4 Orthogonal Polynomial Coding
hsb2$readcat<-cut(hsb2$read, 4, ordered = TRUE)
table(hsb2$readcat)
##
## (28,40] (40,52] (52,64] (64,76]
## 22 93 55 30
tapply(hsb2$write, hsb2$readcat, mean)
## (28,40] (40,52] (52,64] (64,76]
## 42.77273 49.97849 56.56364 61.83333
contr.poly(4)
## .L .Q .C
## [1,] -0.6708204 0.5 -0.2236068
## [2,] -0.2236068 -0.5 0.6708204
## [3,] 0.2236068 -0.5 -0.6708204
## [4,] 0.6708204 0.5 0.2236068
contrasts(hsb2$readcat) = contr.poly(4)
summary(lm(write ~ readcat, hsb2))
##
## Call:
## lm(formula = write ~ readcat, data = hsb2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.979 -5.824 1.227 5.436 17.021
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 52.7870 0.6339 83.268 <2e-16 ***
## readcat.L 14.2587 1.4841 9.607 <2e-16 ***
## readcat.Q -0.9680 1.2679 -0.764 0.446
## readcat.C -0.1554 1.0062 -0.154 0.877
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.726 on 196 degrees of freedom
## Multiple R-squared: 0.3456, Adjusted R-squared: 0.3356
## F-statistic: 34.51 on 3 and 196 DF, p-value: < 2.2e-16
Testes
library(xlsx)
df = read.xlsx2(file = "dissertação-atualizada.xlsx", sheetIndex = 1, header = T)
head(df)
glimpse(df)
## Rows: 150
## Columns: 39
## $ X. <chr> "RT37", "RT65", "N3", "AA18", "AA13", "RT10",…
## $ IDreesMON <chr> "5", "2.4742268041237114", "3.175257731958763…
## $ BreesMON <chr> "2.3649289099526065", "5", "2.156398104265403…
## $ CreesMON <chr> "5", "3.2162162162162162", "4.372972972972972…
## $ RedeMon <chr> "1171.2261564372725", "610.0863750348286", "4…
## $ IDreesANT <chr> "5", "2.7874999999999996", "3.637499999999999…
## $ BreesANT <chr> "2.7499999999999996", "5", "2.359375", "2.906…
## $ CreesANT <chr> "5", "3.8826446280991735", "4.735537190082645…
## $ RedeAnt <chr> "1361.931818181818", "829.7535123966942", "64…
## $ IDreesRES <chr> "5", "3", "3.4823529411764707", "2.6", "3.164…
## $ BreesRES <chr> "1.410596026490066", "5", "2.5231788079470197…
## $ CreesRES <chr> "5", "3.9624796084828713", "4.732463295269167…
## $ RedeResp <chr> "698.594767664605", "911.3703099510604", "664…
## $ IDreesAPR <chr> "5", "2.873873873873874", "3.2822822822822824…
## $ BreesAPR <chr> "2.035294117647059", "5", "2.1607843137254905…
## $ CreesAPR <chr> "5", "3.6380697050938346", "4.67828418230563"…
## $ RedeApr <chr> "1007.9752066115705", "801.577099888092", "53…
## $ Resilience.Score.RS <chr> "4239.727948895265", "3152.787297270675", "23…
## $ Disponibilidade <chr> "4.2727272727272725", "3.8333333333333335", "…
## $ Confiabilidade <chr> "4.636363636363637", "4", "4.090909090909091"…
## $ DM <chr> "8.000000000000002", "9.999999999999998", "8.…
## $ DF <chr> "2.04", "0", "0", "0", "0", "5.2", "5.36", "0…
## $ DT <chr> "9.999999999999998", "3.960000000000001", "6"…
## $ DE <chr> "2.0000000000000004", "3.04", "0", "3.7600000…
## $ ES <chr> "1.4200000000000002", "1.48", "4.000000000000…
## $ NF <chr> "1.4200000000000002", "2.96", "4.000000000000…
## $ Carga.de.trabalho.GLOBAL <chr> "7.464000000000001", "6.432", "6.600000000000…
## $ Nasc <chr> "1979", "1973", "1973", "1986", "1961", "1979…
## $ Sexo <chr> "Masculino", "Masculino", "Feminino", "Femini…
## $ Profissão <chr> "Tecnólogo/a em radiologia", "Técnico/a de ra…
## $ Turno <chr> "Manhã", "Tarde", "Manhã", "Manhã", "Manhã", …
## $ DifTur <chr> "Sim", "Sim", "Sim", "Sim", "Sim", "Sim", "Si…
## $ ExpLocal <chr> "20", "20", "21", "8", "17", "12", "18", "3",…
## $ ExpArea <chr> "20", "22", "12", "8", "17", "18", "18", "21"…
## $ Iniciativa <chr> "5", "5", "5", "3", "5", "5", "5", "5", "5", …
## $ Trajeto <chr> "25", "15", "24", "45", "15", "15", "10", "12…
## $ MaisEmp <chr> "Sim", "Não", "Não", "Não", "Não", "Sim", "Nã…
## $ Hex <chr> "5", "5", "1", "1", "2", "4", "1", "1", "3", …
## $ idade <chr> "41", "47", "47", "34", "59", "41", "56", "46…
df$Turno = as.factor(df$Turno)
