Notes on clustering corrections:
Study and measure overview [221 total measures across 119 studies]:
Effect size and its variance for all 221 study measures:
Code-related:
Language comprehension:
Reading comprehension:
Values (click arrows to scroll):
Plot:
Overall:
##
## Random-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0352 (SE = 0.0128)
## tau (square root of estimated tau^2 value): 0.1877
## I^2 (total heterogeneity / total variability): 69.82%
## H^2 (total variability / sampling variability): 3.31
##
## Test for Heterogeneity:
## Q(df = 64) = 209.6213, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2315 0.0359 6.4425 <.0001 0.1610 0.3019 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Researcher-Developed (Distal):
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0348 (SE = 0.0224)
## tau (square root of estimated tau^2 value): 0.1865
## I^2 (total heterogeneity / total variability): 59.16%
## H^2 (total variability / sampling variability): 2.45
##
## Test for Heterogeneity:
## Q(df = 19) = 39.8178, p-val = 0.0035
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3724 0.0627 5.9371 <.0001 0.2495 0.4954 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Standardized:
##
## Random-Effects Model (k = 45; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0150 (SE = 0.0094)
## tau (square root of estimated tau^2 value): 0.1226
## I^2 (total heterogeneity / total variability): 47.63%
## H^2 (total variability / sampling variability): 1.91
##
## Test for Heterogeneity:
## Q(df = 44) = 86.2474, p-val = 0.0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.1447 0.0353 4.1001 <.0001 0.0755 0.2139 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Overall:
##
## Random-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0664 (SE = 0.0207)
## tau (square root of estimated tau^2 value): 0.2578
## I^2 (total heterogeneity / total variability): 68.66%
## H^2 (total variability / sampling variability): 3.19
##
## Test for Heterogeneity:
## Q(df = 63) = 160.6184, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2984 0.0443 6.7439 <.0001 0.2117 0.3852 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Researcher-Developed proximal:
##
## Random-Effects Model (k = 29; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1362 (SE = 0.0574)
## tau (square root of estimated tau^2 value): 0.3691
## I^2 (total heterogeneity / total variability): 73.04%
## H^2 (total variability / sampling variability): 3.71
##
## Test for Heterogeneity:
## Q(df = 28) = 85.4050, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.5799 0.0883 6.5668 <.0001 0.4068 0.7529 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Researcher-Developed distal:
##
## Random-Effects Model (k = 7; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0168 (SE = 0.0231)
## tau (square root of estimated tau^2 value): 0.1296
## I^2 (total heterogeneity / total variability): 44.14%
## H^2 (total variability / sampling variability): 1.79
##
## Test for Heterogeneity:
## Q(df = 6) = 12.4326, p-val = 0.0530
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2102 0.0772 2.7207 0.0065 0.0588 0.3615 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Researcher-Developed (all):
##
## Random-Effects Model (k = 36; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1264 (SE = 0.0457)
## tau (square root of estimated tau^2 value): 0.3555
## I^2 (total heterogeneity / total variability): 77.24%
## H^2 (total variability / sampling variability): 4.39
##
## Test for Heterogeneity:
## Q(df = 35) = 118.2319, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.4924 0.0747 6.5893 <.0001 0.3459 0.6388 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Standardized:
##
## Random-Effects Model (k = 28; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0045)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 27) = 11.0995, p-val = 0.9970
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.1176 0.0295 3.9818 <.0001 0.0597 0.1755 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Overall:
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value): 0.3836
## I^2 (total heterogeneity / total variability): 56.36%
## H^2 (total variability / sampling variability): 2.29
##
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.8144 0.2106 3.8678 0.0001 0.4017 1.2271 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Researcher-Developed distal:
##
## Random-Effects Model (k = 4; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1079 (SE = 0.1855)
## tau (square root of estimated tau^2 value): 0.3285
## I^2 (total heterogeneity / total variability): 48.02%
## H^2 (total variability / sampling variability): 1.92
##
## Test for Heterogeneity:
## Q(df = 3) = 5.9435, p-val = 0.1144
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 1.0469 0.2383 4.3930 <.0001 0.5798 1.5140 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Standardized:
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.1676)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 1) = 0.0105, p-val = 0.9184
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3420 0.2362 1.4482 0.1476 -0.1209 0.8049
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
As the dependency in our meta-analysis results from multiple measures nested within the same studies, we use the hierarchical effects weights to fit our model.
Code-related:
## RVE: Hierarchical Effects Model with Small-Sample Corrections
##
## Model: ES ~ 1
##
## Number of clusters = 65
## Number of outcomes = 86 (min = 1 , mean = 1.32 , median = 1 , max = 3 )
## Omega.sq = 0
## Tau.sq = 0.06845214
##
## Estimate StdErr t-value dfs P(|t|>) 95% CI.L 95% CI.U Sig
## 1 X.Intercept. 0.317 0.0516 6.14 45.4 0.000000185 0.213 0.421 ***
## ---
## Signif. codes: < .01 *** < .05 ** < .10 *
## ---
## Note: If df < 4, do not trust the results
Reading comprehension:
## RVE: Hierarchical Effects Model with Small-Sample Corrections
##
## Model: ES ~ 1
##
## Number of clusters = 52
## Number of outcomes = 65 (min = 1 , mean = 1.25 , median = 1 , max = 2 )
## Omega.sq = 0
## Tau.sq = 0.03473362
##
## Estimate StdErr t-value dfs P(|t|>) 95% CI.L 95% CI.U Sig
## 1 X.Intercept. 0.231 0.0378 6.11 31.8 0.000000805 0.154 0.308 ***
## ---
## Signif. codes: < .01 *** < .05 ** < .10 *
## ---
## Note: If df < 4, do not trust the results
Language focused:
## RVE: Hierarchical Effects Model with Small-Sample Corrections
##
## Model: ES ~ 1
##
## Number of clusters = 53
## Number of outcomes = 64 (min = 1 , mean = 1.21 , median = 1 , max = 3 )
## Omega.sq = 0
## Tau.sq = 0.0491561
##
## Estimate StdErr t-value dfs P(|t|>) 95% CI.L 95% CI.U Sig
## 1 X.Intercept. 0.292 0.0398 7.32 32.4 0.000000024 0.21 0.373 ***
## ---
## Signif. codes: < .01 *** < .05 ** < .10 *
## ---
## Note: If df < 4, do not trust the results
Writing proficiency (estimated using a correlation effects model because each of the 6 studies reports a single writing measure):
## RVE: Correlated Effects Model with Small-Sample Corrections
##
## Model: ES ~ 1
##
## Number of studies = 6
## Number of outcomes = 6 (min = 1 , mean = 1 , median = 1 , max = 1 )
## Rho = 0.8
## I.sq = 55.64952
## Tau.sq = 0.1429986
##
## Estimate StdErr t-value dfs P(|t|>) 95% CI.L 95% CI.U Sig
## 1 X.Intercept. 0.814 0.208 3.92 4.87 0.0118 0.276 1.35 **
## ---
## Signif. codes: < .01 *** < .05 ** < .10 *
## ---
## Note: If df < 4, do not trust the results
Descriptive summary of moderator variables used:
| Name | Piped data |
| Number of rows | 221 |
| Number of columns | 17 |
| _______________________ | |
| Column type frequency: | |
| factor | 7 |
| numeric | 10 |
| ________________________ | |
| Group variables | None |
Variable type: factor
| skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
|---|---|---|---|---|---|
| grade | 0 | 1 | FALSE | 2 | K-2: 117, 3-5: 104 |
| pedagogy | 0 | 1 | FALSE | 3 | Beh: 105, Cog: 101, Con: 15 |
| instructional_context | 0 | 1 | FALSE | 2 | Ind: 144, Oth: 77 |
| typetech | 0 | 1 | FALSE | 3 | CAI: 188, Oth: 22, ER: 11 |
| design | 0 | 1 | FALSE | 2 | RCT: 165, QED: 56 |
| control | 0 | 1 | FALSE | 2 | BAU: 176, ALT: 45 |
| avghrs_categories | 0 | 1 | FALSE | 3 | Med: 94, Low: 66, Hig: 61 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| outside_us | 0 | 1 | 0.62 | 0.49 | 0.0 | 0 | 1 | 1 | 1 | ▅▁▁▁▇ |
| low_income_included | 0 | 1 | 0.37 | 0.48 | 0.0 | 0 | 0 | 1 | 1 | ▇▁▁▁▅ |
| second_lang_included | 0 | 1 | 0.21 | 0.41 | 0.0 | 0 | 0 | 0 | 1 | ▇▁▁▁▂ |
| stu_disability_included | 0 | 1 | 0.20 | 0.40 | 0.0 | 0 | 0 | 0 | 1 | ▇▁▁▁▂ |
| tech_plus1 | 0 | 1 | 0.46 | 0.50 | 0.0 | 0 | 0 | 1 | 1 | ▇▁▁▁▇ |
| gamification | 0 | 1 | 0.46 | 0.50 | 0.0 | 0 | 0 | 1 | 1 | ▇▁▁▁▇ |
| adaptivity | 0 | 1 | 0.33 | 0.47 | 0.0 | 0 | 0 | 1 | 1 | ▇▁▁▁▅ |
| feedback | 0 | 1 | 0.76 | 0.43 | 0.0 | 1 | 1 | 1 | 1 | ▂▁▁▁▇ |
| teach_tr | 0 | 1 | 0.62 | 0.49 | 0.0 | 0 | 1 | 1 | 1 | ▅▁▁▁▇ |
| avghrs | 0 | 1 | 21.24 | 22.37 | 0.3 | 6 | 15 | 25 | 120 | ▇▂▁▁▁ |
Measure type (Custom distal, Standardized):
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0205 (SE = 0.0092)
## tau (square root of estimated tau^2 value): 0.1431
## I^2 (residual heterogeneity / unaccounted variability): 52.89%
## H^2 (unaccounted variability / sampling variability): 2.12
## R^2 (amount of heterogeneity accounted for): 41.89%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 126.0652, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 10.9205, p-val = 0.0010
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3698 0.0541 6.8336 <.0001 0.2637 0.4759 ***
## typeCSN -0.2184 0.0661 -3.3046 0.0010 -0.3480 -0.0889 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Location outside of the U.S.:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0362 (SE = 0.0132)
## tau (square root of estimated tau^2 value): 0.1902
## I^2 (residual heterogeneity / unaccounted variability): 69.26%
## H^2 (unaccounted variability / sampling variability): 3.25
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 206.0605, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1336, p-val = 0.7147
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2393 0.0416 5.7584 <.0001 0.1578 0.3207 ***
## outside_us -0.0309 0.0846 -0.3655 0.7147 -0.1967 0.1348
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Students from low-income backgrounds included:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0357 (SE = 0.0131)
## tau (square root of estimated tau^2 value): 0.1888
## I^2 (residual heterogeneity / unaccounted variability): 67.60%
## H^2 (unaccounted variability / sampling variability): 3.09
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 199.9647, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5817, p-val = 0.4457
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1957 0.0594 3.2966 0.0010 0.0793 0.3120 ***
## low_income_included 0.0570 0.0747 0.7627 0.4457 -0.0894 0.2034
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Students learning a second or other language included:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0342 (SE = 0.0127)
## tau (square root of estimated tau^2 value): 0.1848
## I^2 (residual heterogeneity / unaccounted variability): 68.50%
## H^2 (unaccounted variability / sampling variability): 3.17
## R^2 (amount of heterogeneity accounted for): 3.06%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 190.1544, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6640, p-val = 0.4151
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2191 0.0385 5.6926 <.0001 0.1437 0.2946 ***
## second_lang_included 0.0826 0.1014 0.8149 0.4151 -0.1161 0.2814
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Students with disabilities included:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0352 (SE = 0.0129)
## tau (square root of estimated tau^2 value): 0.1876
## I^2 (residual heterogeneity / unaccounted variability): 69.41%
## H^2 (unaccounted variability / sampling variability): 3.27
## R^2 (amount of heterogeneity accounted for): 0.18%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 209.3354, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.1498, p-val = 0.2836
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2446 0.0379 6.4463 <.0001 0.1702 0.3189
## stu_disability_included -0.1261 0.1176 -1.0723 0.2836 -0.3565 0.1044
##
## intrcpt ***
## stu_disability_included
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Grade level K-2 vs. 3-5:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0335 (SE = 0.0126)
## tau (square root of estimated tau^2 value): 0.1830
## I^2 (residual heterogeneity / unaccounted variability): 59.07%
## H^2 (unaccounted variability / sampling variability): 2.44
## R^2 (amount of heterogeneity accounted for): 5.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 133.5489, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8862, p-val = 0.3465
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2523 0.0422 5.9830 <.0001 0.1696 0.3349 ***
## gradeK-2 -0.0731 0.0777 -0.9414 0.3465 -0.2253 0.0791
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Pedagogical Orientation: Behavorial, Cognitive, Constructivist:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0367 (SE = 0.0133)
## tau (square root of estimated tau^2 value): 0.1915
## I^2 (residual heterogeneity / unaccounted variability): 69.33%
## H^2 (unaccounted variability / sampling variability): 3.26
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 195.0055, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0213, p-val = 0.8839
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2215 0.0807 2.7437 0.0061 0.0633 0.3797 **
## pedagogyCognitive 0.0132 0.0904 0.1461 0.8839 -0.1640 0.1904
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Technology Only (T) or Technology Plus (T+):
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0273 (SE = 0.0110)
## tau (square root of estimated tau^2 value): 0.1652
## I^2 (residual heterogeneity / unaccounted variability): 56.81%
## H^2 (unaccounted variability / sampling variability): 2.32
## R^2 (amount of heterogeneity accounted for): 22.56%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 126.1855, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 5.7610, p-val = 0.0164
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2969 0.0441 6.7239 <.0001 0.2103 0.3834 ***
## tech_plus1 -0.1625 0.0677 -2.4002 0.0164 -0.2953 -0.0298 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Type of technology (CAI, ER, Other):
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0359 (SE = 0.0130)
## tau (square root of estimated tau^2 value): 0.1894
## I^2 (residual heterogeneity / unaccounted variability): 70.24%
## H^2 (unaccounted variability / sampling variability): 3.36
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 209.4629, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.7222, p-val = 0.3954
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2390 0.0371 6.4388 <.0001 0.1663 0.3118 ***
## typetechOther -0.1358 0.1598 -0.8498 0.3954 -0.4490 0.1774
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gamification Discussed (yes/no):
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0364 (SE = 0.0133)
