46579 1
8.56086 1
8.58891 1
8.81287 1
9.21217 1
9.23778 1
9.65157 1
10.1804 1
10.36239 1
10.55986 1
11.11685 1
11.19714 1
12.61362 1
14.62503 1
15.04256 1
15.16116 1
15.42607 1
15.82404 1
16.94642 1
16.97776 1
17.31514 1
17.48659 1
18.91189 1
20.25692 1
20.31227 1
22.53724 1
23.49217 1
24.48479 1
25.51411 1
26.89879 1
28.50569 1
51.84125 1
library(ggplot2)
ggplot(data=df_co, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de inundaciones") +
  ylab("Frecuencia")

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.00003  8.00003 16.00003 24.00003 32.00003 40.00003 48.00003 56.00003
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
3e-05 1 0.0104167 1
0.11421 1 0.0104167 2
0.14776 1 0.0104167 3
0.30587 1 0.0104167 4
0.37809 1 0.0104167 5
0.38844 1 0.0104167 6
0.44753 1 0.0104167 7
0.60599 1 0.0104167 8
0.62022 1 0.0104167 9
0.64094 1 0.0104167 10
0.64469 1 0.0104167 11
0.68544 1 0.0104167 12
0.70558 1 0.0104167 13
0.7283 1 0.0104167 14
0.74201 1 0.0104167 15
0.79694 1 0.0104167 16
0.80432 1 0.0104167 17
0.85976 1 0.0104167 18
0.93184 1 0.0104167 19
1.07765 1 0.0104167 20
1.08964 1 0.0104167 21
1.27637 1 0.0104167 22
1.33829 1 0.0104167 23
1.35196 1 0.0104167 24
1.4794 1 0.0104167 25
1.53032 1 0.0104167 26
1.7085 1 0.0104167 27
1.73101 1 0.0104167 28
1.84941 1 0.0104167 29
2.04898 1 0.0104167 30
2.07081 1 0.0104167 31
2.18776 1 0.0104167 32
2.28425 1 0.0104167 33
2.36822 1 0.0104167 34
2.53047 1 0.0104167 35
2.55282 1 0.0104167 36
2.99929 2 0.0208333 38
3.06383 1 0.0104167 39
3.09014 1 0.0104167 40
3.14201 1 0.0104167 41
3.6052 1 0.0104167 42
3.72195 1 0.0104167 43
3.81445 1 0.0104167 44
4.09028 1 0.0104167 45
4.19867 1 0.0104167 46
4.29197 1 0.0104167 47
4.95353 1 0.0104167 48
5.0696 1 0.0104167 49
5.1217 1 0.0104167 50
5.1765 1 0.0104167 51
6.08628 1 0.0104167 52
6.16385 1 0.0104167 53
6.44532 1 0.0104167 54
6.84683 1 0.0104167 55
6.9613 1 0.0104167 56
7.28959 1 0.0104167 57
7.70237 1 0.0104167 58
7.78677 1 0.0104167 59
7.85369 1 0.0104167 60
7.87303 1 0.0104167 61
7.98838 1 0.0104167 62
8.18229 1 0.0104167 63
8.30406 1 0.0104167 64
8.46579 1 0.0104167 65
8.56086 1 0.0104167 66
8.58891 1 0.0104167 67
8.81287 1 0.0104167 68
9.21217 1 0.0104167 69
9.23778 1 0.0104167 70
9.65157 1 0.0104167 71
10.1804 1 0.0104167 72
10.36239 1 0.0104167 73
10.55986 1 0.0104167 74
11.11685 1 0.0104167 75
11.19714 1 0.0104167 76
12.61362 1 0.0104167 77
14.62503 1 0.0104167 78
15.04256 1 0.0104167 79
15.16116 1 0.0104167 80
15.42607 1 0.0104167 81
15.82404 1 0.0104167 82
16.94642 1 0.0104167 83
16.97776 1 0.0104167 84
17.31514 1 0.0104167 85
17.48659 1 0.0104167 86
18.91189 1 0.0104167 87
20.25692 1 0.0104167 88
20.31227 1 0.0104167 89
22.53724 1 0.0104167 90
23.49217 1 0.0104167 91
24.48479 1 0.0104167 92
25.51411 1 0.0104167 93
26.89879 1 0.0104167 94
28.50569 1 0.0104167 95
51.84125 1 0.0104167 96
str(Freq_table)
## 'data.frame':    95 obs. of  4 variables:
##  $ Distance: Factor w/ 95 levels "3e-05","0.11421",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0104 0.0104 0.0104 0.0104 0.0104 ...
##  $ Cum_Freq: int  1 2 3 4 5 6 7 8 9 10 ...
df_co <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_co)
x y
3e-05 1
0.11421 1
0.14776 1
0.30587 1
0.37809 1
0.38844 1
0.44753 1
0.60599 1
0.62022 1
0.64094 1
0.64469 1
0.68544 1
0.70558 1
0.7283 1
0.74201 1
0.79694 1
0.80432 1
0.85976 1
0.93184 1
1.07765 1
1.08964 1
1.27637 1
1.33829 1
1.35196 1
1.4794 1
1.53032 1
1.7085 1
1.73101 1
1.84941 1
2.04898 1
2.07081 1
2.18776 1
2.28425 1
2.36822 1
2.53047 1
2.55282 1
2.99929 2
3.06383 1
3.09014 1
3.14201 1
3.6052 1
3.72195 1
3.81445 1
4.09028 1
4.19867 1
4.29197 1
4.95353 1
5.0696 1
5.1217 1
5.1765 1
6.08628 1
6.16385 1
6.44532 1
6.84683 1
6.9613 1
7.28959 1
7.70237 1
7.78677 1
7.85369 1
7.87303 1
7.98838 1
8.18229 1
8.30406 1
8.46579 1
8.56086 1
8.58891 1
8.81287 1
9.21217 1
9.23778 1
9.65157 1
10.1804 1
10.36239 1
10.55986 1
11.11685 1
11.19714 1
12.61362 1
14.62503 1
15.04256 1
15.16116 1
15.42607 1
15.82404 1
16.94642 1
16.97776 1
17.31514 1
17.48659 1
18.91189 1
20.25692 1
20.31227 1
22.53724 1
23.49217 1
24.48479 1
25.51411 1
26.89879 1
28.50569 1
51.84125 1
library(ggplot2)

ggplot(data=df_co, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_co$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_co)
##           x           y
## nbr.val  NA 95.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 96.00000000
## median   NA  1.00000000
## mean     NA  1.01052632
## SE.mean  NA  0.01052632
## CI.mean  NA  0.02090025
## var      NA  0.01052632
## std.dev  NA  0.10259784
## coef.var NA  0.10152911
boxplot(Distance, horizontal=TRUE, col='orange')

#MEXICO

library(readr)
library(knitr)
df_mx <- subset (df, Country == "Mexico")
knitr::kable(head(df_mx))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
13 115 7/4/07 NA Mexico MX Veracruz-Llave 1947 Laguna Chica (Pueblo Nuevo) 9.51003 18.5369 -96.8229 (18.536899999999999, -96.822900000000004) Landslide Landslide Medium Rain NA 7 nytimes.com http://www.nytimes.com/2007/07/04/world/americas/04cnd-mexico.html?_r=1&hp&oref=slogin
29 201 8/23/07 NA Mexico MX Puebla 1414 Xochitlaxco (San Baltazar) 1.68294 19.9333 -97.8500 (19.933299999999999, -97.85) Landslide Mudslide Medium Tropical cyclone Hurricane Dean NA 6 Inquirer.com http://newsinfo.inquirer.net/breakingnews/world/view_article.php?article_id=84452
31 225 9/2/07 NA Mexico MX Sinaloa 3191 El Limón de los Ramos 10.88351 24.9531 -107.6220 (24.953099999999999, -107.622) Landslide Complex Medium Tropical cyclone Tropical Storm Henrietta NA 3
42 284 9/28/07 NA Mexico MX Puebla 3761 Xaltepuxtla 7.93258 20.2000 -97.9000 (20.2, -97.9) Landslide Mudslide Medium Tropical cyclone Hurricane Lorenzo NA 1 PressTV.ir http://www.presstv.ir/detail.aspx?id=25037&sectionid=3510207
57 342 10/31/07 NA Mexico MX Tabasco 4468 Buenavista 4.19108 17.9493 -92.5534 (17.949300000000001, -92.553399999999996) Landslide Landslide Medium Rain NA 18 CapeTimes http://www.capetimes.co.za/?fArticleId=4109453
59 346 11/4/07 NA Mexico MX Chiapas 3183 Ostuacán 3.74149 17.3900 -93.3060 (17.39, -93.305999999999997) Landslide Mudslide Very_large Rain NA 5 Reuters - AlertNet.org http://news.monstersandcritics.com/americas/news/article_1371436.php/Mudslide_is_latest_disaster_for_hard-hit_Mexico__2nd_Roundup_
df_mx %>% 
  select(Country, State, City, Distance)
##      Country                State                              City Distance
## 13    Mexico       Veracruz-Llave       Laguna Chica (Pueblo Nuevo)  9.51003
## 29    Mexico               Puebla        Xochitlaxco (San Baltazar)  1.68294
## 31    Mexico              Sinaloa            El Limón de los Ramos 10.88351
## 42    Mexico               Puebla                       Xaltepuxtla  7.93258
## 57    Mexico              Tabasco                        Buenavista  4.19108
## 59    Mexico              Chiapas                         Ostuacán  3.74149
## 73    Mexico      Baja California                           Tijuana 12.53758
## 137   Mexico              México            San Francisco Chimalpa  2.59637
## 177   Mexico The Federal District                       Mexico City  0.15208
## 207   Mexico  Baja California Sur                San José del Cabo  0.05648
## 210   Mexico The Federal District               Magdalena Contreras  3.49173
## 255   Mexico              México                            Toluca  0.66626
## 256   Mexico           Michoacán                Heroica Zitácuaro  4.18059
## 257   Mexico           Michoacán                        Jarácuaro  3.42740
## 258   Mexico           Michoacán              Mineral de Angangueo  1.69508
## 260   Mexico              México                       Zacazonapan  4.40801
## 341   Mexico      Baja California                           Tijuana  2.49770
## 375   Mexico          Nuevo León                    Santa Catarina  3.30074
## 385   Mexico              Chiapas                         Escuintla  1.41805
## 386   Mexico              Chiapas       San Cristóbal de las Casas  0.94118
## 401   Mexico The Federal District                       Mexico City  0.15208
## 422   Mexico               Oaxaca                  Santiago Choapam 16.16369
## 423   Mexico               Oaxaca         Santa María la Asunción  0.63550
## 445   Mexico       Veracruz-Llave                         El Hatito  8.28739
## 449   Mexico              México                    Villa Guerrero  1.06048
## 457   Mexico               Oaxaca          Santo Domingo Tepuxtepec 15.74984
## 463   Mexico              Chiapas                           Amatán  0.31118
## 464   Mexico              Chiapas                         Chihuahua  8.46579
## 467   Mexico               Oaxaca               Tanetze de Zaragoza 24.67589
## 761   Mexico              Nayarit                    La Jarretadera 21.80060
## 764   Mexico       Veracruz-Llave               Xalapa de Enríquez  1.27837
## 787   Mexico               Oaxaca                       Salina Cruz  0.78340
## 788   Mexico               Oaxaca               San José Chiltepec  0.28905
## 789   Mexico               Oaxaca              Paso Real de Sarabia  9.56829
## 798   Mexico              Chiapas                    Nueva Libertad  7.93996
## 799   Mexico               Colima                            Colima  0.36051
## 800   Mexico             Guerrero        Chilpancingo de los Bravos  6.80950
## 801   Mexico           Michoacán                        Jarácuaro  3.36905
## 802   Mexico              Nayarit                              Puga 19.41353
## 825   Mexico              Jalisco                        Cihuatlán  0.08269
## 890   Mexico               Oaxaca                            Oaxaca  3.64682
## 977   Mexico              Hidalgo                  Tepeji de Ocampo  0.64483
## 1095  Mexico       Veracruz-Llave                        Coatzintla  1.52983
## 1096  Mexico       Veracruz-Llave                         Altotonga  2.85382
## 1097  Mexico       Veracruz-Llave                          Yecuatla  3.73160
## 1118  Mexico       Veracruz-Llave     Heroica Coscomatepec de Bravo  0.09971
## 1147  Mexico               Oaxaca              San Andrés Huayapam 11.83490
## 1148  Mexico              Hidalgo                       Fontezuelas  9.78251
## 1149  Mexico               Puebla                   Tlatlauquitepec  0.30326
## 1151  Mexico             Guerrero                          Acapulco  0.90692
## 1152  Mexico       Veracruz-Llave                         Altotonga  0.50188
## 1153  Mexico             Guerrero                Atoyac de Ã\201lvarez 32.12708
## 1154  Mexico             Guerrero                 San Pablo Atzompa 14.04274
## 1155  Mexico               Puebla                            Atzala  5.24855
## 1158  Mexico       Veracruz-Llave                          Tetlaxco  4.51820
## 1159  Mexico             Guerrero        Chilpancingo de los Bravos  0.88149
## 1185  Mexico              Tabasco                       Olcuatitán  4.32007
## 1196  Mexico      Baja California                         El Sauzal 12.36500
## 1278  Mexico            Chihuahua                    Ciudad Juárez  3.05542
## 1298  Mexico             Guerrero                  Colonia Alborada  4.10830
## 1376  Mexico             Veracruz                          Chocaman  1.93516
## 1493  Mexico      Baja California La Esperanza [Granjas Familiares]  6.46156
## 1586  Mexico              Tabasco                          Libertad  4.81680
## 1587  Mexico              Tabasco                          Huapinol  2.15703
## 1601  Mexico             Veracruz                        Cruz Verde  2.47800
## 1621  Mexico             Guerrero               Acapulco de Juárez  7.07138
## 1625  Mexico              Tabasco                       Olcuatitán  8.93271
## 1635  Mexico             Guerrero                          Pochutla 12.33417
## 1670  Mexico              Chiapas                     Santo Domingo  0.76257
## 1671  Mexico              Chiapas             Motozintla de Mendoza  2.06743
## 1672  Mexico              Chiapas                   Emiliano Zapata  4.68443
## 1673  Mexico              Chiapas                              Tila  1.73469
## 1674  Mexico              Tabasco         Tenosique de Pino Suárez 15.22260
library(ggplot2)

ggplot(data=df_mx, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="yellow")

library(ggplot2)
library(dplyr)
ggplot(data=df_mx, aes(fill=City, x="Mexico", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_mx, aes(fill=City, x="Mexico", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_mx, aes(x = "Mexico", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

library(qcc)
Distance <- df_mx$Distance
names(Distance) <- df_mx$City 

pareto.chart(Distance, 
             ylab="Distance",
             col = heat.colors(length(Distance)),
             cumperc = seq(0, 100, by = 10),
             ylab2 = "Porcentaje acumulado",
             main = "CONCENTRACION DE LAS INUNDACIONES EN LAS CIUDADES")

