1 Calculating effect sizes

Notes on clustering corrections:

Study and measure overview [221 total measures across 119 studies]:




Effect size and its variance for all 221 study measures:




1.1 Summarizing moderator counts

Code-related:




Language comprehension:




Reading comprehension:



1.2 Moderator correlations

Values (click arrows to scroll):

Plot:




2 Synthesizing effect sizes

2.2 Reading Comprehension

2.2.1 Effects and forest plots

Overall:

## 
## Random-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0352 (SE = 0.0128)
## tau (square root of estimated tau^2 value):      0.1877
## I^2 (total heterogeneity / total variability):   69.82%
## H^2 (total variability / sampling variability):  3.31
## 
## Test for Heterogeneity:
## Q(df = 64) = 209.6213, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2315  0.0359  6.4425  <.0001  0.1610  0.3019  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Researcher-Developed (Distal):

## 
## Random-Effects Model (k = 20; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0348 (SE = 0.0224)
## tau (square root of estimated tau^2 value):      0.1865
## I^2 (total heterogeneity / total variability):   59.16%
## H^2 (total variability / sampling variability):  2.45
## 
## Test for Heterogeneity:
## Q(df = 19) = 39.8178, p-val = 0.0035
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.3724  0.0627  5.9371  <.0001  0.2495  0.4954  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Standardized:

## 
## Random-Effects Model (k = 45; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0150 (SE = 0.0094)
## tau (square root of estimated tau^2 value):      0.1226
## I^2 (total heterogeneity / total variability):   47.63%
## H^2 (total variability / sampling variability):  1.91
## 
## Test for Heterogeneity:
## Q(df = 44) = 86.2474, p-val = 0.0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.1447  0.0353  4.1001  <.0001  0.0755  0.2139  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.2.2 Variation with Imputed ICC



2.3 Language-focused

2.3.1 Effects and forest plots

Overall:

## 
## Random-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0664 (SE = 0.0207)
## tau (square root of estimated tau^2 value):      0.2578
## I^2 (total heterogeneity / total variability):   68.66%
## H^2 (total variability / sampling variability):  3.19
## 
## Test for Heterogeneity:
## Q(df = 63) = 160.6184, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2984  0.0443  6.7439  <.0001  0.2117  0.3852  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Researcher-Developed proximal:

## 
## Random-Effects Model (k = 29; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1362 (SE = 0.0574)
## tau (square root of estimated tau^2 value):      0.3691
## I^2 (total heterogeneity / total variability):   73.04%
## H^2 (total variability / sampling variability):  3.71
## 
## Test for Heterogeneity:
## Q(df = 28) = 85.4050, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.5799  0.0883  6.5668  <.0001  0.4068  0.7529  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Researcher-Developed distal:

## 
## Random-Effects Model (k = 7; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0168 (SE = 0.0231)
## tau (square root of estimated tau^2 value):      0.1296
## I^2 (total heterogeneity / total variability):   44.14%
## H^2 (total variability / sampling variability):  1.79
## 
## Test for Heterogeneity:
## Q(df = 6) = 12.4326, p-val = 0.0530
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub     
##   0.2102  0.0772  2.7207  0.0065  0.0588  0.3615  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Researcher-Developed (all):

## 
## Random-Effects Model (k = 36; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1264 (SE = 0.0457)
## tau (square root of estimated tau^2 value):      0.3555
## I^2 (total heterogeneity / total variability):   77.24%
## H^2 (total variability / sampling variability):  4.39
## 
## Test for Heterogeneity:
## Q(df = 35) = 118.2319, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.4924  0.0747  6.5893  <.0001  0.3459  0.6388  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Standardized:

## 
## Random-Effects Model (k = 28; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0045)
## tau (square root of estimated tau^2 value):      0
## I^2 (total heterogeneity / total variability):   0.00%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity:
## Q(df = 27) = 11.0995, p-val = 0.9970
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.1176  0.0295  3.9818  <.0001  0.0597  0.1755  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.3.2 Variation with Imputed ICC



2.4 Writing Proficiency

Overall:

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value):      0.3836
## I^2 (total heterogeneity / total variability):   56.36%
## H^2 (total variability / sampling variability):  2.29
## 
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.8144  0.2106  3.8678  0.0001  0.4017  1.2271  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Researcher-Developed distal:

## 
## Random-Effects Model (k = 4; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1079 (SE = 0.1855)
## tau (square root of estimated tau^2 value):      0.3285
## I^2 (total heterogeneity / total variability):   48.02%
## H^2 (total variability / sampling variability):  1.92
## 
## Test for Heterogeneity:
## Q(df = 3) = 5.9435, p-val = 0.1144
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   1.0469  0.2383  4.3930  <.0001  0.5798  1.5140  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Standardized:

## 
## Random-Effects Model (k = 2; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.1676)
## tau (square root of estimated tau^2 value):      0
## I^2 (total heterogeneity / total variability):   0.00%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity:
## Q(df = 1) = 0.0105, p-val = 0.9184
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub    
##   0.3420  0.2362  1.4482  0.1476  -0.1209  0.8049    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


2.5 Verifying effect sizes using RVE (Robust Variance Estimation)

As the dependency in our meta-analysis results from multiple measures nested within the same studies, we use the hierarchical effects weights to fit our model.

Code-related:

## RVE: Hierarchical Effects Model with Small-Sample Corrections 
## 
## Model: ES ~ 1 
## 
## Number of clusters = 65 
## Number of outcomes = 86 (min = 1 , mean = 1.32 , median = 1 , max = 3 )
## Omega.sq = 0 
## Tau.sq = 0.06845214 
## 
##                Estimate StdErr t-value  dfs     P(|t|>) 95% CI.L 95% CI.U Sig
## 1 X.Intercept.    0.317 0.0516    6.14 45.4 0.000000185    0.213    0.421 ***
## ---
## Signif. codes: < .01 *** < .05 ** < .10 *
## ---
## Note: If df < 4, do not trust the results

Reading comprehension:

## RVE: Hierarchical Effects Model with Small-Sample Corrections 
## 
## Model: ES ~ 1 
## 
## Number of clusters = 52 
## Number of outcomes = 65 (min = 1 , mean = 1.25 , median = 1 , max = 2 )
## Omega.sq = 0 
## Tau.sq = 0.03473362 
## 
##                Estimate StdErr t-value  dfs     P(|t|>) 95% CI.L 95% CI.U Sig
## 1 X.Intercept.    0.231 0.0378    6.11 31.8 0.000000805    0.154    0.308 ***
## ---
## Signif. codes: < .01 *** < .05 ** < .10 *
## ---
## Note: If df < 4, do not trust the results

Language focused:

## RVE: Hierarchical Effects Model with Small-Sample Corrections 
## 
## Model: ES ~ 1 
## 
## Number of clusters = 53 
## Number of outcomes = 64 (min = 1 , mean = 1.21 , median = 1 , max = 3 )
## Omega.sq = 0 
## Tau.sq = 0.0491561 
## 
##                Estimate StdErr t-value  dfs     P(|t|>) 95% CI.L 95% CI.U Sig
## 1 X.Intercept.    0.292 0.0398    7.32 32.4 0.000000024     0.21    0.373 ***
## ---
## Signif. codes: < .01 *** < .05 ** < .10 *
## ---
## Note: If df < 4, do not trust the results

Writing proficiency (estimated using a correlation effects model because each of the 6 studies reports a single writing measure):

## RVE: Correlated Effects Model with Small-Sample Corrections 
## 
## Model: ES ~ 1 
## 
## Number of studies = 6 
## Number of outcomes = 6 (min = 1 , mean = 1 , median = 1 , max = 1 )
## Rho = 0.8 
## I.sq = 55.64952 
## Tau.sq = 0.1429986 
## 
##                Estimate StdErr t-value  dfs P(|t|>) 95% CI.L 95% CI.U Sig
## 1 X.Intercept.    0.814  0.208    3.92 4.87  0.0118    0.276     1.35  **
## ---
## Signif. codes: < .01 *** < .05 ** < .10 *
## ---
## Note: If df < 4, do not trust the results


3 Moderator analyses

Descriptive summary of moderator variables used:

Data summary
Name Piped data
Number of rows 221
Number of columns 17
_______________________
Column type frequency:
factor 7
numeric 10
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
grade 0 1 FALSE 2 K-2: 117, 3-5: 104
pedagogy 0 1 FALSE 3 Beh: 105, Cog: 101, Con: 15
instructional_context 0 1 FALSE 2 Ind: 144, Oth: 77
typetech 0 1 FALSE 3 CAI: 188, Oth: 22, ER: 11
design 0 1 FALSE 2 RCT: 165, QED: 56
control 0 1 FALSE 2 BAU: 176, ALT: 45
avghrs_categories 0 1 FALSE 3 Med: 94, Low: 66, Hig: 61

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
outside_us 0 1 0.62 0.49 0.0 0 1 1 1 ▅▁▁▁▇
low_income_included 0 1 0.37 0.48 0.0 0 0 1 1 ▇▁▁▁▅
second_lang_included 0 1 0.21 0.41 0.0 0 0 0 1 ▇▁▁▁▂
stu_disability_included 0 1 0.20 0.40 0.0 0 0 0 1 ▇▁▁▁▂
tech_plus1 0 1 0.46 0.50 0.0 0 0 1 1 ▇▁▁▁▇
gamification 0 1 0.46 0.50 0.0 0 0 1 1 ▇▁▁▁▇
adaptivity 0 1 0.33 0.47 0.0 0 0 1 1 ▇▁▁▁▅
feedback 0 1 0.76 0.43 0.0 1 1 1 1 ▂▁▁▁▇
teach_tr 0 1 0.62 0.49 0.0 0 1 1 1 ▅▁▁▁▇
avghrs 0 1 21.24 22.37 0.3 6 15 25 120 ▇▂▁▁▁



3.1 Comparing Across Outcomes (Code-related/ReadingComp/LanguageComp/Writing)

## 
## Mixed-Effects Model (k = 221; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0691 (SE = 0.0119)
## tau (square root of estimated tau^2 value):             0.2628
## I^2 (residual heterogeneity / unaccounted variability): 73.13%
## H^2 (unaccounted variability / sampling variability):   3.72
## R^2 (amount of heterogeneity accounted for):            4.63%
## 
## Test for Residual Heterogeneity:
## QE(df = 217) = 615.9715, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 10.2522, p-val = 0.0165
## 
## Model Results:
## 
##                       estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt                 0.3175  0.0412   7.7067  <.0001   0.2368  0.3982  *** 
## outcomeReading Comp    -0.0778  0.0604  -1.2889  0.1974  -0.1961  0.0405      
## outcomeLanguage Comp   -0.0182  0.0609  -0.2987  0.7651  -0.1375  0.1011      
## outcomeWriting          0.4864  0.1805   2.6940  0.0071   0.1325  0.8403   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



3.3 Reading Comprehension

Measure type (Custom distal, Standardized):