## tau (square root of estimated tau^2 value): 0.1908
## I^2 (residual heterogeneity / unaccounted variability): 68.12%
## H^2 (unaccounted variability / sampling variability): 3.14
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 198.8224, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5879, p-val = 0.4432
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2474 0.0415 5.9582 <.0001 0.1660 0.3288 ***
## gamification -0.0654 0.0852 -0.7668 0.4432 -0.2324 0.1017
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Adaptivity Discussed (yes/no):
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0370 (SE = 0.0134)
## tau (square root of estimated tau^2 value): 0.1924
## I^2 (residual heterogeneity / unaccounted variability): 68.40%
## H^2 (unaccounted variability / sampling variability): 3.16
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 192.8520, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1109, p-val = 0.7392
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2399 0.0433 5.5403 <.0001 0.1551 0.3248 ***
## adaptivity -0.0267 0.0801 -0.3330 0.7392 -0.1837 0.1304
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Feedback Discussed (yes/no):
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0343 (SE = 0.0128)
## tau (square root of estimated tau^2 value): 0.1852
## I^2 (residual heterogeneity / unaccounted variability): 67.94%
## H^2 (unaccounted variability / sampling variability): 3.12
## R^2 (amount of heterogeneity accounted for): 2.66%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 208.5025, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.9066, p-val = 0.1673
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1060 0.0974 1.0886 0.2763 -0.0848 0.2968
## feedback 0.1445 0.1046 1.3808 0.1673 -0.0606 0.3495
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Instructional Context:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0255 (SE = 0.0106)
## tau (square root of estimated tau^2 value): 0.1596
## I^2 (residual heterogeneity / unaccounted variability): 53.78%
## H^2 (unaccounted variability / sampling variability): 2.16
## R^2 (amount of heterogeneity accounted for): 27.69%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 117.2455, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 5.6659, p-val = 0.0173
##
## Model Results:
##
## estimate se zval pval
## intrcpt 0.2851 0.0410 6.9518 <.0001
## instructional_contextOther than individual -0.1632 0.0686 -2.3803 0.0173
## ci.lb ci.ub
## intrcpt 0.2047 0.3655 ***
## instructional_contextOther than individual -0.2977 -0.0288 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Teacher Training Discussed:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0360 (SE = 0.0132)
## tau (square root of estimated tau^2 value): 0.1897
## I^2 (residual heterogeneity / unaccounted variability): 67.47%
## H^2 (unaccounted variability / sampling variability): 3.07
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 200.4652, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4551, p-val = 0.4999
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1857 0.0773 2.4022 0.0163 0.0342 0.3371 *
## teach_tr 0.0590 0.0874 0.6746 0.4999 -0.1124 0.2304
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Design (RCT/QED):
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0360 (SE = 0.0131)
## tau (square root of estimated tau^2 value): 0.1897
## I^2 (residual heterogeneity / unaccounted variability): 69.00%
## H^2 (unaccounted variability / sampling variability): 3.23
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 194.2245, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1660, p-val = 0.6837
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2618 0.0821 3.1884 0.0014 0.1009 0.4227 **
## designRCT -0.0373 0.0914 -0.4075 0.6837 -0.2165 0.1420
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Control (BAU/ALT):
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0338 (SE = 0.0128)
## tau (square root of estimated tau^2 value): 0.1839
## I^2 (residual heterogeneity / unaccounted variability): 56.96%
## H^2 (unaccounted variability / sampling variability): 2.32
## R^2 (amount of heterogeneity accounted for): 4.01%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 131.2204, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.3862, p-val = 0.1224
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.0799 0.1040 0.7689 0.4419 -0.1238 0.2837
## controlBAU 0.1709 0.1106 1.5447 0.1224 -0.0459 0.3877
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Duration:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0313 (SE = 0.0121)
## tau (square root of estimated tau^2 value): 0.1769
## I^2 (residual heterogeneity / unaccounted variability): 55.48%
## H^2 (unaccounted variability / sampling variability): 2.25
## R^2 (amount of heterogeneity accounted for): 11.17%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 125.2354, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.3154, p-val = 0.1281
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2858 0.0506 5.6438 <.0001 0.1866 0.3851 ***
## avghrs -0.0019 0.0012 -1.5216 0.1281 -0.0043 0.0005
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Measure type (Custom distal, Custom proximal, Standardized):
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0221 (SE = 0.0108)
## tau (square root of estimated tau^2 value): 0.1487
## I^2 (residual heterogeneity / unaccounted variability): 40.50%
## H^2 (unaccounted variability / sampling variability): 1.68
## R^2 (amount of heterogeneity accounted for): 66.72%
##
## Test for Residual Heterogeneity:
## QE(df = 61) = 108.9371, p-val = 0.0002
##
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 34.2387, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1072 0.0471 2.2748 0.0229 0.0148 0.1996 *
## typeLRP 0.4204 0.0725 5.7974 <.0001 0.2783 0.5625 ***
## typeLRD 0.1061 0.0954 1.1123 0.2660 -0.0808 0.2930
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Location outside of the U.S.:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0696 (SE = 0.0216)
## tau (square root of estimated tau^2 value): 0.2638
## I^2 (residual heterogeneity / unaccounted variability): 68.94%
## H^2 (unaccounted variability / sampling variability): 3.22
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.4784, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0005, p-val = 0.9814
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2983 0.0685 4.3547 <.0001 0.1640 0.4325 ***
## outside_us 0.0021 0.0907 0.0234 0.9814 -0.1757 0.1799
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Students from low-income backgrounds included:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0678 (SE = 0.0212)
## tau (square root of estimated tau^2 value): 0.2604
## I^2 (residual heterogeneity / unaccounted variability): 68.36%
## H^2 (unaccounted variability / sampling variability): 3.16
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.5543, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4650, p-val = 0.4953
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2741 0.0575 4.7703 <.0001 0.1615 0.3868 ***
## low_income_included 0.0620 0.0909 0.6819 0.4953 -0.1162 0.2402
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Students learning a second or other language included:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0697 (SE = 0.0216)
## tau (square root of estimated tau^2 value): 0.2641
## I^2 (residual heterogeneity / unaccounted variability): 69.47%
## H^2 (unaccounted variability / sampling variability): 3.28
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.3842, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1988, p-val = 0.6557
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3116 0.0524 5.9466 <.0001 0.2089 0.4142 ***
## second_lang_included -0.0454 0.1019 -0.4459 0.6557 -0.2451 0.1542
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Students with disabilities included:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0669 (SE = 0.0210)
## tau (square root of estimated tau^2 value): 0.2586
## I^2 (residual heterogeneity / unaccounted variability): 68.72%
## H^2 (unaccounted variability / sampling variability): 3.20
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 156.5131, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5365, p-val = 0.4639
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2864 0.0474 6.0461 <.0001 0.1935 0.3792 ***
## stu_disability_included 0.0987 0.1347 0.7324 0.4639 -0.1654 0.3627
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Grade level K-2 vs. 3-5:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0694 (SE = 0.0215)
## tau (square root of estimated tau^2 value): 0.2634
## I^2 (residual heterogeneity / unaccounted variability): 68.87%
## H^2 (unaccounted variability / sampling variability): 3.21
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.2927, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1834, p-val = 0.6684
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2815 0.0614 4.5878 <.0001 0.1612 0.4017 ***
## gradeK-2 0.0385 0.0899 0.4283 0.6684 -0.1377 0.2148
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Pedagogical Orientation: Behavorial, Cognitive, Constructivist:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0399 (SE = 0.0151)
## tau (square root of estimated tau^2 value): 0.1997
## I^2 (residual heterogeneity / unaccounted variability): 56.13%
## H^2 (unaccounted variability / sampling variability): 2.28
## R^2 (amount of heterogeneity accounted for): 39.98%
##
## Test for Residual Heterogeneity:
## QE(df = 61) = 131.1784, p-val < .0001
##
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 15.4400, p-val = 0.0004
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1915 0.0602 3.1798 0.0015 0.0735 0.3096 **
## pedagogyCognitive 0.0835 0.0809 1.0319 0.3021 -0.0751 0.2422
## pedagogyConstructivist 0.5219 0.1332 3.9176 <.0001 0.2608 0.7830 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Technology Only (T) or Technology Plus (T+):
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0630 (SE = 0.0202)
## tau (square root of estimated tau^2 value): 0.2511
## I^2 (residual heterogeneity / unaccounted variability): 66.78%
## H^2 (unaccounted variability / sampling variability): 3.01
## R^2 (amount of heterogeneity accounted for): 5.13%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 153.7979, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.7076, p-val = 0.0300
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3818 0.0584 6.5342 <.0001 0.2673 0.4963 ***
## tech_plus1 -0.1901 0.0876 -2.1697 0.0300 -0.3618 -0.0184 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Type of technology (CAI, ER, Other):
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0344 (SE = 0.0137)
## tau (square root of estimated tau^2 value): 0.1855
## I^2 (residual heterogeneity / unaccounted variability): 53.17%
## H^2 (unaccounted variability / sampling variability): 2.14
## R^2 (amount of heterogeneity accounted for): 48.23%
##
## Test for Residual Heterogeneity:
## QE(df = 61) = 123.2826, p-val < .0001
##
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 21.7791, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2045 0.0428 4.7781 <.0001 0.1206 0.2883 ***
## typetechER 0.6574 0.1460 4.5013 <.0001 0.3712 0.9437 ***
## typetechOther 0.1696 0.0927 1.8291 0.0674 -0.0121 0.3514 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gamification Discussed (yes/no):
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0670 (SE = 0.0210)
## tau (square root of estimated tau^2 value): 0.2588
## I^2 (residual heterogeneity / unaccounted variability): 68.09%
## H^2 (unaccounted variability / sampling variability): 3.13
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 159.4316, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.9403, p-val = 0.0864
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3591 0.0567 6.3360 <.0001 0.2480 0.4702 ***
## gamification -0.1562 0.0911 -1.7147 0.0864 -0.3347 0.0223 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Adaptivity Discussed (yes/no):
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0634 (SE = 0.0203)
## tau (square root of estimated tau^2 value): 0.2518
## I^2 (residual heterogeneity / unaccounted variability): 66.52%
## H^2 (unaccounted variability / sampling variability): 2.99
## R^2 (amount of heterogeneity accounted for): 4.54%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 153.4762, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.8555, p-val = 0.0911
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3301 0.0477 6.9171 <.0001 0.2365 0.4236 ***
## adaptivity -0.1989 0.1177 -1.6898 0.0911 -0.4295 0.0318 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Feedback Discussed (yes/no):
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0599 (SE = 0.0194)
## tau (square root of estimated tau^2 value): 0.2447
## I^2 (residual heterogeneity / unaccounted variability): 65.58%
## H^2 (unaccounted variability / sampling variability): 2.91
## R^2 (amount of heterogeneity accounted for): 9.90%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 155.7679, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.9735, p-val = 0.0462
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.4102 0.0715 5.7351 <.0001 0.2700 0.5504 ***
## feedback -0.1781 0.0893 -1.9934 0.0462 -0.3532 -0.0030 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Instructional Context:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0670 (SE = 0.0210)
## tau (square root of estimated tau^2 value): 0.2588
## I^2 (residual heterogeneity / unaccounted variability): 68.51%
## H^2 (unaccounted variability / sampling variability): 3.18
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 158.6085, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.0349, p-val = 0.1537
##
## Model Results:
##
## estimate se zval pval
## intrcpt 0.3442 0.0547 6.2960 <.0001
## instructional_contextOther than individual -0.1335 0.0936 -1.4265 0.1537
## ci.lb ci.ub
## intrcpt 0.2370 0.4513 ***
## instructional_contextOther than individual -0.3168 0.0499
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Teacher Training Discussed:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0692 (SE = 0.0215)
## tau (square root of estimated tau^2 value): 0.2630
## I^2 (residual heterogeneity / unaccounted variability): 69.17%
## H^2 (unaccounted variability / sampling variability): 3.24
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 159.5572, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.6301, p-val = 0.2017
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3734 0.0733 5.0936 <.0001 0.2297 0.5171 ***
## teach_tr -0.1183 0.0926 -1.2768 0.2017 -0.2998 0.0633
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Design (RCT/QED):
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0694 (SE = 0.0215)
## tau (square root of estimated tau^2 value): 0.2635
## I^2 (residual heterogeneity / unaccounted variability): 68.78%
## H^2 (unaccounted variability / sampling variability): 3.20
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 159.4851, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1673, p-val = 0.6825