##                                    
## Pareto chart analysis for Distance
##                                        Frequency    Cum.Freq.   Percentage
##   Atoyac de Ã\201lvarez                 32.12708000  32.12708000   7.76637116
##   Tanetze de Zaragoza                24.67589000  56.80297000   5.96512725
##   La Jarretadera                     21.80060000  78.60357000   5.27005726
##   Puga                               19.41353000  98.01710000   4.69300912
##   Santiago Choapam                   16.16369000 114.18079000   3.90739575
##   Santo Domingo Tepuxtepec           15.74984000 129.93063000   3.80735203
##   Tenosique de Pino Suárez          15.22260000 145.15323000   3.67989751
##   San Pablo Atzompa                  14.04274000 159.19597000   3.39467922
##   Tijuana                            12.53758000 171.73355000   3.03082321
##   El Sauzal                          12.36500000 184.09855000   2.98910388
##   Pochutla                           12.33417000 196.43272000   2.98165106
##   San Andrés Huayapam               11.83490000 208.26762000   2.86095798
##   El Limón de los Ramos             10.88351000 219.15113000   2.63096983
##   Fontezuelas                         9.78251000 228.93364000   2.36481509
##   Paso Real de Sarabia                9.56829000 238.50193000   2.31302974
##   Laguna Chica (Pueblo Nuevo)         9.51003000 248.01196000   2.29894602
##   Olcuatitán                         8.93271000 256.94467000   2.15938521
##   Chihuahua                           8.46579000 265.41046000   2.04651239
##   El Hatito                           8.28739000 273.69785000   2.00338614
##   Nueva Libertad                      7.93996000 281.63781000   1.91939872
##   Xaltepuxtla                         7.93258000 289.57039000   1.91761469
##   Acapulco de Juárez                 7.07138000 296.64177000   1.70942898
##   Chilpancingo de los Bravos          6.80950000 303.45127000   1.64612235
##   La Esperanza [Granjas Familiares]   6.46156000 309.91283000   1.56201165
##   Atzala                              5.24855000 315.16138000   1.26877971
##   Libertad                            4.81680000 319.97818000   1.16440886
##   Emiliano Zapata                     4.68443000 324.66261000   1.13240986
##   Tetlaxco                            4.51820000 329.18081000   1.09222557
##   Zacazonapan                         4.40801000 333.58882000   1.06558834
##   Olcuatitán                         4.32007000 337.90889000   1.04432980
##   Buenavista                          4.19108000 342.09997000   1.01314787
##   Heroica Zitácuaro                  4.18059000 346.28056000   1.01061203
##   Colonia Alborada                    4.10830000 350.38886000   0.99313671
##   Ostuacán                           3.74149000 354.13035000   0.90446440
##   Yecuatla                            3.73160000 357.86195000   0.90207360
##   Oaxaca                              3.64682000 361.50877000   0.88157896
##   Magdalena Contreras                 3.49173000 365.00050000   0.84408764
##   Jarácuaro                          3.42740000 368.42790000   0.82853656
##   Jarácuaro                          3.36905000 371.79695000   0.81443109
##   Santa Catarina                      3.30074000 375.09769000   0.79791789
##   Ciudad Juárez                      3.05542000 378.15311000   0.73861446
##   Altotonga                           2.85382000 381.00693000   0.68987986
##   San Francisco Chimalpa              2.59637000 383.60330000   0.62764413
##   Tijuana                             2.49770000 386.10100000   0.60379173
##   Cruz Verde                          2.47800000 388.57900000   0.59902947
##   Huapinol                            2.15703000 390.73603000   0.52143847
##   Motozintla de Mendoza               2.06743000 392.80346000   0.49977865
##   Chocaman                            1.93516000 394.73862000   0.46780382
##   Tila                                1.73469000 396.47331000   0.41934239
##   Mineral de Angangueo                1.69508000 398.16839000   0.40976710
##   Xochitlaxco (San Baltazar)          1.68294000 399.85133000   0.40683239
##   Coatzintla                          1.52983000 401.38116000   0.36981972
##   Escuintla                           1.41805000 402.79921000   0.34279812
##   Xalapa de Enríquez                 1.27837000 404.07758000   0.30903200
##   Villa Guerrero                      1.06048000 405.13806000   0.25635947
##   San Cristóbal de las Casas         0.94118000 406.07924000   0.22752000
##   Acapulco                            0.90692000 406.98616000   0.21923802
##   Chilpancingo de los Bravos          0.88149000 407.86765000   0.21309059
##   Salina Cruz                         0.78340000 408.65105000   0.18937840
##   Santo Domingo                       0.76257000 409.41362000   0.18434298
##   Toluca                              0.66626000 410.07988000   0.16106109
##   Tepeji de Ocampo                    0.64483000 410.72471000   0.15588062
##   Santa María la Asunción           0.63550000 411.36021000   0.15362519
##   Altotonga                           0.50188000 411.86209000   0.12132402
##   Colima                              0.36051000 412.22260000   0.08714936
##   Amatán                             0.31118000 412.53378000   0.07522437
##   Tlatlauquitepec                     0.30326000 412.83704000   0.07330980
##   San José Chiltepec                 0.28905000 413.12609000   0.06987468
##   Mexico City                         0.15208000 413.27817000   0.03676368
##   Mexico City                         0.15208000 413.43025000   0.03676368
##   Heroica Coscomatepec de Bravo       0.09971000 413.52996000   0.02410380
##   Cihuatlán                          0.08269000 413.61265000   0.01998941
##   San José del Cabo                  0.05648000 413.66913000   0.01365342
##                                    
## Pareto chart analysis for Distance
##                                     Cum.Percent.
##   Atoyac de Ã\201lvarez                  7.76637116
##   Tanetze de Zaragoza                13.73149841
##   La Jarretadera                     19.00155566
##   Puga                               23.69456478
##   Santiago Choapam                   27.60196053
##   Santo Domingo Tepuxtepec           31.40931256
##   Tenosique de Pino Suárez          35.08921007
##   San Pablo Atzompa                  38.48388929
##   Tijuana                            41.51471249
##   El Sauzal                          44.50381637
##   Pochutla                           47.48546743
##   San Andrés Huayapam               50.34642541
##   El Limón de los Ramos             52.97739524
##   Fontezuelas                        55.34221033
##   Paso Real de Sarabia               57.65524007
##   Laguna Chica (Pueblo Nuevo)        59.95418609
##   Olcuatitán                        62.11357130
##   Chihuahua                          64.16008369
##   El Hatito                          66.16346982
##   Nueva Libertad                     68.08286855
##   Xaltepuxtla                        70.00048324
##   Acapulco de Juárez                71.70991222
##   Chilpancingo de los Bravos         73.35603457
##   La Esperanza [Granjas Familiares]  74.91804622
##   Atzala                             76.18682593
##   Libertad                           77.35123479
##   Emiliano Zapata                    78.48364465
##   Tetlaxco                           79.57587021
##   Zacazonapan                        80.64145855
##   Olcuatitán                        81.68578835
##   Buenavista                         82.69893622
##   Heroica Zitácuaro                 83.70954826
##   Colonia Alborada                   84.70268497
##   Ostuacán                          85.60714937
##   Yecuatla                           86.50922296
##   Oaxaca                             87.39080192
##   Magdalena Contreras                88.23488956
##   Jarácuaro                         89.06342613
##   Jarácuaro                         89.87785721
##   Santa Catarina                     90.67577511
##   Ciudad Juárez                     91.41438956
##   Altotonga                          92.10426942
##   San Francisco Chimalpa             92.73191355
##   Tijuana                            93.33570528
##   Cruz Verde                         93.93473475
##   Huapinol                           94.45617322
##   Motozintla de Mendoza              94.95595187
##   Chocaman                           95.42375570
##   Tila                               95.84309808
##   Mineral de Angangueo               96.25286518
##   Xochitlaxco (San Baltazar)         96.65969757
##   Coatzintla                         97.02951729
##   Escuintla                          97.37231541
##   Xalapa de Enríquez                97.68134741
##   Villa Guerrero                     97.93770688
##   San Cristóbal de las Casas        98.16522688
##   Acapulco                           98.38446490
##   Chilpancingo de los Bravos         98.59755549
##   Salina Cruz                        98.78693390
##   Santo Domingo                      98.97127688
##   Toluca                             99.13233796
##   Tepeji de Ocampo                   99.28821858
##   Santa María la Asunción          99.44184377
##   Altotonga                          99.56316779
##   Colima                             99.65031715
##   Amatán                            99.72554152
##   Tlatlauquitepec                    99.79885132
##   San José Chiltepec                99.86872600
##   Mexico City                        99.90548968
##   Mexico City                        99.94225337
##   Heroica Coscomatepec de Bravo      99.96635717
##   Cihuatlán                         99.98634658
##   San José del Cabo                100.00000000
stem(df_mx$"Distance")
## 
##   The decimal point is 1 digit(s) to the right of the |
## 
##   0 | 000000000111111111111222222222333333344444444
##   0 | 555567788889
##   1 | 000122234
##   1 | 5669
##   2 | 2
##   2 | 5
##   3 | 2
head(df_mx)
##     id     date time continent_code Country country_code          State
## 13 115   7/4/07                <NA>  Mexico           MX Veracruz-Llave
## 29 201  8/23/07                <NA>  Mexico           MX         Puebla
## 31 225   9/2/07                <NA>  Mexico           MX        Sinaloa
## 42 284  9/28/07                <NA>  Mexico           MX         Puebla
## 57 342 10/31/07                <NA>  Mexico           MX        Tabasco
## 59 346  11/4/07                <NA>  Mexico           MX        Chiapas
##    population                        City Distance location_description
## 13       1947 Laguna Chica (Pueblo Nuevo)  9.51003                     
## 29       1414  Xochitlaxco (San Baltazar)  1.68294                     
## 31       3191      El Limón de los Ramos 10.88351                     
## 42       3761                 Xaltepuxtla  7.93258                     
## 57       4468                  Buenavista  4.19108                     
## 59       3183                   Ostuacán  3.74149                     
##    latitude longitude                               geolocation hazard_type
## 13  18.5369  -96.8229 (18.536899999999999, -96.822900000000004)   Landslide
## 29  19.9333  -97.8500              (19.933299999999999, -97.85)   Landslide
## 31  24.9531 -107.6220            (24.953099999999999, -107.622)   Landslide
## 42  20.2000  -97.9000                             (20.2, -97.9)   Landslide
## 57  17.9493  -92.5534 (17.949300000000001, -92.553399999999996)   Landslide
## 59  17.3900  -93.3060              (17.39, -93.305999999999997)   Landslide
##    landslide_type landslide_size          trigger               storm_name
## 13      Landslide         Medium             Rain                         
## 29       Mudslide         Medium Tropical cyclone           Hurricane Dean
## 31        Complex         Medium Tropical cyclone Tropical Storm Henrietta
## 42       Mudslide         Medium Tropical cyclone        Hurricane Lorenzo
## 57      Landslide         Medium             Rain                         
## 59       Mudslide     Very_large             Rain                         
##    injuries fatalities            source_name
## 13       NA          7            nytimes.com
## 29       NA          6           Inquirer.com
## 31       NA          3                       
## 42       NA          1             PressTV.ir
## 57       NA         18              CapeTimes
## 59       NA          5 Reuters - AlertNet.org
##                                                                                                                           source_link
## 13                                             http://www.nytimes.com/2007/07/04/world/americas/04cnd-mexico.html?_r=1&hp&oref=slogin
## 29                                                  http://newsinfo.inquirer.net/breakingnews/world/view_article.php?article_id=84452
## 31                                                                                                                                   
## 42                                                                       http://www.presstv.ir/detail.aspx?id=25037&sectionid=3510207
## 57                                                                                     http://www.capetimes.co.za/?fArticleId=4109453
## 59 http://news.monstersandcritics.com/americas/news/article_1371436.php/Mudslide_is_latest_disaster_for_hard-hit_Mexico__2nd_Roundup_
knitr::kable(head(df_mx))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
13 115 7/4/07 NA Mexico MX Veracruz-Llave 1947 Laguna Chica (Pueblo Nuevo) 9.51003 18.5369 -96.8229 (18.536899999999999, -96.822900000000004) Landslide Landslide Medium Rain NA 7 nytimes.com http://www.nytimes.com/2007/07/04/world/americas/04cnd-mexico.html?_r=1&hp&oref=slogin
29 201 8/23/07 NA Mexico MX Puebla 1414 Xochitlaxco (San Baltazar) 1.68294 19.9333 -97.8500 (19.933299999999999, -97.85) Landslide Mudslide Medium Tropical cyclone Hurricane Dean NA 6 Inquirer.com http://newsinfo.inquirer.net/breakingnews/world/view_article.php?article_id=84452
31 225 9/2/07 NA Mexico MX Sinaloa 3191 El Limón de los Ramos 10.88351 24.9531 -107.6220 (24.953099999999999, -107.622) Landslide Complex Medium Tropical cyclone Tropical Storm Henrietta NA 3
42 284 9/28/07 NA Mexico MX Puebla 3761 Xaltepuxtla 7.93258 20.2000 -97.9000 (20.2, -97.9) Landslide Mudslide Medium Tropical cyclone Hurricane Lorenzo NA 1 PressTV.ir http://www.presstv.ir/detail.aspx?id=25037&sectionid=3510207
57 342 10/31/07 NA Mexico MX Tabasco 4468 Buenavista 4.19108 17.9493 -92.5534 (17.949300000000001, -92.553399999999996) Landslide Landslide Medium Rain NA 18 CapeTimes http://www.capetimes.co.za/?fArticleId=4109453
59 346 11/4/07 NA Mexico MX Chiapas 3183 Ostuacán 3.74149 17.3900 -93.3060 (17.39, -93.305999999999997) Landslide Mudslide Very_large Rain NA 5 Reuters - AlertNet.org http://news.monstersandcritics.com/americas/news/article_1371436.php/Mudslide_is_latest_disaster_for_hard-hit_Mexico__2nd_Roundup_
stem(df_mx$"Distance")
## 
##   The decimal point is 1 digit(s) to the right of the |
## 
##   0 | 000000000111111111111222222222333333344444444
##   0 | 555567788889
##   1 | 000122234
##   1 | 5669
##   2 | 2
##   2 | 5
##   3 | 2
stem(df_mx$"Distance", scale = 2)
## 
##   The decimal point is at the |
## 
##    0 | 11122333456678899913457779
##    2 | 12556913445677
##    4 | 122345782
##    6 | 58199
##    8 | 359568
##   10 | 98
##   12 | 345
##   14 | 027
##   16 | 2
##   18 | 4
##   20 | 8
##   22 | 
##   24 | 7
##   26 | 
##   28 | 
##   30 | 
##   32 | 1
library(forecast)
data<- ts(df_mx$Distance, frequency=12, start=2008)
knitr::kable(head(data))
x
9.51003
1.68294
10.88351
7.93258
4.19108
3.74149
autoplot(data) + labs(title = "Gráfico de series temporales", x="date", y = "distancia", colour = "green") +theme_bw()

library(questionr)