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0205 (SE = 0.0092)
## tau (square root of estimated tau^2 value):             0.1431
## I^2 (residual heterogeneity / unaccounted variability): 52.89%
## H^2 (unaccounted variability / sampling variability):   2.12
## R^2 (amount of heterogeneity accounted for):            41.89%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 126.0652, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 10.9205, p-val = 0.0010
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt    0.3698  0.0541   6.8336  <.0001   0.2637   0.4759  *** 
## typeCSN   -0.2184  0.0661  -3.3046  0.0010  -0.3480  -0.0889  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Location outside of the U.S.:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0362 (SE = 0.0132)
## tau (square root of estimated tau^2 value):             0.1902
## I^2 (residual heterogeneity / unaccounted variability): 69.26%
## H^2 (unaccounted variability / sampling variability):   3.25
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 206.0605, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1336, p-val = 0.7147
## 
## Model Results:
## 
##             estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt       0.2393  0.0416   5.7584  <.0001   0.1578  0.3207  *** 
## outside_us   -0.0309  0.0846  -0.3655  0.7147  -0.1967  0.1348      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Students from low-income backgrounds included:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0357 (SE = 0.0131)
## tau (square root of estimated tau^2 value):             0.1888
## I^2 (residual heterogeneity / unaccounted variability): 67.60%
## H^2 (unaccounted variability / sampling variability):   3.09
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 199.9647, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5817, p-val = 0.4457
## 
## Model Results:
## 
##                      estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt                0.1957  0.0594  3.2966  0.0010   0.0793  0.3120  *** 
## low_income_included    0.0570  0.0747  0.7627  0.4457  -0.0894  0.2034      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Students learning a second or other language included:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0342 (SE = 0.0127)
## tau (square root of estimated tau^2 value):             0.1848
## I^2 (residual heterogeneity / unaccounted variability): 68.50%
## H^2 (unaccounted variability / sampling variability):   3.17
## R^2 (amount of heterogeneity accounted for):            3.06%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 190.1544, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6640, p-val = 0.4151
## 
## Model Results:
## 
##                       estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt                 0.2191  0.0385  5.6926  <.0001   0.1437  0.2946  *** 
## second_lang_included    0.0826  0.1014  0.8149  0.4151  -0.1161  0.2814      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Students with disabilities included:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0352 (SE = 0.0129)
## tau (square root of estimated tau^2 value):             0.1876
## I^2 (residual heterogeneity / unaccounted variability): 69.41%
## H^2 (unaccounted variability / sampling variability):   3.27
## R^2 (amount of heterogeneity accounted for):            0.18%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 209.3354, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.1498, p-val = 0.2836
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.2446  0.0379   6.4463  <.0001   0.1702  0.3189 
## stu_disability_included   -0.1261  0.1176  -1.0723  0.2836  -0.3565  0.1044 
##                              
## intrcpt                  *** 
## stu_disability_included      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grade level K-2 vs. 3-5:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0335 (SE = 0.0126)
## tau (square root of estimated tau^2 value):             0.1830
## I^2 (residual heterogeneity / unaccounted variability): 59.07%
## H^2 (unaccounted variability / sampling variability):   2.44
## R^2 (amount of heterogeneity accounted for):            5.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 133.5489, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8862, p-val = 0.3465
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt     0.2523  0.0422   5.9830  <.0001   0.1696  0.3349  *** 
## gradeK-2   -0.0731  0.0777  -0.9414  0.3465  -0.2253  0.0791      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pedagogical Orientation: Behavorial, Cognitive, Constructivist:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0367 (SE = 0.0133)
## tau (square root of estimated tau^2 value):             0.1915
## I^2 (residual heterogeneity / unaccounted variability): 69.33%
## H^2 (unaccounted variability / sampling variability):   3.26
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 195.0055, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0213, p-val = 0.8839
## 
## Model Results:
## 
##                    estimate      se    zval    pval    ci.lb   ci.ub     
## intrcpt              0.2215  0.0807  2.7437  0.0061   0.0633  0.3797  ** 
## pedagogyCognitive    0.0132  0.0904  0.1461  0.8839  -0.1640  0.1904     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Technology Only (T) or Technology Plus (T+):

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0273 (SE = 0.0110)
## tau (square root of estimated tau^2 value):             0.1652
## I^2 (residual heterogeneity / unaccounted variability): 56.81%
## H^2 (unaccounted variability / sampling variability):   2.32
## R^2 (amount of heterogeneity accounted for):            22.56%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 126.1855, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 5.7610, p-val = 0.0164
## 
## Model Results:
## 
##             estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt       0.2969  0.0441   6.7239  <.0001   0.2103   0.3834  *** 
## tech_plus1   -0.1625  0.0677  -2.4002  0.0164  -0.2953  -0.0298    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Type of technology (CAI, ER, Other):

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0359 (SE = 0.0130)
## tau (square root of estimated tau^2 value):             0.1894
## I^2 (residual heterogeneity / unaccounted variability): 70.24%
## H^2 (unaccounted variability / sampling variability):   3.36
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 209.4629, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.7222, p-val = 0.3954
## 
## Model Results:
## 
##                estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt          0.2390  0.0371   6.4388  <.0001   0.1663  0.3118  *** 
## typetechOther   -0.1358  0.1598  -0.8498  0.3954  -0.4490  0.1774      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Gamification Discussed (yes/no):

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0364 (SE = 0.0133)
## tau (square root of estimated tau^2 value):             0.1908
## I^2 (residual heterogeneity / unaccounted variability): 68.12%
## H^2 (unaccounted variability / sampling variability):   3.14
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 198.8224, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5879, p-val = 0.4432
## 
## Model Results:
## 
##               estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt         0.2474  0.0415   5.9582  <.0001   0.1660  0.3288  *** 
## gamification   -0.0654  0.0852  -0.7668  0.4432  -0.2324  0.1017      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Adaptivity Discussed (yes/no):

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0370 (SE = 0.0134)
## tau (square root of estimated tau^2 value):             0.1924
## I^2 (residual heterogeneity / unaccounted variability): 68.40%
## H^2 (unaccounted variability / sampling variability):   3.16
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 192.8520, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1109, p-val = 0.7392
## 
## Model Results:
## 
##             estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt       0.2399  0.0433   5.5403  <.0001   0.1551  0.3248  *** 
## adaptivity   -0.0267  0.0801  -0.3330  0.7392  -0.1837  0.1304      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Feedback Discussed (yes/no):

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0343 (SE = 0.0128)
## tau (square root of estimated tau^2 value):             0.1852
## I^2 (residual heterogeneity / unaccounted variability): 67.94%
## H^2 (unaccounted variability / sampling variability):   3.12
## R^2 (amount of heterogeneity accounted for):            2.66%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 208.5025, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.9066, p-val = 0.1673
## 
## Model Results:
## 
##           estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt     0.1060  0.0974  1.0886  0.2763  -0.0848  0.2968    
## feedback    0.1445  0.1046  1.3808  0.1673  -0.0606  0.3495    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Instructional Context:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0255 (SE = 0.0106)
## tau (square root of estimated tau^2 value):             0.1596
## I^2 (residual heterogeneity / unaccounted variability): 53.78%
## H^2 (unaccounted variability / sampling variability):   2.16
## R^2 (amount of heterogeneity accounted for):            27.69%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 117.2455, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 5.6659, p-val = 0.0173
## 
## Model Results:
## 
##                                             estimate      se     zval    pval 
## intrcpt                                       0.2851  0.0410   6.9518  <.0001 
## instructional_contextOther than individual   -0.1632  0.0686  -2.3803  0.0173 
##                                               ci.lb    ci.ub      
## intrcpt                                      0.2047   0.3655  *** 
## instructional_contextOther than individual  -0.2977  -0.0288    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Teacher Training Discussed:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0360 (SE = 0.0132)
## tau (square root of estimated tau^2 value):             0.1897
## I^2 (residual heterogeneity / unaccounted variability): 67.47%
## H^2 (unaccounted variability / sampling variability):   3.07
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 200.4652, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4551, p-val = 0.4999
## 
## Model Results:
## 
##           estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt     0.1857  0.0773  2.4022  0.0163   0.0342  0.3371  * 
## teach_tr    0.0590  0.0874  0.6746  0.4999  -0.1124  0.2304    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Design (RCT/QED):

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0360 (SE = 0.0131)
## tau (square root of estimated tau^2 value):             0.1897
## I^2 (residual heterogeneity / unaccounted variability): 69.00%
## H^2 (unaccounted variability / sampling variability):   3.23
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 194.2245, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1660, p-val = 0.6837
## 
## Model Results:
## 
##            estimate      se     zval    pval    ci.lb   ci.ub     
## intrcpt      0.2618  0.0821   3.1884  0.0014   0.1009  0.4227  ** 
## designRCT   -0.0373  0.0914  -0.4075  0.6837  -0.2165  0.1420     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Control (BAU/ALT):

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0338 (SE = 0.0128)
## tau (square root of estimated tau^2 value):             0.1839
## I^2 (residual heterogeneity / unaccounted variability): 56.96%
## H^2 (unaccounted variability / sampling variability):   2.32
## R^2 (amount of heterogeneity accounted for):            4.01%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 131.2204, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.3862, p-val = 0.1224
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt       0.0799  0.1040  0.7689  0.4419  -0.1238  0.2837    
## controlBAU    0.1709  0.1106  1.5447  0.1224  -0.0459  0.3877    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Duration:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0313 (SE = 0.0121)
## tau (square root of estimated tau^2 value):             0.1769
## I^2 (residual heterogeneity / unaccounted variability): 55.48%
## H^2 (unaccounted variability / sampling variability):   2.25
## R^2 (amount of heterogeneity accounted for):            11.17%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 125.2354, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.3154, p-val = 0.1281
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt    0.2858  0.0506   5.6438  <.0001   0.1866  0.3851  *** 
## avghrs    -0.0019  0.0012  -1.5216  0.1281  -0.0043  0.0005      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


3.4 Language-focused

Measure type (Custom distal, Custom proximal, Standardized):

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0221 (SE = 0.0108)
## tau (square root of estimated tau^2 value):             0.1487
## I^2 (residual heterogeneity / unaccounted variability): 40.50%
## H^2 (unaccounted variability / sampling variability):   1.68
## R^2 (amount of heterogeneity accounted for):            66.72%
## 
## Test for Residual Heterogeneity:
## QE(df = 61) = 108.9371, p-val = 0.0002
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 34.2387, p-val < .0001
## 
## Model Results:
## 
##          estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt    0.1072  0.0471  2.2748  0.0229   0.0148  0.1996    * 
## typeLRP    0.4204  0.0725  5.7974  <.0001   0.2783  0.5625  *** 
## typeLRD    0.1061  0.0954  1.1123  0.2660  -0.0808  0.2930      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Location outside of the U.S.:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0696 (SE = 0.0216)
## tau (square root of estimated tau^2 value):             0.2638
## I^2 (residual heterogeneity / unaccounted variability): 68.94%
## H^2 (unaccounted variability / sampling variability):   3.22
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.4784, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0005, p-val = 0.9814
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt       0.2983  0.0685  4.3547  <.0001   0.1640  0.4325  *** 
## outside_us    0.0021  0.0907  0.0234  0.9814  -0.1757  0.1799      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Students from low-income backgrounds included:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0678 (SE = 0.0212)
## tau (square root of estimated tau^2 value):             0.2604
## I^2 (residual heterogeneity / unaccounted variability): 68.36%
## H^2 (unaccounted variability / sampling variability):   3.16
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.5543, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4650, p-val = 0.4953
## 
## Model Results:
## 
##                      estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt                0.2741  0.0575  4.7703  <.0001   0.1615  0.3868  *** 
## low_income_included    0.0620  0.0909  0.6819  0.4953  -0.1162  0.2402      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Students learning a second or other language included:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0697 (SE = 0.0216)
## tau (square root of estimated tau^2 value):             0.2641
## I^2 (residual heterogeneity / unaccounted variability): 69.47%
## H^2 (unaccounted variability / sampling variability):   3.28
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.3842, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1988, p-val = 0.6557
## 
## Model Results:
## 
##                       estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt                 0.3116  0.0524   5.9466  <.0001   0.2089  0.4142  *** 
## second_lang_included   -0.0454  0.1019  -0.4459  0.6557  -0.2451  0.1542      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Students with disabilities included:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0669 (SE = 0.0210)
## tau (square root of estimated tau^2 value):             0.2586
## I^2 (residual heterogeneity / unaccounted variability): 68.72%
## H^2 (unaccounted variability / sampling variability):   3.20
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 156.5131, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5365, p-val = 0.4639
## 
## Model Results:
## 
##                          estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt                    0.2864  0.0474  6.0461  <.0001   0.1935  0.3792  *** 
## stu_disability_included    0.0987  0.1347  0.7324  0.4639  -0.1654  0.3627      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grade level K-2 vs. 3-5:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0694 (SE = 0.0215)
## tau (square root of estimated tau^2 value):             0.2634
## I^2 (residual heterogeneity / unaccounted variability): 68.87%
## H^2 (unaccounted variability / sampling variability):   3.21
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.2927, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1834, p-val = 0.6684
## 
## Model Results:
## 
##           estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt     0.2815  0.0614  4.5878  <.0001   0.1612  0.4017  *** 
## gradeK-2    0.0385  0.0899  0.4283  0.6684  -0.1377  0.2148      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pedagogical Orientation: Behavorial, Cognitive, Constructivist:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0399 (SE = 0.0151)
## tau (square root of estimated tau^2 value):             0.1997
## I^2 (residual heterogeneity / unaccounted variability): 56.13%
## H^2 (unaccounted variability / sampling variability):   2.28
## R^2 (amount of heterogeneity accounted for):            39.98%
## 
## Test for Residual Heterogeneity:
## QE(df = 61) = 131.1784, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 15.4400, p-val = 0.0004
## 
## Model Results:
## 
##                         estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt                   0.1915  0.0602  3.1798  0.0015   0.0735  0.3096   ** 
## pedagogyCognitive         0.0835  0.0809  1.0319  0.3021  -0.0751  0.2422      
## pedagogyConstructivist    0.5219  0.1332  3.9176  <.0001   0.2608  0.7830  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Technology Only (T) or Technology Plus (T+):

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0630 (SE = 0.0202)
## tau (square root of estimated tau^2 value):             0.2511
## I^2 (residual heterogeneity / unaccounted variability): 66.78%
## H^2 (unaccounted variability / sampling variability):   3.01
## R^2 (amount of heterogeneity accounted for):            5.13%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 153.7979, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.7076, p-val = 0.0300
## 
## Model Results:
## 
##             estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt       0.3818  0.0584   6.5342  <.0001   0.2673   0.4963  *** 
## tech_plus1   -0.1901  0.0876  -2.1697  0.0300  -0.3618  -0.0184    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Type of technology (CAI, ER, Other):

