Data
Search for Best Configuration
M1 <- 1
M2 <- 1000000
Xsum <- numeric(0)
Xsum <- sapply(M1:M2, red_and_black)
# Values_mat <- numeric(0)
# for(k in M1:M2){
# set.seed(k)
# N <- nrow(class_roll)
# class_roll$group <-
# sample(1:N) %%
# 2 %>%
# factor(levels = c(0, 1), labels = c("Red", "Black"))
# Xsum <- c(Xsum, red_and_black(class_roll)$Xsum)
# Values_mat <- rbind(Values_mat, red_and_black(class_roll)$Values)
# }
# colnames(Values_mat) <- paste0("X", 1:6)
# Values_mat
# pairs(Values_mat)
# cor(Values_mat) %>%
# round(4)
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.82 16.35 20.35 21.03 24.98 68.58
Xsum %>%
sd %>%
round(2)
## [1] 6.51
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 876 1042 4262 6394 7007 17465 23390 24361 29595 78694 79397
## 4.76 4.59 4.78 4.68 4.50 4.78 4.45 4.83 4.85 4.71 4.84
## 80385 87992 90382 96472 99387 106431 119091 130377 140413 141038 149661
## 4.80 3.71 4.55 4.95 4.46 4.93 4.23 4.30 4.93 4.92 4.25
## 197184 208694 210634 215432 224017 224154 234248 234976 247898 252672 256214
## 4.17 4.12 4.89 3.93 4.17 3.95 4.07 4.63 4.77 3.74 4.80
## 278486 285414 285729 301184 327089 327576 328700 335410 342744 354340 368268
## 4.86 4.72 3.78 4.45 3.77 4.51 4.85 4.52 4.90 4.80 4.90
## 372901 386000 398499 399252 405767 408041 432867 435431 443070 445113 452208
## 4.82 4.38 4.96 4.29 4.51 4.65 4.76 4.76 4.83 4.77 4.68
## 455811 458836 459122 459938 470486 479848 482507 489040 489474 493815 499885
## 4.87 4.04 3.47 4.89 4.29 4.98 4.74 3.90 4.44 4.68 4.98
## 502397 508531 512025 516110 520909 527420 544063 560565 565855 568623 578441
## 4.68 4.99 3.90 4.78 4.40 4.82 4.09 4.88 4.40 4.02 2.82
## 582364 594312 627811 643913 651395 654763 665606 668010 669067 670602 693752
## 4.96 4.95 4.84 4.88 4.73 4.52 3.83 3.90 4.32 4.37 4.01
## 705393 711252 718817 721392 732439 735093 739249 740953 762677 788726 790252
## 4.70 4.18 4.09 4.94 4.69 4.06 4.27 4.65 4.87 4.47 4.54
## 791808 792848 813430 814132 823296 834840 847008 850047 850236 853639 861257
## 4.98 4.66 4.97 4.88 4.32 4.63 4.36 4.71 4.46 4.45 4.27
## 861363 872185 872743 890577 890687 895385 896017 898292 904480 920273 950305
## 4.87 4.84 3.85 4.85 4.98 4.14 3.66 4.85 4.94 3.42 4.81
## 955386 959415 959739 967728 969954 972048 978560 982710 995106 995648 997073
## 4.70 3.97 4.51 4.47 4.69 4.00 4.90 4.85 4.09 4.99 4.91
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "578441"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(Xmin)
## [1] 2.824094
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2016, "2016", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2016 이전", 2017:2022))
tbl1 %>%
pander
Red |
23 |
35 |
60 |
78 |
48 |
135 |
24 |
Black |
18 |
36 |
61 |
76 |
53 |
134 |
26 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 0.9880837
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
205 |
198 |
Black |
215 |
189 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.4461591
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0.1205262
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.005753858
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
38 |
32 |
33 |
44 |
32 |
49 |
45 |
37 |
41 |
52 |
Black |
43 |
33 |
35 |
41 |
32 |
49 |
39 |
40 |
41 |
50 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 1.073403
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
72 |
60 |
31 |
240 |
Black |
76 |
61 |
29 |
238 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.1901686
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.824094