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2729 0.0789 3.4580 0.0005 0.1182 0.4276 ***
## designRCT 0.0392 0.0959 0.4091 0.6825 -0.1488 0.2273
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Control (BAU/ALT):
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0692 (SE = 0.0215)
## tau (square root of estimated tau^2 value): 0.2631
## I^2 (residual heterogeneity / unaccounted variability): 68.57%
## H^2 (unaccounted variability / sampling variability): 3.18
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 160.5183, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.2508, p-val = 0.6165
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2563 0.0971 2.6396 0.0083 0.0660 0.4465 **
## controlBAU 0.0548 0.1094 0.5008 0.6165 -0.1597 0.2693
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Duration:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0627 (SE = 0.0201)
## tau (square root of estimated tau^2 value): 0.2503
## I^2 (residual heterogeneity / unaccounted variability): 67.01%
## H^2 (unaccounted variability / sampling variability): 3.03
## R^2 (amount of heterogeneity accounted for): 5.69%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 153.6947, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.7262, p-val = 0.0987
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3663 0.0604 6.0672 <.0001 0.2480 0.4846 ***
## avghrs -0.0042 0.0025 -1.6511 0.0987 -0.0092 0.0008 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Measure type (Custom distal, Standardized):
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0249 (SE = 0.0991)
## tau (square root of estimated tau^2 value): 0.1577
## I^2 (residual heterogeneity / unaccounted variability): 17.51%
## H^2 (unaccounted variability / sampling variability): 1.21
## R^2 (amount of heterogeneity accounted for): 83.10%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 5.9540, p-val = 0.2026
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4549, p-val = 0.0348
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.0224 0.1864 5.4835 <.0001 0.6569 1.3878 ***
## typeWPSN -0.6793 0.3218 -2.1107 0.0348 -1.3101 -0.0485 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Location outside of the U.S.:
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.2015 (SE = 0.2308)
## tau (square root of estimated tau^2 value): 0.4489
## I^2 (residual heterogeneity / unaccounted variability): 62.71%
## H^2 (unaccounted variability / sampling variability): 2.68
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 10.0606, p-val = 0.0394
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3019, p-val = 0.5827
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.0894 0.5435 2.0044 0.0450 0.0241 2.1546 *
## outside_us -0.3301 0.6007 -0.5495 0.5827 -1.5074 0.8473
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Students from low-income backgrounds included:
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.2015 (SE = 0.2308)
## tau (square root of estimated tau^2 value): 0.4489
## I^2 (residual heterogeneity / unaccounted variability): 62.71%
## H^2 (unaccounted variability / sampling variability): 2.68
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 10.0606, p-val = 0.0394
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3019, p-val = 0.5827
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.7593 0.2558 2.9686 0.0030 0.2580 1.2607 **
## low_income_included 0.3301 0.6007 0.5495 0.5827 -0.8473 1.5074
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Students learning a second or other language included:
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.2015 (SE = 0.2308)
## tau (square root of estimated tau^2 value): 0.4489
## I^2 (residual heterogeneity / unaccounted variability): 62.71%
## H^2 (unaccounted variability / sampling variability): 2.68
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 10.0606, p-val = 0.0394
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3019, p-val = 0.5827
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.7593 0.2558 2.9686 0.0030 0.2580 1.2607 **
## second_lang_included 0.3301 0.6007 0.5495 0.5827 -0.8473 1.5074
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Students with disabilities included:
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value): 0.3836
## I^2 (total heterogeneity / total variability): 56.36%
## H^2 (total variability / sampling variability): 2.29
##
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.8144 0.2106 3.8678 0.0001 0.4017 1.2271 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Grade level K-2 vs. 3-5:
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0559 (SE = 0.1216)
## tau (square root of estimated tau^2 value): 0.2364
## I^2 (residual heterogeneity / unaccounted variability): 32.48%
## H^2 (unaccounted variability / sampling variability): 1.48
## R^2 (amount of heterogeneity accounted for): 62.02%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 6.4850, p-val = 0.1657
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.4652, p-val = 0.0627
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.1556 0.2546 4.5398 <.0001 0.6567 1.6545 ***
## gradeK-2 -0.6339 0.3406 -1.8615 0.0627 -1.3014 0.0335 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Pedagogical Orientation: Behavorial, Cognitive, Constructivist:
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.2459 (SE = 0.2667)
## tau (square root of estimated tau^2 value): 0.4959
## I^2 (residual heterogeneity / unaccounted variability): 65.91%
## H^2 (unaccounted variability / sampling variability): 2.93
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.2734, p-val = 0.0237
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0035, p-val = 0.9525
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.7919 0.5648 1.4021 0.1609 -0.3151 1.8989
## pedagogyCognitive 0.0374 0.6281 0.0595 0.9525 -1.1937 1.2685
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Technology Only (T) or Technology Plus (T+):
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value): 0.3836
## I^2 (total heterogeneity / total variability): 56.36%
## H^2 (total variability / sampling variability): 2.29
##
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.8144 0.2106 3.8678 0.0001 0.4017 1.2271 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Type of technology (CAI, ER, Other):
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.2459 (SE = 0.2667)
## tau (square root of estimated tau^2 value): 0.4959
## I^2 (residual heterogeneity / unaccounted variability): 65.91%
## H^2 (unaccounted variability / sampling variability): 2.93
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.2734, p-val = 0.0237
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0035, p-val = 0.9525
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.8293 0.2748 3.0177 0.0025 0.2907 1.3680 **
## typetechOther -0.0374 0.6281 -0.0595 0.9525 -1.2685 1.1937
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gamification Discussed (yes/no):
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0249 (SE = 0.0991)
## tau (square root of estimated tau^2 value): 0.1577
## I^2 (residual heterogeneity / unaccounted variability): 17.51%
## H^2 (unaccounted variability / sampling variability): 1.21
## R^2 (amount of heterogeneity accounted for): 83.10%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 5.9540, p-val = 0.2026
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4549, p-val = 0.0348
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.0224 0.1864 5.4835 <.0001 0.6569 1.3878 ***
## gamification -0.6793 0.3218 -2.1107 0.0348 -1.3101 -0.0485 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Adaptivity Discussed (yes/no):
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value): 0.3836
## I^2 (total heterogeneity / total variability): 56.36%
## H^2 (total variability / sampling variability): 2.29
##
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.8144 0.2106 3.8678 0.0001 0.4017 1.2271 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Feedback Discussed (yes/no):
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.2459 (SE = 0.2667)
## tau (square root of estimated tau^2 value): 0.4959
## I^2 (residual heterogeneity / unaccounted variability): 65.91%
## H^2 (unaccounted variability / sampling variability): 2.93
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.2734, p-val = 0.0237
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0035, p-val = 0.9525
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.7919 0.5648 1.4021 0.1609 -0.3151 1.8989
## feedback 0.0374 0.6281 0.0595 0.9525 -1.1937 1.2685
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Instructional Context:
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value): 0.3836
## I^2 (total heterogeneity / total variability): 56.36%
## H^2 (total variability / sampling variability): 2.29
##
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.8144 0.2106 3.8678 0.0001 0.4017 1.2271 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Teacher Training Discussed:
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0091 (SE = 0.0789)
## tau (square root of estimated tau^2 value): 0.0954
## I^2 (residual heterogeneity / unaccounted variability): 7.99%
## H^2 (unaccounted variability / sampling variability): 1.09
## R^2 (amount of heterogeneity accounted for): 93.81%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 4.0406, p-val = 0.4005
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.8981, p-val = 0.0086
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.9036 0.4472 4.2562 <.0001 1.0270 2.7802 ***
## teach_tr -1.2390 0.4717 -2.6264 0.0086 -2.1636 -0.3144 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Design (RCT/QED):
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0249 (SE = 0.0991)
## tau (square root of estimated tau^2 value): 0.1577
## I^2 (residual heterogeneity / unaccounted variability): 17.51%
## H^2 (unaccounted variability / sampling variability): 1.21
## R^2 (amount of heterogeneity accounted for): 83.10%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 5.9540, p-val = 0.2026
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4549, p-val = 0.0348
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3431 0.2623 1.3078 0.1909 -0.1711 0.8572
## designRCT 0.6793 0.3218 2.1107 0.0348 0.0485 1.3101 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Control (BAU/ALT):
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1472 (SE = 0.1675)
## tau (square root of estimated tau^2 value): 0.3836
## I^2 (total heterogeneity / total variability): 56.36%
## H^2 (total variability / sampling variability): 2.29
##
## Test for Heterogeneity:
## Q(df = 5) = 11.2738, p-val = 0.0462
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.8144 0.2106 3.8678 0.0001 0.4017 1.2271 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Duration:
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.2139 (SE = 0.2328)
## tau (square root of estimated tau^2 value): 0.4625
## I^2 (residual heterogeneity / unaccounted variability): 65.73%
## H^2 (unaccounted variability / sampling variability): 2.92
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.0571, p-val = 0.0259
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4211, p-val = 0.5164
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.5679 0.4546 1.2493 0.2116 -0.3231 1.4589
## avghrs 0.0096 0.0147 0.6489 0.5164 -0.0193 0.0384
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code-related
DRD vs DRP [No statistically significant difference]:
##
## Mixed-Effects Model (k = 41; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.2205 (SE = 0.0728)
## tau (square root of estimated tau^2 value): 0.4695
## I^2 (residual heterogeneity / unaccounted variability): 80.12%
## H^2 (unaccounted variability / sampling variability): 5.03
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 39) = 138.7581, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0683, p-val = 0.7938
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.4789 0.1082 4.4249 <.0001 0.2668 0.6911 ***
## typeDRP -0.0509 0.1949 -0.2613 0.7938 -0.4329 0.3311
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DRD vs DSN [Statistically significant difference of -0.2741, p = 0.0055]:
##
## Mixed-Effects Model (k = 74; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1263 (SE = 0.0336)
## tau (square root of estimated tau^2 value): 0.3554
## I^2 (residual heterogeneity / unaccounted variability): 76.00%
## H^2 (unaccounted variability / sampling variability): 4.17
## R^2 (amount of heterogeneity accounted for): 3.61%
##
## Test for Residual Heterogeneity:
## QE(df = 72) = 201.9290, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.5466, p-val = 0.0597
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.4589 0.0900 5.1014 <.0001 0.2826 0.6352 ***
## typeDSN -0.2107 0.1119 -1.8832 0.0597 -0.4299 0.0086 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
DSN vs DRP [No statistically significant difference]:
##
## Mixed-Effects Model (k = 57; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0465 (SE = 0.0189)
## tau (square root of estimated tau^2 value): 0.2156
## I^2 (residual heterogeneity / unaccounted variability): 56.41%
## H^2 (unaccounted variability / sampling variability): 2.29
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 55) = 111.9805, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.8076, p-val = 0.1788
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3802 0.0999 3.8056 0.0001 0.1844 0.5760 ***
## typeDSN -0.1496 0.1112 -1.3445 0.1788 -0.3676 0.0685
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Reading Comprehension
CRD vs CSN [Statistically significant difference of -0.1806, p = 0.0193]:
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0205 (SE = 0.0092)
## tau (square root of estimated tau^2 value): 0.1431
## I^2 (residual heterogeneity / unaccounted variability): 52.89%
## H^2 (unaccounted variability / sampling variability): 2.12
## R^2 (amount of heterogeneity accounted for): 41.89%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 126.0652, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 10.9205, p-val = 0.0010
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3698 0.0541 6.8336 <.0001 0.2637 0.4759 ***
## typeCSN -0.2184 0.0661 -3.3046 0.0010 -0.3480 -0.0889 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Language-focused
LRD vs LRP [No statistically significant difference]:
##
## Mixed-Effects Model (k = 36; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1049 (SE = 0.0408)
## tau (square root of estimated tau^2 value): 0.3238
## I^2 (residual heterogeneity / unaccounted variability): 72.14%
## H^2 (unaccounted variability / sampling variability): 3.59
## R^2 (amount of heterogeneity accounted for): 17.03%
##
## Test for Residual Heterogeneity:
## QE(df = 34) = 97.8376, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4927, p-val = 0.0340
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2305 0.1395 1.6526 0.0984 -0.0429 0.5038 .