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0344 (SE = 0.0137)
## tau (square root of estimated tau^2 value):             0.1855
## I^2 (residual heterogeneity / unaccounted variability): 53.17%
## H^2 (unaccounted variability / sampling variability):   2.14
## R^2 (amount of heterogeneity accounted for):            48.23%
## 
## Test for Residual Heterogeneity:
## QE(df = 61) = 123.2826, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 21.7791, p-val < .0001
## 
## Model Results:
## 
##                estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt          0.2045  0.0428  4.7781  <.0001   0.1206  0.2883  *** 
## typetechER       0.6574  0.1460  4.5013  <.0001   0.3712  0.9437  *** 
## typetechOther    0.1696  0.0927  1.8291  0.0674  -0.0121  0.3514    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Gamification Discussed (yes/no):

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0670 (SE = 0.0210)
## tau (square root of estimated tau^2 value):             0.2588
## I^2 (residual heterogeneity / unaccounted variability): 68.09%
## H^2 (unaccounted variability / sampling variability):   3.13
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 159.4316, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.9403, p-val = 0.0864
## 
## Model Results:
## 
##               estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt         0.3591  0.0567   6.3360  <.0001   0.2480  0.4702  *** 
## gamification   -0.1562  0.0911  -1.7147  0.0864  -0.3347  0.0223    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Adaptivity Discussed (yes/no):

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0634 (SE = 0.0203)
## tau (square root of estimated tau^2 value):             0.2518
## I^2 (residual heterogeneity / unaccounted variability): 66.52%
## H^2 (unaccounted variability / sampling variability):   2.99
## R^2 (amount of heterogeneity accounted for):            4.54%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 153.4762, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.8555, p-val = 0.0911
## 
## Model Results:
## 
##             estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt       0.3301  0.0477   6.9171  <.0001   0.2365  0.4236  *** 
## adaptivity   -0.1989  0.1177  -1.6898  0.0911  -0.4295  0.0318    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Feedback Discussed (yes/no):

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0599 (SE = 0.0194)
## tau (square root of estimated tau^2 value):             0.2447
## I^2 (residual heterogeneity / unaccounted variability): 65.58%
## H^2 (unaccounted variability / sampling variability):   2.91
## R^2 (amount of heterogeneity accounted for):            9.90%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 155.7679, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.9735, p-val = 0.0462
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt     0.4102  0.0715   5.7351  <.0001   0.2700   0.5504  *** 
## feedback   -0.1781  0.0893  -1.9934  0.0462  -0.3532  -0.0030    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Instructional Context:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0670 (SE = 0.0210)
## tau (square root of estimated tau^2 value):             0.2588
## I^2 (residual heterogeneity / unaccounted variability): 68.51%
## H^2 (unaccounted variability / sampling variability):   3.18
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 158.6085, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.0349, p-val = 0.1537
## 
## Model Results:
## 
##                                             estimate      se     zval    pval 
## intrcpt                                       0.3442  0.0547   6.2960  <.0001 
## instructional_contextOther than individual   -0.1335  0.0936  -1.4265  0.1537 
##                                               ci.lb   ci.ub      
## intrcpt                                      0.2370  0.4513  *** 
## instructional_contextOther than individual  -0.3168  0.0499      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Teacher Training Discussed:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0692 (SE = 0.0215)
## tau (square root of estimated tau^2 value):             0.2630
## I^2 (residual heterogeneity / unaccounted variability): 69.17%
## H^2 (unaccounted variability / sampling variability):   3.24
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 159.5572, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.6301, p-val = 0.2017
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt     0.3734  0.0733   5.0936  <.0001   0.2297  0.5171  *** 
## teach_tr   -0.1183  0.0926  -1.2768  0.2017  -0.2998  0.0633      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Design (RCT/QED):

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0694 (SE = 0.0215)
## tau (square root of estimated tau^2 value):             0.2635
## I^2 (residual heterogeneity / unaccounted variability): 68.78%
## H^2 (unaccounted variability / sampling variability):   3.20
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 159.4851, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1673, p-val = 0.6825
## 
## Model Results:
## 
##            estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt      0.2729  0.0789  3.4580  0.0005   0.1182  0.4276  *** 
## designRCT    0.0392  0.0959  0.4091  0.6825  -0.1488  0.2273      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Control (BAU/ALT):

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0692 (SE = 0.0215)
## tau (square root of estimated tau^2 value):             0.2631
## I^2 (residual heterogeneity / unaccounted variability): 68.57%
## H^2 (unaccounted variability / sampling variability):   3.18
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.5183, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.2508, p-val = 0.6165
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub     
## intrcpt       0.2563  0.0971  2.6396  0.0083   0.0660  0.4465  ** 
## controlBAU    0.0548  0.1094  0.5008  0.6165  -0.1597  0.2693     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Duration:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0627 (SE = 0.0201)
## tau (square root of estimated tau^2 value):             0.2503
## I^2 (residual heterogeneity / unaccounted variability): 67.01%
## H^2 (unaccounted variability / sampling variability):   3.03
## R^2 (amount of heterogeneity accounted for):            5.69%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 153.6947, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.7262, p-val = 0.0987
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt    0.3663  0.0604   6.0672  <.0001   0.2480  0.4846  *** 
## avghrs    -0.0042  0.0025  -1.6511  0.0987  -0.0092  0.0008    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


3.5 Writing

Measure type (Custom distal, Standardized):

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0249 (SE = 0.0991)
## tau (square root of estimated tau^2 value):             0.1577
## I^2 (residual heterogeneity / unaccounted variability): 17.51%
## H^2 (unaccounted variability / sampling variability):   1.21
## R^2 (amount of heterogeneity accounted for):            83.10%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 5.9540, p-val = 0.2026
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4549, p-val = 0.0348
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt     1.0224  0.1864   5.4835  <.0001   0.6569   1.3878  *** 
## typeWPSN   -0.6793  0.3218  -2.1107  0.0348  -1.3101  -0.0485    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Location outside of the U.S.:

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2015 (SE = 0.2308)
## tau (square root of estimated tau^2 value):             0.4489
## I^2 (residual heterogeneity / unaccounted variability): 62.71%
## H^2 (unaccounted variability / sampling variability):   2.68
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 10.0606, p-val = 0.0394
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3019, p-val = 0.5827
## 
## Model Results:
## 
##             estimate      se     zval    pval    ci.lb   ci.ub    
## intrcpt       1.0894  0.5435   2.0044  0.0450   0.0241  2.1546  * 
## outside_us   -0.3301  0.6007  -0.5495  0.5827  -1.5074  0.8473    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Students from low-income backgrounds included:

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2015 (SE = 0.2308)
## tau (square root of estimated tau^2 value):             0.4489
## I^2 (residual heterogeneity / unaccounted variability): 62.71%
## H^2 (unaccounted variability / sampling variability):   2.68
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 10.0606, p-val = 0.0394
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3019, p-val = 0.5827
## 
## Model Results:
## 
##                      estimate      se    zval    pval    ci.lb   ci.ub     
## intrcpt                0.7593  0.2558  2.9686  0.0030   0.2580  1.2607  ** 
## low_income_included    0.3301  0.6007  0.5495  0.5827  -0.8473  1.5074     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Students learning a second or other language included:

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2015 (SE = 0.2308)
## tau (square root of estimated tau^2 value):             0.4489
## I^2 (residual heterogeneity / unaccounted variability): 62.71%
## H^2 (unaccounted variability / sampling variability):   2.68
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 10.0606, p-val = 0.0394
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3019, p-val = 0.5827
## 
## Model Results:
## 
##                       estimate      se    zval    pval    ci.lb   ci.ub     
## intrcpt                 0.7593  0.2558  2.9686  0.0030   0.2580  1.2607  ** 
## second_lang_included    0.3301  0.6007  0.5495  0.5827  -0.8473  1.5074     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Students with disabilities included:

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value):      0.3836
## I^2 (total heterogeneity / total variability):   56.36%
## H^2 (total variability / sampling variability):  2.29
## 
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.8144  0.2106  3.8678  0.0001  0.4017  1.2271  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Grade level K-2 vs. 3-5:

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0559 (SE = 0.1216)
## tau (square root of estimated tau^2 value):             0.2364
## I^2 (residual heterogeneity / unaccounted variability): 32.48%
## H^2 (unaccounted variability / sampling variability):   1.48
## R^2 (amount of heterogeneity accounted for):            62.02%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 6.4850, p-val = 0.1657
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.4652, p-val = 0.0627
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt     1.1556  0.2546   4.5398  <.0001   0.6567  1.6545  *** 
## gradeK-2   -0.6339  0.3406  -1.8615  0.0627  -1.3014  0.0335    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pedagogical Orientation: Behavorial, Cognitive, Constructivist:

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2459 (SE = 0.2667)
## tau (square root of estimated tau^2 value):             0.4959
## I^2 (residual heterogeneity / unaccounted variability): 65.91%
## H^2 (unaccounted variability / sampling variability):   2.93
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.2734, p-val = 0.0237
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0035, p-val = 0.9525
## 
## Model Results:
## 
##                    estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt              0.7919  0.5648  1.4021  0.1609  -0.3151  1.8989    
## pedagogyCognitive    0.0374  0.6281  0.0595  0.9525  -1.1937  1.2685    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Technology Only (T) or Technology Plus (T+):

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value):      0.3836
## I^2 (total heterogeneity / total variability):   56.36%
## H^2 (total variability / sampling variability):  2.29
## 
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.8144  0.2106  3.8678  0.0001  0.4017  1.2271  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Type of technology (CAI, ER, Other):

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2459 (SE = 0.2667)
## tau (square root of estimated tau^2 value):             0.4959
## I^2 (residual heterogeneity / unaccounted variability): 65.91%
## H^2 (unaccounted variability / sampling variability):   2.93
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.2734, p-val = 0.0237
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0035, p-val = 0.9525
## 
## Model Results:
## 
##                estimate      se     zval    pval    ci.lb   ci.ub     
## intrcpt          0.8293  0.2748   3.0177  0.0025   0.2907  1.3680  ** 
## typetechOther   -0.0374  0.6281  -0.0595  0.9525  -1.2685  1.1937     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Gamification Discussed (yes/no):

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0249 (SE = 0.0991)
## tau (square root of estimated tau^2 value):             0.1577
## I^2 (residual heterogeneity / unaccounted variability): 17.51%
## H^2 (unaccounted variability / sampling variability):   1.21
## R^2 (amount of heterogeneity accounted for):            83.10%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 5.9540, p-val = 0.2026
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4549, p-val = 0.0348
## 
## Model Results:
## 
##               estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt         1.0224  0.1864   5.4835  <.0001   0.6569   1.3878  *** 
## gamification   -0.6793  0.3218  -2.1107  0.0348  -1.3101  -0.0485    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Adaptivity Discussed (yes/no):

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value):      0.3836
## I^2 (total heterogeneity / total variability):   56.36%
## H^2 (total variability / sampling variability):  2.29
## 
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.8144  0.2106  3.8678  0.0001  0.4017  1.2271  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Feedback Discussed (yes/no):

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2459 (SE = 0.2667)
## tau (square root of estimated tau^2 value):             0.4959
## I^2 (residual heterogeneity / unaccounted variability): 65.91%
## H^2 (unaccounted variability / sampling variability):   2.93
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.2734, p-val = 0.0237
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0035, p-val = 0.9525
## 
## Model Results:
## 
##           estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt     0.7919  0.5648  1.4021  0.1609  -0.3151  1.8989    
## feedback    0.0374  0.6281  0.0595  0.9525  -1.1937  1.2685    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Instructional Context:

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value):      0.3836
## I^2 (total heterogeneity / total variability):   56.36%
## H^2 (total variability / sampling variability):  2.29
## 
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.8144  0.2106  3.8678  0.0001  0.4017  1.2271  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Teacher Training Discussed:

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0091 (SE = 0.0789)
## tau (square root of estimated tau^2 value):             0.0954
## I^2 (residual heterogeneity / unaccounted variability): 7.99%
## H^2 (unaccounted variability / sampling variability):   1.09
## R^2 (amount of heterogeneity accounted for):            93.81%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 4.0406, p-val = 0.4005
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.8981, p-val = 0.0086
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt     1.9036  0.4472   4.2562  <.0001   1.0270   2.7802  *** 
## teach_tr   -1.2390  0.4717  -2.6264  0.0086  -2.1636  -0.3144   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Design (RCT/QED):

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0249 (SE = 0.0991)
## tau (square root of estimated tau^2 value):             0.1577
## I^2 (residual heterogeneity / unaccounted variability): 17.51%
## H^2 (unaccounted variability / sampling variability):   1.21
## R^2 (amount of heterogeneity accounted for):            83.10%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 5.9540, p-val = 0.2026
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4549, p-val = 0.0348
## 
## Model Results:
## 
##            estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt      0.3431  0.2623  1.3078  0.1909  -0.1711  0.8572    
## designRCT    0.6793  0.3218  2.1107  0.0348   0.0485  1.3101  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Control (BAU/ALT):