table <- questionr::freq(Distance, cum = TRUE, sort = "dec", total = TRUE)
knitr::kable(table)
n % val% %cum val%cum
0.15208 2 2.7 2.7 2.7 2.7
0.05648 1 1.4 1.4 4.1 4.1
0.08269 1 1.4 1.4 5.5 5.5
0.09971 1 1.4 1.4 6.8 6.8
0.28905 1 1.4 1.4 8.2 8.2
0.30326 1 1.4 1.4 9.6 9.6
0.31118 1 1.4 1.4 11.0 11.0
0.36051 1 1.4 1.4 12.3 12.3
0.50188 1 1.4 1.4 13.7 13.7
0.6355 1 1.4 1.4 15.1 15.1
0.64483 1 1.4 1.4 16.4 16.4
0.66626 1 1.4 1.4 17.8 17.8
0.76257 1 1.4 1.4 19.2 19.2
0.7834 1 1.4 1.4 20.5 20.5
0.88149 1 1.4 1.4 21.9 21.9
0.90692 1 1.4 1.4 23.3 23.3
0.94118 1 1.4 1.4 24.7 24.7
1.06048 1 1.4 1.4 26.0 26.0
1.27837 1 1.4 1.4 27.4 27.4
1.41805 1 1.4 1.4 28.8 28.8
1.52983 1 1.4 1.4 30.1 30.1
1.68294 1 1.4 1.4 31.5 31.5
1.69508 1 1.4 1.4 32.9 32.9
1.73469 1 1.4 1.4 34.2 34.2
1.93516 1 1.4 1.4 35.6 35.6
2.06743 1 1.4 1.4 37.0 37.0
2.15703 1 1.4 1.4 38.4 38.4
2.478 1 1.4 1.4 39.7 39.7
2.4977 1 1.4 1.4 41.1 41.1
2.59637 1 1.4 1.4 42.5 42.5
2.85382 1 1.4 1.4 43.8 43.8
3.05542 1 1.4 1.4 45.2 45.2
3.30074 1 1.4 1.4 46.6 46.6
3.36905 1 1.4 1.4 47.9 47.9
3.4274 1 1.4 1.4 49.3 49.3
3.49173 1 1.4 1.4 50.7 50.7
3.64682 1 1.4 1.4 52.1 52.1
3.7316 1 1.4 1.4 53.4 53.4
3.74149 1 1.4 1.4 54.8 54.8
4.1083 1 1.4 1.4 56.2 56.2
4.18059 1 1.4 1.4 57.5 57.5
4.19108 1 1.4 1.4 58.9 58.9
4.32007 1 1.4 1.4 60.3 60.3
4.40801 1 1.4 1.4 61.6 61.6
4.5182 1 1.4 1.4 63.0 63.0
4.68443 1 1.4 1.4 64.4 64.4
4.8168 1 1.4 1.4 65.8 65.8
5.24855 1 1.4 1.4 67.1 67.1
6.46156 1 1.4 1.4 68.5 68.5
6.8095 1 1.4 1.4 69.9 69.9
7.07138 1 1.4 1.4 71.2 71.2
7.93258 1 1.4 1.4 72.6 72.6
7.93996 1 1.4 1.4 74.0 74.0
8.28739 1 1.4 1.4 75.3 75.3
8.46579 1 1.4 1.4 76.7 76.7
8.93271 1 1.4 1.4 78.1 78.1
9.51003 1 1.4 1.4 79.5 79.5
9.56829 1 1.4 1.4 80.8 80.8
9.78251 1 1.4 1.4 82.2 82.2
10.88351 1 1.4 1.4 83.6 83.6
11.8349 1 1.4 1.4 84.9 84.9
12.33417 1 1.4 1.4 86.3 86.3
12.365 1 1.4 1.4 87.7 87.7
12.53758 1 1.4 1.4 89.0 89.0
14.04274 1 1.4 1.4 90.4 90.4
15.2226 1 1.4 1.4 91.8 91.8
15.74984 1 1.4 1.4 93.2 93.2
16.16369 1 1.4 1.4 94.5 94.5
19.41353 1 1.4 1.4 95.9 95.9
21.8006 1 1.4 1.4 97.3 97.3
24.67589 1 1.4 1.4 98.6 98.6
32.12708 1 1.4 1.4 100.0 100.0
Total 73 100.0 100.0 100.0 100.0
str(table)
## Classes 'freqtab' and 'data.frame':  73 obs. of  5 variables:
##  $ n      : num  2 1 1 1 1 1 1 1 1 1 ...
##  $ %      : num  2.7 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 ...
##  $ val%   : num  2.7 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 ...
##  $ %cum   : num  2.7 4.1 5.5 6.8 8.2 9.6 11 12.3 13.7 15.1 ...
##  $ val%cum: num  2.7 4.1 5.5 6.8 8.2 9.6 11 12.3 13.7 15.1 ...
x <- row.names(table)
y <- table$n
names <- x[1:(length(x)-1)]
freqs <- y[1:(length(y)-1)]
df_co <- data.frame(x = names, y = freqs)
knitr::kable(df_mx)
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
13 115 7/4/07 NA Mexico MX Veracruz-Llave 1947 Laguna Chica (Pueblo Nuevo) 9.51003 18.5369 -96.8229 (18.536899999999999, -96.822900000000004) Landslide Landslide Medium Rain NA 7 nytimes.com http://www.nytimes.com/2007/07/04/world/americas/04cnd-mexico.html?_r=1&hp&oref=slogin
29 201 8/23/07 NA Mexico MX Puebla 1414 Xochitlaxco (San Baltazar) 1.68294 19.9333 -97.8500 (19.933299999999999, -97.85) Landslide Mudslide Medium Tropical cyclone Hurricane Dean NA 6 Inquirer.com http://newsinfo.inquirer.net/breakingnews/world/view_article.php?article_id=84452
31 225 9/2/07 NA Mexico MX Sinaloa 3191 El Limón de los Ramos 10.88351 24.9531 -107.6220 (24.953099999999999, -107.622) Landslide Complex Medium Tropical cyclone Tropical Storm Henrietta NA 3
42 284 9/28/07 NA Mexico MX Puebla 3761 Xaltepuxtla 7.93258 20.2000 -97.9000 (20.2, -97.9) Landslide Mudslide Medium Tropical cyclone Hurricane Lorenzo NA 1 PressTV.ir http://www.presstv.ir/detail.aspx?id=25037&sectionid=3510207
57 342 10/31/07 NA Mexico MX Tabasco 4468 Buenavista 4.19108 17.9493 -92.5534 (17.949300000000001, -92.553399999999996) Landslide Landslide Medium Rain NA 18 CapeTimes http://www.capetimes.co.za/?fArticleId=4109453
59 346 11/4/07 NA Mexico MX Chiapas 3183 Ostuacán 3.74149 17.3900 -93.3060 (17.39, -93.305999999999997) Landslide Mudslide Very_large Rain NA 5 Reuters - AlertNet.org http://news.monstersandcritics.com/americas/news/article_1371436.php/Mudslide_is_latest_disaster_for_hard-hit_Mexico__2nd_Roundup_
73 417 1/7/08 NA Mexico MX Baja California 1376457 Tijuana 12.53758 32.5755 -116.9016 (32.575499999999998, -116.9016) Landslide Landslide Medium Rain NA 1 http://www.signonsandiego.com/news/mexico/tijuana/20080108-1858-bn08tj.html
137 744 8/25/08 NA Mexico MX México 7182 San Francisco Chimalpa 2.59637 19.4360 -99.3650 (19.436, -99.364999999999995) Landslide Mudslide Medium Downpour NA 1 http://www.alertnet.org/thenews/newsdesk/N26335664.htm
177 975 1/22/09 NA Mexico MX The Federal District 12294193 Mexico City 0.15208 19.4271 -99.1276 (19.427099999999999, -99.127600000000001) Landslide Landslide Medium Downpour NA 2
207 1131 9/1/09 NA Mexico MX Baja California Sur 48518 San José del Cabo 0.05648 23.0587 -109.6972 (23.058700000000002, -109.6972) Landslide Mudslide Medium Tropical cyclone Hurricane Jimena NA NA http://online.wsj.com/article/SB125187243480578733.html
210 1167 9/15/09 NA Mexico MX The Federal District 228927 Magdalena Contreras 3.49173 19.3161 -99.2398 (19.316099999999999, -99.239800000000002) Landslide Mudslide Medium Downpour NA 3 http://edition.cnn.com/2009/WORLD/americas/09/16/mexico.mudslide.deaths/
255 1469 2/5/10 NA Mexico MX México 505881 Toluca 0.66626 19.2880 -99.6469 (19.288, -99.646900000000002) Landslide Landslide Large Downpour NA 11 http://www.trt.net.tr/trtinternational/en/newsDetail.aspx?HaberKodu=dc2169ea-80de-437d-a57a-eb11725c40e5
256 1470 2/5/10 NA Mexico MX Michoacán 78950 Heroica Zitácuaro 4.18059 19.4000 -100.3667 (19.399999999999999, -100.36669999999999) Landslide Mudslide Medium Downpour NA 2 http://www.sott.net/articles/show/202533-Mexico-rainstorms-leave-at-least-15-dead
257 1471 2/5/10 NA Mexico MX Michoacán 2817 Jarácuaro 3.42740 19.5670 -101.7098 (19.567, -101.7098) Landslide Mudslide Medium Downpour NA 1 http://www.sott.net/articles/show/202533-Mexico-rainstorms-leave-at-least-15-dead
258 1472 2/5/10 NA Mexico MX Michoacán 4943 Mineral de Angangueo 1.69508 19.6167 -100.3000 (19.616700000000002, -100.3) Landslide Mudslide Medium Downpour NA 3 http://www.aajtv.com/news/World/158635_detail.html
260 1477 2/4/10 22:00 NA Mexico MX México 2968 Zacazonapan 4.40801 Above road 19.1927 -99.8654 (19.192699999999999, -99.865399999999994) Landslide Mudslide Large Downpour NA 11 News Daily http://www.newsdaily.com/stories/tre6151we-us-mexico-mudslide/
341 1838 5/5/10 NA Mexico MX Baja California 1376457 Tijuana 2.49770 32.5250 -116.9999 (32.524999999999999, -116.9999) Landslide Mudslide Medium Rain NA 0 http://hisz.rsoe.hu/alertmap/woalert_read.php?lang=eng&cid=25962&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+RsoeEdis-EmergencyAndDisasterInformation+%28RSOE+EDIS+-+Emergency+and+Disaster+Information%29
375 2033 7/2/10 NA Mexico MX Nuevo León 254472 Santa Catarina 3.30074 Above road 25.6875 -100.4870 (25.6875, -100.48699999999999) Landslide Mudslide Medium Tropical cyclone Hurricane Alex NA 1 Sky News http://news.sky.com/skynews/Home/World-News/Deadly-Floods-Catch-City-Unprepared-As-Hurricane-Alex-Dumps-A-Years-Worth-of-Rain-In-Mexico/Article/201007115658765?lpos=World_News_Top_Stories_Header_3&lid=ARTICLE_15658765_Deadly_Floods_Catch_City_Unpr
385 2114 7/22/10 Overnight NA Mexico MX Chiapas 9570 Escuintla 1.41805 15.3258 -92.6698 (15.325799999999999, -92.669799999999995) Landslide Mudslide Medium Downpour NA 3 http://www.laht.com/article.asp?ArticleId=361041&CategoryId=14091
386 2115 7/22/10 NA Mexico MX Chiapas 128996 San Cristóbal de las Casas 0.94118 16.7294 -92.6389 (16.729399999999998, -92.638900000000007) Landslide Rockfall Small Downpour NA 0 http://www.laht.com/article.asp?ArticleId=361041&CategoryId=14091
401 2191 8/2/10 NA Mexico MX The Federal District 12294193 Mexico City 0.15208 19.4270 -99.1276 (19.427, -99.127600000000001) Landslide Mudslide Medium Construction NA 2
422 2321 8/24/10 Morning NA Mexico MX Oaxaca 1099 Santiago Choapam 16.16369 17.2568 -96.0289 (17.256799999999998, -96.028899999999993) Landslide Mudslide Medium Tropical cyclone Hurricane Frank NA 2
423 2322 8/24/10 Morning NA Mexico MX Oaxaca 1701 Santa María la Asunción 0.63550 18.1060 -96.8133 (18.106000000000002, -96.813299999999998) Landslide Mudslide Medium Tropical cyclone Hurricane Frank NA 2
445 2438 9/17/10 NA Mexico MX Veracruz-Llave 1324 El Hatito 8.28739 19.2818 -96.3149 (19.2818, -96.314899999999994) Landslide Landslide Medium Tropical cyclone Hurricane Karl NA 2 http://www.lfpress.com/news/world/2010/09/17/15382976-reuters.html
449 2474 9/20/10 Late night NA Mexico MX México 9267 Villa Guerrero 1.06048 18.9642 -99.6511 (18.964200000000002, -99.6511) Landslide Landslide Large Downpour NA 8 http://www.alertnet.org/thenews/newsdesk/N21168920.htm
457 2514 9/28/10 4:00:00 NA Mexico MX Oaxaca 1813 Santo Domingo Tepuxtepec 15.74984 17.0977 -96.0625 (17.0977, -96.0625) Landslide Mudslide Medium Tropical cyclone Hurricane Karl and Tropical Storm Matthew NA 11 http://technews.tmcnet.com/topics/associated-press/articles/106209-death-toll-southern-mexico-mudslides-up-32.htm
463 2520 9/29/10 NA Mexico MX Chiapas 3947 Amatán 0.31118 17.3738 -92.8213 (17.373799999999999, -92.821299999999994) Landslide Mudslide Large Tropical cyclone Hurricane Karl and Tropical Storm Matthew NA 16 http://technews.tmcnet.com/topics/associated-press/articles/106209-death-toll-southern-mexico-mudslides-up-32.htm
464 2521 9/29/10 NA Mexico MX Chiapas 1088 Chihuahua 8.46579 16.0203 -91.8946 (16.020299999999999, -91.894599999999997) Landslide Complex Medium Tropical cyclone Hurricane Karl and Tropical Storm Matthew NA 3 http://technews.tmcnet.com/topics/associated-press/articles/106209-death-toll-southern-mexico-mudslides-up-32.htm
467 2524 9/30/10 Morning NA Mexico MX Oaxaca 1096 Tanetze de Zaragoza 24.67589 17.1833 -96.1833 (17.183299999999999, -96.183300000000003) Landslide Mudslide Medium Tropical cyclone Hurricane Karl and Tropical Storm Matthew NA 2 http://technews.tmcnet.com/topics/associated-press/articles/106209-death-toll-southern-mexico-mudslides-up-32.htm
761 3639 6/22/11 NA Mexico MX Nayarit 4463 La Jarretadera 21.80060 21.9814 -104.8381 (21.981400000000001, -104.8381) Landslide Landslide Medium Tropical cyclone Hurricane Beatriz NA 0 http://channel6newsonline.com/2011/06/missing-teen-found-dead-after-beatriz-slams-mexicos-pacific-coast/
764 3684 7/1/11 NA Mexico MX Veracruz-Llave 425148 Xalapa de Enríquez 1.27837 19.5426 -96.9137 (19.5426, -96.913700000000006) Landslide Mudslide Medium Tropical cyclone Tropical Storm Arlene NA 0 http://edition.cnn.com/2011/WORLD/americas/07/04/mexico.arlene.deaths/
787 3795 7/17/11 NA Mexico MX Oaxaca 73648 Salina Cruz 0.78340 16.1863 -95.1924 (16.186299999999999, -95.192400000000006) Landslide Mudslide Medium Downpour NA 0 http://latino.foxnews.com/latino/news/2011/07/18/3-die-180000-affected-by-rains-in-southern-mexico/
788 3796 7/17/11 NA Mexico MX Oaxaca 3294 San José Chiltepec 0.28905 17.9484 -96.1674 (17.948399999999999, -96.167400000000001) Landslide Mudslide Medium Downpour NA 0 http://www.thenews.com.pk/NewsDetail.aspx?ID=18895&title=Intense-rains-in-Mexico-affect-thousands
789 3797 7/17/11 NA Mexico MX Oaxaca 1019 Paso Real de Sarabia 9.56829 17.0000 -95.0000 (17, -95) Landslide Mudslide Medium Downpour NA 2 http://www.thenews.com.pk/NewsDetail.aspx?ID=18895&title=Intense-rains-in-Mexico-affect-thousands
798 3832 7/22/11 NA Mexico MX Chiapas 1005 Nueva Libertad 7.93996 16.1514 -92.7704 (16.151399999999999, -92.770399999999995) Landslide Landslide Medium Tropical cyclone Hurricane Dora NA 0 http://www.china.org.cn/environment/2011-07/22/content_23044018.htm
799 3833 7/22/11 NA Mexico MX Colima 127235 Colima 0.36051 19.2444 -103.7244 (19.244399999999999, -103.7244) Landslide Landslide Medium Tropical cyclone Hurricane Dora NA 0
800 3834 7/22/11 NA Mexico MX Guerrero 165250 Chilpancingo de los Bravos 6.80950 17.4974 -99.5380 (17.497399999999999, -99.537999999999997) Landslide Landslide Medium Tropical cyclone Hurricane Dora NA 0
801 3835 7/22/11 NA Mexico MX Michoacán 2817 Jarácuaro 3.36905 19.5805 -101.7023 (19.580500000000001, -101.70229999999999) Landslide Landslide Medium Tropical cyclone Hurricane Dora NA 0
802 3836 7/22/11 NA Mexico MX Nayarit 6361 Puga 19.41353 21.7595 -104.8334 (21.759499999999999, -104.8334) Landslide Landslide Medium Tropical cyclone Hurricane Dora NA 0
825 4009 10/12/11 NA Mexico MX Jalisco 16520 Cihuatlán 0.08269 19.2372 -104.5656 (19.237200000000001, -104.5656) Landslide Landslide Medium Downpour NA 2 http://photos.denverpost.com/2011/10/12/photos-hurricane-jova-hits-mexican-coast-kills-2/
890 4412 6/15/12 NA Mexico MX Oaxaca 262566 Oaxaca 3.64682 17.0854 -96.7500 (17.0854, -96.75) Landslide Mudslide Medium Downpour NA 3 http://www.earthweek.com/2012/ew120622/ew120622f.html
977 4874 5/26/13 NA Mexico MX Hidalgo 33196 Tepeji de Ocampo 0.64483 19.9006 -99.3417 (19.900600000000001, -99.341700000000003) Landslide Landslide Large Rain NA 7 en.apa.az http://en.apa.az/xeber_7_killed_in_landslide_in_central_mexico_193672.html
1095 5403 8/26/13 20:20:00 NA Mexico MX Veracruz-Llave 30607 Coatzintla 1.52983 20.5004 -97.4647 (20.500399999999999, -97.464699999999993) Landslide Landslide Medium Tropical cyclone Fernand NA 3 www.cbc.ca http://www.cbc.ca/news/world/mexico-storm-related-landslides-kill-13-1.1370491
1096 5405 8/26/13 NA Mexico MX Veracruz-Llave 15800 Altotonga 2.85382 19.7906 -97.2428 (19.790600000000001, -97.242800000000003) Landslide Landslide Medium Tropical cyclone Fernand NA 1 www.cbc.ca http://www.cbc.ca/news/world/mexico-storm-related-landslides-kill-13-1.1370491
1097 5406 8/26/13 NA Mexico MX Veracruz-Llave 3198 Yecuatla 3.73160 19.8413 -96.8005 (19.8413, -96.8005) Landslide Landslide Medium Downpour NA 9 www.cbc.ca http://www.cbc.ca/news/world/mexico-storm-related-landslides-kill-13-1.1370491
1118 5486 9/9/13 Night NA Mexico MX Veracruz-Llave 12920 Heroica Coscomatepec de Bravo 0.09971 19.0719 -97.0474 (19.071899999999999, -97.047399999999996) Landslide Landslide Medium Downpour 2 14 infosurhoy.com http://infosurhoy.com/en_GB/articles/saii/newsbriefs/2013/09/12/newsbrief-03
1147 5526 9/14/13 NA Mexico MX Oaxaca 3630 San Andrés Huayapam 11.83490 17.1933 -96.6045 (17.193300000000001, -96.604500000000002) Landslide Landslide Very_large Tropical cyclone Ingrid NA 1 www.recordonline.com http://www.recordonline.com/apps/pbcs.dll/article?AID=/20130915/NEWS/130919814/-1/SITEMAP
1148 5527 9/15/13 NA Mexico MX Hidalgo 1236 Fontezuelas 9.78251 20.5402 -98.9492 (20.540199999999999, -98.949200000000005) Landslide Landslide Very_large Tropical cyclone Ingrid NA 3 www.recordonline.com http://www.recordonline.com/apps/pbcs.dll/article?AID=/20130915/NEWS/130919814/-1/SITEMAP
1149 5528 9/15/13 NA Mexico MX Puebla 9720 Tlatlauquitepec 0.30326 19.8490 -97.4997 (19.849, -97.499700000000004) Landslide Landslide Very_large Tropical cyclone Ingrid 1 3 www.recordonline.com http://www.recordonline.com/apps/pbcs.dll/article?AID=/20130915/NEWS/130919814/-1/SITEMAP
1151 5530 9/15/13 NA Mexico MX Guerrero 652136 Acapulco 0.90692 16.8638 -99.8816 (16.863800000000001, -99.881600000000006) Landslide Mudslide Very_large Downpour NA NA www.trust.org http://www.trust.org/item/20131014162052-6ou24/?source=gep
1152 5532 9/16/13 8:00:00 NA Mexico MX Veracruz-Llave 15800 Altotonga 0.50188 19.7615 -97.2422 (19.761500000000002, -97.242199999999997) Landslide Landslide Medium Tropical cyclone Ingrid 8 12 www.startribune.com http://www.startribune.com/223894771.html
1153 5534 9/16/13 15:30 NA Mexico MX Guerrero 21407 Atoyac de Álvarez 32.12708 Deforested slope 17.3461 -100.1681 (17.3461, -100.1681) Landslide Mudslide Medium Tropical cyclone Manuel 4 71 Vice News https://news.vice.com/article/a-mexican-town-mourns-its-missing-one-year-after-being-engulfed-by-mud
1154 5538 9/16/13 NA Mexico MX Guerrero 1252 San Pablo Atzompa 14.04274 17.2250 -98.5000 (17.225000000000001, -98.5) Landslide Landslide Medium Downpour NA 0 america.aljazeera.com http://america.aljazeera.com/articles/2013/11/19/after-landslide-poorestofthepoorleftoutinthecoldinmexico.html
1155 5539 9/16/13 NA Mexico MX Puebla 1123 Atzala 5.24855 18.5938 -98.5539 (18.593800000000002, -98.553899999999999) Landslide Landslide Medium Tropical cyclone Manyi NA 0 america.aljazeera.com http://america.aljazeera.com/articles/2013/11/19/after-landslide-poorestofthepoorleftoutinthecoldinmexico.html
1158 5542 9/16/13 NA Mexico MX Veracruz-Llave 1543 Tetlaxco 4.51820 19.0603 -97.1009 (19.060300000000002, -97.100899999999996) Landslide Landslide Medium Tropical cyclone Manuel NA 13 www.raymondvillechroniclenews.com http://www.raymondvillechroniclenews.com/news/2013-09-18/News/Mexican_village_buries_13_victims_of_mudslide.html
1159 5543 9/16/13 NA Mexico MX Guerrero 165250 Chilpancingo de los Bravos 0.88149 17.5482 -99.5137 (17.548200000000001, -99.5137) Landslide Mudslide Medium Tropical cyclone Ingrid NA 4 www.washingtonpost.com http://www.washingtonpost.com/world/two-storms-batter-mexico-killing-dozens/2013/09/17/5cd3d81e-1f8e-11e3-b7d1-7153ad47b549_gallery.html#photo=6
1185 5693 12/16/13 NA Mexico MX Tabasco 1732 Olcuatitán 4.32007 18.1563 -92.9790 (18.156300000000002, -92.978999999999999) Landslide Landslide Medium Continuous rain NA NA www.aljazeera.com http://www.aljazeera.com/weather/2013/12/rain-snow-floods-hit-mexico-20131229105245837299.html
1196 5731 12/28/13 2:00:00 NA Mexico MX Baja California 9085 El Sauzal 12.36500 Below road 31.9780 -116.7776 (31.978000000000002, -116.77760000000001) Landslide Mudslide Medium Downpour NA 0 www.globalpost.com http://www.globalpost.com/dispatch/news/agencia-efe/131230/mudslide-closes-major-road-northwestern-mexico
1278 6122 7/2/14 Morning NA Mexico MX Chihuahua 1512354 Ciudad Juárez 3.05542 Unknown 31.7293 -106.5152 (31.729299999999999, -106.51519999999999) Landslide Landslide Small Rain 0 3 El Paso Times http://www.elpasotimes.com/news/ci_26072515/mudslide-juarez-kills-mother-two-children
1298 6269 10/18/14 NA Mexico MX Guerrero 1018 Colonia Alborada 4.10830 Above road 16.8850 -99.8562 (16.885000000000002, -99.856200000000001) Landslide Landslide Small Tropical cyclone Trudy 0 0 Thomson Reuters Foundation http://www.trust.org/item/20141018173449-r3rca/
1376 6688 1/5/14 Night NA Mexico MX Veracruz 9277 Chocaman 1.93516 Unknown 19.0294 -97.0355 (19.029399999999999, -97.035499999999999) Landslide Landslide Medium Rain 0 0 Calor http://www.alcalorpolitico.com/informacion/saldo-blanco-en-deslave-de-chocaman-familias-salieron-a-tiempo-maza-limon-139202.html#.VLfpVPnF98E
1493 7056 5/17/15 NA Mexico MX Baja California 1173 La Esperanza [Granjas Familiares] 6.46156 Urban area 32.5196 -117.0898 (32.519599999999997, -117.0898) Landslide Landslide Medium Rain 0 0
1586 7430 10/7/15 NA Mexico MX Tabasco 1042 Libertad 4.81680 Unknown 17.3768 -92.7439 (17.376799999999999, -92.743899999999996) Landslide Landslide Medium Rain 0 0 Tabasco Hoy http://www.tabascohoy.com/2/notas/273505/dejan-lluvias-deslizamientos-e-inundaciones-en-la-sierra
1587 7431 10/7/15 NA Mexico MX Tabasco 2500 Huapinol 2.15703 Unknown 17.9100 -92.8956 (17.91, -92.895600000000002) Landslide Landslide Medium Rain 0 0 Tabasco Hoy http://www.tabascohoy.com/2/notas/273505/dejan-lluvias-deslizamientos-e-inundaciones-en-la-sierra
1601 7445 9/17/15 NA Mexico MX Veracruz 1005 Cruz Verde 2.47800 Deforested slope 19.1331 -97.1317 (19.133099999999999, -97.131699999999995) Landslide Landslide Medium Rain 0 6 El Diario http://www.eldiariony.com/2015/09/17/deslizamiento-de-cerro-en-veracruz-deja-seis-muertos/
1621 7465 5/13/15 NA Mexico MX Guerrero 652136 Acapulco de Juárez 7.07138 Urban area 16.8989 -99.9452 (16.898900000000001, -99.9452) Landslide Landslide Medium Construction 0 0 Milenio http://www.milenio.com/estados/Deslave_de_cerro_en_Acapulco_deja_3_personas_semienterradas_0_517148565.html
1625 7469 12/16/15 NA Mexico MX Tabasco 1732 Olcuatitán 8.93271 Below road 18.2341 -92.8901 (18.234100000000002, -92.890100000000004) Landslide Riverbank collapse Medium Flooding 0 0 Diario Presente http://www.diariopresente.com.mx/noticia/tabasco/145872/deslave-carretera-punto-dejar-incomunicados-comunidades-nacajuca/
1635 7479 10/3/15 Night NA Mexico MX Guerrero 1201 Pochutla 12.33417 Unknown 17.5586 -98.9483 (17.558599999999998, -98.948300000000003) Landslide Landslide Medium Tropical cyclone Marty 0 0 Tiempo http://www.tiempoenlinea.com.mx/index.php/oaxaca-2/52715-deslave-afecta-62-viviendas-en-la-montana-de-guerrero
1670 7514 5/23/15 NA Mexico MX Chiapas 3796 Santo Domingo 0.76257 Below road 15.0337 -92.1124 (15.0337, -92.112399999999994) Landslide Landslide Medium Rain 0 0 Cuarto Poder http://www.cuartopoder.mx/deslaveafectacarreteradejandouncarril-116564.html
1671 7515 10/21/15 NA Mexico MX Chiapas 19092 Motozintla de Mendoza 2.06743 Above road 15.3482 -92.2523 (15.3482, -92.252300000000005) Landslide Landslide Medium Rain 0 0 azteca noticias http://www.aztecanoticias.com.mx/notas/estados/234140/suman-16-deslaves-por-lluvias-en-chiapas
1672 7516 10/21/15 NA Mexico MX Chiapas 18608 Emiliano Zapata 4.68443 Below road 17.7055 -91.7416 (17.705500000000001, -91.741600000000005) Landslide Landslide Medium Rain cold front No. 7 0 0 azteca noticias http://www.aztecanoticias.com.mx/notas/estados/234140/suman-16-deslaves-por-lluvias-en-chiapas
1673 7517 9/12/15 NA Mexico MX Chiapas 6089 Tila 1.73469 Below road 17.3112 -92.4393 (17.311199999999999, -92.439300000000003) Landslide Landslide Medium Rain 0 0 NVI noticias http://www.noticiasnet.mx/portal/chiapas/general/agua/317470-lluvias-causan-deslaves-tramos-carreteros
1674 7518 10/15/15 NA Mexico MX Tabasco 32415 Tenosique de Pino Suárez 15.22260 Below road 17.4054 -91.2988 (17.4054, -91.2988) Landslide Landslide Medium Flooding 0 0 ver tiente global http://vertienteglobal.com/?p=49401
library(ggplot2)
ggplot(data=df_co, aes(x=x, y=y)) + 
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de inundaciones") +
  ylab("Frecuencia")

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_mx <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_mx)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_mx, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_mx$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_mx)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#CANADA

library(readr)
library(knitr)
df_ca <- subset (df, Country == "Canada")
knitr::kable(head(df_ca))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
4 59 4/14/07 NA Canada CA Quebec 42786 Châteauguay 2.98682 Above river 45.3226 -73.7771 (45.322600000000001, -73.777100000000004) Landslide Riverbank collapse Small Rain NA NA Le Soleil http://www.hebdos.net/lsc/edition162007/articles.asp?article_id=166976
14 119 7/8/07 NA Canada CA Ontario 812129 Ottawa 1.74759 45.4257 -75.6896 (45.425699999999999, -75.689599999999999) Landslide Landslide Small Unknown NA NA http://www.cfra.com/headlines/index.asp?cat=1&nid=50672
379 2085 7/16/10 6:00:00 NA Canada CA Ontario 33232 Ancaster 5.11510 Above road 43.2453 -79.9367 (43.2453, -79.936700000000002) Landslide Mudslide Medium Downpour NA 0 Hamilton Spectator http://www.thespec.com/news-story/2163626-mudslide-causes-four-vehicle-crash-on-highway-403/
451 2490 9/23/10 23:00:00 NA Canada CA Quebec 17016 Saint-Lazare 3.16544 45.3717 -74.1359 (45.371699999999997, -74.135900000000007) Landslide Landslide Medium Downpour NA 0 http://www.torontosun.com/news/canada/2010/09/24/15463551.html
929 4710 1/13/13 NA Canada CA Ontario 115760 Guelph 12.17933 43.6187 -80.1432 (43.618699999999997, -80.143199999999993) Landslide Mudslide Medium Rain NA NA www.lfpress.com http://www.lfpress.com/2013/01/14/ministry-of-the-environment-investigating-mudslide-in-rockwood-near-guelph
1320 6404 11/28/14 8:30 NA Canada CA Ontario 519949 Hamilton 4.79449 Above road 43.2804 -79.8919 (43.2804, -79.891900000000007) Landslide Landslide Small Unknown 0 0 Hamilton Spectator http://www.thespec.com/news-story/5161560--landslide-closes-lanes-of-toronto-bound-hwy-403-at-york-blvd-/
df_ca %>% 
  select(Country, State, City, Distance)
##      Country       State         City Distance
## 4     Canada      Quebec Châteauguay  2.98682
## 14    Canada     Ontario       Ottawa  1.74759
## 379   Canada     Ontario     Ancaster  5.11510
## 451   Canada      Quebec Saint-Lazare  3.16544
## 929   Canada     Ontario       Guelph 12.17933
## 1320  Canada     Ontario     Hamilton  4.79449
## 1349  Canada      Quebec       Sutton  4.33884
## 1492  Canada     Ontario   Owen Sound  1.84109
## 1512  Canada Nova Scotia        Digby 11.62624
## 1680  Canada     Ontario     Hamilton  2.00473
library(ggplot2)

ggplot(data=df_ca, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_ca, aes(fill=City, x="Canada", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_ca, aes(fill=City, x="Canada", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_ca, aes(x = "Canada", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_ca <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_ca)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_ca, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_ca$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_ca)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#ESTADOS UNIDOS

