Pivot adalah proses membuat rangkuman, melakukan analisa, eksplorasi, dan mempresentasikan data. Salah satu software yang menyediakan fitur Pivot adalah MSExcel. Pada MSExcel terdapat fitur PivotTable dimana biasanya merupakan laporan berbentuk tabel yang dalam waktu saat singkat mampu menampilkan ringkasan berdasarkan jumlah data besar kedalam bentuk atau orientasi berbeda dan sanggup melakukan kalkulasi dalam setiap item yang dibutuhkan.
Contoh : apabila kita mempunyai data yang diunduh dari sebuah database atau dibuat sendiri dengan jumlah ratusan, ribuan, atau bahkan ratusan ribu baris data, tentunya akan sulit untuk mengolah serta mendapatkan informasi secara cepat. Informasi yang dimaksud misalnya : Menampilkan data berdasarkan kriteria atau perhitungan tertentu, membandingkan antar field (kolom) satu dengan yang lainnya, menampilkan perulangan data, hubungan perulangan data pada suatu periode dan lain sebagainya. Selain itu bahasa pemrograman R juga menyediakan fitur provitdata. Berikut penerapan pivotdata inflow uang kartal di Provinsi Sumatera selama 10 periode terakhir menggunakan bahasa pemrograman R.
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.2
dataintflowsumatera <- read_excel(path = "PivotSumatera.xlsx")
dataintflowsumatera
library('tidyverse')
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.2
## Warning: package 'tibble' was built under R version 4.1.2
## Warning: package 'tidyr' was built under R version 4.1.2
## Warning: package 'readr' was built under R version 4.1.2
## Warning: package 'purrr' was built under R version 4.1.2
## Warning: package 'dplyr' was built under R version 4.1.2
## Warning: package 'forcats' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
datalongersumatera <- dataintflowsumatera %>%
pivot_longer(!Provinsi, names_to = "Tahun", values_to = "Kasus")
datalongersumatera
library(dplyr)
Sumateraup22 <- select(datalongersumatera, Provinsi, Kasus)
Sumateraup22
library(dplyr)
Sumateraup4 <- datalongersumatera %>%
filter(Provinsi == 'Sumatera ') %>%
select('Provinsi', 'Tahun', 'Kasus')
Sumateraup4
Sumateraup5 <- datalongersumatera %>%
filter(Provinsi == 'Sumatera', Tahun == '2020') %>%
select('Provinsi', 'Tahun', 'Kasus')
Sumateraup5
ggplot(data = datalongersumatera, mapping = aes(x = Tahun, y = Kasus)) +
geom_point() +
facet_wrap( ~ Provinsi) +
theme(axis.text.x = element_text(angle = 90))
ggplot(data = datalongersumatera, mapping = aes(x = Provinsi, y = Kasus)) +
geom_point() +
facet_wrap( ~ Tahun) +
theme(axis.text.x = element_text(angle = 90))
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.