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value):      0.3836
## I^2 (total heterogeneity / total variability):   56.36%
## H^2 (total variability / sampling variability):  2.29
## 
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.8144  0.2106  3.8678  0.0001  0.4017  1.2271  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Duration:

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2139 (SE = 0.2328)
## tau (square root of estimated tau^2 value):             0.4625
## I^2 (residual heterogeneity / unaccounted variability): 65.73%
## H^2 (unaccounted variability / sampling variability):   2.92
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.0571, p-val = 0.0259
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4211, p-val = 0.5164
## 
## Model Results:
## 
##          estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt    0.5679  0.4546  1.2493  0.2116  -0.3231  1.4589    
## avghrs     0.0096  0.0147  0.6489  0.5164  -0.0193  0.0384    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



4 Additional Moderator Analysis

4.1 Pairwise comparison by outcome type

Code-related

DRD vs DRP [No statistically significant difference]:

## 
## Mixed-Effects Model (k = 41; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2205 (SE = 0.0728)
## tau (square root of estimated tau^2 value):             0.4695
## I^2 (residual heterogeneity / unaccounted variability): 80.12%
## H^2 (unaccounted variability / sampling variability):   5.03
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 138.7581, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0683, p-val = 0.7938
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt    0.4789  0.1082   4.4249  <.0001   0.2668  0.6911  *** 
## typeDRP   -0.0509  0.1949  -0.2613  0.7938  -0.4329  0.3311      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

DRD vs DSN [Statistically significant difference of -0.2741, p = 0.0055]:

## 
## Mixed-Effects Model (k = 74; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1263 (SE = 0.0336)
## tau (square root of estimated tau^2 value):             0.3554
## I^2 (residual heterogeneity / unaccounted variability): 76.00%
## H^2 (unaccounted variability / sampling variability):   4.17
## R^2 (amount of heterogeneity accounted for):            3.61%
## 
## Test for Residual Heterogeneity:
## QE(df = 72) = 201.9290, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.5466, p-val = 0.0597
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt    0.4589  0.0900   5.1014  <.0001   0.2826  0.6352  *** 
## typeDSN   -0.2107  0.1119  -1.8832  0.0597  -0.4299  0.0086    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

DSN vs DRP [No statistically significant difference]:

## 
## Mixed-Effects Model (k = 57; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0465 (SE = 0.0189)
## tau (square root of estimated tau^2 value):             0.2156
## I^2 (residual heterogeneity / unaccounted variability): 56.41%
## H^2 (unaccounted variability / sampling variability):   2.29
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 55) = 111.9805, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.8076, p-val = 0.1788
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt    0.3802  0.0999   3.8056  0.0001   0.1844  0.5760  *** 
## typeDSN   -0.1496  0.1112  -1.3445  0.1788  -0.3676  0.0685      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reading Comprehension

CRD vs CSN [Statistically significant difference of -0.1806, p = 0.0193]:

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0205 (SE = 0.0092)
## tau (square root of estimated tau^2 value):             0.1431
## I^2 (residual heterogeneity / unaccounted variability): 52.89%
## H^2 (unaccounted variability / sampling variability):   2.12
## R^2 (amount of heterogeneity accounted for):            41.89%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 126.0652, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 10.9205, p-val = 0.0010
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt    0.3698  0.0541   6.8336  <.0001   0.2637   0.4759  *** 
## typeCSN   -0.2184  0.0661  -3.3046  0.0010  -0.3480  -0.0889  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Language-focused

LRD vs LRP [No statistically significant difference]:

## 
## Mixed-Effects Model (k = 36; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1049 (SE = 0.0408)
## tau (square root of estimated tau^2 value):             0.3238
## I^2 (residual heterogeneity / unaccounted variability): 72.14%
## H^2 (unaccounted variability / sampling variability):   3.59
## R^2 (amount of heterogeneity accounted for):            17.03%
## 
## Test for Residual Heterogeneity:
## QE(df = 34) = 97.8376, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4927, p-val = 0.0340
## 
## Model Results:
## 
##          estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt    0.2305  0.1395  1.6526  0.0984  -0.0429  0.5038  . 
## typeLRP    0.3419  0.1613  2.1196  0.0340   0.0257  0.6581  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LRD vs LSN [No statistically significant difference]:

## 
## Mixed-Effects Model (k = 35; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.0041)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 23.5321, p-val = 0.8880
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.1974, p-val = 0.2738
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt    0.1811  0.0500   3.6229  0.0003   0.0831  0.2791  *** 
## typeLSN   -0.0635  0.0581  -1.0943  0.2738  -0.1773  0.0503      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LSN vs LRP [Statistically significant difference of -0.4423, p < 0.0001]:

## 
## Mixed-Effects Model (k = 57; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0231 (SE = 0.0121)
## tau (square root of estimated tau^2 value):             0.1521
## I^2 (residual heterogeneity / unaccounted variability): 40.16%
## H^2 (unaccounted variability / sampling variability):   1.67
## R^2 (amount of heterogeneity accounted for):            70.26%
## 
## Test for Residual Heterogeneity:
## QE(df = 55) = 96.5044, p-val = 0.0005
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 33.1884, p-val < .0001
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt    0.5288  0.0556   9.5176  <.0001   0.4199   0.6377  *** 
## typeLSN   -0.4218  0.0732  -5.7609  <.0001  -0.5652  -0.2783  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Writing

WPRD vs WPSN [Statistica;;y significant difference of -0.5852, p = 0.0294]:

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0249 (SE = 0.0991)
## tau (square root of estimated tau^2 value):             0.1577
## I^2 (residual heterogeneity / unaccounted variability): 17.51%
## H^2 (unaccounted variability / sampling variability):   1.21
## R^2 (amount of heterogeneity accounted for):            83.10%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 5.9540, p-val = 0.2026
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4549, p-val = 0.0348
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt     1.0224  0.1864   5.4835  <.0001   0.6569   1.3878  *** 
## typeWPSN   -0.6793  0.3218  -2.1107  0.0348  -1.3101  -0.0485    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



4.2 Time categories

Code-related

## 
## Mixed-Effects Model (k = 86; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1206 (SE = 0.0303)
## tau (square root of estimated tau^2 value):             0.3473
## I^2 (residual heterogeneity / unaccounted variability): 75.13%
## H^2 (unaccounted variability / sampling variability):   4.02
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 83) = 233.9699, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.5310, p-val = 0.0629
## 
## Model Results:
## 
##                          estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt                    0.2256  0.0881  2.5610  0.0104   0.0530  0.3983  * 
## avghrs_categoriesMedium    0.0734  0.1153  0.6368  0.5242  -0.1525  0.2994    
## avghrs_categoriesHigh      0.2952  0.1302  2.2671  0.0234   0.0400  0.5505  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reading Comprehension

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0368 (SE = 0.0135)
## tau (square root of estimated tau^2 value):             0.1919
## I^2 (residual heterogeneity / unaccounted variability): 63.31%
## H^2 (unaccounted variability / sampling variability):   2.73
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 147.2687, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.1495, p-val = 0.9280
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub    
## intrcpt                    0.2577  0.1157   2.2265  0.0260   0.0309  0.4846  * 
## avghrs_categoriesMedium   -0.0186  0.1260  -0.1478  0.8825  -0.2656  0.2284    
## avghrs_categoriesHigh     -0.0427  0.1303  -0.3273  0.7434  -0.2981  0.2128    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Language-focused

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0696 (SE = 0.0218)
## tau (square root of estimated tau^2 value):             0.2638
## I^2 (residual heterogeneity / unaccounted variability): 68.82%
## H^2 (unaccounted variability / sampling variability):   3.21
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 61) = 154.7279, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.1883, p-val = 0.5520
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.3598  0.0713   5.0469  <.0001   0.2201  0.4996 
## avghrs_categoriesMedium   -0.1012  0.1024  -0.9878  0.3233  -0.3020  0.0996 
## avghrs_categoriesHigh     -0.0982  0.1175  -0.8351  0.4037  -0.3285  0.1322 
##                              
## intrcpt                  *** 
## avghrs_categoriesMedium      
## avghrs_categoriesHigh        
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Writing

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.3453 (SE = 0.3890)
## tau (square root of estimated tau^2 value):             0.5876
## I^2 (residual heterogeneity / unaccounted variability): 72.88%
## H^2 (unaccounted variability / sampling variability):   3.69
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 3) = 10.0455, p-val = 0.0182
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.2204, p-val = 0.8956
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub    
## intrcpt                    1.0894  0.6627   1.6437  0.1002  -0.2096  2.3883    
## avghrs_categoriesMedium   -0.3821  0.8170  -0.4678  0.6400  -1.9834  1.2191    
## avghrs_categoriesHigh     -0.2740  0.7750  -0.3536  0.7237  -1.7931  1.2450    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4.3 Time Continuous

Code-related

## 
## Mixed-Effects Model (k = 86; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1226 (SE = 0.0305)
## tau (square root of estimated tau^2 value):             0.3502
## I^2 (residual heterogeneity / unaccounted variability): 75.40%
## H^2 (unaccounted variability / sampling variability):   4.07
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 84) = 233.9864, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.1755, p-val = 0.1402
## 
## Model Results:
## 
##          estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt    0.2694  0.0661  4.0765  <.0001   0.1399  0.3989  *** 
## avghrs     0.0029  0.0019  1.4750  0.1402  -0.0009  0.0067      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reading Comprehension

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0313 (SE = 0.0121)
## tau (square root of estimated tau^2 value):             0.1769
## I^2 (residual heterogeneity / unaccounted variability): 55.48%
## H^2 (unaccounted variability / sampling variability):   2.25
## R^2 (amount of heterogeneity accounted for):            11.17%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 125.2354, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.3154, p-val = 0.1281
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt    0.2858  0.0506   5.6438  <.0001   0.1866  0.3851  *** 
## avghrs    -0.0019  0.0012  -1.5216  0.1281  -0.0043  0.0005      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Language-focused

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0627 (SE = 0.0201)
## tau (square root of estimated tau^2 value):             0.2503
## I^2 (residual heterogeneity / unaccounted variability): 67.01%
## H^2 (unaccounted variability / sampling variability):   3.03
## R^2 (amount of heterogeneity accounted for):            5.69%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 153.6947, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.7262, p-val = 0.0987
## 
## Model Results:
## 
##          estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt    0.3663  0.0604   6.0672  <.0001   0.2480  0.4846  *** 
## avghrs    -0.0042  0.0025  -1.6511  0.0987  -0.0092  0.0008    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Writing

## 
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.2139 (SE = 0.2328)
## tau (square root of estimated tau^2 value):             0.4625
## I^2 (residual heterogeneity / unaccounted variability): 65.73%
## H^2 (unaccounted variability / sampling variability):   2.92
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.0571, p-val = 0.0259
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4211, p-val = 0.5164
## 
## Model Results:
## 
##          estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt    0.5679  0.4546  1.2493  0.2116  -0.3231  1.4589    
## avghrs     0.0096  0.0147  0.6489  0.5164  -0.0193  0.0384    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4.4 Time categories pairwise contrasts

Code-related

Low vs Medium:

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0332 (SE = 0.0158)
## tau (square root of estimated tau^2 value):             0.1822
## I^2 (residual heterogeneity / unaccounted variability): 43.85%
## H^2 (unaccounted variability / sampling variability):   1.78
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 102.7765, p-val = 0.0009
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4273, p-val = 0.5133
## 
## Model Results:
## 
##                          estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt                    0.2176  0.0634  3.4307  0.0006   0.0933  0.3419  *** 
## avghrs_categoriesMedium    0.0534  0.0816  0.6537  0.5133  -0.1066  0.2133      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Medium vs High:

## 
## Mixed-Effects Model (k = 60; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1784 (SE = 0.0485)
## tau (square root of estimated tau^2 value):             0.4224
## I^2 (residual heterogeneity / unaccounted variability): 83.80%
## H^2 (unaccounted variability / sampling variability):   6.17
## R^2 (amount of heterogeneity accounted for):            0.81%
## 
## Test for Residual Heterogeneity:
## QE(df = 58) = 203.2912, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.0709, p-val = 0.0797
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.5494  0.1101   4.9912  <.0001   0.3336  0.7651 
## avghrs_categoriesMedium   -0.2437  0.1391  -1.7524  0.0797  -0.5162  0.0289 
##                              
## intrcpt                  *** 
## avghrs_categoriesMedium    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

High vs Low:

## 
## Mixed-Effects Model (k = 48; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1692 (SE = 0.0515)
## tau (square root of estimated tau^2 value):             0.4113
## I^2 (residual heterogeneity / unaccounted variability): 78.91%
## H^2 (unaccounted variability / sampling variability):   4.74
## R^2 (amount of heterogeneity accounted for):            3.86%
## 
## Test for Residual Heterogeneity:
## QE(df = 46) = 161.8721, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.7456, p-val = 0.0294
## 
## Model Results:
## 
##                        estimate      se    zval    pval   ci.lb   ci.ub    
## intrcpt                  0.2271  0.0987  2.3014  0.0214  0.0337  0.4205  * 
## avghrs_categoriesHigh    0.3186  0.1463  2.1784  0.0294  0.0320  0.6053  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reading Comprehension

Low vs Medium:

## 
## Mixed-Effects Model (k = 42; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0359 (SE = 0.0169)
## tau (square root of estimated tau^2 value):             0.1894
## I^2 (residual heterogeneity / unaccounted variability): 56.36%
## H^2 (unaccounted variability / sampling variability):   2.29
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 85.9264, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0226, p-val = 0.8806
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub    
## intrcpt                    0.2578  0.1152   2.2371  0.0253   0.0319  0.4837  * 
## avghrs_categoriesMedium   -0.0188  0.1254  -0.1502  0.8806  -0.2646  0.2270    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Medium vs High:

## 
## Mixed-Effects Model (k = 55; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0410 (SE = 0.0149)
## tau (square root of estimated tau^2 value):             0.2024
## I^2 (residual heterogeneity / unaccounted variability): 68.43%
## H^2 (unaccounted variability / sampling variability):   3.17
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 53) = 141.9545, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0703, p-val = 0.7909
## 
## Model Results:
## 
##                          estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt                    0.2182  0.0619  3.5277  0.0004   0.0970  0.3395  *** 
## avghrs_categoriesMedium    0.0213  0.0805  0.2651  0.7909  -0.1364  0.1791      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

High vs Low:

## 
## Mixed-Effects Model (k = 33; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0316 (SE = 0.0186)
## tau (square root of estimated tau^2 value):             0.1779
## I^2 (residual heterogeneity / unaccounted variability): 61.51%
## H^2 (unaccounted variability / sampling variability):   2.60
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 31) = 66.6566, p-val = 0.0002
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1423, p-val = 0.7060
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub    
## intrcpt                  0.2582  0.1129   2.2865  0.0222   0.0369  0.4796  * 
## avghrs_categoriesHigh   -0.0478  0.1266  -0.3772  0.7060  -0.2960  0.2004    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Language-focused

Low vs Medium:

## 
## Mixed-Effects Model (k = 51; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0742 (SE = 0.0261)
## tau (square root of estimated tau^2 value):             0.2725
## I^2 (residual heterogeneity / unaccounted variability): 69.40%
## H^2 (unaccounted variability / sampling variability):   3.27
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 49) = 126.3989, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.9536, p-val = 0.3288
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.3612  0.0726   4.9744  <.0001   0.2189  0.5036 
## avghrs_categoriesMedium   -0.1021  0.1045  -0.9765  0.3288  -0.3070  0.1028 
##                              
## intrcpt                  *** 
## avghrs_categoriesMedium      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Medium vs High:

## 
## Mixed-Effects Model (k = 35; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0488 (SE = 0.0211)
## tau (square root of estimated tau^2 value):             0.2209
## I^2 (residual heterogeneity / unaccounted variability): 68.23%
## H^2 (unaccounted variability / sampling variability):   3.15
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 81.1598, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0054, p-val = 0.9417
## 
## Model Results:
## 
##                          estimate      se    zval    pval    ci.lb   ci.ub     
## intrcpt                    0.2481  0.0833  2.9794  0.0029   0.0849  0.4114  ** 
## avghrs_categoriesMedium    0.0078  0.1059  0.0732  0.9417  -0.1998  0.2153     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

High vs Low:

## 
## Mixed-Effects Model (k = 42; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0870 (SE = 0.0328)
## tau (square root of estimated tau^2 value):             0.2950
## I^2 (residual heterogeneity / unaccounted variability): 66.69%
## H^2 (unaccounted variability / sampling variability):   3.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 101.8970, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5608, p-val = 0.4539
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt                  0.3647  0.0761   4.7941  <.0001   0.2156  0.5138  *** 
## avghrs_categoriesHigh   -0.0947  0.1264  -0.7489  0.4539  -0.3424  0.1531      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Writing

Low vs Medium:

## 
## Mixed-Effects Model (k = 3; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.1624)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 1) = 0.1510, p-val = 0.6975
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8852, p-val = 0.3468
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    1.0894  0.3065   3.5546  0.0004   0.4887  1.6901 
## avghrs_categoriesMedium   -0.3567  0.3792  -0.9408  0.3468  -1.0999  0.3864 
##                              
## intrcpt                  *** 
## avghrs_categoriesMedium      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Medium vs High:

## 
## Mixed-Effects Model (k = 5; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.3453 (SE = 0.3890)
## tau (square root of estimated tau^2 value):             0.5876
## I^2 (residual heterogeneity / unaccounted variability): 72.88%
## H^2 (unaccounted variability / sampling variability):   3.69
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 3) = 10.0455, p-val = 0.0182
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0300, p-val = 0.8625
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub    
## intrcpt                    0.8153  0.4018   2.0291  0.0424   0.0278  1.6029  * 
## avghrs_categoriesMedium   -0.1081  0.6242  -0.1732  0.8625  -1.3315  1.1154    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

High vs Low:

## 
## Mixed-Effects Model (k = 4; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.6176 (SE = 0.7586)
## tau (square root of estimated tau^2 value):             0.7859
## I^2 (residual heterogeneity / unaccounted variability): 81.89%
## H^2 (unaccounted variability / sampling variability):   5.52
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 2) = 9.8944, p-val = 0.0071
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0679, p-val = 0.7944
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub    
## intrcpt                  1.0894  0.8435   1.2915  0.1965  -0.5639  2.7427    
## avghrs_categoriesHigh   -0.2559  0.9819  -0.2606  0.7944  -2.1805  1.6686    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



4.5 Multiple Meta Regressions

Code-related

  Model 1 Model 2 Model 3 Model 4 Model 5
intercept 0.247*** 0.054 0.057 0.008 -0.081
  (0.065) (0.103) (0.108) (0.139) (0.144)
typeDRP 0.165 0.296* 0.198 0.206 0.251
  (0.145) (0.148) (0.163) (0.165) (0.164)
typeDRD 0.209 0.298** 0.256* 0.255* 0.267*
  (0.109) (0.111) (0.112) (0.113) (0.112)
avghrs_categoriesMedium   0.093 0.167 0.177 0.196
    (0.112) (0.120) (0.122) (0.121)
avghrs_categoriesHigh   0.407** 0.508*** 0.508*** 0.453**
    (0.133) (0.143) (0.145) (0.145)
pedagogyCognitive     -0.176 -0.178 -0.168
      (0.117) (0.118) (0.116)
pedagogyConstructivist     0.212 0.197 0.180
      (0.222) (0.226) (0.223)
gradeK-2       0.062 0.087
        (0.112) (0.111)
low_income_included         0.245*
          (0.112)
i.squared 73.995 71.881 70.473 70.557 69.267
h.squared 3.845 3.556 3.387 3.396 3.254
tau.squared 0.117 0.110 0.105 0.108 0.104
tau.squared.se 0.030 0.029 0.028 0.029 0.029
cochran.qe 226.334 221.434 208.781 208.752 206.555
p.value.cochran.qe 0.000 0.000 0.000 0.000 0.000
cochran.qm 4.087 14.308 17.734 17.847 22.887
p.value.cochran.qm 0.130 0.006 0.007 0.013 0.004
DF Resid. 83 81 79 78 77
Log Likelihood -57.530 -52.281 -50.503 -50.250 -47.774
Deviance 115.060 104.562 101.005 100.500 95.547
AIC 123.060 116.562 117.005 118.500 115.547
BIC 132.736 130.929 135.961 139.711 138.985
AICc 123.573 117.697 119.062 121.147 118.880
nobs 86 86 86 86 86
***p < 0.001; **p < 0.01; *p < 0.05

New table [Dec 2023]:

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
intercept 0.247*** 0.054 0.057 0.041 -0.010 -0.089
  (0.065) (0.103) (0.108) (0.110) (0.142) (0.146)
typeDRP 0.165 0.296* 0.198 0.214 0.223 0.260
  (0.145) (0.148) (0.163) (0.164) (0.166) (0.166)
typeDRD 0.209 0.298** 0.256* 0.258* 0.257* 0.268*
  (0.109) (0.111) (0.112) (0.111) (0.113) (0.112)
avghrs_categoriesMedium   0.093 0.167 0.167 0.177 0.196
    (0.112) (0.120) (0.119) (0.122) (0.121)
avghrs_categoriesHigh   0.407** 0.508*** 0.485*** 0.484** 0.442**
    (0.133) (0.143) (0.147) (0.149) (0.149)
pedagogyCognitive     -0.176 -0.230 -0.233 -0.199
      (0.117) (0.143) (0.145) (0.145)
pedagogyConstructivist     0.212 0.200 0.184 0.172
      (0.222) (0.222) (0.226) (0.225)
tech_plus1       0.087 0.088 0.050
        (0.136) (0.137) (0.138)
gradeK-2         0.064 0.088
          (0.111) (0.111)
low_income_included           0.240*
            (0.113)
i.squared 73.995 71.881 70.473 70.105 70.228 69.281
h.squared 3.845 3.556 3.387 3.345 3.359 3.255
tau.squared 0.117 0.110 0.105 0.103 0.106 0.104
tau.squared.se 0.030 0.029 0.028 0.028 0.029 0.029
cochran.qe 226.334 221.434 208.781 200.961 200.956 199.287
p.value.cochran.qe 0.000 0.000 0.000 0.000 0.000 0.000
cochran.qm 4.087 14.308 17.734 18.252 18.351 22.991
p.value.cochran.qm 0.130 0.006 0.007 0.011 0.019 0.006
DF Resid. 83 81 79 78 77 76
Log Likelihood -57.530 -52.281 -50.503 -50.132 -49.876 -47.536
Deviance 115.060 104.562 101.005 100.264 99.752 95.072
AIC 123.060 116.562 117.005 118.264 119.752 117.072
BIC 132.736 130.929 135.961 139.474 143.190 142.710
AICc 123.573 117.697 119.062 120.911 123.085 121.197
nobs 86 86 86 86 86 86
***p < 0.001; **p < 0.01; *p < 0.05

Reading Comprehension

  Model 1 Model 2 Model 3 Model 4 Model 5
intercept 0.151*** 0.142 0.152 0.179 0.150
  (0.038) (0.114) (0.117) (0.120) (0.130)
typeCRD 0.218*** 0.228** 0.233** 0.229** 0.229**
  (0.066) (0.072) (0.073) (0.072) (0.073)
avghrs_categoriesMedium   -0.005 0.010 0.011 0.013
    (0.116) (0.123) (0.122) (0.123)
avghrs_categoriesHigh   0.029 0.051 0.075 0.071
    (0.123) (0.135) (0.137) (0.138)
pedagogyCognitive     -0.035 -0.056 -0.057
      (0.090) (0.092) (0.093)
gradeK-2       -0.066 -0.052
        (0.076) (0.080)
low_income_included         0.041
          (0.070)
i.squared 52.895 51.306 50.820 46.403 46.695
h.squared 2.123 2.054 2.033 1.866 1.876
tau.squared 0.020 0.023 0.023 0.021 0.023
tau.squared.se 0.009 0.010 0.010 0.010 0.011
cochran.qe 126.065 119.472 114.995 105.008 105.002
p.value.cochran.qe 0.000 0.000 0.000 0.000 0.000
cochran.qm 10.921 10.376 10.577 11.765 11.680
p.value.cochran.qm 0.001 0.016 0.032 0.038 0.070
DF Resid. 63 61 60 59 58
Log Likelihood -14.437 -14.996 -15.158 -15.191 -15.449
Deviance 28.873 29.993 30.316 30.383 30.898
AIC 34.873 39.993 42.316 44.383 46.898
BIC 41.303 50.547 54.882 58.925 63.382
AICc 35.280 41.084 43.901 46.579 49.837
nobs 65 65 65 65 65
***p < 0.001; **p < 0.01; *p < 0.05

New table [Dec 2023]:

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
intercept 0.151*** 0.142 0.152 0.235 0.238 0.208
  (0.038) (0.114) (0.117) (0.121) (0.123) (0.133)
typeCRD 0.218*** 0.228** 0.233** 0.204** 0.203** 0.203**
  (0.066) (0.072) (0.073) (0.072) (0.073) (0.074)
avghrs_categoriesMedium   -0.005 0.010 -0.010 -0.010 -0.008
    (0.116) (0.123) (0.120) (0.121) (0.122)
avghrs_categoriesHigh   0.029 0.051 0.101 0.105 0.101
    (0.123) (0.135) (0.134) (0.136) (0.137)
pedagogyCognitive     -0.035 -0.058 -0.060 -0.061
      (0.090) (0.088) (0.090) (0.091)
tech_plus1       -0.152* -0.146 -0.148
        (0.074) (0.079) (0.080)
gradeK-2         -0.017 -0.002
          (0.080) (0.084)
low_income_included           0.043
            (0.069)
i.squared 52.895 51.306 50.820 45.677 44.660 44.810
h.squared 2.123 2.054 2.033 1.841 1.807 1.812
tau.squared 0.020 0.023 0.023 0.019 0.020 0.021
tau.squared.se 0.009 0.010 0.010 0.009 0.010 0.010
cochran.qe 126.065 119.472 114.995 102.880 99.902 99.851
p.value.cochran.qe 0.000 0.000 0.000 0.000 0.001 0.000
cochran.qm 10.921 10.376 10.577 16.060 15.677 15.630
p.value.cochran.qm 0.001 0.016 0.032 0.007 0.016 0.029
DF Resid. 63 61 60 59 58 57
Log Likelihood -14.437 -14.996 -15.158 -13.460 -13.818 -14.068
Deviance 28.873 29.993 30.316 26.920 27.636 28.136
AIC 34.873 39.993 42.316 40.920 43.636 46.136
BIC 41.303 50.547 54.882 55.463 60.120 64.524
AICc 35.280 41.084 43.901 43.116 46.575 49.966
nobs 65 65 65 65 65 65
***p < 0.001; **p < 0.01; *p < 0.05

Language-focused

  Model 1 Model 2 Model 3 Model 4 Model 5
intercept 0.107* -0.098 -0.207* -0.214* -0.253*
  (0.047) (0.100) (0.092) (0.095) (0.108)
typeLRP 0.420*** 0.563*** 0.485*** 0.492*** 0.504***
  (0.073) (0.095) (0.079) (0.081) (0.082)
typeLRD 0.106 0.235* 0.200* 0.206* 0.219*
  (0.095) (0.113) (0.090) (0.093) (0.095)
avghrs_categoriesMedium   0.186* 0.256** 0.258** 0.266**
    (0.092) (0.080) (0.086) (0.087)
avghrs_categoriesHigh   0.252* 0.249* 0.256* 0.270*
    (0.114) (0.103) (0.106) (0.108)
pedagogyCognitive     0.121 0.120 0.119
      (0.065) (0.067) (0.067)
pedagogyConstructivist     0.476*** 0.474*** 0.456***
      (0.115) (0.119) (0.121)
gradeK-2       0.007 0.026
        (0.061) (0.066)
low_income_included         0.049
          (0.066)
i.squared 40.504 42.082 20.601 22.456 23.126
h.squared 1.681 1.727 1.259 1.290 1.301
tau.squared 0.022 0.025 0.009 0.011 0.011
tau.squared.se 0.011 0.012 0.008 0.008 0.009
cochran.qe 108.937 106.272 82.487 82.314 81.718
p.value.cochran.qe 0.000 0.000 0.015 0.013 0.011
cochran.qm 34.239 38.572 64.494 63.008 62.986
p.value.cochran.qm 0.000 0.000 0.000 0.000 0.000
DF Resid. 61 59 57 56 55
Log Likelihood -21.301 -19.345 -12.522 -13.083 -13.297
Deviance 42.603 38.689 25.044 26.165 26.595
AIC 50.603 50.689 41.044 44.165 46.595
BIC 59.046 63.155 57.388 62.393 66.668
AICc 51.317 52.305 44.044 48.078 51.595
nobs 64 64 64 64 64
***p < 0.001; **p < 0.01; *p < 0.05

New table [Dec 2023]:

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
intercept 0.107* -0.098 -0.207* -0.191 -0.199 -0.238*
  (0.047) (0.100) (0.092) (0.102) (0.105) (0.114)
typeLRP 0.420*** 0.563*** 0.485*** 0.481*** 0.488*** 0.496***
  (0.073) (0.095) (0.079) (0.084) (0.086) (0.087)
typeLRD 0.106 0.235* 0.200* 0.195* 0.200* 0.211*
  (0.095) (0.113) (0.090) (0.095) (0.099) (0.100)
avghrs_categoriesMedium   0.186* 0.256** 0.256** 0.254** 0.260**
    (0.092) (0.080) (0.083) (0.089) (0.090)
avghrs_categoriesHigh   0.252* 0.249* 0.249* 0.254* 0.266*
    (0.114) (0.103) (0.107) (0.110) (0.112)
pedagogyCognitive     0.121 0.129 0.131 0.133
      (0.065) (0.069) (0.071) (0.072)
pedagogyConstructivist     0.476*** 0.468*** 0.461*** 0.435***
      (0.115) (0.118) (0.122) (0.126)
tech_plus1       -0.036 -0.041 -0.057
        (0.064) (0.067) (0.070)
gradeK-2         0.017 0.043
          (0.063) (0.070)
low_income_included           0.063
            (0.070)
i.squared 40.504 42.082 20.601 22.651 24.933 25.467
h.squared 1.681 1.727 1.259 1.293 1.332 1.342
tau.squared 0.022 0.025 0.009 0.011 0.013 0.013
tau.squared.se 0.011 0.012 0.008 0.008 0.009 0.010
cochran.qe 108.937 106.272 82.487 82.392 82.229 81.432
p.value.cochran.qe 0.000 0.000 0.015 0.012 0.010 0.009
cochran.qm 34.239 38.572 64.494 63.177 61.391 61.737
p.value.cochran.qm 0.000 0.000 0.000 0.000 0.000 0.000
DF Resid. 61 59 57 56 55 54
Log Likelihood -21.301 -19.345 -12.522 -12.948 -13.466 -13.527
Deviance 42.603 38.689 25.044 25.896 26.931 27.053
AIC 50.603 50.689 41.044 43.896 46.931 49.053
BIC 59.046 63.155 57.388 62.124 67.005 70.932
AICc 51.317 52.305 44.044 47.809 51.931 55.339
nobs 64 64 64 64 64 64
***p < 0.001; **p < 0.01; *p < 0.05



4.6 Pedagogy pairwise contrasts

Code-related

Pedagogical Orientation: Behavorial vs Cognitive

## 
## Mixed-Effects Model (k = 80; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1217 (SE = 0.0314)
## tau (square root of estimated tau^2 value):             0.3488
## I^2 (residual heterogeneity / unaccounted variability): 76.14%
## H^2 (unaccounted variability / sampling variability):   4.19
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 78) = 213.1435, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6764, p-val = 0.4108
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt              0.3515  0.0608   5.7827  <.0001   0.2323  0.4706  *** 
## pedagogyCognitive   -0.0909  0.1106  -0.8224  0.4108  -0.3077  0.1258      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pedagogical Orientation: Behavorial vs Constructivist

## 
## Mixed-Effects Model (k = 66; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1437 (SE = 0.0415)
## tau (square root of estimated tau^2 value):             0.3791
## I^2 (residual heterogeneity / unaccounted variability): 72.25%
## H^2 (unaccounted variability / sampling variability):   3.60
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 64) = 169.5401, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3271, p-val = 0.5674
## 
## Model Results:
## 
##                         estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt                   0.3559  0.0640  5.5573  <.0001   0.2304  0.4814  *** 
## pedagogyConstructivist    0.1193  0.2086  0.5719  0.5674  -0.2895  0.5280      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pedagogical Orientation: Cognitive vs Constructivist

## 
## Mixed-Effects Model (k = 26; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0674 (SE = 0.0318)
## tau (square root of estimated tau^2 value):             0.2596
## I^2 (residual heterogeneity / unaccounted variability): 73.96%
## H^2 (unaccounted variability / sampling variability):   3.84
## R^2 (amount of heterogeneity accounted for):            12.69%
## 
## Test for Residual Heterogeneity:
## QE(df = 24) = 64.8721, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.7923, p-val = 0.1807
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb   ci.ub     
## intrcpt              0.4807  0.1601   3.0025  0.0027   0.1669  0.7945  ** 
## pedagogyCognitive   -0.2363  0.1765  -1.3388  0.1807  -0.5823  0.1097     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Language-focused

Pedagogical Orientation: Behavorial vs Cognitive

## 
## Mixed-Effects Model (k = 56; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0314 (SE = 0.0135)
## tau (square root of estimated tau^2 value):             0.1773
## I^2 (residual heterogeneity / unaccounted variability): 51.85%
## H^2 (unaccounted variability / sampling variability):   2.08
## R^2 (amount of heterogeneity accounted for):            3.54%
## 
## Test for Residual Heterogeneity:
## QE(df = 54) = 106.6570, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.2482, p-val = 0.2639
## 
## Model Results:
## 
##                    estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt              0.1876  0.0561  3.3415  0.0008   0.0776  0.2976  *** 
## pedagogyCognitive    0.0847  0.0758  1.1172  0.2639  -0.0639  0.2333      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pedagogical Orientation: Behavorial vs Constructivist

## 
## Mixed-Effects Model (k = 33; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0060 (SE = 0.0074)
## tau (square root of estimated tau^2 value):             0.0771
## I^2 (residual heterogeneity / unaccounted variability): 17.80%
## H^2 (unaccounted variability / sampling variability):   1.22
## R^2 (amount of heterogeneity accounted for):            91.81%
## 
## Test for Residual Heterogeneity:
## QE(df = 31) = 54.9354, p-val = 0.0051
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 25.2766, p-val < .0001
## 
## Model Results:
## 
##                         estimate      se    zval    pval   ci.lb   ci.ub      
## intrcpt                   0.1757  0.0381  4.6085  <.0001  0.1010  0.2504  *** 
## pedagogyConstructivist    0.5080  0.1010  5.0276  <.0001  0.3100  0.7061  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pedagogical Orientation: Cognitive vs Constructivist

## 
## Mixed-Effects Model (k = 39; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0815 (SE = 0.0316)
## tau (square root of estimated tau^2 value):             0.2854
## I^2 (residual heterogeneity / unaccounted variability): 67.30%
## H^2 (unaccounted variability / sampling variability):   3.06
## R^2 (amount of heterogeneity accounted for):            25.43%
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 100.7645, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 8.3456, p-val = 0.0039
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt              0.7343  0.1418   5.1796  <.0001   0.4565   1.0122  *** 
## pedagogyCognitive   -0.4526  0.1567  -2.8889  0.0039  -0.7596  -0.1455   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



4.7 Tech type pairwise contrasts

Code-related

Tech type: CAI vs ER

## 
## Mixed-Effects Model (k = 84; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1208 (SE = 0.0302)
## tau (square root of estimated tau^2 value):             0.3476
## I^2 (residual heterogeneity / unaccounted variability): 76.44%
## H^2 (unaccounted variability / sampling variability):   4.24
## R^2 (amount of heterogeneity accounted for):            0.14%
## 
## Test for Residual Heterogeneity:
## QE(df = 82) = 228.0506, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6217, p-val = 0.4304
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt       0.3245  0.0508  6.3897  <.0001   0.2250  0.4240  *** 
## typetechER    0.1592  0.2019  0.7885  0.4304  -0.2365  0.5549      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tech type: CAI vs Other

## 
## Mixed-Effects Model (k = 81; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1203 (SE = 0.0308)
## tau (square root of estimated tau^2 value):             0.3469
## I^2 (residual heterogeneity / unaccounted variability): 76.57%
## H^2 (unaccounted variability / sampling variability):   4.27
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 79) = 217.5073, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0051, p-val = 0.9433
## 
## Model Results:
## 
##                estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt          0.3244  0.0507   6.3961  <.0001   0.2250  0.4238  *** 
## typetechOther   -0.0355  0.4997  -0.0711  0.9433  -1.0148  0.9438      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tech type: ER vs Other

## 
## Mixed-Effects Model (k = 7; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0977 (SE = 0.1164)
## tau (square root of estimated tau^2 value):             0.3126
## I^2 (residual heterogeneity / unaccounted variability): 54.73%
## H^2 (unaccounted variability / sampling variability):   2.21
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 5) = 10.6592, p-val = 0.0586
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1422, p-val = 0.7061
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt       0.2891  0.4855  0.5955  0.5515  -0.6625  1.2408    
## typetechER    0.1957  0.5189  0.3771  0.7061  -0.8213  1.2127    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Language focused

Tech type: CAI vs ER

## 
## Mixed-Effects Model (k = 50; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0281 (SE = 0.0132)
## tau (square root of estimated tau^2 value):             0.1677
## I^2 (residual heterogeneity / unaccounted variability): 50.76%
## H^2 (unaccounted variability / sampling variability):   2.03
## R^2 (amount of heterogeneity accounted for):            55.84%
## 
## Test for Residual Heterogeneity:
## QE(df = 48) = 94.7378, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 21.4966, p-val < .0001
## 
## Model Results:
## 
##             estimate      se    zval    pval   ci.lb   ci.ub      
## intrcpt       0.2023  0.0405  4.9961  <.0001  0.1230  0.2817  *** 
## typetechER    0.6544  0.1411  4.6364  <.0001  0.3778  0.9310  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tech type: CAI vs Other