## typeLRP 0.3419 0.1613 2.1196 0.0340 0.0257 0.6581 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LRD vs LSN [No statistically significant difference]:
##
## Mixed-Effects Model (k = 35; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0 (SE = 0.0041)
## tau (square root of estimated tau^2 value): 0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability): 1.00
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 33) = 23.5321, p-val = 0.8880
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.1974, p-val = 0.2738
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1811 0.0500 3.6229 0.0003 0.0831 0.2791 ***
## typeLSN -0.0635 0.0581 -1.0943 0.2738 -0.1773 0.0503
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSN vs LRP [Statistically significant difference of -0.4423, p < 0.0001]:
##
## Mixed-Effects Model (k = 57; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0231 (SE = 0.0121)
## tau (square root of estimated tau^2 value): 0.1521
## I^2 (residual heterogeneity / unaccounted variability): 40.16%
## H^2 (unaccounted variability / sampling variability): 1.67
## R^2 (amount of heterogeneity accounted for): 70.26%
##
## Test for Residual Heterogeneity:
## QE(df = 55) = 96.5044, p-val = 0.0005
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 33.1884, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.5288 0.0556 9.5176 <.0001 0.4199 0.6377 ***
## typeLSN -0.4218 0.0732 -5.7609 <.0001 -0.5652 -0.2783 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Writing
WPRD vs WPSN [Statistica;;y significant difference of -0.5852, p = 0.0294]:
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0249 (SE = 0.0991)
## tau (square root of estimated tau^2 value): 0.1577
## I^2 (residual heterogeneity / unaccounted variability): 17.51%
## H^2 (unaccounted variability / sampling variability): 1.21
## R^2 (amount of heterogeneity accounted for): 83.10%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 5.9540, p-val = 0.2026
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.4549, p-val = 0.0348
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.0224 0.1864 5.4835 <.0001 0.6569 1.3878 ***
## typeWPSN -0.6793 0.3218 -2.1107 0.0348 -1.3101 -0.0485 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code-related
##
## Mixed-Effects Model (k = 86; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1206 (SE = 0.0303)
## tau (square root of estimated tau^2 value): 0.3473
## I^2 (residual heterogeneity / unaccounted variability): 75.13%
## H^2 (unaccounted variability / sampling variability): 4.02
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 83) = 233.9699, p-val < .0001
##
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.5310, p-val = 0.0629
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2256 0.0881 2.5610 0.0104 0.0530 0.3983 *
## avghrs_categoriesMedium 0.0734 0.1153 0.6368 0.5242 -0.1525 0.2994
## avghrs_categoriesHigh 0.2952 0.1302 2.2671 0.0234 0.0400 0.5505 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Reading Comprehension
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0368 (SE = 0.0135)
## tau (square root of estimated tau^2 value): 0.1919
## I^2 (residual heterogeneity / unaccounted variability): 63.31%
## H^2 (unaccounted variability / sampling variability): 2.73
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 147.2687, p-val < .0001
##
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.1495, p-val = 0.9280
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2577 0.1157 2.2265 0.0260 0.0309 0.4846 *
## avghrs_categoriesMedium -0.0186 0.1260 -0.1478 0.8825 -0.2656 0.2284
## avghrs_categoriesHigh -0.0427 0.1303 -0.3273 0.7434 -0.2981 0.2128
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Language-focused
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0696 (SE = 0.0218)
## tau (square root of estimated tau^2 value): 0.2638
## I^2 (residual heterogeneity / unaccounted variability): 68.82%
## H^2 (unaccounted variability / sampling variability): 3.21
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 61) = 154.7279, p-val < .0001
##
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.1883, p-val = 0.5520
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3598 0.0713 5.0469 <.0001 0.2201 0.4996
## avghrs_categoriesMedium -0.1012 0.1024 -0.9878 0.3233 -0.3020 0.0996
## avghrs_categoriesHigh -0.0982 0.1175 -0.8351 0.4037 -0.3285 0.1322
##
## intrcpt ***
## avghrs_categoriesMedium
## avghrs_categoriesHigh
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Writing
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.3453 (SE = 0.3890)
## tau (square root of estimated tau^2 value): 0.5876
## I^2 (residual heterogeneity / unaccounted variability): 72.88%
## H^2 (unaccounted variability / sampling variability): 3.69
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 3) = 10.0455, p-val = 0.0182
##
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.2204, p-val = 0.8956
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.0894 0.6627 1.6437 0.1002 -0.2096 2.3883
## avghrs_categoriesMedium -0.3821 0.8170 -0.4678 0.6400 -1.9834 1.2191
## avghrs_categoriesHigh -0.2740 0.7750 -0.3536 0.7237 -1.7931 1.2450
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code-related
##
## Mixed-Effects Model (k = 86; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1226 (SE = 0.0305)
## tau (square root of estimated tau^2 value): 0.3502
## I^2 (residual heterogeneity / unaccounted variability): 75.40%
## H^2 (unaccounted variability / sampling variability): 4.07
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 84) = 233.9864, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.1755, p-val = 0.1402
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2694 0.0661 4.0765 <.0001 0.1399 0.3989 ***
## avghrs 0.0029 0.0019 1.4750 0.1402 -0.0009 0.0067
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Reading Comprehension
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0313 (SE = 0.0121)
## tau (square root of estimated tau^2 value): 0.1769
## I^2 (residual heterogeneity / unaccounted variability): 55.48%
## H^2 (unaccounted variability / sampling variability): 2.25
## R^2 (amount of heterogeneity accounted for): 11.17%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 125.2354, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.3154, p-val = 0.1281
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2858 0.0506 5.6438 <.0001 0.1866 0.3851 ***
## avghrs -0.0019 0.0012 -1.5216 0.1281 -0.0043 0.0005
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Language-focused
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0627 (SE = 0.0201)
## tau (square root of estimated tau^2 value): 0.2503
## I^2 (residual heterogeneity / unaccounted variability): 67.01%
## H^2 (unaccounted variability / sampling variability): 3.03
## R^2 (amount of heterogeneity accounted for): 5.69%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 153.6947, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.7262, p-val = 0.0987
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3663 0.0604 6.0672 <.0001 0.2480 0.4846 ***
## avghrs -0.0042 0.0025 -1.6511 0.0987 -0.0092 0.0008 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Writing
##
## Mixed-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.2139 (SE = 0.2328)
## tau (square root of estimated tau^2 value): 0.4625
## I^2 (residual heterogeneity / unaccounted variability): 65.73%
## H^2 (unaccounted variability / sampling variability): 2.92
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 11.0571, p-val = 0.0259
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4211, p-val = 0.5164
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.5679 0.4546 1.2493 0.2116 -0.3231 1.4589
## avghrs 0.0096 0.0147 0.6489 0.5164 -0.0193 0.0384
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code-related
Low vs Medium:
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0332 (SE = 0.0158)
## tau (square root of estimated tau^2 value): 0.1822
## I^2 (residual heterogeneity / unaccounted variability): 43.85%
## H^2 (unaccounted variability / sampling variability): 1.78
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 102.7765, p-val = 0.0009
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4273, p-val = 0.5133
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2176 0.0634 3.4307 0.0006 0.0933 0.3419 ***
## avghrs_categoriesMedium 0.0534 0.0816 0.6537 0.5133 -0.1066 0.2133
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Medium vs High:
##
## Mixed-Effects Model (k = 60; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1784 (SE = 0.0485)
## tau (square root of estimated tau^2 value): 0.4224
## I^2 (residual heterogeneity / unaccounted variability): 83.80%
## H^2 (unaccounted variability / sampling variability): 6.17
## R^2 (amount of heterogeneity accounted for): 0.81%
##
## Test for Residual Heterogeneity:
## QE(df = 58) = 203.2912, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.0709, p-val = 0.0797
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.5494 0.1101 4.9912 <.0001 0.3336 0.7651
## avghrs_categoriesMedium -0.2437 0.1391 -1.7524 0.0797 -0.5162 0.0289
##
## intrcpt ***
## avghrs_categoriesMedium .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
High vs Low:
##
## Mixed-Effects Model (k = 48; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1692 (SE = 0.0515)
## tau (square root of estimated tau^2 value): 0.4113
## I^2 (residual heterogeneity / unaccounted variability): 78.91%
## H^2 (unaccounted variability / sampling variability): 4.74
## R^2 (amount of heterogeneity accounted for): 3.86%
##
## Test for Residual Heterogeneity:
## QE(df = 46) = 161.8721, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.7456, p-val = 0.0294
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2271 0.0987 2.3014 0.0214 0.0337 0.4205 *
## avghrs_categoriesHigh 0.3186 0.1463 2.1784 0.0294 0.0320 0.6053 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Reading Comprehension
Low vs Medium:
##
## Mixed-Effects Model (k = 42; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0359 (SE = 0.0169)
## tau (square root of estimated tau^2 value): 0.1894
## I^2 (residual heterogeneity / unaccounted variability): 56.36%
## H^2 (unaccounted variability / sampling variability): 2.29
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 40) = 85.9264, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0226, p-val = 0.8806
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2578 0.1152 2.2371 0.0253 0.0319 0.4837 *
## avghrs_categoriesMedium -0.0188 0.1254 -0.1502 0.8806 -0.2646 0.2270
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Medium vs High:
##
## Mixed-Effects Model (k = 55; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0410 (SE = 0.0149)
## tau (square root of estimated tau^2 value): 0.2024
## I^2 (residual heterogeneity / unaccounted variability): 68.43%
## H^2 (unaccounted variability / sampling variability): 3.17
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 53) = 141.9545, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0703, p-val = 0.7909
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2182 0.0619 3.5277 0.0004 0.0970 0.3395 ***
## avghrs_categoriesMedium 0.0213 0.0805 0.2651 0.7909 -0.1364 0.1791
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
High vs Low:
##
## Mixed-Effects Model (k = 33; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0316 (SE = 0.0186)
## tau (square root of estimated tau^2 value): 0.1779
## I^2 (residual heterogeneity / unaccounted variability): 61.51%
## H^2 (unaccounted variability / sampling variability): 2.60
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 31) = 66.6566, p-val = 0.0002
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1423, p-val = 0.7060
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2582 0.1129 2.2865 0.0222 0.0369 0.4796 *
## avghrs_categoriesHigh -0.0478 0.1266 -0.3772 0.7060 -0.2960 0.2004
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Language-focused
