Prodi : Teknik Informatika
Lembaga : UIN Maulana Malik Ibrahim Malang
Pivot adalah membuat rangkuman, melakukan analisa, eksplorasi data, serta mempresentasikannya. Salah satu software yang menyediakan fitur Pivot adalah MSExcel. Pada MSExcel terdapat fitur PivotTable yang merupakan laporan berbentuk tabel, yang dalam waktu saat singkat mampu menampilkan ringkasan berdasarkan jumlah data besar kedalam bentuk atau orientasi berbeda dan sanggup melakukan kalkulasi dalam setiap item yang dibutuhkan.
library(readxl)## Warning: package 'readxl' was built under R version 4.1.2
inflowkalimantan <- read_excel(path = "datainflowkalimantan.xlsx")
inflowkalimantan## # A tibble: 6 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Kaliman~ 13272. 17575. 37698. 26379. 29427. 32847. 35119. 41157. 46158. 37200.
## 2 Kaliman~ 2831. 3386. 4029. 5943. 6675. 7440. 7775. 10249. 11848. 9294.
## 3 Kaliman~ 779. 1135. 19328. 1887. 3547. 3694. 3655. 4083. 4385. 4178.
## 4 Kaliman~ 5369. 7311. 4226. 9614. 9558. 10809. 12415. 13604. 14462. 11753.
## 5 Kaliman~ 4293. 5743. 10115. 8936. 9646. 10903. 10933. 12305. 13991. 10612.
## 6 Kaliman~ 0 0 0 0 0 0 341. 917. 1472. 1362.
## # ... with 1 more variable: `2021` <dbl>
library(tidyverse)## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
fungsi untuk mentransformasi dataset dalam bentuk memanjang (memiliki lebih sedikit kolom dan menambah jumlah baris) atau “memperpanjang” data, menambah jumlah baris dan mengurangi jumlah kolom.
datalonger <- inflowkalimantan %>%
pivot_longer(!Provinsi, names_to = "Tahun", values_to = "Kasus")
datalonger ## # A tibble: 66 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Kalimantan 2011 13272.
## 2 Kalimantan 2012 17575.
## 3 Kalimantan 2013 37698.
## 4 Kalimantan 2014 26379.
## 5 Kalimantan 2015 29427.
## 6 Kalimantan 2016 32847.
## 7 Kalimantan 2017 35119.
## 8 Kalimantan 2018 41157.
## 9 Kalimantan 2019 46158.
## 10 Kalimantan 2020 37200.
## # ... with 56 more rows
Memilih variabel Provinsi dan Kasus
library(dplyr)
kalimantanup <- select(datalonger, Provinsi, Kasus)
kalimantanup## # A tibble: 66 x 2
## Provinsi Kasus
## <chr> <dbl>
## 1 Kalimantan 13272.
## 2 Kalimantan 17575.
## 3 Kalimantan 37698.
## 4 Kalimantan 26379.
## 5 Kalimantan 29427.
## 6 Kalimantan 32847.
## 7 Kalimantan 35119.
## 8 Kalimantan 41157.
## 9 Kalimantan 46158.
## 10 Kalimantan 37200.
## # ... with 56 more rows
Menyeleksi baris atau observasi berdasarkan nilainya.
library(dplyr)
kalimantanup1 <- datalonger %>%
filter(Provinsi > 'Kalimantan Selatan') %>%
select('Provinsi', 'Tahun', 'Kasus')
kalimantanup1## # A tibble: 33 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Kalimantan Tengah 2011 779.
## 2 Kalimantan Tengah 2012 1135.
## 3 Kalimantan Tengah 2013 19328.
## 4 Kalimantan Tengah 2014 1887.
## 5 Kalimantan Tengah 2015 3547.
## 6 Kalimantan Tengah 2016 3694.
## 7 Kalimantan Tengah 2017 3655.
## 8 Kalimantan Tengah 2018 4083.
## 9 Kalimantan Tengah 2019 4385.
## 10 Kalimantan Tengah 2020 4178.
## # ... with 23 more rows
kalimantanup2 <- datalonger %>%
filter(Provinsi <= 'Kalimantan', Tahun <= '2020') %>%
select('Provinsi', 'Tahun', 'Kasus')
kalimantanup2## # A tibble: 10 x 3
## Provinsi Tahun Kasus
## <chr> <chr> <dbl>
## 1 Kalimantan 2011 13272.
## 2 Kalimantan 2012 17575.
## 3 Kalimantan 2013 37698.
## 4 Kalimantan 2014 26379.
## 5 Kalimantan 2015 29427.
## 6 Kalimantan 2016 32847.
## 7 Kalimantan 2017 35119.
## 8 Kalimantan 2018 41157.
## 9 Kalimantan 2019 46158.
## 10 Kalimantan 2020 37200.
fungsi untuk merubah struktur memanjang menjadi struktur data melebar (menambah jumlah kolom dan mengurangi jumlah baris).
kalimantanwid <- datalonger %>%
pivot_wider(names_from = "Tahun",
values_from = "Kasus")
kalimantanwid## # A tibble: 6 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Kaliman~ 13272. 17575. 37698. 26379. 29427. 32847. 35119. 41157. 46158. 37200.
## 2 Kaliman~ 2831. 3386. 4029. 5943. 6675. 7440. 7775. 10249. 11848. 9294.
## 3 Kaliman~ 779. 1135. 19328. 1887. 3547. 3694. 3655. 4083. 4385. 4178.
## 4 Kaliman~ 5369. 7311. 4226. 9614. 9558. 10809. 12415. 13604. 14462. 11753.
## 5 Kaliman~ 4293. 5743. 10115. 8936. 9646. 10903. 10933. 12305. 13991. 10612.
## 6 Kaliman~ 0 0 0 0 0 0 341. 917. 1472. 1362.
## # ... with 1 more variable: `2021` <dbl>
ggplot(data = datalonger,
mapping = aes(x = Tahun, y = Kasus)) +
geom_boxplot(alpha = 0) + # Do not show outliers
geom_jitter(alpha = 0.7, color = "tomato") +
theme_bw()ggplot(data = datalonger,
mapping = aes(x = Provinsi, y = Kasus)) +
geom_boxplot(alpha = 0) + # Do not show outliers
geom_jitter(alpha = 0.7, color = "tomato") +
theme_bw()