library(readr)
library(knitr)
df_us <- subset (df, Country == "United States")
knitr::kable(head(df_us))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
1 34 3/2/07 Night NA United States US Virginia 16000 Cherry Hill 3.40765 Unknown 38.6009 -77.2682 (38.600900000000003, -77.268199999999993) Landslide Landslide Small Rain NA NA NBC 4 news http://www.nbc4.com/news/11186871/detail.html
2 42 3/22/07 NA United States US Ohio 17288 New Philadelphia 3.33522 40.5175 -81.4305 (40.517499999999998, -81.430499999999995) Landslide Landslide Small Rain NA NA Canton Rep.com http://www.cantonrep.com/index.php?ID=345054&Category=9&subCategoryID=0
3 56 4/6/07 NA United States US Pennsylvania 15930 Wilkinsburg 2.91977 Urban area 40.4377 -79.9160 (40.4377, -79.915999999999997) Landslide Landslide Small Rain NA NA The Pittsburgh Channel.com https://web.archive.org/web/20080423132842/http://www.thepittsburghchannel.com/news/11846833/detail.html
5 61 4/15/07 NA United States US Kentucky 6903 Pikeville 5.66542 Below road 37.4325 -82.4931 (37.432499999999997, -82.493099999999998) Landslide Landslide Small Downpour NA 0 Matthew Crawford (KGS)
6 64 4/20/07 NA United States US Kentucky 6903 Pikeville 0.23715 37.4814 -82.5186 (37.481400000000001, -82.518600000000006) Landslide Landslide Small Rain NA NA Applalachain news-express http://www.news-expressky.com/articles/2007/04/19/top_story/01mudslide.txt
7 67 4/24/07 NA United States US South Dakota 2540 Dakota Dunes 2.48033 42.4941 -96.4576 (42.494100000000003, -96.457599999999999) Landslide Landslide Small Rain NA NA Sioux City Journnal http://www.siouxcityjournal.com/articles/2007/04/25/news/top/02a92f1defdd220f862572c800126dfc.txt
df_us %>% 
  select(Country, State, City, Distance)
##            Country          State                       City Distance
## 1    United States       Virginia                Cherry Hill  3.40765
## 2    United States           Ohio           New Philadelphia  3.33522
## 3    United States   Pennsylvania                Wilkinsburg  2.91977
## 5    United States       Kentucky                  Pikeville  5.66542
## 6    United States       Kentucky                  Pikeville  0.23715
## 7    United States   South Dakota               Dakota Dunes  2.48033
## 12   United States          Texas                Haltom City  0.03668
## 16   United States          Texas              Grand Prairie  5.66936
## 19   United States       Colorado                     Meeker 10.87949
## 21   United States      Minnesota                  Caledonia 22.31062
## 22   United States        Wyoming                       Cody 64.74594
## 23   United States      Minnesota                  Rochester  0.99990
## 24   United States      Wisconsin                  La Crosse 13.62525
## 25   United States      Wisconsin                  La Crosse 12.91337
## 26   United States  West Virginia                   Glendale  3.49200
## 32   United States     New Mexico               Jemez Pueblo 12.89915
## 35   United States        Wyoming                     Hoback  9.42463
## 36   United States          Idaho                    Ketchum  4.51471
## 37   United States       Colorado          Steamboat Springs  2.63588
## 40   United States       Colorado                 New Castle  4.25758
## 62   United States     California            Rancho Santa Fe  6.48824
## 63   United States        Indiana               Lawrenceburg  2.66572
## 69   United States   Pennsylvania                   Trafford  0.27058
## 71   United States   Pennsylvania                Level Green  0.03251
## 72   United States     California                   La Jolla  8.13382
## 74   United States     California                  Encinitas  3.23702
## 75   United States     California                   La Jolla  1.15586
## 76   United States   Pennsylvania     Wickerham Manor-Fisher  1.09139
## 77   United States   Pennsylvania                       Etna  1.23232
## 79   United States   Pennsylvania                  Homestead  2.97055
## 81   United States       New York               Green Island  4.36125
## 82   United States   Pennsylvania                   Pitcairn  0.36435
## 83   United States           Ohio                    Toronto  1.02992
## 84   United States           Ohio               Mount Carmel  1.17753
## 85   United States           Ohio                 Wellsville  7.05134
## 86   United States       Kentucky                     Ludlow  2.26622
## 88   United States       Illinois                Jerseyville 18.72748
## 89   United States   Pennsylvania              Franklin Park  3.60364
## 91   United States      Wisconsin                     Westby  0.62955
## 92   United States       Colorado                       Avon  3.03321
## 95   United States      Minnesota                     Winona  1.72940
## 96   United States  New Hampshire                    Newbury  0.08548
## 97   United States  New Hampshire                 Whitefield  8.19938
## 98   United States       Virginia                   Chatmoss  8.27691
## 99   United States  West Virginia                 Montgomery  7.85746
## 100  United States       Kentucky                Fort Wright  0.90111
## 101  United States       Colorado                      Aspen 20.14967
## 106  United States        Indiana               Martinsville  0.63962
## 107  United States       New York                    Hancock  4.46079
## 109  United States       Arkansas                     Jasper 30.98796
## 111  United States     New Jersey                     Orange  3.31974
## 112  United States     New Mexico                  Las Vegas 15.17455
## 113  United States  West Virginia                 Williamson  2.20331
## 114  United States  West Virginia                 Charleston  3.05313
## 115  United States           Iowa                 Guttenberg  2.88694
## 116  United States       Colorado                    Durango  2.94432
## 118  United States      Wisconsin              Brice Prairie  6.28666
## 121  United States       Colorado           Snowmass Village 10.78549
## 122  United States          Idaho                     McCall 29.97781
## 123  United States          Idaho                     Salmon 25.30277
## 124  United States       Colorado                 Walsenburg 32.15868
## 125  United States     New Mexico               Jemez Pueblo 12.68493
## 126  United States       Colorado                 Walsenburg 41.47439
## 127  United States  New Hampshire                 Woodsville  5.61303
## 128  United States     California                     Ramona  3.32897
## 129  United States       Colorado                 Carbondale 22.50782
## 130  United States           Utah                   Mapleton  5.66291
## 131  United States           Utah           East Carbon City 67.58127
## 135  United States       Colorado                     Salida  8.16325
## 136  United States       Colorado                 Perry Park 17.16659
## 142  United States North Carolina                  Lake Lure  0.85349
## 144  United States North Carolina                  Lake Lure  5.17876
## 148  United States  Massachusetts                    Holyoke  2.84100
## 150  United States          Idaho                 Sun Valley  1.58679
## 168  United States     California              Valley Center 14.43770
## 170  United States     California            Fairbanks Ranch  8.33509
## 174  United States     California            Harbison Canyon  1.91206
## 175  United States      Tennessee                   Kingston  2.61361
## 176  United States North Carolina              Maggie Valley  2.71542
## 179  United States   Pennsylvania                    Crafton  2.84144
## 181  United States      Tennessee                 Sale Creek 11.51020
## 182  United States           Utah                      Provo  3.35726
## 183  United States       Virginia             East Lexington 10.60458
## 186  United States           Utah         Cottonwood Heights  1.90486
## 187  United States           Utah             East Millcreek  1.68712
## 188  United States           Utah                 Canyon Rim  8.13917
## 189  United States       Virginia             East Lexington 13.41471
## 190  United States       Colorado                    Boulder 15.14802
## 192  United States       Missouri                   Hannibal  1.93676
## 195  United States       Kentucky                    Hindman 15.41975
## 196  United States       Kentucky                    Jackson  9.34774
## 197  United States       Kentucky                  Pikeville 11.07489
## 198  United States North Carolina                     Lenoir  9.72793
## 199  United States  West Virginia                     Hamlin 11.50494
## 200  United States           Utah                     Draper  0.79003
## 201  United States North Carolina                     Hudson 10.33560
## 202  United States          Idaho                    Ketchum  1.27144
## 203  United States       Kentucky                     Dayton  2.30977
## 204  United States       Kentucky               Hopkinsville 15.49105
## 205  United States      Wisconsin           Prairie du Chien  3.41664
## 209  United States          Texas                     Sparks  1.34835
## 213  United States        Georgia                  Cleveland 15.92157
## 214  United States        Alabama                 Livingston 26.97874
## 215  United States        Georgia             Stone Mountain  2.07317
## 216  United States        Georgia           Lookout Mountain  0.80279
## 217  United States North Carolina                    Brevard  3.61918
## 219  United States        Georgia                    Trenton  1.12077
## 220  United States      Tennessee                 Gatlinburg  4.11813
## 221  United States          Texas                 Cedar Hill  6.20618
## 222  United States       Kentucky                      Hyden 10.07650
## 228  United States      Tennessee                 East Ridge  2.60684
## 230  United States       Illinois                      Alton  1.54044
## 231  United States      Tennessee                Chattanooga  5.97545
## 232  United States      Tennessee            Signal Mountain  2.05274
## 233  United States      Tennessee            Signal Mountain  2.47169
## 234  United States       Missouri                  Louisiana  7.60154
## 235  United States     California            Running Springs  8.91845
## 236  United States    Mississippi                     Purvis 17.40130
## 239  United States     California              Valley Center  5.71250
## 240  United States        Arizona                Tonto Basin 16.48124
## 241  United States     California             Morongo Valley  1.35292
## 242  United States     California                    Aguanga 12.95887
## 243  United States        Arizona               Cordes Lakes 12.98377
## 244  United States North Carolina                 Rural Hall  7.54867
## 245  United States      Tennessee               Madisonville  8.55137
## 246  United States      Tennessee            Signal Mountain  2.56584
## 247  United States      Tennessee                Soddy-Daisy  3.20504
## 248  United States   Pennsylvania                 Pittsburgh  1.49656
## 249  United States    Connecticut                     Canaan 10.75115
## 250  United States North Carolina               Tobaccoville  2.39331
## 251  United States       Kentucky                 Manchester  5.79962
## 254  United States South Carolina                    Clemson  4.34093
## 259  United States North Carolina              Maggie Valley  0.91282
## 261  United States       Kentucky               Williamsburg  5.29680
## 262  United States       Kentucky                    Jenkins 19.17000
## 263  United States      Tennessee                 Livingston 14.90347
## 265  United States     California                    Banning  2.18534
## 266  United States     California             San Bernardino  1.18379
## 268  United States   Pennsylvania                 Pittsburgh  1.29986
## 269  United States   Pennsylvania                    Crafton  2.37904
## 270  United States      Wisconsin          Saint Croix Falls  3.90084
## 271  United States  West Virginia                      Belle  0.02907
## 272  United States  West Virginia                  Princeton  7.04356
## 273  United States     New Jersey                Lake Mohawk  4.41013
## 274  United States  West Virginia               Summersville  6.25122
## 275  United States           Ohio                    Jackson 13.05284
## 276  United States  Massachusetts                  Topsfield  1.03712
## 277  United States     New Jersey                 Ogdensburg  0.77081
## 278  United States North Carolina               Robbinsville 23.26062
## 279  United States  Massachusetts                    Clinton  1.25138
## 280  United States  Massachusetts                    Walpole  2.73316
## 281  United States   Pennsylvania                   New Hope  6.71244
## 282  United States      Tennessee                 Gatlinburg 11.83863
## 283  United States           Ohio                Salineville 10.58008
## 284  United States        Alabama                  Good Hope 22.45613
## 285  United States       New York                  Worcester  7.59235
## 286  United States      Tennessee                 Gatlinburg 14.56419
## 287  United States    Connecticut                 Middletown  1.40994
## 288  United States       New York                Sound Beach  0.94386
## 289  United States       New York                    Yonkers  3.28687
## 290  United States           Iowa               Fort Madison  2.69877
## 291  United States           Iowa               Fort Madison  2.69877
## 292  United States          Maine                    Winslow  0.76489
## 293  United States  New Hampshire                 Greenville  0.29408
## 296  United States           Iowa                 Burlington  3.37828
## 310  United States      Tennessee                    Clifton 10.07129
## 312  United States       Kentucky                   Morehead 10.11538
## 313  United States       Kentucky               Salyersville  9.51647
## 314  United States      Tennessee                Belle Meade  4.06928
## 315  United States      Tennessee               Forest Hills  5.92638
## 316  United States      Tennessee                   Fairview 11.67837
## 317  United States      Tennessee          Brentwood Estates  6.61569
## 318  United States      Tennessee                   Columbia 15.51031
## 319  United States       Kentucky                    Hindman  7.91631
## 320  United States       Kentucky                      Hyden  0.00435
## 321  United States       Kentucky                 Cumberland 18.27072
## 322  United States       Kentucky                  Pineville  5.84944
## 323  United States       Kentucky                Paintsville 13.47073
## 324  United States       Kentucky                       Inez  7.32052
## 325  United States  West Virginia                 Williamson 15.29574
## 326  United States       Kentucky                       Inez  9.90252
## 327  United States       Kentucky                     Hazard 12.34170
## 328  United States       Kentucky                    Hindman 10.50499
## 329  United States       Kentucky                    Hindman 21.31051
## 330  United States       Kentucky                 Cumberland  1.09107
## 331  United States       Kentucky                 Cumberland 16.31604
## 332  United States  West Virginia              Gilbert Creek 18.71035
## 333  United States       Virginia                  Clintwood 21.45604
## 334  United States       Kentucky                    Jenkins 10.20803
## 335  United States       Kentucky                  Pikeville  8.90602
## 336  United States           Ohio                    Ironton 17.02627
## 337  United States           Ohio                    Ironton  6.42411
## 338  United States           Ohio                 Coal Grove 18.88870
## 342  United States      Tennessee                Belle Meade  0.01307
## 343  United States           Ohio                    Ironton 10.40449
## 344  United States       Missouri          North Kansas City  5.24463
## 345  United States       Kentucky               Salyersville  7.52656
## 346  United States  West Virginia                 Charleston  1.68022
## 348  United States North Carolina                   Marshall 16.47911
## 350  United States           Utah                 Canyon Rim  0.75491
## 364  United States   Pennsylvania                 Pittsburgh  1.93338
## 365  United States   Pennsylvania                 Green Tree  1.46465
## 366  United States North Carolina                    Brevard  5.80525
## 367  United States         Nevada               Spring Creek 16.13996
## 368  United States  West Virginia                    Mallory  5.45758
## 369  United States        Indiana                  Lafayette  6.08613
## 370  United States      Minnesota                  Caledonia 18.20633
## 371  United States      Wisconsin            Richland Center 16.88781
## 373  United States       Colorado                Buena Vista 13.11084
## 374  United States       New York                Canandaigua  8.27871
## 377  United States       New York                     Naples 14.77042
## 378  United States  West Virginia                Saint Marys  0.76491
## 380  United States        Georgia                  Jefferson  7.58207
## 382  United States        Arizona                  Flagstaff 11.50738
## 384  United States  West Virginia                 Huntington  2.97869
## 387  United States       Colorado                    Durango  4.89100
## 388  United States     New Mexico                    Socorro 25.68212
## 389  United States       Colorado           Mountain Village 17.96218
## 390  United States       Colorado           Mountain Village 27.47506
## 391  United States       Kentucky                   Bellevue  0.99029
## 397  United States       Colorado                 Carbondale 23.83031
## 398  United States       Colorado                  Leadville 20.97634
## 399  United States           Utah             Woodland Hills 13.47828
## 407  United States           Iowa                    Ottumwa  0.92861
## 409  United States      Tennessee                Banner Hill  1.77572
## 410  United States           Utah                     Draper  3.22031
## 411  United States       Colorado                 Carbondale 24.13440
## 412  United States       Colorado                 Carbondale 22.55763
## 413  United States       Colorado                 Carbondale 23.56048
## 414  United States       Colorado                 Carbondale 21.37674
## 415  United States       Colorado           Snowmass Village  4.60739
## 416  United States       Colorado           Snowmass Village  3.84400
## 417  United States       Colorado                 Carbondale  4.51715
## 418  United States       Colorado           Glenwood Springs  3.60875
## 419  United States           Utah                       Moab 38.50248
## 426  United States     California                    Yucaipa 11.06641
## 436  United States   Pennsylvania                  Smethport  6.19784
## 443  United States      Tennessee                  Knoxville  5.00430
## 447  United States       Virginia            Madison Heights  1.20498
## 450  United States        Arizona                Tonto Basin  1.86032
## 452  United States      Wisconsin                Lake Hallie  2.43595
## 458  United States   Pennsylvania               Mount Oliver  2.03608
## 465  United States   Pennsylvania                 Heidelberg  1.22035
## 468  United States       New York                     McGraw  6.65468
## 472  United States  New Hampshire                 Woodsville  5.48538
## 473  United States       Maryland   Chesapeake Ranch Estates  2.52659
## 484  United States     California             Thousand Palms  7.04978
## 521  United States   Pennsylvania                 Manchester  5.03527
## 550  United States       New York               Little Falls  2.73513
## 551  United States      Tennessee                  Knoxville  4.92279
## 552  United States North Carolina                  Flat Rock  5.16572
## 559  United States     California            Running Springs  7.63522
## 560  United States         Nevada            Summerlin South 19.35795
## 561  United States     California                  Encinitas  4.45005
## 562  United States     California                     Muscoy  4.51520
## 563  United States     California                  Encinitas  3.31222
## 564  United States     California                   Highland  1.85916
## 565  United States     California                San Jacinto  2.92944
## 566  United States     California            Running Springs  6.40077
## 567  United States     California                   Highland  1.95744
## 568  United States     California            Running Springs  3.35384
## 569  United States     California                   Carlsbad  5.86771
## 570  United States     California                 Loma Linda  3.23578
## 571  United States     California                   La Jolla  2.01316
## 572  United States     California                   La Jolla  2.24058
## 573  United States     California                 Loma Linda  0.87634
## 575  United States     California                    La Mesa  6.02579
## 576  United States     California              Moreno Valley  9.07891
## 577  United States           Ohio             Mingo Junction  2.81727
## 580  United States          Idaho                 Idaho City 34.46887
## 581  United States          Idaho                      Boise 14.32586
## 582  United States          Idaho                      Boise 14.99911
## 583  United States          Idaho                 Idaho City 38.27504
## 584  United States  West Virginia                 Chesapeake  6.15192
## 585  United States North Carolina              Maggie Valley  1.20337
## 590  United States     California                   Descanso  9.82301
## 593  United States   Pennsylvania                  Glen Lyon  8.31157
## 595  United States North Carolina               Blowing Rock 13.11943
## 596  United States    Connecticut                     Bethel  2.63291
## 597  United States    Connecticut                New Milford       NA
## 598  United States  Massachusetts                 Greenfield  0.81961
## 600  United States   Pennsylvania                 Heidelberg  1.54687
## 601  United States       Missouri                   Wildwood  2.41198
## 602  United States       Kentucky                     Hazard  0.70654
## 603  United States       New York                   Lewiston  3.95434
## 604  United States  West Virginia                    Bethany  2.52454
## 605  United States  West Virginia                    Bethany  1.92763
## 606  United States   Pennsylvania                Tunkhannock 13.66120
## 607  United States       Virginia                  Arlington  3.23558
## 608  United States       Virginia                 Hillsville 13.60254
## 609  United States           Ohio                   Bellaire  3.66747
## 610  United States           Ohio                  Brilliant  4.85999
## 611  United States   Pennsylvania                Tunkhannock  4.84701
## 612  United States           Ohio                 Wellsville  0.79841
## 613  United States           Ohio                  Brilliant  4.85999
## 614  United States        Alabama               Jacksonville  1.79927
## 615  United States   Pennsylvania             Bradford Woods  4.62567
## 616  United States           Ohio             Powhatan Point  1.01208
## 617  United States           Ohio                 Wellsville  3.09494
## 618  United States       New York                     Hadley  6.60211
## 620  United States           Utah                Summit Park  5.09388
## 622  United States     California              Valley Center  5.13929
## 624  United States      Tennessee                Sevierville  2.43605
## 625  United States  West Virginia                  Bethlehem  1.94038
## 626  United States   Pennsylvania                 Coraopolis  2.47173
## 627  United States           Ohio                Rocky River  1.57593
## 628  United States  West Virginia                 Chesapeake 25.09618
## 630  United States   Pennsylvania                   Millvale  2.94131
## 636  United States       Kentucky                   Bellevue  1.26817
## 639  United States   Pennsylvania                 Pittsburgh  1.29731
## 641  United States   Pennsylvania             West Homestead  1.91993
## 642  United States   Pennsylvania             Bradford Woods  2.06885
## 645  United States     New Jersey                    Hoboken  0.84845
## 646  United States           Ohio               Tiltonsville  3.77028
## 647  United States  West Virginia                  Elizabeth 15.03444
## 648  United States           Ohio                  Brilliant  1.76001
## 649  United States   Pennsylvania                Bala Cynwyd  3.74706
## 650  United States       Maryland                   Thurmont  3.50924
## 651  United States       Kentucky               Independence  2.19418
## 652  United States       Kentucky                Cold Spring  1.22389
## 653  United States       Kentucky               Williamstown 12.53751
## 654  United States       Kentucky                Villa Hills  2.03469
## 655  United States           Ohio                Delhi Hills  3.45556
## 656  United States       Kentucky                     Wilder  1.24385
## 657  United States       Kentucky                 Alexandria  4.61879
## 661  United States  West Virginia                Sissonville  3.90856
## 662  United States           Ohio            West Portsmouth  6.43139
## 663  United States           Ohio                    Waverly 12.99718
## 664  United States       Missouri                  Hollister  8.78605
## 665  United States           Ohio                     Cleves  4.50908
## 666  United States       Kentucky                     Ludlow  1.26285
## 667  United States       Kentucky                   Bellevue  1.42927
## 668  United States       Kentucky                  Eddyville  7.88518
## 669  United States           Ohio                 Cincinnati  2.59168
## 670  United States       Kentucky                    Newport  1.73096
## 671  United States           Ohio                 Cincinnati  2.68376
## 672  United States           Ohio                  Wolfhurst  7.12905
## 673  United States       Arkansas                     Midway  6.74198
## 674  United States           Ohio                  Dry Ridge  2.92400
## 675  United States  West Virginia               Barrackville  1.60330
## 676  United States           Ohio                     Amelia  4.45788
## 677  United States      Tennessee                    Bolivar  9.34376
## 678  United States      Tennessee                    Dickson  8.14549
## 679  United States       Kentucky                     Ludlow  2.08830
## 680  United States      Tennessee                     McEwen 12.81745
## 681  United States       Kentucky             Dawson Springs  8.74503
## 682  United States       Kentucky                     Harlan 15.76570
## 683  United States       Missouri             Willow Springs 13.48426
## 684  United States       Kentucky                 Cumberland  8.68702
## 685  United States           Ohio               Turpin Hills  2.88328
## 686  United States           Ohio                 Bridgetown  4.26162
## 687  United States           Ohio                       Mack  2.95385
## 688  United States           Ohio             New Burlington  1.81969
## 689  United States       Kentucky                     Ludlow  1.27755
## 691  United States       Kentucky                    Augusta  8.35471
## 692  United States       Kentucky                  Frankfort  2.05395
## 693  United States       Kentucky                  Frankfort  3.61757
## 694  United States       Kentucky                  Frankfort  3.19663
## 695  United States       Kentucky                  Maysville  2.33611
## 696  United States           Ohio                   Aberdeen  5.88319
## 698  United States        Vermont                    Swanton  5.80477
## 699  United States        Vermont                    Swanton  5.93705
## 700  United States        Vermont                      Barre  6.58098
## 703  United States          Idaho                     Victor 14.40898
## 704  United States  West Virginia                 Charleston  6.02220
## 705  United States           Ohio                 Burlington  4.35442
## 706  United States           Ohio                    Ironton 19.76853
## 707  United States           Ohio                 Coal Grove  9.74624
## 708  United States           Ohio                    Ironton 20.40835
## 709  United States           Ohio           Brooklyn Heights  0.81717
## 710  United States   Pennsylvania                  Masontown  5.82547
## 711  United States   Pennsylvania                 Washington 18.14779
## 712  United States   Pennsylvania                 Maple Glen  1.49457
## 713  United States       New York                  Whitehall 16.90533
## 717  United States   Pennsylvania                Curtisville  2.01507
## 719  United States  West Virginia                 Huntington  1.71788
## 720  United States  West Virginia                 Huntington  2.13503
## 721  United States  West Virginia                 Huntington  2.94557
## 722  United States  West Virginia                 Huntington  2.76021
## 723  United States  West Virginia                 Huntington  0.01392
## 724  United States  West Virginia               West Liberty 11.01130
## 725  United States   Pennsylvania                 Coraopolis  2.45126
## 726  United States   Pennsylvania                 Russellton  4.06157
## 727  United States   Pennsylvania                       Plum  1.09370
## 728  United States   Pennsylvania                  Youngwood  3.51907
## 729  United States           Utah                 Wolf Creek  8.65312
## 730  United States   Pennsylvania                     Ingram  0.71260
## 731  United States   Pennsylvania                 Pittsburgh  0.26199
## 732  United States           Utah                  Santaquin  7.91495
## 733  United States   Pennsylvania                  Leetsdale  1.11499
## 734  United States   Pennsylvania                  Leetsdale  1.11499
## 735  United States           Utah                 Farmington  3.12368
## 736  United States           Utah                     Beaver 14.71664
## 737  United States           Utah                Grantsville 30.28399
## 738  United States           Utah                Centerville  4.54095
## 739  United States   Pennsylvania                     Arnold  3.02440
## 740  United States           Iowa                 Sioux City  4.38210
## 741  United States       Michigan                  Ann Arbor  1.89658
## 742  United States       New York                Lake Placid 11.70793
## 743  United States       Illinois                      Alton  1.71596
## 744  United States        Vermont                      Barre  0.65528
## 745  United States           Utah                 Wolf Creek  8.65312
## 746  United States        Wyoming                   Sundance  7.07507
## 747  United States        Vermont                      Barre  1.15359
## 752  United States       Colorado                   Keystone  5.82093
## 755  United States       Kentucky                     Dayton  1.06742
## 756  United States           Iowa                     Keokuk  2.92601
## 757  United States   Pennsylvania                    Windsor  7.93844
## 758  United States      Wisconsin                 Eau Claire  4.98787
## 759  United States        Indiana                  Southport  2.61312
## 760  United States      Tennessee                  Harrogate  3.07236
## 762  United States       Kentucky                    Stanton  5.95618
## 763  United States       Colorado                 Georgetown 11.46832
## 765  United States       Kentucky                 Burlington  3.77076
## 766  United States           Ohio                    Batavia  1.91217
## 767  United States       Kentucky                    Newport  1.90865
## 770  United States   Pennsylvania                  Homestead  2.97852
## 771  United States       Colorado                      Aspen  0.21641
## 772  United States   Pennsylvania                       Plum  7.45648
## 773  United States           Utah                   Highland  9.18061
## 775  United States       Colorado               Silverthorne  2.66276
## 776  United States        Wyoming                   Sheridan  6.32702
## 777  United States        Wyoming                   Sheridan  0.00178
## 778  United States        Arizona               Sierra Vista 12.28777
## 779  United States        Arizona               Sierra Vista  9.92245
## 781  United States       Colorado                     Paonia  7.50275
## 782  United States       Colorado                     Paonia  0.01994
## 783  United States        Arizona                      Eagar 52.11489
## 784  United States       Colorado                    Boulder  9.47622
## 785  United States       Colorado                    Boulder 10.42230
## 786  United States        Arizona     Sierra Vista Southeast 12.52763
## 790  United States       Colorado           Mountain Village  1.82803
## 791  United States       Colorado           Glenwood Springs  5.78301
## 792  United States   Pennsylvania                  Homestead  2.96418
## 793  United States           Ohio             New California  5.63505
## 794  United States       Kentucky                    Campton 12.29943
## 795  United States       Colorado                       Avon  2.35855
## 796  United States        Florida                  Williston  3.75018
## 797  United States       Kentucky                     Hazard  8.30475
## 803  United States       Colorado                   San Luis 25.38161
## 804  United States     New Mexico                     Hurley 17.95414
## 805  United States       Colorado                   El Jebel  4.90954
## 806  United States       Colorado           Glenwood Springs 10.57117
## 807  United States       Colorado                      Rifle  1.11647
## 808  United States   Pennsylvania                  Wellsboro  0.17013
## 809  United States       Colorado                  Silverton  0.01766
## 810  United States      Tennessee                 Gatlinburg  1.01331
## 811  United States      Tennessee                   Columbia  0.72461
## 812  United States   Pennsylvania                   Imperial  7.26376
## 813  United States     New Jersey              Highland Lake  5.27337
## 815  United States       New York                     Inwood  1.91324
## 816  United States     New Jersey                  Belvidere  0.07578
## 817  United States     New Jersey            Warren Township  3.64818
## 823  United States           Utah                 Cedar City  7.52240
## 834  United States   Pennsylvania                   Kutztown  0.74333
## 837  United States        Alabama                 Scottsboro  0.64281
## 856  United States   Pennsylvania                   Emsworth  0.79265
## 857  United States       Kentucky                     Dayton  1.43697
## 860  United States       Kentucky                     Dayton  1.52592
## 861  United States   Pennsylvania                 Pittsburgh  1.87265
## 862  United States       Kentucky                     Ludlow  1.31411
## 863  United States   Pennsylvania                  Homestead  2.19916
## 865  United States  West Virginia               Chapmanville 13.52866
## 866  United States       Kentucky                   Richmond  9.87331
## 867  United States      Tennessee                  Jacksboro 13.15700
## 869  United States           Ohio                    Cheviot  4.21790
## 870  United States       Kentucky                     Loyall 10.22349
## 871  United States         Kansas               Roeland Park  2.32126
## 874  United States       New York                  Boonville  9.95180
## 880  United States       Kentucky                     Dayton  2.40444
## 881  United States  West Virginia               Fayetteville  8.06254
## 882  United States       Kentucky                   Bellevue  1.30932
## 883  United States           Ohio                 Youngstown  2.51579
## 886  United States      Minnesota                Arden Hills  0.13052
## 891  United States       Colorado                    Laporte 15.65712
## 892  United States       Colorado            Leadville North 13.02782
## 893  United States       Colorado       Cascade-Chipita Park  5.78163
## 894  United States        Wyoming                       Cody 72.64680
## 895  United States       Arkansas                     Jasper  5.06464
## 896  United States     California                    Yucaipa 12.93443
## 899  United States        Arizona                    