Low vs Medium:
##
## Mixed-Effects Model (k = 51; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0742 (SE = 0.0261)
## tau (square root of estimated tau^2 value): 0.2725
## I^2 (residual heterogeneity / unaccounted variability): 69.40%
## H^2 (unaccounted variability / sampling variability): 3.27
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 49) = 126.3989, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.9536, p-val = 0.3288
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3612 0.0726 4.9744 <.0001 0.2189 0.5036
## avghrs_categoriesMedium -0.1021 0.1045 -0.9765 0.3288 -0.3070 0.1028
##
## intrcpt ***
## avghrs_categoriesMedium
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Medium vs High:
##
## Mixed-Effects Model (k = 35; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0488 (SE = 0.0211)
## tau (square root of estimated tau^2 value): 0.2209
## I^2 (residual heterogeneity / unaccounted variability): 68.23%
## H^2 (unaccounted variability / sampling variability): 3.15
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 33) = 81.1598, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0054, p-val = 0.9417
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2481 0.0833 2.9794 0.0029 0.0849 0.4114 **
## avghrs_categoriesMedium 0.0078 0.1059 0.0732 0.9417 -0.1998 0.2153
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
High vs Low:
##
## Mixed-Effects Model (k = 42; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0870 (SE = 0.0328)
## tau (square root of estimated tau^2 value): 0.2950
## I^2 (residual heterogeneity / unaccounted variability): 66.69%
## H^2 (unaccounted variability / sampling variability): 3.00
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 40) = 101.8970, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.5608, p-val = 0.4539
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3647 0.0761 4.7941 <.0001 0.2156 0.5138 ***
## avghrs_categoriesHigh -0.0947 0.1264 -0.7489 0.4539 -0.3424 0.1531
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Writing
Low vs Medium:
##
## Mixed-Effects Model (k = 3; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0 (SE = 0.1624)
## tau (square root of estimated tau^2 value): 0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability): 1.00
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 1) = 0.1510, p-val = 0.6975
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8852, p-val = 0.3468
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.0894 0.3065 3.5546 0.0004 0.4887 1.6901
## avghrs_categoriesMedium -0.3567 0.3792 -0.9408 0.3468 -1.0999 0.3864
##
## intrcpt ***
## avghrs_categoriesMedium
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Medium vs High:
##
## Mixed-Effects Model (k = 5; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.3453 (SE = 0.3890)
## tau (square root of estimated tau^2 value): 0.5876
## I^2 (residual heterogeneity / unaccounted variability): 72.88%
## H^2 (unaccounted variability / sampling variability): 3.69
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 3) = 10.0455, p-val = 0.0182
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0300, p-val = 0.8625
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.8153 0.4018 2.0291 0.0424 0.0278 1.6029 *
## avghrs_categoriesMedium -0.1081 0.6242 -0.1732 0.8625 -1.3315 1.1154
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
High vs Low:
##
## Mixed-Effects Model (k = 4; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.6176 (SE = 0.7586)
## tau (square root of estimated tau^2 value): 0.7859
## I^2 (residual heterogeneity / unaccounted variability): 81.89%
## H^2 (unaccounted variability / sampling variability): 5.52
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 2) = 9.8944, p-val = 0.0071
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0679, p-val = 0.7944
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.0894 0.8435 1.2915 0.1965 -0.5639 2.7427
## avghrs_categoriesHigh -0.2559 0.9819 -0.2606 0.7944 -2.1805 1.6686
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code-related
| Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
|---|---|---|---|---|---|
| intercept | 0.247*** | 0.054 | 0.057 | 0.008 | -0.081 |
| (0.065) | (0.103) | (0.108) | (0.139) | (0.144) | |
| typeDRP | 0.165 | 0.296* | 0.198 | 0.206 | 0.251 |
| (0.145) | (0.148) | (0.163) | (0.165) | (0.164) | |
| typeDRD | 0.209 | 0.298** | 0.256* | 0.255* | 0.267* |
| (0.109) | (0.111) | (0.112) | (0.113) | (0.112) | |
| avghrs_categoriesMedium | 0.093 | 0.167 | 0.177 | 0.196 | |
| (0.112) | (0.120) | (0.122) | (0.121) | ||
| avghrs_categoriesHigh | 0.407** | 0.508*** | 0.508*** | 0.453** | |
| (0.133) | (0.143) | (0.145) | (0.145) | ||
| pedagogyCognitive | -0.176 | -0.178 | -0.168 | ||
| (0.117) | (0.118) | (0.116) | |||
| pedagogyConstructivist | 0.212 | 0.197 | 0.180 | ||
| (0.222) | (0.226) | (0.223) | |||
| gradeK-2 | 0.062 | 0.087 | |||
| (0.112) | (0.111) | ||||
| low_income_included | 0.245* | ||||
| (0.112) | |||||
| i.squared | 73.995 | 71.881 | 70.473 | 70.557 | 69.267 |
| h.squared | 3.845 | 3.556 | 3.387 | 3.396 | 3.254 |
| tau.squared | 0.117 | 0.110 | 0.105 | 0.108 | 0.104 |
| tau.squared.se | 0.030 | 0.029 | 0.028 | 0.029 | 0.029 |
| cochran.qe | 226.334 | 221.434 | 208.781 | 208.752 | 206.555 |
| p.value.cochran.qe | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| cochran.qm | 4.087 | 14.308 | 17.734 | 17.847 | 22.887 |
| p.value.cochran.qm | 0.130 | 0.006 | 0.007 | 0.013 | 0.004 |
| DF Resid. | 83 | 81 | 79 | 78 | 77 |
| Log Likelihood | -57.530 | -52.281 | -50.503 | -50.250 | -47.774 |
| Deviance | 115.060 | 104.562 | 101.005 | 100.500 | 95.547 |
| AIC | 123.060 | 116.562 | 117.005 | 118.500 | 115.547 |
| BIC | 132.736 | 130.929 | 135.961 | 139.711 | 138.985 |
| AICc | 123.573 | 117.697 | 119.062 | 121.147 | 118.880 |
| nobs | 86 | 86 | 86 | 86 | 86 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | |||||
New table [Dec 2023]:
| Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
|---|---|---|---|---|---|---|
| intercept | 0.247*** | 0.054 | 0.057 | 0.041 | -0.010 | -0.089 |
| (0.065) | (0.103) | (0.108) | (0.110) | (0.142) | (0.146) | |
| typeDRP | 0.165 | 0.296* | 0.198 | 0.214 | 0.223 | 0.260 |
| (0.145) | (0.148) | (0.163) | (0.164) | (0.166) | (0.166) | |
| typeDRD | 0.209 | 0.298** | 0.256* | 0.258* | 0.257* | 0.268* |
| (0.109) | (0.111) | (0.112) | (0.111) | (0.113) | (0.112) | |
| avghrs_categoriesMedium | 0.093 | 0.167 | 0.167 | 0.177 | 0.196 | |
| (0.112) | (0.120) | (0.119) | (0.122) | (0.121) | ||
| avghrs_categoriesHigh | 0.407** | 0.508*** | 0.485*** | 0.484** | 0.442** | |
| (0.133) | (0.143) | (0.147) | (0.149) | (0.149) | ||
| pedagogyCognitive | -0.176 | -0.230 | -0.233 | -0.199 | ||
| (0.117) | (0.143) | (0.145) | (0.145) | |||
| pedagogyConstructivist | 0.212 | 0.200 | 0.184 | 0.172 | ||
| (0.222) | (0.222) | (0.226) | (0.225) | |||
| tech_plus1 | 0.087 | 0.088 | 0.050 | |||
| (0.136) | (0.137) | (0.138) | ||||
| gradeK-2 | 0.064 | 0.088 | ||||
| (0.111) | (0.111) | |||||
| low_income_included | 0.240* | |||||
| (0.113) | ||||||
| i.squared | 73.995 | 71.881 | 70.473 | 70.105 | 70.228 | 69.281 |
| h.squared | 3.845 | 3.556 | 3.387 | 3.345 | 3.359 | 3.255 |
| tau.squared | 0.117 | 0.110 | 0.105 | 0.103 | 0.106 | 0.104 |
| tau.squared.se | 0.030 | 0.029 | 0.028 | 0.028 | 0.029 | 0.029 |
| cochran.qe | 226.334 | 221.434 | 208.781 | 200.961 | 200.956 | 199.287 |
| p.value.cochran.qe | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| cochran.qm | 4.087 | 14.308 | 17.734 | 18.252 | 18.351 | 22.991 |
| p.value.cochran.qm | 0.130 | 0.006 | 0.007 | 0.011 | 0.019 | 0.006 |
| DF Resid. | 83 | 81 | 79 | 78 | 77 | 76 |
| Log Likelihood | -57.530 | -52.281 | -50.503 | -50.132 | -49.876 | -47.536 |
| Deviance | 115.060 | 104.562 | 101.005 | 100.264 | 99.752 | 95.072 |
| AIC | 123.060 | 116.562 | 117.005 | 118.264 | 119.752 | 117.072 |
| BIC | 132.736 | 130.929 | 135.961 | 139.474 | 143.190 | 142.710 |
| AICc | 123.573 | 117.697 | 119.062 | 120.911 | 123.085 | 121.197 |
| nobs | 86 | 86 | 86 | 86 | 86 | 86 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | ||||||
Reading Comprehension
| Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
|---|---|---|---|---|---|
| intercept | 0.151*** | 0.142 | 0.152 | 0.179 | 0.150 |
| (0.038) | (0.114) | (0.117) | (0.120) | (0.130) | |
| typeCRD | 0.218*** | 0.228** | 0.233** | 0.229** | 0.229** |
| (0.066) | (0.072) | (0.073) | (0.072) | (0.073) | |
| avghrs_categoriesMedium | -0.005 | 0.010 | 0.011 | 0.013 | |
| (0.116) | (0.123) | (0.122) | (0.123) | ||
| avghrs_categoriesHigh | 0.029 | 0.051 | 0.075 | 0.071 | |
| (0.123) | (0.135) | (0.137) | (0.138) | ||
| pedagogyCognitive | -0.035 | -0.056 | -0.057 | ||
| (0.090) | (0.092) | (0.093) | |||
| gradeK-2 | -0.066 | -0.052 | |||
| (0.076) | (0.080) | ||||
| low_income_included | 0.041 | ||||
| (0.070) | |||||
| i.squared | 52.895 | 51.306 | 50.820 | 46.403 | 46.695 |
| h.squared | 2.123 | 2.054 | 2.033 | 1.866 | 1.876 |
| tau.squared | 0.020 | 0.023 | 0.023 | 0.021 | 0.023 |
| tau.squared.se | 0.009 | 0.010 | 0.010 | 0.010 | 0.011 |
| cochran.qe | 126.065 | 119.472 | 114.995 | 105.008 | 105.002 |
| p.value.cochran.qe | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| cochran.qm | 10.921 | 10.376 | 10.577 | 11.765 | 11.680 |
| p.value.cochran.qm | 0.001 | 0.016 | 0.032 | 0.038 | 0.070 |
| DF Resid. | 63 | 61 | 60 | 59 | 58 |
| Log Likelihood | -14.437 | -14.996 | -15.158 | -15.191 | -15.449 |
| Deviance | 28.873 | 29.993 | 30.316 | 30.383 | 30.898 |
| AIC | 34.873 | 39.993 | 42.316 | 44.383 | 46.898 |
| BIC | 41.303 | 50.547 | 54.882 | 58.925 | 63.382 |
| AICc | 35.280 | 41.084 | 43.901 | 46.579 | 49.837 |
| nobs | 65 | 65 | 65 | 65 | 65 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | |||||
New table [Dec 2023]:
| Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
|---|---|---|---|---|---|---|
| intercept | 0.151*** | 0.142 | 0.152 | 0.235 | 0.238 | 0.208 |
| (0.038) | (0.114) | (0.117) | (0.121) | (0.123) | (0.133) | |
| typeCRD | 0.218*** | 0.228** | 0.233** | 0.204** | 0.203** | 0.203** |
| (0.066) | (0.072) | (0.073) | (0.072) | (0.073) | (0.074) | |
| avghrs_categoriesMedium | -0.005 | 0.010 | -0.010 | -0.010 | -0.008 | |
| (0.116) | (0.123) | (0.120) | (0.121) | (0.122) | ||
| avghrs_categoriesHigh | 0.029 | 0.051 | 0.101 | 0.105 | 0.101 | |
| (0.123) | (0.135) | (0.134) | (0.136) | (0.137) | ||
| pedagogyCognitive | -0.035 | -0.058 | -0.060 | -0.061 | ||
| (0.090) | (0.088) | (0.090) | (0.091) | |||
| tech_plus1 | -0.152* | -0.146 | -0.148 | |||
| (0.074) | (0.079) | (0.080) | ||||
| gradeK-2 | -0.017 | -0.002 | ||||
| (0.080) | (0.084) | |||||
| low_income_included | 0.043 | |||||
| (0.069) | ||||||
| i.squared | 52.895 | 51.306 | 50.820 | 45.677 | 44.660 | 44.810 |
| h.squared | 2.123 | 2.054 | 2.033 | 1.841 | 1.807 | 1.812 |
| tau.squared | 0.020 | 0.023 | 0.023 | 0.019 | 0.020 | 0.021 |
| tau.squared.se | 0.009 | 0.010 | 0.010 | 0.009 | 0.010 | 0.010 |
| cochran.qe | 126.065 | 119.472 | 114.995 | 102.880 | 99.902 | 99.851 |
| p.value.cochran.qe | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
| cochran.qm | 10.921 | 10.376 | 10.577 | 16.060 | 15.677 | 15.630 |
| p.value.cochran.qm | 0.001 | 0.016 | 0.032 | 0.007 | 0.016 | 0.029 |
| DF Resid. | 63 | 61 | 60 | 59 | 58 | 57 |
| Log Likelihood | -14.437 | -14.996 | -15.158 | -13.460 | -13.818 | -14.068 |
| Deviance | 28.873 | 29.993 | 30.316 | 26.920 | 27.636 | 28.136 |
| AIC | 34.873 | 39.993 | 42.316 | 40.920 | 43.636 | 46.136 |
| BIC | 41.303 | 50.547 | 54.882 | 55.463 | 60.120 | 64.524 |
| AICc | 35.280 | 41.084 | 43.901 | 43.116 | 46.575 | 49.966 |
| nobs | 65 | 65 | 65 | 65 | 65 | 65 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | ||||||
Language-focused
| Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
|---|---|---|---|---|---|
| intercept | 0.107* | -0.098 | -0.207* | -0.214* | -0.253* |
| (0.047) | (0.100) | (0.092) | (0.095) | (0.108) | |
| typeLRP | 0.420*** | 0.563*** | 0.485*** | 0.492*** | 0.504*** |