contrasts(df$Turno)
## Manhã Noite Tarde
## 0 0 0
## Manhã 1 0 0
## Noite 0 1 0
## Tarde 0 0 1
df$Iniciativa = as.factor(df$Iniciativa)
contrasts(df$Iniciativa)
## 2 3 4 5
## 0 0 0 0
## 2 1 0 0 0
## 3 0 1 0 0
## 4 0 0 1 0
## 5 0 0 0 1
df$Carga.de.trabalho.GLOBAL = as.numeric(as.character(df$Carga.de.trabalho.GLOBAL))
res = lm(df$Carga.de.trabalho.GLOBAL~df$Turno + df$Iniciativa)
summary(res)
##
## Call:
## lm(formula = df$Carga.de.trabalho.GLOBAL ~ df$Turno + df$Iniciativa)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0007 -0.9025 -0.0212 0.9079 3.1623
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.35149 0.54308 9.854 <2e-16 ***
## df$TurnoNoite 0.11748 0.33903 0.347 0.729
## df$TurnoTarde 0.21312 0.24576 0.867 0.387
## df$Iniciativa3 0.09452 0.70600 0.134 0.894
## df$Iniciativa4 0.36874 0.55136 0.669 0.505
## df$Iniciativa5 0.54123 0.54424 0.994 0.322
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.36 on 142 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.01595, Adjusted R-squared: -0.0187
## F-statistic: 0.4603 on 5 and 142 DF, p-value: 0.8052
Chi-squared test
chisq.test(df$Turno, df$Iniciativa)
##
## Pearson's Chi-squared test
##
## data: df$Turno and df$Iniciativa
## X-squared = 155.57, df = 12, p-value < 2.2e-16
chisq.test(df$Turno, df$Carga.de.trabalho.GLOBAL)
##
## Pearson's Chi-squared test
##
## data: df$Turno and df$Carga.de.trabalho.GLOBAL
## X-squared = 249.14, df = 262, p-value = 0.7062
df = df[1:148, ]
QuiQuadrado = data.frame()
for (i in 2:ncol(df)) {
for (a in 2:ncol(df)) {
uc = chisq.test(df[,i], df[,a],)
QuiQuadrado = rbind(QuiQuadrado, c(colnames(df)[i], colnames(df)[a], uc$p.value))
}
}
names(QuiQuadrado) = c("var 1", "var2", "Coeficiente")
QuiQuadrado
Contingency coefficient C
library('DescTools')
ContCoef(df$Turno, df$Iniciativa, correct = FALSE)
## [1] NaN
Coeficiente = data.frame()
for (i in 2:ncol(df)) {
for (a in 2:ncol(df)) {
uc = ContCoef(df[,i], df[,a], correct = FALSE)
Coeficiente = rbind(Coeficiente, c(colnames(df)[i], colnames(df)[a], uc))
}
}
names(Coeficiente) = c("var 1", "var2", "Coeficiente")
Coeficiente
Cramer’s V
library('rcompanion')
cramerV(df$Turno, df$Iniciativa, bias.correct = FALSE)
## Cramer V
## 0.1363
Cramer = data.frame()
for (i in 2:ncol(df)) {
for (a in 2:ncol(df)) {
uc = cramerV(df[,i], df[,a], bias.correct = FALSE)
Cramer = rbind(Cramer, c(colnames(df)[i], colnames(df)[a], uc))
}
}
names(Cramer) = c("var 1", "var2", "Coeficiente")
Cramer
Uncertainty coefficient
UncertCoef(table(df$Turno, df$Iniciativa), direction = "column")
## [1] 0.02024088
ncol(df)
## [1] 39
incertezas = data.frame()
for (i in 2:ncol(df)) {
for (a in 2:ncol(df)) {
uc = UncertCoef(table(df[,i], df[,a]), direction = "column")
incertezas = rbind(incertezas, c(colnames(df)[i], colnames(df)[a], uc))
}
}
names(incertezas) = c("Var explicativa", "Var Explicada", "Coeficiente Incerteza")
incertezas