Phoenix  3.36522
## 901  United States           Utah           Saratoga Springs  2.02291
## 902  United States           Utah                   Fairview 21.80213
## 903  United States           Utah                   Fairview 22.92807
## 904  United States           Utah                   Fairview 23.82853
## 905  United States           Utah             Mount Pleasant 24.64059
## 908  United States      Tennessee                 East Ridge  1.24635
## 909  United States       Colorado                    Laporte 18.34452
## 910  United States       Colorado                 Estes Park 37.11379
## 914  United States  New Hampshire                  Woodstock 14.34429
## 915  United States   Pennsylvania               West Mifflin  0.14473
## 916  United States   Pennsylvania               Brackenridge  2.08818
## 917  United States   Pennsylvania                 Pittsburgh  3.07837
## 918  United States North Carolina                  Lake Lure  4.23278
## 922  United States          Idaho                     McCall 41.54001
## 924  United States   Pennsylvania                 Pittsburgh  1.33115
## 930  United States       Kentucky               Mount Vernon  1.23577
## 931  United States       Kentucky                  Lexington  2.41140
## 932  United States North Carolina                  Mars Hill  0.04550
## 933  United States North Carolina              Maggie Valley  5.63904
## 934  United States      Tennessee                  Knoxville  5.53703
## 935  United States North Carolina                   Cherokee 13.86023
## 936  United States     New Jersey             Monmouth Beach  0.09035
## 937  United States North Carolina                    Woodfin  4.29814
## 938  United States      Tennessee                    Jellico 13.77073
## 939  United States North Carolina               Robbinsville 20.45203
## 940  United States   Pennsylvania                 Pittsburgh  2.64611
## 941  United States North Carolina              Maggie Valley  1.07913
## 943  United States       Kentucky                    Hindman  1.63625
## 944  United States        Arizona                     LeChee 31.61210
## 945  United States   Pennsylvania                West Easton  1.78114
## 946  United States       Kentucky              Nicholasville 11.48269
## 948  United States           Utah                   Herriman  9.55190
## 949  United States   Pennsylvania                Murrysville  4.82123
## 950  United States       Kentucky                  Pikeville  3.38725
## 951  United States           Iowa                  Iowa City  1.40658
## 952  United States       Kentucky                     Loyall  1.40599
## 953  United States       Kentucky                     Harlan  0.94084
## 954  United States       Illinois                  Granville  2.12940
## 955  United States       Illinois                East Peoria  2.39991
## 957  United States North Carolina                   Marshall  6.68251
## 959  United States           Ohio                   Glouster  2.06907
## 960  United States North Carolina                 Cove Creek  2.06558
## 961  United States        Florida                   Clermont  0.39179
## 962  United States North Carolina             Black Mountain  0.17766
## 963  United States North Carolina                     Lenoir 12.88531
## 964  United States North Carolina                     Canton  4.10329
## 965  United States North Carolina                  Fruitland  5.76576
## 966  United States       Kentucky                     Ludlow  4.02153
## 967  United States       Kentucky                  Pineville 12.36833
## 968  United States North Carolina                     Canton  4.10329
## 969  United States North Carolina                  Lake Lure  0.23032
## 970  United States North Carolina                Bryson City  6.61994
## 972  United States      Tennessee                    Jellico 15.98301
## 973  United States North Carolina             Black Mountain  7.32191
## 974  United States        Georgia                Dawsonville 12.44051
## 975  United States South Carolina                 Tigerville  7.92482
## 976  United States      Minnesota            West Saint Paul  1.89742
## 978  United States       Missouri                   Hannibal  1.97078
## 982  United States       Illinois                     Quincy  2.38934
## 983  United States       New York                   Camillus  2.54860
## 985  United States   South Dakota                       Lead  1.39751
## 986  United States       New York                   Camillus  2.54860
## 987  United States    Connecticut                 Old Mystic  0.78631
## 988  United States   Pennsylvania               Philadelphia  1.27824
## 989  United States       Kentucky                     Loyall  2.36880
## 991  United States       New York                Middleburgh  1.41843
## 992  United States       New York                   Camillus  2.54860
## 993  United States        Vermont               Williamstown  8.90467
## 994  United States           Iowa                     Waukon 23.47684
## 995  United States       New York                  Frankfort 17.52573
## 996  United States      Wisconsin                   Boscobel  2.89624
## 997  United States      Wisconsin           Prairie du Chien 12.86889
## 998  United States      Minnesota                  Caledonia 24.86266
## 999  United States       New York                   Camillus  2.54860
## 1000 United States      Wisconsin                    Seymour  2.68314
## 1001 United States   Pennsylvania                 Pottsville  0.10261
## 1002 United States       New York                 Binghamton  2.11425
## 1003 United States       Colorado                    Laporte 25.57232
## 1004 United States   Pennsylvania                   Duquesne  0.89493
## 1005 United States       Colorado            Manitou Springs  0.40970
## 1006 United States       Kentucky                     Dayton  1.11204
## 1007 United States North Carolina                  Hazelwood 11.16865
## 1008 United States North Carolina                      Sylva  4.59472
## 1009 United States   Pennsylvania                Carnot-Moon  1.51482
## 1010 United States       Virginia                Cave Spring  5.42545
## 1011 United States North Carolina                  Asheville  2.03173
## 1012 United States        Wyoming                       Cody  1.13439
## 1013 United States North Carolina                    Woodfin  5.02716
## 1014 United States North Carolina                  Asheville  4.34897
## 1015 United States North Carolina                    Woodfin  5.14161
## 1016 United States North Carolina                  Asheville  1.27543
## 1017 United States North Carolina                    Woodfin  4.03738
## 1018 United States North Carolina               Blowing Rock 11.48809
## 1019 United States North Carolina                    Brevard 18.50736
## 1020 United States           Utah                    Granite  9.12556
## 1021 United States           Utah                    Granite 10.78115
## 1022 United States           Utah                Cedar Hills  2.64441
## 1023 United States           Utah                   Highland  5.32884
## 1024 United States           Utah                Cedar Hills  7.08894
## 1025 United States       New York                      Ilion  0.85072
## 1026 United States       Kentucky                    Jackson  7.39282
## 1027 United States North Carolina               Blowing Rock  1.05589
## 1028 United States     New Mexico                     Questa 21.76837
## 1029 United States       New York                Morrisville  5.55677
## 1030 United States       Kentucky                    Jackson  7.44703
## 1032 United States       Colorado              Colorado City 13.17259
## 1033 United States       Colorado            Manitou Springs  2.43897
## 1034 United States       Colorado            Manitou Springs  0.40970
## 1035 United States  West Virginia                      Logan  7.51462
## 1036 United States       Colorado                    Laporte 14.72352
## 1037 United States       Colorado                    Laporte 20.26585
## 1038 United States         Nevada            Summerlin South 30.37462
## 1039 United States       Colorado                    Laporte  4.00974
## 1040 United States  West Virginia                 Charleston  5.79774
## 1041 United States North Carolina                   Gamewell  9.34488
## 1042 United States North Carolina                    Newland  1.41898
## 1043 United States       Colorado           Mountain Village 10.80667
## 1044 United States       Colorado           Mountain Village 15.04331
## 1045 United States           Utah                     Alpine  1.82493
## 1046 United States           Utah                       Lehi  1.75260
## 1047 United States           Utah                   Highland  5.27973
## 1048 United States           Utah                     Ferron 21.43097
## 1049 United States           Utah                   Highland  3.86093
## 1050 United States       Colorado           Snowmass Village 27.54476
## 1051 United States        Montana           West Yellowstone 51.55941
## 1052 United States        Arizona                       Page 28.51122
## 1053 United States       Colorado                 Estes Park 13.74294
## 1055 United States       Colorado                   Palisade  0.73594
## 1056 United States       Colorado                    Minturn  3.19723
## 1057 United States       Colorado           Snowmass Village 27.05169
## 1058 United States       Colorado                 Carbondale 24.70278
## 1059 United States        Arizona                      Eagar 39.22402
## 1060 United States     New Mexico                     Questa  4.75219
## 1061 United States     California                  Idyllwild  7.79933
## 1062 United States   Pennsylvania                Monroeville  1.19691
## 1063 United States   Pennsylvania                Monroeville  1.67287
## 1064 United States   Pennsylvania                  White Oak  1.50672
## 1065 United States   Pennsylvania                  White Oak  1.80010
## 1066 United States           Ohio             Powhatan Point 21.79988
## 1067 United States  West Virginia                      Logan  5.91065
## 1068 United States           Ohio             Powhatan Point  7.63247
## 1069 United States  West Virginia                 Chesapeake  7.84336
## 1070 United States       Colorado                    Laporte 13.16549
## 1072 United States North Carolina                    Hickory  0.97570
## 1073 United States North Carolina              Millers Creek 17.74135
## 1074 United States       Colorado                    Laporte 19.55437
## 1075 United States       Colorado                    Laporte 12.14412
## 1076 United States       Colorado                     Paonia  2.33014
## 1077 United States        Georgia                     Jasper  5.05140
## 1078 United States        Georgia                     Jasper  4.33442
## 1079 United States        Alabama                   Fairhope  0.73828
## 1081 United States           Utah             Mount Pleasant 26.06760
## 1082 United States           Utah             Mount Pleasant 25.75090
## 1083 United States       Colorado            Manitou Springs  1.60621
## 1084 United States       Kentucky           Coal Run Village 10.79203
## 1085 United States  West Virginia           New Martinsville 24.21776
## 1086 United States        Alabama                  Andalusia  1.69766
## 1087 United States         Nevada            Summerlin South 23.60286
## 1088 United States         Nevada                    Pahrump 31.00660
## 1089 United States           Utah                     Alpine  1.96154
## 1090 United States   Pennsylvania                 Bear Rocks  3.06650
## 1091 United States          Idaho                  Pocatello  0.57038
## 1092 United States           Utah                 Huntington 22.93764
## 1093 United States      Tennessee                Soddy-Daisy  5.71688
## 1094 United States     California             Morongo Valley  1.82682
## 1099 United States       Colorado                  Telluride  9.89859
## 1101 United States          Idaho                     Salmon 26.56626
## 1102 United States     California                    Banning  9.26566
## 1103 United States         Nevada                    Pahrump 18.54588
## 1104 United States           Utah                   Mapleton 33.45684
## 1105 United States           Utah                   Mapleton 34.35735
## 1106 United States           Utah                   Mapleton 34.82356
## 1107 United States           Utah                 Huntington 13.94274
## 1108 United States           Utah                      Manti  1.65946
## 1109 United States          Idaho                     Hailey  2.19542
## 1110 United States          Idaho                 Idaho City 38.48521
## 1111 United States     California                     Julian 10.67044
## 1113 United States           Utah                Cedar Hills  2.37130
## 1114 United States           Utah                   Highland  5.49158
## 1115 United States           Utah                   Highland  3.06220
## 1116 United States           Utah                      Provo  2.97871
## 1117 United States          Idaho                    Preston 19.50083
## 1119 United States        Arizona                  Flagstaff  7.39122
## 1120 United States           Utah             Mount Pleasant 24.76989
## 1121 United States           Utah         Cottonwood Heights  5.23498
## 1122 United States           Utah                Orangeville 12.95090
## 1123 United States       Colorado                    Boulder 15.39663
## 1124 United States           Utah                   Duchesne  7.44914
## 1125 United States       Colorado                Fort Carson  5.13887
## 1126 United States          Idaho              Mountain Home 22.84271
## 1127 United States        Wyoming                  Marbleton 30.39279
## 1128 United States        Wyoming                  Marbleton 41.69882
## 1129 United States       Colorado                    Boulder  2.37394
## 1130 United States       Colorado                 Coal Creek  3.76200
## 1131 United States       Colorado                 Coal Creek  6.81843
## 1132 United States          Idaho              Mountain Home 28.84649
## 1133 United States          Idaho              Mountain Home 27.81611
## 1134 United States          Idaho              Mountain Home 30.71907
## 1135 United States          Idaho              Mountain Home 31.78115
## 1136 United States          Idaho              Mountain Home 27.87603
## 1137 United States          Idaho              Mountain Home 32.71570
## 1138 United States       Colorado                    Boulder  9.54612
## 1139 United States          Idaho                 Idaho City 13.92607
## 1140 United States          Idaho                 Idaho City 13.92607
## 1141 United States          Idaho              Mountain Home 39.14705
## 1142 United States          Idaho              Mountain Home 40.70609
## 1143 United States          Idaho              Mountain Home 32.66456
## 1144 United States           Utah                   Herriman 10.80925
## 1145 United States     New Mexico                Albuquerque  2.54139
## 1146 United States          Idaho                      Eagle  8.21552
## 1150 United States       Colorado                 Estes Park  9.31567
## 1160 United States           Utah                   Herriman  9.55190
## 1161 United States       Colorado                    Durango  7.53236
## 1162 United States       Colorado                    Durango  5.78799
## 1163 United States       Colorado                    Durango  8.65408
## 1164 United States          Idaho                 Idaho City 39.35619
## 1165 United States          Idaho                 Idaho City 44.26251
## 1167 United States       Colorado                Buena Vista 16.21071
## 1168 United States  Massachusetts                Southbridge  2.82925
## 1170 United States      Minnesota                     Winona  4.83306
## 1171 United States      Wisconsin                Trempealeau  5.10967
## 1172 United States        Wyoming                    Jackson 70.82902
## 1176 United States  West Virginia                 Montgomery 13.31637
## 1177 United States     New Jersey                    Hoboken  0.90146
## 1178 United States  West Virginia                      Logan  8.76650
## 1179 United States  West Virginia                 Alum Creek  2.09924
## 1180 United States  West Virginia                      Logan  8.76650
## 1181 United States  West Virginia              Gilbert Creek 14.11991
## 1182 United States  West Virginia                      Logan  9.11798
## 1184 United States           Utah                    Hildale 19.18959
## 1186 United States     California                     Ramona  3.30093
## 1187 United States   Pennsylvania                   Cheswick  1.60422
## 1188 United States   Pennsylvania              Lower Burrell  3.06925
## 1189 United States       Kentucky                    Hindman  9.94567
## 1195 United States  West Virginia                     Oceana 22.89616
## 1197 United States  New Hampshire                     Gorham 17.23167
## 1198 United States  West Virginia                      Welch 12.79020
## 1199 United States           Ohio              Newcomerstown  7.31418
## 1200 United States North Carolina                Bryson City 13.70206
## 1202 United States   Pennsylvania                 Pittsburgh  1.31322
## 1203 United States   Pennsylvania                  Brentwood  1.87113
## 1204 United States       Kentucky                   Morehead 10.34977
## 1205 United States       Kentucky               Prestonsburg 13.34216
## 1206 United States         Oregon                     Joseph 22.16606
## 1209 United States       Kentucky                     Ludlow  1.22118
## 1210 United States       Kentucky               Prestonsburg 11.74439
## 1211 United States       Kentucky                    Newport  1.39322
## 1212 United States           Utah                South Weber  0.87758
## 1213 United States       Kentucky                  Pikeville  7.48881
## 1214 United States       Kentucky                 Booneville 22.52336
## 1215 United States   Pennsylvania                  Aspinwall  1.01041
## 1216 United States       Kentucky                 Park Hills  1.35697
## 1217 United States           Ohio              Saint Bernard  3.98882
## 1218 United States   Pennsylvania                      Manor  1.72576
## 1219 United States   Pennsylvania               Mount Oliver  3.52327
## 1223 United States   Pennsylvania                 Pittsburgh  1.91563
## 1224 United States    Connecticut                  Stratford  0.76857
## 1225 United States       Kentucky                Fort Thomas  0.84033
## 1226 United States       New York                     Nedrow  7.01558
## 1227 United States       Kentucky                 Carrollton  5.24704
## 1228 United States       Kentucky                 Carrollton  5.11169
## 1229 United States        Alabama             Vestavia Hills  0.90573
## 1230 United States   Pennsylvania                 Pittsburgh  1.55600
## 1231 United States           Ohio The Village of Indian Hill  2.22788
## 1232 United States       New York                Warrensburg  2.17558
## 1233 United States  West Virginia                      Wayne  8.50992
## 1234 United States       New York                  Sea Cliff  0.69230
## 1235 United States       Maryland                  Baltimore  5.94285
## 1236 United States       Kentucky               Prestonsburg 13.32465
## 1237 United States       Maryland                Charlestown  4.24402
## 1238 United States     New Jersey                     Alpine  1.62138
## 1239 United States   Pennsylvania                 Pittsburgh  1.27111
## 1240 United States       New York                     Shokan 26.62969
## 1241 United States       Virginia                  Lexington 20.62473
## 1242 United States       Colorado                  Cedaredge 16.89741
## 1243 United States       Colorado                   Keystone  8.62122
## 1245 United States      Minnesota            Mendota Heights  1.73479
## 1246 United States      Minnesota               Eden Prairie  0.15271
## 1247 United States        Georgia                     Canton  9.42335
## 1248 United States      Minnesota            Mendota Heights  1.93378
## 1249 United States          Maine                  Wiscasset  9.00019
## 1250 United States      Minnesota              North Mankato  5.90746
## 1251 United States      Minnesota                    Mankato  1.73178
## 1252 United States      Minnesota                   Le Sueur  6.99107
## 1253 United States      Minnesota               Belle Plaine  3.37657
## 1254 United States      Minnesota                Minneapolis  0.25471
## 1255 United States      Minnesota                 Saint Paul  2.31638
## 1256 United States      Minnesota                Minneapolis  2.50336
## 1257 United States      Minnesota                   Le Sueur  7.07406
## 1258 United States      Minnesota                 Saint Paul  2.99793
## 1259 United States      Minnesota               Belle Plaine  7.97257
## 1260 United States      Minnesota               Belle Plaine  7.02197
## 1275 United States   Pennsylvania                  Boalsburg  2.14720
## 1276 United States      Minnesota                    Preston 14.33305
## 1277 United States           Iowa               Cedar Rapids  4.98458
## 1280 United States        Arizona                     Sedona  5.43356
## 1281 United States       Colorado           Colorado Springs  3.60998
## 1282 United States        Wyoming                       Cody 66.07162
## 1283 United States       Colorado                     Salida  7.69870
## 1284 United States       Colorado       Cascade-Chipita Park  1.37598
## 1285 United States     California            Borrego Springs 20.08692
## 1286 United States           Utah                      Nephi  5.80331
## 1287 United States     California              Cherry Valley  8.96214
## 1291 United States           Iowa                   Woodbine  5.71009
## 1292 United States        Wyoming                    Jackson  1.70313
## 1293 United States      Tennessee           Lookout Mountain  0.58260
## 1295 United States       Colorado                     Granby  5.53226
## 1296 United States   Pennsylvania                 Versailles  1.57546
## 1297 United States           Utah            North Salt Lake  2.55023
## 1300 United States       Maryland            Fort Washington  2.15609
## 1303 United States           Utah                      Logan  1.79637
## 1306 United States           Utah                 Washington  1.34549
## 1307 United States     California                Valle Vista  7.42146
## 1309 United States   Pennsylvania                 Wilmerding  0.35963
## 1311 United States  Massachusetts               Valley Falls  3.45417
## 1312 United States        Georgia                   Columbus  6.88634
## 1313 United States          Idaho                 Idaho City 26.67215
## 1314 United States        Wyoming                       Cody 59.36537
## 1315 United States           Ohio                 Huntington  3.37218
## 1316 United States        Alabama                     Hoover  3.51822
## 1317 United States     California                San Jacinto  4.90583
## 1318 United States       Illinois                East Peoria  2.36449
## 1319 United States       Illinois                East Peoria  2.33139
## 1322 United States     California                  Escondido  5.53682
## 1323 United States     California                San Jacinto  5.62939
## 1324 United States     California                      Crest  2.75389
## 1325 United States     California                    Yucaipa 13.02571
## 1326 United States       Colorado                     Salida 14.50415
## 1327 United States  Massachusetts                  Topsfield  1.82352
## 1328 United States     New Mexico                   Corrales  0.35759
## 1329 United States       Colorado                     Salida  3.89595
## 1330 United States       Colorado                     Salida  7.04118
## 1331 United States       Colorado                   San Luis 25.29753
## 1334 United States           Ohio                 Huntington  7.32387
## 1336 United States          Idaho                 Idaho City  9.77449
## 1337 United States         Nevada               Boulder City  2.66000
## 1338 United States        Wyoming                     Hoback 17.26708
## 1339 United States       Colorado                  Telluride  0.63448
## 1340 United States       Kentucky                    Hindman  1.90244
## 1341 United States       New York                Canajoharie 10.30458
## 1343 United States       Kentucky           Coal Run Village 10.17779
## 1345 United States   Pennsylvania                 Waynesburg  2.22576
## 1346 United States       Maryland               Camp Springs  1.87540
## 1350 United States       Colorado                    Minturn  4.47152
## 1351 United States          Idaho                    Challis  0.36084
## 1355 United States       Illinois                   Highwood  2.92584
## 1403 United States          Idaho                     Joseph 44.08725
## 1405 United States     California                     Alpine  1.38372
## 1407 United States   Pennsylvania               Beaver Falls  7.52989
## 1408 United States       Virginia              Clifton Forge  2.30910
## 1409 United States       Kentucky               Prestonsburg  5.08152
## 1410 United States       Kentucky                    Stearns  6.35327
## 1411 United States       Kentucky           Coal Run Village 16.40897
## 1412 United States       Kentucky                   Morehead  1.53883
## 1413 United States  West Virginia              Gilbert Creek  5.06344
## 1414 United States  West Virginia              Gilbert Creek  9.35294
## 1415 United States  West Virginia                Sissonville  8.93549
## 1416 United States  West Virginia                       Inez 12.32235
## 1417 United States  West Virginia                 Williamson 16.94705
## 1418 United States       Kentucky                     Harlan 12.77232
## 1419 United States  West Virginia                       Rand  5.77112
## 1420 United States  West Virginia                 Charleston  6.40459
## 1421 United States  West Virginia                 Montgomery  3.66745
## 1422 United States  West Virginia                      Logan  2.59792
## 1423 United States  West Virginia                      Welch 18.30387
## 1426 United States       Kentucky                 Cumberland  7.52192
## 1427 United States  West Virginia                 Williamson  9.26151
## 1428 United States  West Virginia              Gilbert Creek  7.28713
## 1429 United States       Kentucky                 Whitesburg  1.49011
## 1430 United States       Kentucky                     Hazard 11.13295
## 1431 United States  West Virginia                     Sophia  2.71773
## 1432 United States  West Virginia                Moundsville 16.23811
## 1433 United States       Virginia                       Wise  2.94501
## 1434 United States       Kentucky               West Liberty  5.64478
## 1435 United States       Kentucky                    Hindman  9.63545
## 1436 United States       Virginia              Big Stone Gap  4.51597
## 1437 United States       Virginia                     Grundy 17.52647
## 1438 United States  West Virginia                    Fairlea  2.82396
## 1439 United States       Kentucky                   Hartford  3.14055
## 1440 United States       New York                    Yonkers  1.05895
## 1441 United States           Ohio                   Bellevue  1.19499
## 1442 United States        Georgia         Chattanooga Valley  3.71673
## 1443 United States  West Virginia                 Charleston  3.35071
## 1444 United States  West Virginia                 Williamson  0.84799
## 1445 United States  West Virginia                 Williamson  0.51702
## 1446 United States           Ohio                 Youngstown  1.20691
## 1447 United States   Pennsylvania                  Aspinwall  0.87791
## 1448 United States       Kentucky                  Pikeville  0.29989
## 1449 United States       Kentucky                Fort Thomas  0.78550
## 1450 United States           Ohio               Wintersville  7.93943
## 1455 United States       Kentucky                       Inez  7.14177
## 1458 United States       Arkansas                   Harrison 10.15474
## 1459 United States           Ohio                Day Heights  2.40349
## 1460 United States       Colorado                  Stratmoor  6.75748
## 1462 United States       Maryland                Saint James  4.05258
## 1463 United States       Oklahoma                   Longtown 19.40495
## 1464 United States   Pennsylvania                    Blawnox  2.15077
## 1465 United States       Oklahoma                      Davis  7.00621
## 1466 United States        Wyoming                       Cody 74.46097
## 1467 United States       Arkansas                      Ozark 25.20737
## 1468 United States   Pennsylvania                  Johnstown  0.59899
## 1469 United States   Pennsylvania                    Milford  6.74021
## 1470 United States        Alabama                  Northport  7.27361
## 1472 United States   Pennsylvania                    Oakland  2.35897
## 1473 United States        Arizona                       Page  3.58700
## 1474 United States       Colorado          Steamboat Springs  0.83297
## 1476 United States     New Mexico                   Cimarron 10.23698
## 1477 United States   Pennsylvania          West Conshohocken  0.98504
## 1478 United States     New Jersey                   Paterson  0.67691
## 1479 United States           Utah                      Provo  2.90388
## 1480 United States   Pennsylvania               New Brighton  1.00035
## 1481 United States       Oklahoma                   Muskogee 12.21464
## 1482 United States        Wyoming                Thermopolis 16.58878
## 1483 United States         Kansas                     Oregon 14.54524
## 1484 United States       Oklahoma                   Talihina 33.62663
## 1485 United States       Colorado                     Golden  2.66154
## 1486 United States       Colorado           Colorado Springs  2.19300
## 1487 United States        Wyoming           West Yellowstone 48.56269
## 1488 United States       Colorado               Lincoln Park 15.35824
## 1489 United States       Colorado                    Penrose 15.46134
## 1490 United States       Colorado                    Penrose 15.49683
## 1491 United States       Kentucky                 Whitesburg  2.84945
## 1494 United States       Colorado          Air Force Academy  8.38116
## 1495 United States       Arkansas                  Coal Hill  7.09417
## 1496 United States   Pennsylvania                   Millvale  2.96684
## 1497 United States       Colorado                Buena Vista 15.55972
## 1498 United States           Ohio              Chagrin Falls  0.71363
## 1499 United States       Colorado                  Silverton  3.25081
## 1500 United States       Kentucky                 Rising Sun  1.04697
## 1501 United States       Colorado                       Loma  7.43165
## 1502 United States  West Virginia                 Burlington  2.92655
## 1503 United States       Kentucky                     Hazard  2.49307
## 1504 United States       Kentucky                 Whitesburg  0.05520
## 1505 United States       New York                     Delmar  2.22929
## 1506 United States       Kentucky               Prestonsburg 11.00729
## 1507 United States    Mississippi                D'Iberville  0.98037
## 1508 United States   Pennsylvania                West Newton  6.55886
## 1509 United States       Maryland                     Keyser  3.89837
## 1510 United States  West Virginia           South Charleston  3.94457
## 1511 United States   Pennsylvania                   Cheswick  0.91573
## 1513 United States       Colorado                  Telluride  9.99621
## 1514 United States       Kentucky                  Pikeville  8.67856
## 1515 United States       Kentucky               Prestonsburg  9.99553
## 1516 United States       Kentucky                   Richmond 11.13705
## 1517 United States       Kentucky               Williamsburg  9.77108
## 1518 United States       Kentucky                 Frenchburg 14.80972
## 1519 United States       Kentucky               Prestonsburg 12.65382
## 1520 United States       Kentucky                     Hazard  4.39348
## 1521 United States  West Virginia                Saint Marys  7.15698
## 1522 United States           Ohio                   Glendale  3.55282
## 1523 United States  West Virginia                  Brilliant  4.71099
## 1524 United States  West Virginia               Teays Valley  3.37673
## 1525 United States   Pennsylvania                    Oakmont  1.28701
## 1526 United States     New Mexico                     Questa 14.70736
## 1527 United States        Indiana                   Rockport  8.43158
## 1530 United States       Kentucky                  Pikeville  6.27087
## 1531 United States  West Virginia                     Lesage  0.02568
## 1532 United States       Kentucky               Prestonsburg  3.12273
## 1533 United States           Ohio                  Peninsula  4.27554
## 1534 United States  West Virginia                     Sutton 18.39748
## 1535 United States  West Virginia                    Bethany  1.55911
## 1536 United States           Ohio                   Oak Hill 10.37446
## 1537 United States      Tennessee                      Erwin  7.88881
## 1538 United States  West Virginia                  Clendenin  0.17162
## 1539 United States  West Virginia            Webster Springs  9.96486
## 1540 United States  West Virginia            Webster Springs  0.16161
## 1541 United States       Missouri                   Hannibal  2.42844
## 1542 United States       Kentucky                  Pikeville 10.52676
## 1543 United States     California                    La Mesa  4.97056
## 1544 United States     California                     Ramona  4.85697
## 1545 United States     California                     Julian  4.69959
## 1546 United States     California  San Diego Country Estates  7.62002
## 1547 United States     California                     Ramona  3.13754
## 1548 United States     California                     Niland 53.76298
## 1549 United States           Ohio                     Dayton  1.56996
## 1550 United States       Missouri                     Fulton 16.39489
## 1551 United States     California                    Yucaipa 10.37615
## 1552 United States  West Virginia                 Montgomery  1.33142
## 1553 United States  Massachusetts                   Hatfield  3.49144
## 1554 United States  Massachusetts               Chesterfield  6.53153
## 1555 United States           Utah             Woodland Hills  0.75074
## 1556 United States       Colorado           Colorado Springs  3.81487
## 1558 United States North Carolina             Black Mountain  7.96582
## 1562 United States     California              Moreno Valley  5.33395
## 1563 United States        Arizona                     LeChee 43.57781
## 1564 United States   Pennsylvania                  Homestead  3.74490
## 1567 United States           Utah                   Mapleton 21.52246
## 1675 United States       Virginia                Springville  8.58443
## 1676 United States   Pennsylvania                    Crafton  1.45894
## 1677 United States       Colorado           Glenwood Springs 13.85194
## 1678 United States       Virginia                   Pembroke  3.21144
## 1679 United States  West Virginia                 Charleston  6.43349
## 1681 United States North Carolina               Blowing Rock  4.20387
## 1682 United States           Ohio                  New Haven  6.83465
## 1683 United States          Idaho                    Cascade 22.78728
## 1684 United States          Idaho                 Idaho City 24.16064
## 1685 United States       Colorado                    Durango 22.57467
## 1686 United States      Tennessee                  Jacksboro  8.43321
## 1687 United States  West Virginia                   Bluewell  5.07093
## 1688 United States North Carolina                      Tryon  7.69666
## 1689 United States North Carolina                      Tryon  7.80866
## 1690 United States  West Virginia                 Charleston  6.84721
## 1691 United States  West Virginia                      Welch 14.19735
## 1692 United States  West Virginia                     Athens 12.00678
## 1693 United States        Vermont                    Windsor  1.78429
library(ggplot2)