| (0.073) | (0.095) | (0.079) | (0.081) | (0.082) | |
| typeLRD | 0.106 | 0.235* | 0.200* | 0.206* | 0.219* |
| (0.095) | (0.113) | (0.090) | (0.093) | (0.095) | |
| avghrs_categoriesMedium | 0.186* | 0.256** | 0.258** | 0.266** | |
| (0.092) | (0.080) | (0.086) | (0.087) | ||
| avghrs_categoriesHigh | 0.252* | 0.249* | 0.256* | 0.270* | |
| (0.114) | (0.103) | (0.106) | (0.108) | ||
| pedagogyCognitive | 0.121 | 0.120 | 0.119 | ||
| (0.065) | (0.067) | (0.067) | |||
| pedagogyConstructivist | 0.476*** | 0.474*** | 0.456*** | ||
| (0.115) | (0.119) | (0.121) | |||
| gradeK-2 | 0.007 | 0.026 | |||
| (0.061) | (0.066) | ||||
| low_income_included | 0.049 | ||||
| (0.066) | |||||
| i.squared | 40.504 | 42.082 | 20.601 | 22.456 | 23.126 |
| h.squared | 1.681 | 1.727 | 1.259 | 1.290 | 1.301 |
| tau.squared | 0.022 | 0.025 | 0.009 | 0.011 | 0.011 |
| tau.squared.se | 0.011 | 0.012 | 0.008 | 0.008 | 0.009 |
| cochran.qe | 108.937 | 106.272 | 82.487 | 82.314 | 81.718 |
| p.value.cochran.qe | 0.000 | 0.000 | 0.015 | 0.013 | 0.011 |
| cochran.qm | 34.239 | 38.572 | 64.494 | 63.008 | 62.986 |
| p.value.cochran.qm | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| DF Resid. | 61 | 59 | 57 | 56 | 55 |
| Log Likelihood | -21.301 | -19.345 | -12.522 | -13.083 | -13.297 |
| Deviance | 42.603 | 38.689 | 25.044 | 26.165 | 26.595 |
| AIC | 50.603 | 50.689 | 41.044 | 44.165 | 46.595 |
| BIC | 59.046 | 63.155 | 57.388 | 62.393 | 66.668 |
| AICc | 51.317 | 52.305 | 44.044 | 48.078 | 51.595 |
| nobs | 64 | 64 | 64 | 64 | 64 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | |||||
New table [Dec 2023]:
| Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
|---|---|---|---|---|---|---|
| intercept | 0.107* | -0.098 | -0.207* | -0.191 | -0.199 | -0.238* |
| (0.047) | (0.100) | (0.092) | (0.102) | (0.105) | (0.114) | |
| typeLRP | 0.420*** | 0.563*** | 0.485*** | 0.481*** | 0.488*** | 0.496*** |
| (0.073) | (0.095) | (0.079) | (0.084) | (0.086) | (0.087) | |
| typeLRD | 0.106 | 0.235* | 0.200* | 0.195* | 0.200* | 0.211* |
| (0.095) | (0.113) | (0.090) | (0.095) | (0.099) | (0.100) | |
| avghrs_categoriesMedium | 0.186* | 0.256** | 0.256** | 0.254** | 0.260** | |
| (0.092) | (0.080) | (0.083) | (0.089) | (0.090) | ||
| avghrs_categoriesHigh | 0.252* | 0.249* | 0.249* | 0.254* | 0.266* | |
| (0.114) | (0.103) | (0.107) | (0.110) | (0.112) | ||
| pedagogyCognitive | 0.121 | 0.129 | 0.131 | 0.133 | ||
| (0.065) | (0.069) | (0.071) | (0.072) | |||
| pedagogyConstructivist | 0.476*** | 0.468*** | 0.461*** | 0.435*** | ||
| (0.115) | (0.118) | (0.122) | (0.126) | |||
| tech_plus1 | -0.036 | -0.041 | -0.057 | |||
| (0.064) | (0.067) | (0.070) | ||||
| gradeK-2 | 0.017 | 0.043 | ||||
| (0.063) | (0.070) | |||||
| low_income_included | 0.063 | |||||
| (0.070) | ||||||
| i.squared | 40.504 | 42.082 | 20.601 | 22.651 | 24.933 | 25.467 |
| h.squared | 1.681 | 1.727 | 1.259 | 1.293 | 1.332 | 1.342 |
| tau.squared | 0.022 | 0.025 | 0.009 | 0.011 | 0.013 | 0.013 |
| tau.squared.se | 0.011 | 0.012 | 0.008 | 0.008 | 0.009 | 0.010 |
| cochran.qe | 108.937 | 106.272 | 82.487 | 82.392 | 82.229 | 81.432 |
| p.value.cochran.qe | 0.000 | 0.000 | 0.015 | 0.012 | 0.010 | 0.009 |
| cochran.qm | 34.239 | 38.572 | 64.494 | 63.177 | 61.391 | 61.737 |
| p.value.cochran.qm | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| DF Resid. | 61 | 59 | 57 | 56 | 55 | 54 |
| Log Likelihood | -21.301 | -19.345 | -12.522 | -12.948 | -13.466 | -13.527 |
| Deviance | 42.603 | 38.689 | 25.044 | 25.896 | 26.931 | 27.053 |
| AIC | 50.603 | 50.689 | 41.044 | 43.896 | 46.931 | 49.053 |
| BIC | 59.046 | 63.155 | 57.388 | 62.124 | 67.005 | 70.932 |
| AICc | 51.317 | 52.305 | 44.044 | 47.809 | 51.931 | 55.339 |
| nobs | 64 | 64 | 64 | 64 | 64 | 64 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | ||||||
Code-related
Pedagogical Orientation: Behavorial vs Cognitive
##
## Mixed-Effects Model (k = 80; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1217 (SE = 0.0314)
## tau (square root of estimated tau^2 value): 0.3488
## I^2 (residual heterogeneity / unaccounted variability): 76.14%
## H^2 (unaccounted variability / sampling variability): 4.19
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 78) = 213.1435, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6764, p-val = 0.4108
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3515 0.0608 5.7827 <.0001 0.2323 0.4706 ***
## pedagogyCognitive -0.0909 0.1106 -0.8224 0.4108 -0.3077 0.1258
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Pedagogical Orientation: Behavorial vs Constructivist
##
## Mixed-Effects Model (k = 66; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1437 (SE = 0.0415)
## tau (square root of estimated tau^2 value): 0.3791
## I^2 (residual heterogeneity / unaccounted variability): 72.25%
## H^2 (unaccounted variability / sampling variability): 3.60
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 64) = 169.5401, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3271, p-val = 0.5674
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3559 0.0640 5.5573 <.0001 0.2304 0.4814 ***
## pedagogyConstructivist 0.1193 0.2086 0.5719 0.5674 -0.2895 0.5280
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Pedagogical Orientation: Cognitive vs Constructivist
##
## Mixed-Effects Model (k = 26; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0674 (SE = 0.0318)
## tau (square root of estimated tau^2 value): 0.2596
## I^2 (residual heterogeneity / unaccounted variability): 73.96%
## H^2 (unaccounted variability / sampling variability): 3.84
## R^2 (amount of heterogeneity accounted for): 12.69%
##
## Test for Residual Heterogeneity:
## QE(df = 24) = 64.8721, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.7923, p-val = 0.1807
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.4807 0.1601 3.0025 0.0027 0.1669 0.7945 **
## pedagogyCognitive -0.2363 0.1765 -1.3388 0.1807 -0.5823 0.1097
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Language-focused
Pedagogical Orientation: Behavorial vs Cognitive
##
## Mixed-Effects Model (k = 56; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0314 (SE = 0.0135)
## tau (square root of estimated tau^2 value): 0.1773
## I^2 (residual heterogeneity / unaccounted variability): 51.85%
## H^2 (unaccounted variability / sampling variability): 2.08
## R^2 (amount of heterogeneity accounted for): 3.54%
##
## Test for Residual Heterogeneity:
## QE(df = 54) = 106.6570, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.2482, p-val = 0.2639
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1876 0.0561 3.3415 0.0008 0.0776 0.2976 ***
## pedagogyCognitive 0.0847 0.0758 1.1172 0.2639 -0.0639 0.2333
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Pedagogical Orientation: Behavorial vs Constructivist
##
## Mixed-Effects Model (k = 33; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0060 (SE = 0.0074)
## tau (square root of estimated tau^2 value): 0.0771
## I^2 (residual heterogeneity / unaccounted variability): 17.80%
## H^2 (unaccounted variability / sampling variability): 1.22
## R^2 (amount of heterogeneity accounted for): 91.81%
##
## Test for Residual Heterogeneity:
## QE(df = 31) = 54.9354, p-val = 0.0051
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 25.2766, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1757 0.0381 4.6085 <.0001 0.1010 0.2504 ***
## pedagogyConstructivist 0.5080 0.1010 5.0276 <.0001 0.3100 0.7061 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Pedagogical Orientation: Cognitive vs Constructivist
##
## Mixed-Effects Model (k = 39; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0815 (SE = 0.0316)
## tau (square root of estimated tau^2 value): 0.2854
## I^2 (residual heterogeneity / unaccounted variability): 67.30%
## H^2 (unaccounted variability / sampling variability): 3.06
## R^2 (amount of heterogeneity accounted for): 25.43%
##
## Test for Residual Heterogeneity:
## QE(df = 37) = 100.7645, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 8.3456, p-val = 0.0039
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.7343 0.1418 5.1796 <.0001 0.4565 1.0122 ***
## pedagogyCognitive -0.4526 0.1567 -2.8889 0.0039 -0.7596 -0.1455 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code-related
Tech type: CAI vs ER
##
## Mixed-Effects Model (k = 84; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1208 (SE = 0.0302)
## tau (square root of estimated tau^2 value): 0.3476
## I^2 (residual heterogeneity / unaccounted variability): 76.44%
## H^2 (unaccounted variability / sampling variability): 4.24
## R^2 (amount of heterogeneity accounted for): 0.14%
##
## Test for Residual Heterogeneity:
## QE(df = 82) = 228.0506, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6217, p-val = 0.4304
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3245 0.0508 6.3897 <.0001 0.2250 0.4240 ***
## typetechER 0.1592 0.2019 0.7885 0.4304 -0.2365 0.5549
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Tech type: CAI vs Other
##
## Mixed-Effects Model (k = 81; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1203 (SE = 0.0308)
## tau (square root of estimated tau^2 value): 0.3469
## I^2 (residual heterogeneity / unaccounted variability): 76.57%
## H^2 (unaccounted variability / sampling variability): 4.27
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 79) = 217.5073, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0051, p-val = 0.9433
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3244 0.0507 6.3961 <.0001 0.2250 0.4238 ***
## typetechOther -0.0355 0.4997 -0.0711 0.9433 -1.0148 0.9438
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Tech type: ER vs Other
##
## Mixed-Effects Model (k = 7; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0977 (SE = 0.1164)
## tau (square root of estimated tau^2 value): 0.3126
## I^2 (residual heterogeneity / unaccounted variability): 54.73%
## H^2 (unaccounted variability / sampling variability): 2.21
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 5) = 10.6592, p-val = 0.0586
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1422, p-val = 0.7061
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2891 0.4855 0.5955 0.5515 -0.6625 1.2408
## typetechER 0.1957 0.5189 0.3771 0.7061 -0.8213 1.2127
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Language focused
Tech type: CAI vs ER
##
## Mixed-Effects Model (k = 50; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0281 (SE = 0.0132)
## tau (square root of estimated tau^2 value): 0.1677
## I^2 (residual heterogeneity / unaccounted variability): 50.76%
## H^2 (unaccounted variability / sampling variability): 2.03
## R^2 (amount of heterogeneity accounted for): 55.84%
##
## Test for Residual Heterogeneity:
## QE(df = 48) = 94.7378, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 21.4966, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2023 0.0405 4.9961 <.0001 0.1230 0.2817 ***
## typetechER 0.6544 0.1411 4.6364 <.0001 0.3778 0.9310 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Tech type: CAI vs Other
##
## Mixed-Effects Model (k = 58; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0284 (SE = 0.0124)
## tau (square root of estimated tau^2 value): 0.1686
## I^2 (residual heterogeneity / unaccounted variability): 49.76%
## H^2 (unaccounted variability / sampling variability): 1.99
## R^2 (amount of heterogeneity accounted for): 17.34%
##
## Test for Residual Heterogeneity:
## QE(df = 56) = 106.7119, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.6617, p-val = 0.0557
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2024 0.0406 4.9845 <.0001 0.1228 0.2820 ***
## typetechOther 0.1700 0.0889 1.9136 0.0557 -0.0041 0.3442 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Tech type: ER vs Other
##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1011 (SE = 0.0566)