## 
## Mixed-Effects Model (k = 58; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0284 (SE = 0.0124)
## tau (square root of estimated tau^2 value):             0.1686
## I^2 (residual heterogeneity / unaccounted variability): 49.76%
## H^2 (unaccounted variability / sampling variability):   1.99
## R^2 (amount of heterogeneity accounted for):            17.34%
## 
## Test for Residual Heterogeneity:
## QE(df = 56) = 106.7119, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.6617, p-val = 0.0557
## 
## Model Results:
## 
##                estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt          0.2024  0.0406  4.9845  <.0001   0.1228  0.2820  *** 
## typetechOther    0.1700  0.0889  1.9136  0.0557  -0.0041  0.3442    . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tech type: ER vs Other

## 
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1011 (SE = 0.0566)
## tau (square root of estimated tau^2 value):             0.3180
## I^2 (residual heterogeneity / unaccounted variability): 64.03%
## H^2 (unaccounted variability / sampling variability):   2.78
## R^2 (amount of heterogeneity accounted for):            33.15%
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 45.1155, p-val = 0.0004
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.1142, p-val = 0.0134
## 
## Model Results:
## 
##             estimate      se    zval    pval   ci.lb   ci.ub      
## intrcpt       0.3850  0.1108  3.4754  0.0005  0.1679  0.6022  *** 
## typetechER    0.5196  0.2101  2.4727  0.0134  0.1077  0.9315    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reading Comprehension

Tech type: CAI vs ER

## 
## Random-Effects Model (k = 60; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0371 (SE = 0.0135)
## tau (square root of estimated tau^2 value):      0.1925
## I^2 (total heterogeneity / total variability):   72.01%
## H^2 (total variability / sampling variability):  3.57
## 
## Test for Heterogeneity:
## Q(df = 59) = 206.1196, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2396  0.0375  6.3921  <.0001  0.1661  0.3130  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tech type: CAI vs Other

## 
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0359 (SE = 0.0130)
## tau (square root of estimated tau^2 value):             0.1894
## I^2 (residual heterogeneity / unaccounted variability): 70.24%
## H^2 (unaccounted variability / sampling variability):   3.36
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 209.4629, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.7222, p-val = 0.3954
## 
## Model Results:
## 
##                estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt          0.2390  0.0371   6.4388  <.0001   0.1663  0.3118  *** 
## typetechOther   -0.1358  0.1598  -0.8498  0.3954  -0.4490  0.1774      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tech type: ER vs Other

## 
## Random-Effects Model (k = 5; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0554)
## tau (square root of estimated tau^2 value):      0
## I^2 (total heterogeneity / total variability):   0.00%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity:
## Q(df = 4) = 3.3433, p-val = 0.5021
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub    
##   0.0993  0.1268  0.7832  0.4335  -0.1493  0.3479    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5 Publication Bias

5.1 Funnel Plots

Code-related:

Reading Comprehension:

Language-focused:

Writing:

5.2 Egger’s Tests

Code-related:

## 
## Regression Test for Funnel Plot Asymmetry
## 
## Model:     mixed-effects meta-regression model
## Predictor: standard error
## 
## Test for Funnel Plot Asymmetry: z = 2.7592, p = 0.0058

Reading Comprehension:

## 
## Regression Test for Funnel Plot Asymmetry
## 
## Model:     mixed-effects meta-regression model
## Predictor: standard error
## 
## Test for Funnel Plot Asymmetry: z = 1.8285, p = 0.0675

Language-focused:

## 
## Regression Test for Funnel Plot Asymmetry
## 
## Model:     mixed-effects meta-regression model
## Predictor: standard error
## 
## Test for Funnel Plot Asymmetry: z = 1.7297, p = 0.0837

Writing:

## 
## Regression Test for Funnel Plot Asymmetry
## 
## Model:     mixed-effects meta-regression model
## Predictor: standard error
## 
## Test for Funnel Plot Asymmetry: z = 1.1436, p = 0.2528

5.3 P-curves

Code-related:

## P-curve analysis 
##  ----------------------- 
## - Total number of provided studies: k = 86 
## - Total number of p<0.05 studies included into the analysis: k = 22 (25.58%) 
## - Total number of studies with p<0.025: k = 22 (25.58%) 
##    
## Results 
##  ----------------------- 
##                     pBinomial  zFull pFull zHalf pHalf
## Right-skewness test         0 -9.077     0 -6.50     0
## Flatness test               1  5.248     1  7.74     1
## Note: p-values of 0 or 1 correspond to p<0.001 and p>0.999, respectively.   
## Power Estimate: 88% (76.1%-94.4%)
##    
## Evidential value 
##  ----------------------- 
## - Evidential value present: yes 
## - Evidential value absent/inadequate: no

Reading Comprehension:

## P-curve analysis 
##  ----------------------- 
## - Total number of provided studies: k = 65 
## - Total number of p<0.05 studies included into the analysis: k = 18 (27.69%) 
## - Total number of studies with p<0.025: k = 15 (23.08%) 
##    
## Results 
##  ----------------------- 
##                     pBinomial  zFull pFull  zHalf pHalf
## Right-skewness test     0.004 -5.957 0.000 -4.796     0
## Flatness test           0.924  2.774 0.997  6.164     1
## Note: p-values of 0 or 1 correspond to p<0.001 and p>0.999, respectively.   
## Power Estimate: 73% (50.9%-87.6%)
##    
## Evidential value 
##  ----------------------- 
## - Evidential value present: yes 
## - Evidential value absent/inadequate: no

Language-focused:

## P-curve analysis 
##  ----------------------- 
## - Total number of provided studies: k = 64 
## - Total number of p<0.05 studies included into the analysis: k = 21 (32.81%) 
## - Total number of studies with p<0.025: k = 14 (21.88%) 
##    
## Results 
##  ----------------------- 
##                     pBinomial  zFull pFull  zHalf pHalf
## Right-skewness test     0.095 -7.119     0 -8.407     0
## Flatness test           0.393  3.604     1  7.642     1
## Note: p-values of 0 or 1 correspond to p<0.001 and p>0.999, respectively.   
## Power Estimate: 79% (60.6%-89.8%)
##    
## Evidential value 
##  ----------------------- 
## - Evidential value present: yes 
## - Evidential value absent/inadequate: no

Writing:

## P-curve analysis 
##  ----------------------- 
## - Total number of provided studies: k = 6 
## - Total number of p<0.05 studies included into the analysis: k = 3 (50%) 
## - Total number of studies with p<0.025: k = 3 (50%) 
##    
## Results 
##  ----------------------- 
##                     pBinomial  zFull pFull  zHalf pHalf
## Right-skewness test     0.125 -4.264 0.000 -3.775     0
## Flatness test           1.000  2.699 0.997  3.355     1
## Note: p-values of 0 or 1 correspond to p<0.001 and p>0.999, respectively.   
## Power Estimate: 94% (66.4%-99%)
##    
## Evidential value 
##  ----------------------- 
## - Evidential value present: yes 
## - Evidential value absent/inadequate: no



6 Sensitivity analyses

6.1 Exclude high selection risk studies [Keep RCTs only]

Code-related:

## 
## Random-Effects Model (k = 72; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1391 (SE = 0.0359)
## tau (square root of estimated tau^2 value):      0.3729
## I^2 (total heterogeneity / total variability):   78.67%
## H^2 (total variability / sampling variability):  4.69
## 
## Test for Heterogeneity:
## Q(df = 71) = 216.6770, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.3782  0.0556  6.7968  <.0001  0.2691  0.4872  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reading Comprehension:

## 
## Random-Effects Model (k = 48; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0452 (SE = 0.0165)
## tau (square root of estimated tau^2 value):      0.2125
## I^2 (total heterogeneity / total variability):   77.72%
## H^2 (total variability / sampling variability):  4.49
## 
## Test for Heterogeneity:
## Q(df = 47) = 183.7304, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2276  0.0432  5.2673  <.0001  0.1429  0.3123  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Language-focused:

## 
## Random-Effects Model (k = 41; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0545 (SE = 0.0215)
## tau (square root of estimated tau^2 value):      0.2335
## I^2 (total heterogeneity / total variability):   66.33%
## H^2 (total variability / sampling variability):  2.97
## 
## Test for Heterogeneity:
## Q(df = 40) = 105.9878, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.3056  0.0505  6.0538  <.0001  0.2067  0.4046  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Writing:

## 
## Random-Effects Model (k = 4; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.1079 (SE = 0.1855)
## tau (square root of estimated tau^2 value):      0.3285
## I^2 (total heterogeneity / total variability):   48.02%
## H^2 (total variability / sampling variability):  1.92
## 
## Test for Heterogeneity:
## Q(df = 3) = 5.9435, p-val = 0.1144
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   1.0469  0.2383  4.3930  <.0001  0.5798  1.5140  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.2 Constrain outliers by Winsorizing

Code-related:

## 
## Random-Effects Model (k = 86; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0651 (SE = 0.0197)
## tau (square root of estimated tau^2 value):      0.2552
## I^2 (total heterogeneity / total variability):   63.05%
## H^2 (total variability / sampling variability):  2.71
## 
## Test for Heterogeneity:
## Q(df = 85) = 183.9515, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.3113  0.0405  7.6822  <.0001  0.2318  0.3907  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Reading Comprehension:

## 
## Random-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0224 (SE = 0.0096)
## tau (square root of estimated tau^2 value):      0.1496
## I^2 (total heterogeneity / total variability):   59.48%
## H^2 (total variability / sampling variability):  2.47
## 
## Test for Heterogeneity:
## Q(df = 64) = 176.8840, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2259  0.0318  7.1091  <.0001  0.1636  0.2882  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Language-focused:

## 
## Random-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0455 (SE = 0.0160)
## tau (square root of estimated tau^2 value):      0.2132
## I^2 (total heterogeneity / total variability):   59.98%
## H^2 (total variability / sampling variability):  2.50
## 
## Test for Heterogeneity:
## Q(df = 63) = 133.8790, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2817  0.0395  7.1274  <.0001  0.2043  0.3592  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Writing:

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0812 (SE = 0.1243)
## tau (square root of estimated tau^2 value):      0.2850
## I^2 (total heterogeneity / total variability):   41.62%
## H^2 (total variability / sampling variability):  1.71
## 
## Test for Heterogeneity:
## Q(df = 5) = 8.9670, p-val = 0.1104
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.7837  0.1817  4.3130  <.0001  0.4275  1.1398  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



6.3 Changing within study correlations (when aggregating effect sizes within a study)

6.3.2 Reading Comprehension

r = 0:

## 
## Random-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0627 (SE = 0.0177)
## tau (square root of estimated tau^2 value):      0.2504
## I^2 (total heterogeneity / total variability):   93.85%
## H^2 (total variability / sampling variability):  16.27
## 
## Test for Heterogeneity:
## Q(df = 64) = 1045.4788, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2570  0.0413  6.2247  <.0001  0.1761  0.3379  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

r = 0.4:

## 
## Random-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0396 (SE = 0.0136)
## tau (square root of estimated tau^2 value):      0.1989
## I^2 (total heterogeneity / total variability):   73.64%
## H^2 (total variability / sampling variability):  3.79
## 
## Test for Heterogeneity:
## Q(df = 64) = 234.0208, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2365  0.0369  6.4153  <.0001  0.1642  0.3087  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

r = 0.8:

## 
## Random-Effects Model (k = 65; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0252 (SE = 0.0108)
## tau (square root of estimated tau^2 value):      0.1586
## I^2 (total heterogeneity / total variability):   58.96%
## H^2 (total variability / sampling variability):  2.44
## 
## Test for Heterogeneity:
## Q(df = 64) = 168.9712, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2178  0.0336  6.4857  <.0001  0.1519  0.2836  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.3.3 Language-focused

r = 0:

## 
## Random-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0890 (SE = 0.0237)
## tau (square root of estimated tau^2 value):      0.2983
## I^2 (total heterogeneity / total variability):   80.27%
## H^2 (total variability / sampling variability):  5.07
## 
## Test for Heterogeneity:
## Q(df = 63) = 230.2889, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.3109  0.0470  6.6185  <.0001  0.2188  0.4030  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

r = 0.4:

## 
## Random-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0707 (SE = 0.0213)
## tau (square root of estimated tau^2 value):      0.2659
## I^2 (total heterogeneity / total variability):   70.82%
## H^2 (total variability / sampling variability):  3.43
## 
## Test for Heterogeneity:
## Q(df = 63) = 168.8412, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.3010  0.0448  6.7172  <.0001  0.2132  0.3889  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

r = 0.8:

## 
## Random-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0544 (SE = 0.0187)
## tau (square root of estimated tau^2 value):      0.2332
## I^2 (total heterogeneity / total variability):   62.03%
## H^2 (total variability / sampling variability):  2.63
## 
## Test for Heterogeneity:
## Q(df = 63) = 142.7276, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub      
##   0.2903  0.0425  6.8281  <.0001  0.2070  0.3736  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.3.4 Writing

r = 0:

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.20 (SE = 0.18)
## tau (square root of estimated tau^2 value):      0.45
## I^2 (total heterogeneity / total variability):   71.35%
## H^2 (total variability / sampling variability):  3.49
## 
## Test for Heterogeneity:
## Q(df = 5) = 15.58, p-val < .01
## 
## Model Results:
## 
## estimate    se  zval  pval  ci.lb  ci.ub      
##     0.85  0.22  3.86  <.01   0.42   1.28  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

r = 0.4:

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.16 (SE = 0.17)
## tau (square root of estimated tau^2 value):      0.40
## I^2 (total heterogeneity / total variability):   59.18%
## H^2 (total variability / sampling variability):  2.45
## 
## Test for Heterogeneity:
## Q(df = 5) = 11.88, p-val = 0.04
## 
## Model Results:
## 
## estimate    se  zval  pval  ci.lb  ci.ub      
##     0.82  0.21  3.87  <.01   0.40   1.24  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

r = 0.8:

## 
## Random-Effects Model (k = 6; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.12 (SE = 0.16)
## tau (square root of estimated tau^2 value):      0.34
## I^2 (total heterogeneity / total variability):   47.89%
## H^2 (total variability / sampling variability):  1.92
## 
## Test for Heterogeneity:
## Q(df = 5) = 9.84, p-val = 0.08
## 
## Model Results:
## 
## estimate    se  zval  pval  ci.lb  ci.ub      
##     0.79  0.20  3.88  <.01   0.39   1.19  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



7 New moderator results [June 2023]

Code-related:

  Model 1 Model 2 Model 3
intercept 0.261** 0.054 0.057
  (0.081) (0.103) (0.108)
typeDRP 0.127 0.296* 0.198
  (0.167) (0.148) (0.163)
typeDRD 0.197 0.298** 0.256*
  (0.115) (0.111) (0.112)
pedagogyCognitive -0.034   -0.176
  (0.115)   (0.117)
pedagogyConstructivist 0.083   0.212
  (0.220)   (0.222)
avghrs_categoriesMedium   0.093 0.167
    (0.112) (0.120)
avghrs_categoriesHigh   0.407** 0.508***
    (0.133) (0.143)
i.squared 74.315 71.881 70.473
h.squared 3.893 3.556 3.387
tau.squared 0.121 0.110 0.105
tau.squared.se 0.031 0.029 0.028
cochran.qe 220.014 221.434 208.781
p.value.cochran.qe 0.000 0.000 0.000
cochran.qm 4.277 14.308 17.734
p.value.cochran.qm 0.370 0.006 0.007
DF Resid. 81 81 79
Log Likelihood -57.179 -52.281 -50.503
Deviance 114.358 104.562 101.005
AIC 126.358 116.562 117.005
BIC 140.725 130.929 135.961
AICc 127.493 117.697 119.062
nobs 86 86 86
***p < 0.001; **p < 0.01; *p < 0.05

Language-focused:

  Model 1 Model 2 Model 3
intercept 0.038 -0.098 -0.207*
  (0.051) (0.100) (0.092)
typeLRP 0.353*** 0.563*** 0.485***
  (0.063) (0.095) (0.079)
typeLRD 0.096 0.235* 0.200*
  (0.077) (0.113) (0.090)
pedagogyCognitive 0.121*   0.121
  (0.057)   (0.065)
pedagogyConstructivist 0.355***   0.476***
  (0.105)   (0.115)
avghrs_categoriesMedium   0.186* 0.256**
    (0.092) (0.080)
avghrs_categoriesHigh   0.252* 0.249*
    (0.114) (0.103)
i.squared 16.221 42.082 20.601
h.squared 1.194 1.727 1.259
tau.squared 0.007 0.025 0.009
tau.squared.se 0.006 0.012 0.008
cochran.qe 92.157 106.272 82.487
p.value.cochran.qe 0.004 0.000 0.015
cochran.qm 57.043 38.572 64.494
p.value.cochran.qm 0.000 0.000 0.000
DF Resid. 59 59 57
Log Likelihood -16.590 -19.345 -12.522
Deviance 33.180 38.689 25.044
AIC 45.180 50.689 41.044
BIC 57.645 63.155 57.388
AICc 46.796 52.305 44.044
nobs 64 64 64
***p < 0.001; **p < 0.01; *p < 0.05

Reading Comprehension:

  Model 1 Model 2 Model 3
intercept 0.170* 0.142 0.152
  (0.075) (0.114) (0.117)
typeCRD 0.219*** 0.228** 0.233**
  (0.066) (0.072) (0.073)
pedagogyCognitive -0.023   -0.035
  (0.080)   (0.090)
avghrs_categoriesMedium   -0.005 0.010
    (0.116) (0.123)
avghrs_categoriesHigh   0.029 0.051
    (0.123) (0.135)
i.squared 51.519 51.306 50.820
h.squared 2.063 2.054 2.033
tau.squared 0.021 0.023 0.023
tau.squared.se 0.009 0.010 0.010
cochran.qe 116.774 119.472 114.995
p.value.cochran.qe 0.000 0.000 0.000
cochran.qm 10.957 10.376 10.577
p.value.cochran.qm 0.004 0.016 0.032
DF Resid. 62 61 60
Log Likelihood -14.687 -14.996 -15.158
Deviance 29.374 29.993 30.316
AIC 37.374 39.993 42.316
BIC 45.883 50.547 54.882
AICc 38.076 41.084 43.901
nobs 65 65 65
***p < 0.001; **p < 0.01; *p < 0.05

Association between gamification and pedagogical orientation for 120 studies:




8 New moderator results [Dec 2023]

8.1 18: Connor et al. (2019)

This study reports LRP effect sizes.

Control:

## 
## Mixed-Effects Model (k = 62; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0679 (SE = 0.0215)
## tau (square root of estimated tau^2 value):             0.2606
## I^2 (residual heterogeneity / unaccounted variability): 68.47%
## H^2 (unaccounted variability / sampling variability):   3.17
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 60) = 155.4035, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8031, p-val = 0.3702
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt       0.2075  0.1035  2.0044  0.0450   0.0046  0.4104  * 
## controlBAU    0.1031  0.1151  0.8962  0.3702  -0.1224  0.3286    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Technology Only (T) or Technology Plus (T+):

## 
## Mixed-Effects Model (k = 62; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0625 (SE = 0.0203)
## tau (square root of estimated tau^2 value):             0.2499
## I^2 (residual heterogeneity / unaccounted variability): 66.95%
## H^2 (unaccounted variability / sampling variability):   3.03
## R^2 (amount of heterogeneity accounted for):            5.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 60) = 149.1791, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.3006, p-val = 0.0381
## 
## Model Results:
## 
##             estimate      se     zval    pval    ci.lb    ci.ub      
## intrcpt       0.3701  0.0589   6.2887  <.0001   0.2548   0.4855  *** 
## tech_plus1   -0.1839  0.0887  -2.0738  0.0381  -0.3578  -0.0101    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Instructional Context:

## 
## Mixed-Effects Model (k = 62; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0663 (SE = 0.0211)
## tau (square root of estimated tau^2 value):             0.2574
## I^2 (residual heterogeneity / unaccounted variability): 68.65%
## H^2 (unaccounted variability / sampling variability):   3.19
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 60) = 153.7003, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.8442, p-val = 0.1745
## 
## Model Results:
## 
##                                             estimate      se     zval    pval 
## intrcpt                                       0.3335  0.0549   6.0697  <.0001 
## instructional_contextOther than individual   -0.1291  0.0951  -1.3580  0.1745 
##                                               ci.lb   ci.ub      
## intrcpt                                      0.2258  0.4412  *** 
## instructional_contextOther than individual  -0.3155  0.0572      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.2 76: Segal-Drori et al. (2010)

This study reports DRP effect sizes.

Control:

## 
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1134 (SE = 0.0293)
## tau (square root of estimated tau^2 value):             0.3367
## I^2 (residual heterogeneity / unaccounted variability): 74.41%
## H^2 (unaccounted variability / sampling variability):   3.91
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 81) = 213.8921, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6787, p-val = 0.4100
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub     
## intrcpt       0.2536  0.0912  2.7815  0.0054   0.0749  0.4323  ** 
## controlBAU    0.0889  0.1078  0.8239  0.4100  -0.1225  0.3002     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Technology Only (T) or Technology Plus (T+):

## 
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1162 (SE = 0.0298)
## tau (square root of estimated tau^2 value):             0.3409
## I^2 (residual heterogeneity / unaccounted variability): 74.97%
## H^2 (unaccounted variability / sampling variability):   3.99
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 81) = 218.6314, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0077, p-val = 0.9302
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt       0.3143  0.0633  4.9619  <.0001   0.1901  0.4384  *** 
## tech_plus1    0.0088  0.1003  0.0876  0.9302  -0.1877  0.2053      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.3 113: Shamir et al. (2012)

This study reports DRD and LRP effect sizes.

Control (code related):

## 
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1134 (SE = 0.0293)
## tau (square root of estimated tau^2 value):             0.3367
## I^2 (residual heterogeneity / unaccounted variability): 74.41%
## H^2 (unaccounted variability / sampling variability):   3.91
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 81) = 213.8921, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6787, p-val = 0.4100
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub     
## intrcpt       0.2536  0.0912  2.7815  0.0054   0.0749  0.4323  ** 
## controlBAU    0.0889  0.1078  0.8239  0.4100  -0.1225  0.3002     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Control (language focused):

## 
## Mixed-Effects Model (k = 62; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0679 (SE = 0.0215)
## tau (square root of estimated tau^2 value):             0.2606
## I^2 (residual heterogeneity / unaccounted variability): 68.47%
## H^2 (unaccounted variability / sampling variability):   3.17
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 60) = 155.4035, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8031, p-val = 0.3702
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt       0.2075  0.1035  2.0044  0.0450   0.0046  0.4104  * 
## controlBAU    0.1031  0.1151  0.8962  0.3702  -0.1224  0.3286    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.4 81: Solheim et al. (2018)

This study reports DRD and CRD effect sizes.

Control (code related):

## 
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1164 (SE = 0.0298)
## tau (square root of estimated tau^2 value):             0.3412
## I^2 (residual heterogeneity / unaccounted variability): 75.46%
## H^2 (unaccounted variability / sampling variability):   4.08
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 81) = 217.9129, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1478, p-val = 0.7006
## 
## Model Results:
## 
##             estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt       0.3343  0.0652   5.1243  <.0001   0.2065  0.4622  *** 
## adaptivity   -0.0381  0.0991  -0.3845  0.7006  -0.2324  0.1562      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Control (reading comp):

## 
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0372 (SE = 0.0135)
## tau (square root of estimated tau^2 value):             0.1929
## I^2 (residual heterogeneity / unaccounted variability): 68.84%
## H^2 (unaccounted variability / sampling variability):   3.21
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 62) = 192.6184, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1378, p-val = 0.7105
## 
## Model Results:
## 
##             estimate      se     zval    pval    ci.lb   ci.ub      
## intrcpt       0.2401  0.0434   5.5343  <.0001   0.1550  0.3251  *** 
## adaptivity   -0.0299  0.0805  -0.3712  0.7105  -0.1877  0.1279      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.5 137: Boggio et al. (2023)

This study reports DRD effect sizes.

Control:

## 
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1134 (SE = 0.0293)
## tau (square root of estimated tau^2 value):             0.3367
## I^2 (residual heterogeneity / unaccounted variability): 74.41%
## H^2 (unaccounted variability / sampling variability):   3.91
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 81) = 213.8921, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6787, p-val = 0.4100
## 
## Model Results:
## 
##             estimate      se    zval    pval    ci.lb   ci.ub     
## intrcpt       0.2536  0.0912  2.7815  0.0054   0.0749  0.4323  ** 
## controlBAU    0.0889  0.1078  0.8239  0.4100  -0.1225  0.3002     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Gamification:

## 
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of residual heterogeneity):     0.1162 (SE = 0.0298)
## tau (square root of estimated tau^2 value):             0.3409
## I^2 (residual heterogeneity / unaccounted variability): 74.99%
## H^2 (unaccounted variability / sampling variability):   4.00
## R^2 (amount of heterogeneity accounted for):            0.00%
## 
## Test for Residual Heterogeneity:
## QE(df = 81) = 218.7485, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0174, p-val = 0.8950
## 
## Model Results:
## 
##               estimate      se    zval    pval    ci.lb   ci.ub      
## intrcpt         0.3097  0.0786  3.9383  <.0001   0.1556  0.4638  *** 
## gamification    0.0133  0.1007  0.1320  0.8950  -0.1840  0.2106      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1