ggplot(data=df_us, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")
## Warning: Removed 1 rows containing missing values (position_stack).

library(ggplot2)
library(dplyr)
ggplot(data=df_us, aes(fill=City, x="United States", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")
## Warning: Removed 1 rows containing missing values (geom_bar).

library(ggplot2)
library(dplyr)
ggplot(data=df_us, aes(fill=City, x="United States", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")
## Warning: Removed 1 rows containing missing values (position_stack).

library(ggplot2)
library(dplyr)

ggplot(data=df_us, aes(x = "United States", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)
## Warning: Removed 1 rows containing missing values (position_stack).

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_us <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_us)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_us, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_us$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_us)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#ECUADOR

library(readr)
library(knitr)
df_ec <- subset (df, Country == "Ecuador")
knitr::kable(head(df_ec))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
9 105 6/27/07 SA Ecuador EC Zamora-Chinchipe 15276 Zamora 0.47714 -4.0650 -78.9510 (-4.0650000000000004, -78.950999999999993) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
10 106 6/27/07 SA Ecuador EC Loja 117796 Loja 0.35649 -3.9900 -79.2050 (-3.99, -79.204999999999998) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
11 107 6/27/07 SA Ecuador EC Pichincha 5114 Sangolquí 33.94603 -0.3560 -78.1480 (-0.35599999999999998, -78.147999999999996) Landslide Landslide Medium Downpour NA NA Red Cross - Field reports https://www-secure.ifrc.org/dmis/prepare/view_report.asp?ReportID=2908
78 468 2/28/08 SA Ecuador EC Napo 7309 Archidona 50.21741 -0.4635 -77.8928 (-0.46350000000000002, -77.892799999999994) Landslide Landslide Medium Rain NA 7 http://english.aljazeera.net/NR/exeres/868843D7-B211-4DE5-AFBE-31C29CF79C5A.htm
87 489 4/1/08 SA Ecuador EC Pichincha 1399814 Quito 1.56942 -0.2196 -78.5347 (-0.21959999999999999, -78.534700000000001) Landslide Landslide Medium Rain NA NA http://www.plenglish.com/Article.asp?ID=%7B39BA85A0-5900-4A4A-A329-818B3FC61EA1%7D&language=EN
218 1186 12/28/09 Night SA Ecuador EC Santo Domingo de los Tsáchilas 200421 Santo Domingo de los Colorados 1.16036 Unknown -0.3152 -78.9724 (-0.31519999999999998, -78.972399999999993) Landslide Mudslide Medium Downpour 5 3 Latin American Herald Tribune http://www.laht.com/article.asp?ArticleId=327938&CategoryId=14089
df_ec %>% 
  select(Country, State, City, Distance)
##      Country                           State                           City
## 9    Ecuador                Zamora-Chinchipe                         Zamora
## 10   Ecuador                            Loja                           Loja
## 11   Ecuador                       Pichincha                     Sangolquí
## 78   Ecuador                            Napo                      Archidona
## 87   Ecuador                       Pichincha                          Quito
## 218  Ecuador Santo Domingo de los Tsáchilas Santo Domingo de los Colorados
## 238  Ecuador                       Pichincha                       Machachi
## 253  Ecuador                      Tungurahua                         Baños
## 339  Ecuador                      Esmeraldas                     Esmeraldas
## 586  Ecuador                       Pichincha                       Machachi
## 587  Ecuador                        Cotopaxi                     Saquisilí
## 660  Ecuador                 Morona-Santiago                          Macas
## 697  Ecuador                       Pichincha                          Quito
## 751  Ecuador                          Carchi                      El Ã\201ngel
## 868  Ecuador                         Manabi                           Chone
## 872  Ecuador                         Manabi                         Tosagua
## 942  Ecuador                          Guayas                          Balao
## 956  Ecuador                      Esmeraldas                     Esmeraldas
## 984  Ecuador                       Pichincha                        Cayambe
## 1304 Ecuador                          Carchi                    San Gabriel
## 1332 Ecuador                       Pichincha                          Quito
## 1333 Ecuador                       Pichincha                          Quito
## 1335 Ecuador                       Sucumbios                Gonzalo Pizarro
## 1365 Ecuador                           Azuay                         Cuenca
## 1368 Ecuador                Zamora-Chinchipe                         Zamora
## 1451 Ecuador                            Loja                        Macará
## 1452 Ecuador                            Loja                           Loja
## 1453 Ecuador                            Loja                       Catamayo
## 1454 Ecuador                           Azuay                         Cuenca
## 1566 Ecuador                       Pichincha                          Quito
##      Distance
## 9     0.47714
## 10    0.35649
## 11   33.94603
## 78   50.21741
## 87    1.56942
## 218   1.16036
## 238  26.18676
## 253  11.91442
## 339   2.81891
## 586  25.82923
## 587  30.81169
## 660  46.77007
## 697   4.39517
## 751  28.29459
## 868  19.85816
## 872   7.67919
## 942  16.34404
## 956  21.26652
## 984  45.69792
## 1304 10.47204
## 1332 26.72137
## 1333 23.97854
## 1335 11.55916
## 1365 13.21139
## 1368  1.23724
## 1451 18.88784
## 1452  1.82885
## 1453 17.57187
## 1454 10.16196
## 1566  4.25486
library(ggplot2)