## tau (square root of estimated tau^2 value): 0.3180
## I^2 (residual heterogeneity / unaccounted variability): 64.03%
## H^2 (unaccounted variability / sampling variability): 2.78
## R^2 (amount of heterogeneity accounted for): 33.15%
##
## Test for Residual Heterogeneity:
## QE(df = 18) = 45.1155, p-val = 0.0004
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.1142, p-val = 0.0134
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3850 0.1108 3.4754 0.0005 0.1679 0.6022 ***
## typetechER 0.5196 0.2101 2.4727 0.0134 0.1077 0.9315 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Reading Comprehension
Tech type: CAI vs ER
##
## Random-Effects Model (k = 60; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0371 (SE = 0.0135)
## tau (square root of estimated tau^2 value): 0.1925
## I^2 (total heterogeneity / total variability): 72.01%
## H^2 (total variability / sampling variability): 3.57
##
## Test for Heterogeneity:
## Q(df = 59) = 206.1196, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2396 0.0375 6.3921 <.0001 0.1661 0.3130 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Tech type: CAI vs Other
##
## Mixed-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0359 (SE = 0.0130)
## tau (square root of estimated tau^2 value): 0.1894
## I^2 (residual heterogeneity / unaccounted variability): 70.24%
## H^2 (unaccounted variability / sampling variability): 3.36
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 63) = 209.4629, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.7222, p-val = 0.3954
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2390 0.0371 6.4388 <.0001 0.1663 0.3118 ***
## typetechOther -0.1358 0.1598 -0.8498 0.3954 -0.4490 0.1774
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Tech type: ER vs Other
##
## Random-Effects Model (k = 5; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0554)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 4) = 3.3433, p-val = 0.5021
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0993 0.1268 0.7832 0.4335 -0.1493 0.3479
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code-related:
Reading Comprehension:
Language-focused:
Writing:
Code-related:
##
## Regression Test for Funnel Plot Asymmetry
##
## Model: mixed-effects meta-regression model
## Predictor: standard error
##
## Test for Funnel Plot Asymmetry: z = 2.7592, p = 0.0058
Reading Comprehension:
##
## Regression Test for Funnel Plot Asymmetry
##
## Model: mixed-effects meta-regression model
## Predictor: standard error
##
## Test for Funnel Plot Asymmetry: z = 1.8285, p = 0.0675
Language-focused:
##
## Regression Test for Funnel Plot Asymmetry
##
## Model: mixed-effects meta-regression model
## Predictor: standard error
##
## Test for Funnel Plot Asymmetry: z = 1.7297, p = 0.0837
Writing:
##
## Regression Test for Funnel Plot Asymmetry
##
## Model: mixed-effects meta-regression model
## Predictor: standard error
##
## Test for Funnel Plot Asymmetry: z = 1.1436, p = 0.2528
Code-related:
## P-curve analysis
## -----------------------
## - Total number of provided studies: k = 86
## - Total number of p<0.05 studies included into the analysis: k = 22 (25.58%)
## - Total number of studies with p<0.025: k = 22 (25.58%)
##
## Results
## -----------------------
## pBinomial zFull pFull zHalf pHalf
## Right-skewness test 0 -9.077 0 -6.50 0
## Flatness test 1 5.248 1 7.74 1
## Note: p-values of 0 or 1 correspond to p<0.001 and p>0.999, respectively.
## Power Estimate: 88% (76.1%-94.4%)
##
## Evidential value
## -----------------------
## - Evidential value present: yes
## - Evidential value absent/inadequate: no
Reading Comprehension:
## P-curve analysis
## -----------------------
## - Total number of provided studies: k = 65
## - Total number of p<0.05 studies included into the analysis: k = 18 (27.69%)
## - Total number of studies with p<0.025: k = 15 (23.08%)
##
## Results
## -----------------------
## pBinomial zFull pFull zHalf pHalf
## Right-skewness test 0.004 -5.957 0.000 -4.796 0
## Flatness test 0.924 2.774 0.997 6.164 1
## Note: p-values of 0 or 1 correspond to p<0.001 and p>0.999, respectively.
## Power Estimate: 73% (50.9%-87.6%)
##
## Evidential value
## -----------------------
## - Evidential value present: yes
## - Evidential value absent/inadequate: no
Language-focused:
## P-curve analysis
## -----------------------
## - Total number of provided studies: k = 64
## - Total number of p<0.05 studies included into the analysis: k = 21 (32.81%)
## - Total number of studies with p<0.025: k = 14 (21.88%)
##
## Results
## -----------------------
## pBinomial zFull pFull zHalf pHalf
## Right-skewness test 0.095 -7.119 0 -8.407 0
## Flatness test 0.393 3.604 1 7.642 1
## Note: p-values of 0 or 1 correspond to p<0.001 and p>0.999, respectively.
## Power Estimate: 79% (60.6%-89.8%)
##
## Evidential value
## -----------------------
## - Evidential value present: yes
## - Evidential value absent/inadequate: no
Writing:
## P-curve analysis
## -----------------------
## - Total number of provided studies: k = 6
## - Total number of p<0.05 studies included into the analysis: k = 3 (50%)
## - Total number of studies with p<0.025: k = 3 (50%)
##
## Results
## -----------------------
## pBinomial zFull pFull zHalf pHalf
## Right-skewness test 0.125 -4.264 0.000 -3.775 0
## Flatness test 1.000 2.699 0.997 3.355 1
## Note: p-values of 0 or 1 correspond to p<0.001 and p>0.999, respectively.
## Power Estimate: 94% (66.4%-99%)
##
## Evidential value
## -----------------------
## - Evidential value present: yes
## - Evidential value absent/inadequate: no
Code-related:
##
## Random-Effects Model (k = 72; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1391 (SE = 0.0359)
## tau (square root of estimated tau^2 value): 0.3729
## I^2 (total heterogeneity / total variability): 78.67%
## H^2 (total variability / sampling variability): 4.69
##
## Test for Heterogeneity:
## Q(df = 71) = 216.6770, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3782 0.0556 6.7968 <.0001 0.2691 0.4872 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Reading Comprehension:
##
## Random-Effects Model (k = 48; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0452 (SE = 0.0165)
## tau (square root of estimated tau^2 value): 0.2125
## I^2 (total heterogeneity / total variability): 77.72%
## H^2 (total variability / sampling variability): 4.49
##
## Test for Heterogeneity:
## Q(df = 47) = 183.7304, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2276 0.0432 5.2673 <.0001 0.1429 0.3123 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Language-focused:
##
## Random-Effects Model (k = 41; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0545 (SE = 0.0215)
## tau (square root of estimated tau^2 value): 0.2335
## I^2 (total heterogeneity / total variability): 66.33%
## H^2 (total variability / sampling variability): 2.97
##
## Test for Heterogeneity:
## Q(df = 40) = 105.9878, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3056 0.0505 6.0538 <.0001 0.2067 0.4046 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Writing:
##
## Random-Effects Model (k = 4; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.1079 (SE = 0.1855)
## tau (square root of estimated tau^2 value): 0.3285
## I^2 (total heterogeneity / total variability): 48.02%
## H^2 (total variability / sampling variability): 1.92
##
## Test for Heterogeneity:
## Q(df = 3) = 5.9435, p-val = 0.1144
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 1.0469 0.2383 4.3930 <.0001 0.5798 1.5140 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code-related:
##
## Random-Effects Model (k = 86; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0651 (SE = 0.0197)
## tau (square root of estimated tau^2 value): 0.2552
## I^2 (total heterogeneity / total variability): 63.05%
## H^2 (total variability / sampling variability): 2.71
##
## Test for Heterogeneity:
## Q(df = 85) = 183.9515, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3113 0.0405 7.6822 <.0001 0.2318 0.3907 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Reading Comprehension:
##
## Random-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0224 (SE = 0.0096)
## tau (square root of estimated tau^2 value): 0.1496
## I^2 (total heterogeneity / total variability): 59.48%
## H^2 (total variability / sampling variability): 2.47
##
## Test for Heterogeneity:
## Q(df = 64) = 176.8840, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2259 0.0318 7.1091 <.0001 0.1636 0.2882 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Language-focused:
##
## Random-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0455 (SE = 0.0160)
## tau (square root of estimated tau^2 value): 0.2132
## I^2 (total heterogeneity / total variability): 59.98%
## H^2 (total variability / sampling variability): 2.50
##
## Test for Heterogeneity:
## Q(df = 63) = 133.8790, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2817 0.0395 7.1274 <.0001 0.2043 0.3592 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Writing:
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0812 (SE = 0.1243)
## tau (square root of estimated tau^2 value): 0.2850
## I^2 (total heterogeneity / total variability): 41.62%
## H^2 (total variability / sampling variability): 1.71
##
## Test for Heterogeneity:
## Q(df = 5) = 8.9670, p-val = 0.1104
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.7837 0.1817 4.3130 <.0001 0.4275 1.1398 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r = 0:
##
## Random-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0627 (SE = 0.0177)
## tau (square root of estimated tau^2 value): 0.2504
## I^2 (total heterogeneity / total variability): 93.85%
## H^2 (total variability / sampling variability): 16.27
##
## Test for Heterogeneity:
## Q(df = 64) = 1045.4788, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2570 0.0413 6.2247 <.0001 0.1761 0.3379 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r = 0.4:
##
## Random-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0396 (SE = 0.0136)
## tau (square root of estimated tau^2 value): 0.1989
## I^2 (total heterogeneity / total variability): 73.64%
## H^2 (total variability / sampling variability): 3.79
##
## Test for Heterogeneity:
## Q(df = 64) = 234.0208, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2365 0.0369 6.4153 <.0001 0.1642 0.3087 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r = 0.8:
##
## Random-Effects Model (k = 65; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0252 (SE = 0.0108)
## tau (square root of estimated tau^2 value): 0.1586
## I^2 (total heterogeneity / total variability): 58.96%
## H^2 (total variability / sampling variability): 2.44
##
## Test for Heterogeneity:
## Q(df = 64) = 168.9712, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2178 0.0336 6.4857 <.0001 0.1519 0.2836 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r = 0:
##
## Random-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0890 (SE = 0.0237)
## tau (square root of estimated tau^2 value): 0.2983
## I^2 (total heterogeneity / total variability): 80.27%
## H^2 (total variability / sampling variability): 5.07
##
## Test for Heterogeneity:
## Q(df = 63) = 230.2889, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3109 0.0470 6.6185 <.0001 0.2188 0.4030 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r = 0.4:
##
## Random-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0707 (SE = 0.0213)
## tau (square root of estimated tau^2 value): 0.2659
## I^2 (total heterogeneity / total variability): 70.82%
## H^2 (total variability / sampling variability): 3.43
##
## Test for Heterogeneity:
## Q(df = 63) = 168.8412, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3010 0.0448 6.7172 <.0001 0.2132 0.3889 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r = 0.8:
##
## Random-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.0544 (SE = 0.0187)
## tau (square root of estimated tau^2 value): 0.2332
## I^2 (total heterogeneity / total variability): 62.03%
## H^2 (total variability / sampling variability): 2.63
##
## Test for Heterogeneity:
## Q(df = 63) = 142.7276, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.2903 0.0425 6.8281 <.0001 0.2070 0.3736 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r = 0:
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.20 (SE = 0.18)
