Data
Search for Best Configuration
M1 <- 4000001
M2 <- 5000000
Xsum <- numeric(0)
Xsum <- sapply(M1:M2, red_and_black)
# Values_mat <- numeric(0)
# for(k in M1:M2){
# set.seed(k)
# N <- nrow(class_roll)
# class_roll$group <-
# sample(1:N) %%
# 2 %>%
# factor(levels = c(0, 1), labels = c("Red", "Black"))
# Xsum <- c(Xsum, red_and_black(class_roll)$Xsum)
# Values_mat <- rbind(Values_mat, red_and_black(class_roll)$Values)
# }
# colnames(Values_mat) <- paste0("X", 1:6)
# Values_mat
# pairs(Values_mat)
# cor(Values_mat) %>%
# round(4)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.85 16.37 20.37 21.04 24.98 66.21
Xsum %>%
sd %>%
round(2)
## [1] 6.5
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 4001372 4002786 4004592 4012003 4014411 4015923 4016240 4031294 4056464 4066589
## 4.76 4.73 4.37 4.80 4.62 4.85 4.63 4.72 4.98 3.65
## 4098303 4128775 4145741 4153060 4156130 4156490 4169366 4175647 4177207 4195935
## 3.76 3.63 4.36 4.86 4.57 3.49 4.41 4.46 4.47 4.23
## 4196958 4199171 4208393 4229234 4243718 4275580 4278493 4285089 4289902 4297200
## 3.30 4.84 4.30 4.99 4.98 3.75 3.90 3.62 4.13 4.78
## 4313772 4314593 4315839 4332033 4340396 4375663 4376321 4379724 4380904 4384734
## 4.45 4.50 4.63 4.46 4.63 3.61 4.26 4.47 4.79 4.73
## 4391514 4403708 4407276 4423845 4426224 4427872 4437582 4438861 4440694 4443097
## 4.50 4.43 3.88 4.64 4.52 4.41 4.75 4.53 4.29 3.50
## 4444897 4447595 4463277 4468192 4468411 4469424 4480568 4487022 4490880 4499283
## 4.37 4.57 4.82 4.86 4.65 4.51 4.05 4.95 4.67 3.96
## 4500483 4507062 4522258 4535747 4535920 4540134 4551532 4580442 4585363 4590874
## 2.85 4.99 4.80 3.30 4.89 4.56 4.75 3.17 4.91 4.93
## 4594518 4596379 4602860 4611248 4615088 4616121 4636223 4655873 4660006 4666837
## 4.57 4.32 4.87 4.83 4.96 4.92 4.67 4.87 3.77 4.55
## 4668230 4671919 4674696 4676155 4692218 4702892 4712314 4721354 4723224 4725047
## 4.45 4.80 4.63 4.42 4.65 4.24 3.83 4.38 4.66 4.40
## 4725802 4729419 4732632 4735190 4744270 4750711 4751665 4756084 4757461 4768114
## 4.97 4.50 4.84 4.36 4.86 4.76 4.44 4.73 3.76 4.63
## 4769392 4772557 4778602 4778893 4780070 4780184 4817572 4818597 4819465 4829185
## 4.88 3.68 3.26 4.91 4.98 4.51 4.69 4.95 4.52 3.93
## 4831839 4836300 4836356 4840202 4853769 4854220 4867426 4878221 4878242 4884123
## 4.90 4.92 3.54 4.69 3.56 4.36 4.96 4.60 4.62 4.31
## 4903452 4943776 4990383 4994859
## 3.04 4.21 3.88 4.65
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "4500483"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.853183
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
21 |
35 |
62 |
78 |
52 |
130 |
25 |
Black |
20 |
36 |
59 |
76 |
49 |
139 |
25 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.5278147
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
213 |
190 |
Black |
207 |
197 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.2110904
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.8580494
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.08579442
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
41 |
36 |
34 |
42 |
32 |
48 |
41 |
39 |
41 |
49 |
Black |
40 |
29 |
34 |
43 |
32 |
50 |
43 |
38 |
41 |
53 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 1.036242
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
73 |
60 |
29 |
241 |
Black |
75 |
61 |
31 |
237 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.134192
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.853183