Data
Search for Best Configuration
M1 <- 7000001
M2 <- 8000000
Xsum <- numeric(0)
Xsum <- sapply(M1:M2, red_and_black)
# Values_mat <- numeric(0)
# for(k in M1:M2){
# set.seed(k)
# N <- nrow(class_roll)
# class_roll$group <-
# sample(1:N) %%
# 2 %>%
# factor(levels = c(0, 1), labels = c("Red", "Black"))
# Xsum <- c(Xsum, red_and_black(class_roll)$Xsum)
# Values_mat <- rbind(Values_mat, red_and_black(class_roll)$Values)
# }
# colnames(Values_mat) <- paste0("X", 1:6)
# Values_mat
# pairs(Values_mat)
# cor(Values_mat) %>%
# round(4)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.34 16.36 20.36 21.03 24.97 75.83
Xsum %>%
sd %>%
round(2)
## [1] 6.51
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 7011506 7040646 7042999 7044285 7048958 7055717 7075141 7096175 7103635 7105486
## 4.85 4.86 4.66 4.78 4.95 4.93 4.36 4.03 4.92 4.81
## 7108477 7113523 7132440 7133825 7134961 7139463 7153238 7153385 7159123 7168791
## 4.08 4.69 3.86 3.69 4.88 4.93 4.46 4.48 3.76 3.53
## 7175637 7182541 7183708 7185847 7223147 7230628 7234414 7237837 7240315 7261430
## 4.53 4.67 5.00 4.63 4.85 3.47 4.92 4.78 4.99 4.37
## 7273106 7284623 7286035 7298459 7306975 7310120 7317732 7318261 7323325 7328867
## 4.37 4.34 4.21 4.78 3.91 4.76 4.67 4.09 4.81 4.93
## 7372209 7383358 7383560 7392876 7394623 7406712 7407009 7415792 7438462 7447383
## 4.20 4.88 4.86 4.18 3.46 4.07 4.27 4.90 4.16 3.91
## 7454325 7454701 7461881 7471545 7476641 7476645 7484860 7492137 7508176 7519947
## 4.98 4.73 4.89 4.86 4.97 3.34 4.55 4.39 4.34 4.18
## 7525137 7525496 7536153 7544480 7549707 7551632 7555080 7561397 7565310 7581457
## 4.96 4.89 4.94 4.94 4.96 4.57 3.90 4.23 4.70 4.51
## 7583587 7584841 7591705 7594663 7597834 7602815 7603217 7604105 7616416 7616722
## 4.79 4.78 4.55 4.90 4.56 4.36 4.14 3.52 4.54 4.94
## 7630447 7640533 7640863 7651379 7651567 7653887 7655437 7658280 7677872 7708158
## 4.95 4.54 4.74 4.89 4.61 4.19 4.72 4.76 4.58 4.80
## 7715572 7741942 7753049 7764101 7776731 7779899 7794946 7796130 7806911 7820216
## 4.53 4.67 4.78 3.73 4.44 4.96 4.37 4.76 4.64 4.37
## 7829726 7832011 7834018 7856368 7877432 7886923 7890915 7915390 7916968 7920253
## 4.86 4.89 4.99 4.81 3.98 4.66 4.86 4.55 4.80 4.48
## 7923367 7930275 7946607 7966363 7975498 7980371 7993241
## 3.43 4.13 4.27 4.20 4.61 3.93 3.76
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "7476645"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 3.337422
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
21 |
36 |
64 |
77 |
48 |
134 |
23 |
Black |
20 |
35 |
57 |
77 |
53 |
135 |
27 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 1.013438
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
209 |
194 |
Black |
211 |
193 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.01086865
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.02730536
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.4378044
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
40 |
32 |
35 |
45 |
30 |
48 |
39 |
39 |
41 |
53 |
Black |
41 |
33 |
33 |
40 |
34 |
50 |
45 |
38 |
41 |
49 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 1.264954
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
77 |
59 |
28 |
239 |
Black |
71 |
62 |
32 |
239 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.5830518
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 3.337422