ggplot(data=df_ec, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_ec, aes(fill=City, x="Ecuador", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_ec, aes(fill=City, x="Ecuador", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_ec, aes(x = "Ecuador", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_ec <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_ec)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_ec, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_ec$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_ec)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#GUATEMALA

library(readr)
library(knitr)
df_gu <- subset (df, Country == "Guatemala")
knitr::kable(head(df_gu))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
17 165 8/9/07 NA Guatemala GT Guatemala 47247 San José Pinula 4.74385 14.5667 -90.4500 (14.566700000000001, -90.45) Landslide Mudslide Medium Rain NA 5 International Herald http://www.iht.com/articles/ap/2007/08/09/america/LA-GEN-Guatemala-Deadly-Mudslide.php
27 198 8/21/07 NA Guatemala GT Alta Verapaz 2006 Lanquín 13.39817 15.6046 -90.0853 (15.6046, -90.085300000000004) Landslide Landslide Medium Tropical cyclone Hurricane Dean NA NA United Nations Development Programme - Relief Web http://www.reliefweb.int/rw/RWB.NSF/db900SID/EDIS-76BSG6?OpenDocument
28 199 8/21/07 NA Guatemala GT Izabal 18994 Morales 12.55184 15.5163 -88.9286 (15.516299999999999, -88.928600000000003) Landslide Landslide Medium Tropical cyclone Hurricane Dean NA NA United Nations Development Programme - Relief Web http://www.reliefweb.int/rw/RWB.NSF/db900SID/EDIS-76BSG6?OpenDocument
41 277 9/22/07 NA Guatemala GT Guatemala 994938 Guatemala City 2.79113 14.6229 -90.5316 (14.6229, -90.531599999999997) Landslide Mudslide Medium Rain NA 3 Fox News http://www.foxnews.com/story/0,2933,297714,00.html
104 563 6/1/08 NA Guatemala GT Escuintla 31329 Palín 3.10150 14.4226 -90.6755 (14.422599999999999, -90.6755) Landslide Mudslide Medium Tropical cyclone Tropical Storm Arthur NA 1 http://209.85.215.104/search?q=cache:QU_lPxNfk78J:www.plenglish.com/article.asp?ID=%7B1D4A74F7-CDCA-49D0-ABD4-D2E0FD9D2130%7D&language=EN+Colom+said+the+declaration+came+after+a+death+in+Palin+and+40+houses+partially&hl=en&ct=clnk&cd=1&gl=us&c
108 591 6/18/08 NA Guatemala GT Guatemala 994938 Guatemala City 3.12614 14.6510 -90.5403 (14.651, -90.540300000000002) Landslide Complex Medium Rain NA 8 http://cnnwire.blogs.cnn.com/2008/06/20/8-dead-in-rough-weather-in-guatemala/
df_gu %>% 
  select(Country, State, City, Distance)
##        Country          State                         City Distance
## 17   Guatemala      Guatemala             San José Pinula  4.74385
## 27   Guatemala   Alta Verapaz                     Lanquín 13.39817
## 28   Guatemala         Izabal                      Morales 12.55184
## 41   Guatemala      Guatemala               Guatemala City  2.79113
## 104  Guatemala      Escuintla                       Palín  3.10150
## 108  Guatemala      Guatemala               Guatemala City  3.12614
## 120  Guatemala         Zacapa                    La Unión  0.80640
## 158  Guatemala  Chimaltenango            San José Poaquil  5.31511
## 162  Guatemala  Huehuetenango San Sebastián Huehuetenango  1.58358
## 169  Guatemala         Izabal                      Morales 23.92309
## 351  Guatemala Quetzaltenango                    Almolonga  0.77254
## 353  Guatemala      Escuintla                       Palín  0.18542
## 354  Guatemala      Guatemala                   Amatitlán  2.02891
## 355  Guatemala      Guatemala                    Chinautla  0.44764
## 356  Guatemala  Sacatepéquez       Santa María De Jesús  6.13527
## 357  Guatemala      Guatemala               Guatemala City  4.07930
## 358  Guatemala        Sololá         Santa Cruz La Laguna  6.00513
## 359  Guatemala  Chimaltenango               Santa Apolonia  0.99952
## 360  Guatemala        Sololá          San Pedro La Laguna  0.50611
## 361  Guatemala      Guatemala             San José Pinula  0.89040
## 362  Guatemala        Quiché              San Juan Cotzal  8.93658
## 363  Guatemala   Totonicapán                 Totonicapán  0.17513
## 372  Guatemala        Sololá          San Pablo La Laguna  3.85753
## 383  Guatemala      Guatemala                    Chinautla  3.85648
## 427  Guatemala      Guatemala                        Mixco  2.10418
## 428  Guatemala      Guatemala                        Mixco  3.64749
## 429  Guatemala      Guatemala        Santa Catarina Pinula  2.81128
## 430  Guatemala     Chiquimula              San Juan Ermita  6.15103
## 431  Guatemala  Huehuetenango                Malacatancito  0.03280
## 432  Guatemala        Sololá        San Andrés Semetabaj  0.00359
## 433  Guatemala   Alta Verapaz                      Senahú  2.30104
## 437  Guatemala        Sololá                     Nahualá  3.04642
## 438  Guatemala Quetzaltenango                      Colomba  0.92729
## 439  Guatemala        Quiché                    Chicamán 21.83272
## 440  Guatemala  Sacatepéquez                  Jocotenango  0.63089
## 441  Guatemala  Chimaltenango                Chimaltenango  1.36473
## 442  Guatemala        Quiché                    Sacapulas  0.35171
## 818  Guatemala  Huehuetenango                     Barillas  0.45507
## 885  Guatemala        Quiché                       Chajul  7.39906
## 1112 Guatemala     San Marcos                     Pajapita  0.96647
## 1244 Guatemala  Huehuetenango              San Pedro Necta  0.91108
## 1347 Guatemala        Sololá                        Zunil  7.03115
## 1352 Guatemala   Baja Verapaz                     Purulhá  5.88787
## 1353 Guatemala      Guatemala        Santa Catarina Pinula  2.70053
## 1354 Guatemala      Guatemala               Guatemala City  2.59620
## 1356 Guatemala        Quiché              San Luis Ixcán 22.56101
## 1357 Guatemala        Jutiapa                   Jalpatagua  4.51954
## 1358 Guatemala  Huehuetenango                       Cuilco  3.30989
## 1359 Guatemala      Guatemala                    Chinautla  5.94535
## 1360 Guatemala        Quiché                     Chinique  3.98185
## 1361 Guatemala     San Marcos                      Tacaná  0.75729
## 1557 Guatemala      Guatemala        Santa Catarina Pinula  0.94245
## 1559 Guatemala      Guatemala        Santa Catarina Pinula  3.96161
## 1560 Guatemala     Santa Rosa       Santa María Ixhuatán  0.82332
## 1561 Guatemala   Suchitepeque            San Juan Bautista  3.47803
## 1568 Guatemala      Guatemala                    Fraijanes  6.19218
## 1569 Guatemala  Chimaltenango                    Patzicía  5.52205
## 1570 Guatemala      Guatemala                        Mixco  1.87009
## 1571 Guatemala      Guatemala                       Petapa  4.20726
## 1572 Guatemala        Sololá          San Antonio Palopó  3.18658
## 1573 Guatemala        Sololá        San Andrés Semetabaj  0.67040
## 1574 Guatemala      Guatemala               Guatemala City  3.80312
## 1575 Guatemala      Guatemala               Guatemala City  1.68290
## 1576 Guatemala      Guatemala               Guatemala City  2.08425
## 1577 Guatemala      Guatemala               Guatemala City  3.25675
## 1578 Guatemala      Guatemala               Guatemala City  3.49341
## 1579 Guatemala      Guatemala               Guatemala City  1.83863
## 1580 Guatemala      Guatemala               Guatemala City  1.57381
## 1581 Guatemala      Guatemala               Guatemala City  1.70147
## 1582 Guatemala      Guatemala               Guatemala City  3.00314
## 1583 Guatemala        Quiché             Chichicastenango  2.27725
## 1584 Guatemala      Guatemala                    Chinautla  2.36376
## 1585 Guatemala      Guatemala                    Chinautla  2.66358
## 1588 Guatemala  Sacatepéquez      Santa Catarina Barahona  1.45200
## 1589 Guatemala   Alta Verapaz                     Cahabón  5.14479
## 1590 Guatemala      Escuintla            Nueva Concepción  8.25465
## 1591 Guatemala      Guatemala                Villa Canales  0.65744
## 1592 Guatemala        Sololá        San Andrés Semetabaj  0.75685
## 1595 Guatemala Quetzaltenango                   Coatepeque  1.81216
library(ggplot2)

ggplot(data=df_gu, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_gu, aes(fill=City, x="Guatemala", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_gu, aes(fill=City, x="Guatemala", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_gu, aes(x = "Guatemala", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_gu <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_gu)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_gu, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_gu$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_gu)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#EL SALVADOR

library(readr)
library(knitr)
df_sv <- subset (df, Country == "El Salvador")
knitr::kable(head(df_sv))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
34 230 9/5/07 NA El Salvador SV Ahuachapán 7797 Concepción de Ataco 0.00273 13.8703 -89.8486 (13.8703, -89.848600000000005) Landslide Mudslide Medium Tropical cyclone Hurricane Felix NA NA Azcentral.com http://www.azcentral.com/news/articles/1108sr-fhsistercity1109-ON.html
105 564 6/2/08 NA El Salvador SV La Libertad 124694 Santa Tecla 4.96416 13.7205 -89.2687 (13.720499999999999, -89.268699999999995) Landslide Landslide Medium Tropical cyclone Tropical Storm Arthur NA NA http://news.xinhuanet.com/english/2008-06/04/content_8310737.htm
224 1285 11/8/09 NA El Salvador SV San Vicente 41504 San Vicente 7.60946 13.6409 -88.8699 (13.6409, -88.869900000000001) Landslide Complex Very_large Tropical cyclone Tropical Cyclone Ida NA 23 http://www.google.com/hostednews/ap/article/ALeqM5j0XCCb1n12DyhoBoDzGj_hTyEtrAD9BRKPRG0
225 1286 11/8/09 NA El Salvador SV La Libertad 33767 Antiguo Cuscatlán 4.86219 13.7156 -89.2521 (13.7156, -89.252099999999999) Landslide Mudslide Medium Tropical cyclone Tropical Cyclone Ida NA 4 http://www.google.com/hostednews/ap/article/ALeqM5j0XCCb1n12DyhoBoDzGj_hTyEtrAD9BRKPRG0
226 1287 11/8/09 NA El Salvador SV San Vicente 41504 San Vicente 5.90726 13.6094 -88.8488 (13.609400000000001, -88.848799999999997) Landslide Rockfall Medium Tropical cyclone Tropical Cyclone Ida NA NA http://news.bbc.co.uk/2/hi/in_depth/8349333.stm
227 1288 11/8/09 NA El Salvador SV San Vicente 41504 San Vicente 4.03125 13.6466 -88.8347 (13.646599999999999, -88.834699999999998) Landslide Mudslide Medium Tropical cyclone Tropical Cyclone Ida NA NA http://news.yahoo.com/s/afp/20091109/wl_afp/salvadorweatherstorm_20091109100952
df_sv %>% 
  select(Country, State, City, Distance)
##          Country        State                 City Distance
## 34   El Salvador  Ahuachapán Concepción de Ataco  0.00273
## 105  El Salvador  La Libertad          Santa Tecla  4.96416
## 224  El Salvador  San Vicente          San Vicente  7.60946
## 225  El Salvador  La Libertad   Antiguo Cuscatlán  4.86219
## 226  El Salvador  San Vicente          San Vicente  5.90726
## 227  El Salvador  San Vicente          San Vicente  4.03125
## 453  El Salvador  Ahuachapán               Tacuba  5.29901
## 824  El Salvador San Salvador                Apopa  3.01739
## 1294 El Salvador   San Miguel           Chirilagua  6.94536
## 1366 El Salvador   San Miguel   San Rafael Oriente 10.06695
## 1367 El Salvador     Cabañas          San Martín  8.82525
## 1369 El Salvador    Sonsonate           Nahuizalco  4.23875
## 1370 El Salvador    Sonsonate            Sonzacate  3.22235
## 1371 El Salvador       La Paz   San Pedro Masahuat  0.31933
## 1372 El Salvador   San Miguel           Chirilagua  9.97227
## 1373 El Salvador    Santa Ana           Coatepeque  8.83210
## 1374 El Salvador  La Libertad          Santa Tecla  4.60655
## 1375 El Salvador San Salvador   Antiguo Cuscatlán  3.25227
## 1594 El Salvador    Santa Ana          Ciudad Arce  1.15810
## 1596 El Salvador  La Libertad          Santa Tecla  4.67722
## 1597 El Salvador  La Libertad          Santa Tecla  9.87553
## 1598 El Salvador    Sonsonate              Juayúa  0.49346
library(ggplot2)

ggplot(data=df_sv, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_sv, aes(fill=City, x="El Salvador", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_sv, aes(fill=City, x="El Salvador", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_sv, aes(x = "El Salvador", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_sv <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_sv)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_sv, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_sv$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_sv)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#PERU

library(readr)
library(knitr)
df_pe <- subset (df, Country == "Peru")
knitr::kable(head(df_pe))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
80 472 3/5/08 SA Peru PE Huanuco 53177 Tingo María 17.34318 -9.2114 -76.1311 (-9.2113999999999994, -76.131100000000004) Landslide Landslide Medium Rain NA 7 http://news.xinhuanet.com/english/2008-03/06/content_7727748.htm
90 497 4/11/08 SA Peru PE Ancash 5044 Carhuaz 2.43089 -9.2965 -77.6613 (-9.2965, -77.661299999999997) Landslide Landslide Medium Rain NA NA http://news.xinhuanet.com/english/2008-04/14/content_7972049.htm
184 1004 4/14/09 SA Peru PE La Libertad 0 Parcoy 9.64894 -7.9589 -77.5239 (-7.9588999999999999, -77.523899999999998) Landslide Mudslide Medium Downpour NA 12 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
185 1005 4/14/09 SA Peru PE La Libertad 0 Aricapampa 0.00442 -7.8058 -77.7172 (-7.8057999999999996, -77.717200000000005) Landslide Mudslide Medium Downpour NA 0 http://rawstory.com/news/afp/Nine_dead_in_Peru_mudslides_04142009.html
252 1459 1/28/10 15:00:00 SA Peru PE Ancash 0 Anta 0.13147 -9.3584 -77.5984 (-9.3583999999999996, -77.598399999999998) Landslide Complex Medium Downpour NA 0 http://daveslandslideblog.blogspot.com/2010/01/new-images-of-level-of-destruction-in.html
294 1612 4/1/10 Early morning SA Peru PE Huanuco 0 Acomayo 3.49890 -9.7996 -76.1038 (-9.7995999999999999, -76.103800000000007) Landslide Lahar Large Downpour NA 12 http://www.thejakartapost.com/news/2010/03/18/mudslide-isolates-1500-residents-solok.html
df_pe %>% 
  select(Country, State, City, Distance)
##      Country       State         City Distance
## 80      Peru     Huanuco Tingo María 17.34318
## 90      Peru      Ancash      Carhuaz  2.43089
## 184     Peru La Libertad       Parcoy  9.64894
## 185     Peru La Libertad   Aricapampa  0.00442
## 252     Peru      Ancash         Anta  0.13147
## 294     Peru     Huanuco      Acomayo  3.49890
## 295     Peru     Huanuco         Ambo  0.55865
## 516     Peru     Huanuco     Huánuco  1.01932
## 578     Peru      Ancash        Yanac  3.70678
## 864     Peru      Ancash        Tauca  6.77672
## 912     Peru San Martín    Yuracyacu  8.89799
## 1378    Peru      Ancash      Huachis  3.26788
## 1424    Peru San Martín     Naranjos 12.70296
## 1425    Peru San Martín     Tarapoto  2.89809
library(ggplot2)

ggplot(data=df_pe, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_pe, aes(fill=City, x="Peru", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_pe, aes(fill=City, x="Peru", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_pe, aes(x = "Peru", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_pe <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_pe)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_pe, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_pe$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_pe)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

NICARAGUA

library(readr)
library(knitr)
df_ni <- subset (df, Country == "Nicaragua")
knitr::kable(head(df_ni))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
33 229 9/4/07 NA Nicaragua NI Atlántico Norte 6315 Bonanza 54.90196 13.6670 -84.2435 (13.667, -84.243499999999997) Landslide Complex Medium Tropical cyclone Hurricane Felix NA NA United Nations Development Programme - Relief Web http://www.reliefweb.int/
151 826 10/3/08 NA Nicaragua NI Masaya 5182 Tisma 14.49301 12.1200 -85.8900 (12.12, -85.89) Landslide Landslide Medium Downpour NA 9 CBC http://www.cbc.ca/world/story/2008/10/04/nicaragua-flooding.html
420 2289 8/20/10 NA Nicaragua NI Managua 16469 El Crucero 5.84054 12.0420 -86.2998 (12.042, -86.299800000000005) Landslide Mudslide Medium Downpour NA 3
424 2330 8/25/10 NA Nicaragua NI Jinotega 2367 San José de Bocay 1.36745 13.5317 -85.5325 (13.531700000000001, -85.532499999999999) Landslide Landslide Medium Downpour NA NA
1261 6089 6/23/14 NA Nicaragua NI Chontales 5827 Santo Domingo 31.14242 Unknown 12.3535 -84.8095 (12.3535, -84.8095) Landslide Landslide Small Continuous rain 0 0 Wilfried Strauch
1262 6090 6/23/14 NA Nicaragua NI Chontales 5827 Santo Domingo 31.24511 Unknown 12.3521 -84.8080 (12.3521, -84.808000000000007) Landslide Landslide Medium Continuous rain 0 0 Wilfried Strauch
df_ni %>% 
  select(Country, State, City, Distance)
##        Country            State                City Distance
## 33   Nicaragua Atlántico Norte             Bonanza 54.90196
## 151  Nicaragua           Masaya               Tisma 14.49301
## 420  Nicaragua          Managua          El Crucero  5.84054
## 424  Nicaragua         Jinotega  San José de Bocay  1.36745
## 1261 Nicaragua        Chontales       Santo Domingo 31.14242
## 1262 Nicaragua        Chontales       Santo Domingo 31.24511
## 1263 Nicaragua        Chontales       Santo Domingo 31.37360
## 1264 Nicaragua        Chontales       Santo Domingo 31.10125
## 1265 Nicaragua        Chontales       Santo Domingo 30.99704
## 1266 Nicaragua        Chontales       Santo Domingo 30.77070
## 1267 Nicaragua        Chontales       Santo Domingo 30.27546
## 1268 Nicaragua        Chontales       Santo Domingo 29.95253
## 1269 Nicaragua        Chontales       Santo Domingo 29.92927
## 1270 Nicaragua        Chontales       Santo Domingo 28.90294
## 1271 Nicaragua        Chontales       Santo Domingo 32.69694
## 1272 Nicaragua        Chontales       Santo Domingo 32.96402
## 1273 Nicaragua        Chontales       Santo Domingo 32.77401
## 1274 Nicaragua        Chontales       Santo Domingo 29.94574
## 1299 Nicaragua          Managua      Ciudad Sandino  5.59574
## 1321 Nicaragua       Ogun State             Bonanza  0.37593
## 1380 Nicaragua            Rivas          Altagracia  1.97784
## 1381 Nicaragua            Rivas          Altagracia  5.77119
## 1382 Nicaragua    Río San Juan          San Carlos  0.67752
## 1626 Nicaragua         Jinotega             Wiwilí 25.81514
## 1627 Nicaragua         Jinotega            Jinotega  2.44880
## 1631 Nicaragua           Madriz         Las Sabanas  7.21108
## 1632 Nicaragua           Madriz         Las Sabanas  4.86364
## 1633 Nicaragua          Managua           Terrabona 18.92056
## 1634 Nicaragua       Ogun State             Bonanza 10.61568
## 1636 Nicaragua       Ogun State               Siuna  1.68056
## 1637 Nicaragua           Masaya San Juan de Oriente  1.56730
library(ggplot2)

ggplot(data=df_ni, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_ni, aes(fill=City, x="Nicaragua", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_ni, aes(fill=City, x="Nicaragua", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_ni, aes(x = "Nicaragua", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_ni <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_ni)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_ni, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_ni$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_ni)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#HONDURAS

library(readr)
library(knitr)
df_hn <- subset (df, Country == "Honduras")
knitr::kable(head(df_hn))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
159 854 10/19/08 NA Honduras HN Copán 4752 Corquín 0.43391 14.5637 -88.8693 (14.563700000000001, -88.869299999999996) Landslide Landslide Large Tropical cyclone Tropical Depression 16 NA 23 http://www.chron.com/disp/story.mpl/ap/world/6068144.html
160 855 10/20/08 NA Honduras HN Francisco Morazán 850848 Tegucigalpa 2.99239 14.1080 -87.2137 (14.108000000000001, -87.213700000000003) Landslide Mudslide Large Tropical cyclone Tropical Depression 16 NA 29 http://in.ibtimes.com/articles/20081021/honduras-landslide-tegucigalpa-victim.htm
376 2062 7/12/10 5:30:00 NA Honduras HN Francisco Morazán 850848 Tegucigalpa 0.98377 14.0831 -87.1978 (14.0831, -87.197800000000001) Landslide Mudslide Medium Downpour NA 1 http://mdn.mainichi.jp/mdnnews/news/20100713p2a00m0na013000c.html
381 2093 7/18/10 NA Honduras HN Francisco Morazán 850848 Tegucigalpa 1.24404 14.0814 -87.1953 (14.0814, -87.195300000000003) Landslide Landslide Medium Downpour NA 0 http://www.insidecostarica.com/dailynews/2010/july/19/centralamerica10071903.htm
406 2217 8/7/10 Overnight NA Honduras HN Francisco Morazán 850848 Tegucigalpa 2.21442 14.0783 -87.2270 (14.0783, -87.227000000000004) Landslide Mudslide Medium Downpour NA 3
435 2358 8/29/10 4:30:00 NA Honduras HN Francisco Morazán 2288 Santa Lucía 4.75791 14.1015 -87.1607 (14.1015, -87.160700000000006) Landslide Rockfall Medium Downpour NA 5
df_hn %>% 
  select(Country, State, City, Distance)
##       Country               State                       City Distance
## 159  Honduras              Copán                   Corquín  0.43391
## 160  Honduras Francisco Morazán                 Tegucigalpa  2.99239
## 376  Honduras Francisco Morazán                 Tegucigalpa  0.98377
## 381  Honduras Francisco Morazán                 Tegucigalpa  1.24404
## 406  Honduras Francisco Morazán                 Tegucigalpa  2.21442
## 435  Honduras Francisco Morazán                Santa Lucía  4.75791
## 474  Honduras           Comayagua                  El Rancho  4.53362
## 485  Honduras              Colón                     Cusuna 36.37629
## 820  Honduras Francisco Morazán                 Tegucigalpa  1.23639
## 1100 Honduras             Cortés                Los Caminos  3.53737
## 1279 Honduras           Choluteca           Ciudad Choluteca  3.69596
## 1288 Honduras                Yoro                       Yoro  0.31238
## 1363 Honduras          Ocotepeque                    Sinuapa  2.00805
## 1377 Honduras             Cortés           Agua Azul Rancho  0.97057
## 1379 Honduras      Santa Bárbara                   Agualote  2.91594
## 1599 Honduras         El Paraíso                             1.90052
## 1602 Honduras Francisco Morazán                     El Lolo  1.85897
## 1603 Honduras Francisco Morazán                 Tegucigalpa  3.25281
## 1604 Honduras           Choluteca                     Duyure 11.67237
## 1605 Honduras           Choluteca                     Corpus  0.36987
## 1610 Honduras           Comayagua                   El Sauce  7.28575
## 1611 Honduras           Comayagua                La Libertad 17.28613
## 1612 Honduras           Comayagua Concepción de Guasistagua  8.52584
## 1613 Honduras              Copán       Santa Rosa de Copán  0.74414
## 1614 Honduras              Copán       Santa Rosa de Copán  0.28887
## 1615 Honduras              Copán               Ojos de Agua  1.39095
## 1616 Honduras              La Paz                  San José  4.69133
## 1617 Honduras              Copán                    Lucerna  5.89721
## 1618 Honduras          Ocotepeque                   La Labor  5.79867
## 1619 Honduras Francisco Morazán                 Villa Nueva  2.00830
## 1620 Honduras      Santa Bárbara                      Ilama  2.87349
## 1622 Honduras Francisco Morazán                 El Guapinol  3.54399
## 1623 Honduras                Yoro                 La Sarrosa  6.66574
## 1624 Honduras Francisco Morazán                 El Tablón   3.12986
## 1638 Honduras Francisco Morazán                 Tegucigalpa  0.91552
## 1639 Honduras Francisco Morazán                   Yaguacire  1.30583
## 1640 Honduras Francisco Morazán                  Río Abajo  3.63962
## 1641 Honduras Francisco Morazán                 Tegucigalpa  2.91326
library(ggplot2)

ggplot(data=df_hn, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_hn, aes(fill=City, x="Honduras", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_hn, aes(fill=City, x="Honduras", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_hn, aes(x = "Honduras", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_hn <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_hn)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_hn, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_hn$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_hn)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#VENEZUELA

library(readr)
library(knitr)
df_vn <- subset (df, Country == "Venezuela")
knitr::kable(head(df_vn))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
165 896 11/20/08 SA Venezuela VE Distrito Federal 3000000 Caracas 2.92493 10.4660 -66.8940 (10.465999999999999, -66.894000000000005) Landslide Mudslide Medium Downpour NA 8 http://www.foxnews.com/story/0,2933,456304,00.html
448 2473 9/20/10 SA Venezuela VE Vargas 52564 Maiquetía 6.65506 10.5363 -66.9492 (10.536300000000001, -66.949200000000005) Landslide Landslide Medium Downpour NA 7 http://www.laht.com/article.asp?ArticleId=367610&CategoryId=14091
530 2749 11/25/10 SA Venezuela VE Miranda 278890 Santa Teresa 8.45736 10.2452 -66.5867 (10.245200000000001, -66.586699999999993) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
531 2753 11/26/10 Before dawn SA Venezuela VE Distrito Federal 3000000 Caracas 2.95706 10.4913 -66.9060 (10.491300000000001, -66.906000000000006) Landslide Mudslide Medium Downpour NA 3 http://www.laht.com/article.asp?ArticleId=379809&CategoryId=10717
538 2761 11/27/10 SA Venezuela VE Distrito Federal 0 Caricuao 7.90754 10.5030 -66.9995 (10.503, -66.999499999999998) Landslide Mudslide Medium Downpour NA 1 http://www.laht.com/article.asp?ArticleId=380021&CategoryId=10717
539 2762 11/27/10 Night SA Venezuela VE Distrito Federal 0 Caricuao 5.64050 10.4267 -67.0342 (10.4267, -67.034199999999998) Landslide Landslide Medium Downpour NA 0 http://english.eluniversal.com/2010/11/30/en_pol_esp_landslides-hit-sever_30A4792571.shtml
df_vn %>% 
  select(Country, State, City, Distance)
##       Country            State          City Distance
## 165 Venezuela Distrito Federal       Caracas  2.92493
## 448 Venezuela           Vargas    Maiquetía  6.65506
## 530 Venezuela          Miranda  Santa Teresa  8.45736
## 531 Venezuela Distrito Federal       Caracas  2.95706
## 538 Venezuela Distrito Federal      Caricuao  7.90754
## 539 Venezuela Distrito Federal      Caricuao  5.64050
## 540 Venezuela Distrito Federal      Caricuao  5.74106
## 541 Venezuela Distrito Federal       Caracas  4.58994
## 542 Venezuela          Miranda        Baruta  2.69644
## 543 Venezuela          Miranda    El Hatillo  1.04263
## 544 Venezuela Distrito Federal       Caracas  3.14060
## 545 Venezuela Distrito Federal       Caracas  6.04235
## 546 Venezuela          Miranda       Guatire 15.84114
## 547 Venezuela Distrito Federal       Caracas  3.87793
## 548 Venezuela Distrito Federal       Caracas  3.65044
## 549 Venezuela Distrito Federal       Caracas  8.11953
## 599 Venezuela           Vargas    Maiquetía  7.89319
## 768 Venezuela           Aragua    El Consejo 14.28266
## 769 Venezuela          Falcón Santo Domingo 19.81345
## 847 Venezuela Distrito Federal       Caracas  2.55507
library(ggplot2)

ggplot(data=df_vn, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_vn, aes(fill=City, x="Venezuela", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_vn, aes(fill=City, x="Venezuela", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_vn, aes(x = "Venezuela", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_vn <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_vn)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_vn, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_vn$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_vn)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

PANAMA

library(readr)
library(knitr)
df_pa <- subset (df, Country == "Panama")
knitr::kable(head(df_vn))
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
df_pa %>% 
  select(Country, State, City, Distance)
##      Country          State              City Distance
## 141   Panama        Panamá        Cerro Azul  1.84596
## 167   Panama      Chiriquí           Boquete  9.83700
## 557   Panama         Colón          El Giral  1.80330
## 558   Panama         Colón         Portobelo  0.09491
## 591   Panama     Los Santos          La Palma 13.40535
## 592   Panama Bocas del Toro         Almirante  8.41491
## 919   Panama         Colón            Colón  0.16894
## 979   Panama         Colón         Portobelo  2.67409
## 980   Panama         Colón         Margarita  0.74760
## 981   Panama         Colón            Colón  0.20365
## 1080  Panama         Colón         Margarita  0.76740
## 1166  Panama        Panamá       Las Cumbres  2.81479
## 1387  Panama      Chiriquí           Volcán  0.35187
## 1388  Panama      Chiriquí       Río Sereno  0.64491
## 1389  Panama        Panamá      Alcaldedíaz  1.41526
## 1390  Panama         Colón    Nuevo San Juan  4.74914
## 1391  Panama        Panamá     San Miguelito  4.18074
## 1392  Panama      Chiriquí       Cerro Punta  3.33873
## 1393  Panama        Panamá            Ancón  2.24069
## 1606  Panama         Colón Nueva Providencia  0.18619
## 1607  Panama         Colón   María Chiquita  2.28589
## 1608  Panama         Colón           Cativá  0.63948
## 1609  Panama        Panamá    Las Margaritas  0.48725
## 1645  Panama Bocas del Toro       Punta Peña  0.29869
## 1653  Panama Bocas del Toro       Changuinola  5.97977
## 1654  Panama Bocas del Toro   Valle del Risco  6.65185
## 1655  Panama Bocas del Toro      Pueblo Nuevo  3.92621
## 1656  Panama Bocas del Toro   Valle del Risco  5.13913
## 1657  Panama Bocas del Toro          Cauchero  4.45630
## 1658  Panama      Chiriquí     Boca de Balsa  2.44254
## 1659  Panama      Chiriquí       Río Sereno  3.66775
## 1660  Panama      Chiriquí    Palmira Centro  0.90169
## 1661  Panama      Chiriquí          Breñón  0.37999
## 1662  Panama        Panamá     San Miguelito  2.57852
## 1663  Panama      Chiriquí       Monte Lirio  6.74338
## 1664  Panama         Coclé         Caballero  0.21605
## 1665  Panama        Panamá     San Miguelito  2.59449
## 1666  Panama        Panamá     San Miguelito  3.30848
## 1667  Panama        Panamá     San Miguelito  3.54386
## 1668  Panama        Panamá         Arraiján  1.80341
library(ggplot2)

ggplot(data=df_pa, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_pa, aes(fill=City, x="Panama", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_pa, aes(fill=City, x="Panama", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_pa, aes(x = "Panama", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_pa <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_pa)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_pa, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_pa$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_pa)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#BRAZIL

library(readr)
library(knitr)
df_br <- subset (df, Country == "Brazil")
knitr::kable(head(df_br))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
193 1019 5/6/09 SA Brazil BR Pará 70888 Altamira 1.01848 -3.1946 -52.2093 (-3.1945999999999999, -52.209299999999999) Landslide Mudslide Medium Rain NA 19 http://en.wikipedia.org/wiki/2009_Brazilian_floods_and_mudslides#cite_note-186k_homeless_from_flood-0
194 1020 5/6/09 SA Brazil BR Maranhão 48901 Barra do Corda 61.75306 -5.0804 -45.6010 (-5.0804, -45.600999999999999) Landslide Mudslide Medium Rain NA 3 http://www.3news.co.nz/Heavy-rains-leave-186K-homeless-in-northern-Brazil/tabid/417/articleID/102883/cat/782/Default.aspx
947 4789 3/28/13 0:30:00 SA Brazil BR Amapá 83927 Santana 0.17020 -0.0568 -51.1818 (-0.056800000000000003, -51.181800000000003) Landslide Landslide Medium Other NA 6 bestonlinebroker.co http://bestonlinebroker.co/p/3999693490/2013/04/10/beadell-resources-why-the-silence-after-a-major-mining-disaster
1348 6591 1/4/14 SA Brazil BR Pará 78050 Abaetetuba 1.04062 Urban area -1.7225 -48.8907 (-1.7224999999999999, -48.890700000000002) Landslide Riverbank collapse Medium Unknown 0 0 G1 http://g1.globo.com/pa/para/noticia/2014/01/area-que-desabou-em-abaetetuba-tinha-aterro-irregular-diz-engenheira.html
df_br %>% 
  select(Country, State, City, Distance)
##      Country     State           City Distance
## 193   Brazil     Pará       Altamira  1.01848
## 194   Brazil Maranhão Barra do Corda 61.75306
## 947   Brazil    Amapá        Santana  0.17020
## 1348  Brazil     Pará     Abaetetuba  1.04062
library(ggplot2)

ggplot(data=df_br, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_br, aes(fill=City, x="Brazil", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_br, aes(fill=City, x="Brazil", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_br, aes(x = "Brazil", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_br <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_br)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_br, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_br$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_br)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

#BELIZE

library(readr)
library(knitr)
df_bz <- subset (df, Country == "Belize")
knitr::kable(head(df_bz))
id date time continent_code Country country_code State population City Distance location_description latitude longitude geolocation hazard_type landslide_type landslide_size trigger storm_name injuries fatalities source_name source_link
1593 7437 11/24/15 10:00 NA Belize BZ Cayo 13381 Belmopan 9.71758 Above road 17.2183 -88.8519 (17.218299999999999, -88.851900000000001) Landslide Rockfall Small Mining digging 0 0 Plus TV http://www.plustvbelize.com/landslide-in-arizona-village-blocks-road-for-hours/
df_bz %>% 
  select(Country, State, City, Distance)
##      Country State     City Distance
## 1593  Belize  Cayo Belmopan  9.71758
library(ggplot2)

ggplot(data=df_bz, aes(x= State  , y= Distance)) + geom_bar(stat="identity", color="black", fill="purple")

library(ggplot2)
library(dplyr)
ggplot(data=df_bz, aes(fill=City, x="Belize", y=Distance)) +
  geom_bar(position="dodge", stat="identity", color="black")

library(ggplot2)
library(dplyr)
ggplot(data=df_bz, aes(fill=City, x="Belize", y=Distance)) +
  geom_bar(position="stack", stat="identity", color="black")

library(ggplot2)
library(dplyr)

ggplot(data=df_bz, aes(x = "Belize", y = Distance , fill=City)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0)

n_sturges = 1 + log(length(Distance))/log(2)
n_sturgesc = ceiling(n_sturges)
n_sturgesf = floor(n_sturges)

n_clases = 0
if (n_sturgesc%%2 == 0) {
  n_clases = n_sturgesf
} else {
  n_clases = n_sturgesc
}
R = max(Distance) - min(Distance)
w = ceiling(R/n_clases)
bins <- seq(min(Distance), max(Distance) + w, by = w)
bins
## [1]  0.05648  5.05648 10.05648 15.05648 20.05648 25.05648 30.05648 35.05648
Edades <- cut(Distance, bins)
Freq_table <- transform(table(Distance), Rel_Freq=prop.table(Freq), Cum_Freq=cumsum(Freq))
knitr::kable(Freq_table)
Distance Freq Rel_Freq Cum_Freq
0.05648 1 0.0136986 1
0.08269 1 0.0136986 2
0.09971 1 0.0136986 3
0.15208 2 0.0273973 5
0.28905 1 0.0136986 6
0.30326 1 0.0136986 7
0.31118 1 0.0136986 8
0.36051 1 0.0136986 9
0.50188 1 0.0136986 10
0.6355 1 0.0136986 11
0.64483 1 0.0136986 12
0.66626 1 0.0136986 13
0.76257 1 0.0136986 14
0.7834 1 0.0136986 15
0.88149 1 0.0136986 16
0.90692 1 0.0136986 17
0.94118 1 0.0136986 18
1.06048 1 0.0136986 19
1.27837 1 0.0136986 20
1.41805 1 0.0136986 21
1.52983 1 0.0136986 22
1.68294 1 0.0136986 23
1.69508 1 0.0136986 24
1.73469 1 0.0136986 25
1.93516 1 0.0136986 26
2.06743 1 0.0136986 27
2.15703 1 0.0136986 28
2.478 1 0.0136986 29
2.4977 1 0.0136986 30
2.59637 1 0.0136986 31
2.85382 1 0.0136986 32
3.05542 1 0.0136986 33
3.30074 1 0.0136986 34
3.36905 1 0.0136986 35
3.4274 1 0.0136986 36
3.49173 1 0.0136986 37
3.64682 1 0.0136986 38
3.7316 1 0.0136986 39
3.74149 1 0.0136986 40
4.1083 1 0.0136986 41
4.18059 1 0.0136986 42
4.19108 1 0.0136986 43
4.32007 1 0.0136986 44
4.40801 1 0.0136986 45
4.5182 1 0.0136986 46
4.68443 1 0.0136986 47
4.8168 1 0.0136986 48
5.24855 1 0.0136986 49
6.46156 1 0.0136986 50
6.8095 1 0.0136986 51
7.07138 1 0.0136986 52
7.93258 1 0.0136986 53
7.93996 1 0.0136986 54
8.28739 1 0.0136986 55
8.46579 1 0.0136986 56
8.93271 1 0.0136986 57
9.51003 1 0.0136986 58
9.56829 1 0.0136986 59
9.78251 1 0.0136986 60
10.88351 1 0.0136986 61
11.8349 1 0.0136986 62
12.33417 1 0.0136986 63
12.365 1 0.0136986 64
12.53758 1 0.0136986 65
14.04274 1 0.0136986 66
15.2226 1 0.0136986 67
15.74984 1 0.0136986 68
16.16369 1 0.0136986 69
19.41353 1 0.0136986 70
21.8006 1 0.0136986 71
24.67589 1 0.0136986 72
32.12708 1 0.0136986 73
str(Freq_table)
## 'data.frame':    72 obs. of  4 variables:
##  $ Distance: Factor w/ 72 levels "0.05648","0.08269",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Freq    : int  1 1 1 2 1 1 1 1 1 1 ...
##  $ Rel_Freq: num  0.0137 0.0137 0.0137 0.0274 0.0137 ...
##  $ Cum_Freq: int  1 2 3 5 6 7 8 9 10 11 ...
df_bz <- data.frame(x = Freq_table$Distance, y = Freq_table$Freq)
knitr::kable(df_bz)
x y
0.05648 1
0.08269 1
0.09971 1
0.15208 2
0.28905 1
0.30326 1
0.31118 1
0.36051 1
0.50188 1
0.6355 1
0.64483 1
0.66626 1
0.76257 1
0.7834 1
0.88149 1
0.90692 1
0.94118 1
1.06048 1
1.27837 1
1.41805 1
1.52983 1
1.68294 1
1.69508 1
1.73469 1
1.93516 1
2.06743 1
2.15703 1
2.478 1
2.4977 1
2.59637 1
2.85382 1
3.05542 1
3.30074 1
3.36905 1
3.4274 1
3.49173 1
3.64682 1
3.7316 1
3.74149 1
4.1083 1
4.18059 1
4.19108 1
4.32007 1
4.40801 1
4.5182 1
4.68443 1
4.8168 1
5.24855 1
6.46156 1
6.8095 1
7.07138 1
7.93258 1
7.93996 1
8.28739 1
8.46579 1
8.93271 1
9.51003 1
9.56829 1
9.78251 1
10.88351 1
11.8349 1
12.33417 1
12.365 1
12.53758 1
14.04274 1
15.2226 1
15.74984 1
16.16369 1
19.41353 1
21.8006 1
24.67589 1
32.12708 1
library(ggplot2)

ggplot(data=df_bz, aes(x=x, y=y)) +
  geom_bar(stat="identity", color="black", fill="yellow") +
  xlab("Rango de Distance") +
  ylab("Frecuencia")

summary(df_bz$Distance)
## Length  Class   Mode 
##      0   NULL   NULL
library(pastecs)
stat.desc(df_bz)
##           x           y
## nbr.val  NA 72.00000000
## nbr.null NA  0.00000000
## nbr.na   NA  0.00000000
## min      NA  1.00000000
## max      NA  2.00000000
## range    NA  1.00000000
## sum      NA 73.00000000
## median   NA  1.00000000
## mean     NA  1.01388889
## SE.mean  NA  0.01388889
## CI.mean  NA  0.02769366
## var      NA  0.01388889
## std.dev  NA  0.11785113
## coef.var NA  0.11623673
boxplot(Distance, horizontal=TRUE, col='orange')

Conclusión: Después de estudiar y analizar las gráficas derivadas de los datos brindados por la base de datos de deslizamientos globales, podemos concluir que México es el país con mayor número de datos de deslizamientos de Centroamérica, además, el diagrama de Pareto nos arrojó que Guatemala es el país con mayor riesgo ante estos fenómenos, esto debido a la magnitud en la que estos ocurren.