## tau (square root of estimated tau^2 value): 0.45
## I^2 (total heterogeneity / total variability): 71.35%
## H^2 (total variability / sampling variability): 3.49
##
## Test for Heterogeneity:
## Q(df = 5) = 15.58, p-val < .01
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.85 0.22 3.86 <.01 0.42 1.28 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r = 0.4:
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.16 (SE = 0.17)
## tau (square root of estimated tau^2 value): 0.40
## I^2 (total heterogeneity / total variability): 59.18%
## H^2 (total variability / sampling variability): 2.45
##
## Test for Heterogeneity:
## Q(df = 5) = 11.88, p-val = 0.04
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.82 0.21 3.87 <.01 0.40 1.24 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
r = 0.8:
##
## Random-Effects Model (k = 6; tau^2 estimator: REML)
##
## tau^2 (estimated amount of total heterogeneity): 0.12 (SE = 0.16)
## tau (square root of estimated tau^2 value): 0.34
## I^2 (total heterogeneity / total variability): 47.89%
## H^2 (total variability / sampling variability): 1.92
##
## Test for Heterogeneity:
## Q(df = 5) = 9.84, p-val = 0.08
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.79 0.20 3.88 <.01 0.39 1.19 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code-related:
| Model 1 | Model 2 | Model 3 | |
|---|---|---|---|
| intercept | 0.261** | 0.054 | 0.057 |
| (0.081) | (0.103) | (0.108) | |
| typeDRP | 0.127 | 0.296* | 0.198 |
| (0.167) | (0.148) | (0.163) | |
| typeDRD | 0.197 | 0.298** | 0.256* |
| (0.115) | (0.111) | (0.112) | |
| pedagogyCognitive | -0.034 | -0.176 | |
| (0.115) | (0.117) | ||
| pedagogyConstructivist | 0.083 | 0.212 | |
| (0.220) | (0.222) | ||
| avghrs_categoriesMedium | 0.093 | 0.167 | |
| (0.112) | (0.120) | ||
| avghrs_categoriesHigh | 0.407** | 0.508*** | |
| (0.133) | (0.143) | ||
| i.squared | 74.315 | 71.881 | 70.473 |
| h.squared | 3.893 | 3.556 | 3.387 |
| tau.squared | 0.121 | 0.110 | 0.105 |
| tau.squared.se | 0.031 | 0.029 | 0.028 |
| cochran.qe | 220.014 | 221.434 | 208.781 |
| p.value.cochran.qe | 0.000 | 0.000 | 0.000 |
| cochran.qm | 4.277 | 14.308 | 17.734 |
| p.value.cochran.qm | 0.370 | 0.006 | 0.007 |
| DF Resid. | 81 | 81 | 79 |
| Log Likelihood | -57.179 | -52.281 | -50.503 |
| Deviance | 114.358 | 104.562 | 101.005 |
| AIC | 126.358 | 116.562 | 117.005 |
| BIC | 140.725 | 130.929 | 135.961 |
| AICc | 127.493 | 117.697 | 119.062 |
| nobs | 86 | 86 | 86 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | |||
Language-focused:
| Model 1 | Model 2 | Model 3 | |
|---|---|---|---|
| intercept | 0.038 | -0.098 | -0.207* |
| (0.051) | (0.100) | (0.092) | |
| typeLRP | 0.353*** | 0.563*** | 0.485*** |
| (0.063) | (0.095) | (0.079) | |
| typeLRD | 0.096 | 0.235* | 0.200* |
| (0.077) | (0.113) | (0.090) | |
| pedagogyCognitive | 0.121* | 0.121 | |
| (0.057) | (0.065) | ||
| pedagogyConstructivist | 0.355*** | 0.476*** | |
| (0.105) | (0.115) | ||
| avghrs_categoriesMedium | 0.186* | 0.256** | |
| (0.092) | (0.080) | ||
| avghrs_categoriesHigh | 0.252* | 0.249* | |
| (0.114) | (0.103) | ||
| i.squared | 16.221 | 42.082 | 20.601 |
| h.squared | 1.194 | 1.727 | 1.259 |
| tau.squared | 0.007 | 0.025 | 0.009 |
| tau.squared.se | 0.006 | 0.012 | 0.008 |
| cochran.qe | 92.157 | 106.272 | 82.487 |
| p.value.cochran.qe | 0.004 | 0.000 | 0.015 |
| cochran.qm | 57.043 | 38.572 | 64.494 |
| p.value.cochran.qm | 0.000 | 0.000 | 0.000 |
| DF Resid. | 59 | 59 | 57 |
| Log Likelihood | -16.590 | -19.345 | -12.522 |
| Deviance | 33.180 | 38.689 | 25.044 |
| AIC | 45.180 | 50.689 | 41.044 |
| BIC | 57.645 | 63.155 | 57.388 |
| AICc | 46.796 | 52.305 | 44.044 |
| nobs | 64 | 64 | 64 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | |||
Reading Comprehension:
| Model 1 | Model 2 | Model 3 | |
|---|---|---|---|
| intercept | 0.170* | 0.142 | 0.152 |
| (0.075) | (0.114) | (0.117) | |
| typeCRD | 0.219*** | 0.228** | 0.233** |
| (0.066) | (0.072) | (0.073) | |
| pedagogyCognitive | -0.023 | -0.035 | |
| (0.080) | (0.090) | ||
| avghrs_categoriesMedium | -0.005 | 0.010 | |
| (0.116) | (0.123) | ||
| avghrs_categoriesHigh | 0.029 | 0.051 | |
| (0.123) | (0.135) | ||
| i.squared | 51.519 | 51.306 | 50.820 |
| h.squared | 2.063 | 2.054 | 2.033 |
| tau.squared | 0.021 | 0.023 | 0.023 |
| tau.squared.se | 0.009 | 0.010 | 0.010 |
| cochran.qe | 116.774 | 119.472 | 114.995 |
| p.value.cochran.qe | 0.000 | 0.000 | 0.000 |
| cochran.qm | 10.957 | 10.376 | 10.577 |
| p.value.cochran.qm | 0.004 | 0.016 | 0.032 |
| DF Resid. | 62 | 61 | 60 |
| Log Likelihood | -14.687 | -14.996 | -15.158 |
| Deviance | 29.374 | 29.993 | 30.316 |
| AIC | 37.374 | 39.993 | 42.316 |
| BIC | 45.883 | 50.547 | 54.882 |
| AICc | 38.076 | 41.084 | 43.901 |
| nobs | 65 | 65 | 65 |
| ***p < 0.001; **p < 0.01; *p < 0.05 | |||
Association between gamification and pedagogical orientation for 120 studies:
This study reports LRP effect sizes.
Control:
##
## Mixed-Effects Model (k = 62; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0679 (SE = 0.0215)
## tau (square root of estimated tau^2 value): 0.2606
## I^2 (residual heterogeneity / unaccounted variability): 68.47%
## H^2 (unaccounted variability / sampling variability): 3.17
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 60) = 155.4035, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8031, p-val = 0.3702
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2075 0.1035 2.0044 0.0450 0.0046 0.4104 *
## controlBAU 0.1031 0.1151 0.8962 0.3702 -0.1224 0.3286
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Technology Only (T) or Technology Plus (T+):
##
## Mixed-Effects Model (k = 62; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0625 (SE = 0.0203)
## tau (square root of estimated tau^2 value): 0.2499
## I^2 (residual heterogeneity / unaccounted variability): 66.95%
## H^2 (unaccounted variability / sampling variability): 3.03
## R^2 (amount of heterogeneity accounted for): 5.00%
##
## Test for Residual Heterogeneity:
## QE(df = 60) = 149.1791, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.3006, p-val = 0.0381
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3701 0.0589 6.2887 <.0001 0.2548 0.4855 ***
## tech_plus1 -0.1839 0.0887 -2.0738 0.0381 -0.3578 -0.0101 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Instructional Context:
##
## Mixed-Effects Model (k = 62; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0663 (SE = 0.0211)
## tau (square root of estimated tau^2 value): 0.2574
## I^2 (residual heterogeneity / unaccounted variability): 68.65%
## H^2 (unaccounted variability / sampling variability): 3.19
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 60) = 153.7003, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.8442, p-val = 0.1745
##
## Model Results:
##
## estimate se zval pval
## intrcpt 0.3335 0.0549 6.0697 <.0001
## instructional_contextOther than individual -0.1291 0.0951 -1.3580 0.1745
## ci.lb ci.ub
## intrcpt 0.2258 0.4412 ***
## instructional_contextOther than individual -0.3155 0.0572
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
This study reports DRP effect sizes.
Control:
##
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1134 (SE = 0.0293)
## tau (square root of estimated tau^2 value): 0.3367
## I^2 (residual heterogeneity / unaccounted variability): 74.41%
## H^2 (unaccounted variability / sampling variability): 3.91
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 81) = 213.8921, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6787, p-val = 0.4100
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2536 0.0912 2.7815 0.0054 0.0749 0.4323 **
## controlBAU 0.0889 0.1078 0.8239 0.4100 -0.1225 0.3002
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Technology Only (T) or Technology Plus (T+):
##
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1162 (SE = 0.0298)
## tau (square root of estimated tau^2 value): 0.3409
## I^2 (residual heterogeneity / unaccounted variability): 74.97%
## H^2 (unaccounted variability / sampling variability): 3.99
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 81) = 218.6314, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0077, p-val = 0.9302
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3143 0.0633 4.9619 <.0001 0.1901 0.4384 ***
## tech_plus1 0.0088 0.1003 0.0876 0.9302 -0.1877 0.2053
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
This study reports DRD and LRP effect sizes.
Control (code related):
##
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1134 (SE = 0.0293)
## tau (square root of estimated tau^2 value): 0.3367
## I^2 (residual heterogeneity / unaccounted variability): 74.41%
## H^2 (unaccounted variability / sampling variability): 3.91
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 81) = 213.8921, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6787, p-val = 0.4100
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2536 0.0912 2.7815 0.0054 0.0749 0.4323 **
## controlBAU 0.0889 0.1078 0.8239 0.4100 -0.1225 0.3002
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Control (language focused):
##
## Mixed-Effects Model (k = 62; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0679 (SE = 0.0215)
## tau (square root of estimated tau^2 value): 0.2606
## I^2 (residual heterogeneity / unaccounted variability): 68.47%
## H^2 (unaccounted variability / sampling variability): 3.17
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 60) = 155.4035, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8031, p-val = 0.3702
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2075 0.1035 2.0044 0.0450 0.0046 0.4104 *
## controlBAU 0.1031 0.1151 0.8962 0.3702 -0.1224 0.3286
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
This study reports DRD and CRD effect sizes.
Control (code related):
##
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1164 (SE = 0.0298)
## tau (square root of estimated tau^2 value): 0.3412
## I^2 (residual heterogeneity / unaccounted variability): 75.46%
## H^2 (unaccounted variability / sampling variability): 4.08
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 81) = 217.9129, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1478, p-val = 0.7006
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3343 0.0652 5.1243 <.0001 0.2065 0.4622 ***
## adaptivity -0.0381 0.0991 -0.3845 0.7006 -0.2324 0.1562
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Control (reading comp):
##
## Mixed-Effects Model (k = 64; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0372 (SE = 0.0135)
## tau (square root of estimated tau^2 value): 0.1929
## I^2 (residual heterogeneity / unaccounted variability): 68.84%
## H^2 (unaccounted variability / sampling variability): 3.21
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 62) = 192.6184, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1378, p-val = 0.7105
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2401 0.0434 5.5343 <.0001 0.1550 0.3251 ***
## adaptivity -0.0299 0.0805 -0.3712 0.7105 -0.1877 0.1279
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
This study reports DRD effect sizes.
Control:
##
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1134 (SE = 0.0293)
## tau (square root of estimated tau^2 value): 0.3367
## I^2 (residual heterogeneity / unaccounted variability): 74.41%
## H^2 (unaccounted variability / sampling variability): 3.91
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 81) = 213.8921, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6787, p-val = 0.4100
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2536 0.0912 2.7815 0.0054 0.0749 0.4323 **
## controlBAU 0.0889 0.1078 0.8239 0.4100 -0.1225 0.3002
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gamification:
##
## Mixed-Effects Model (k = 83; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.1162 (SE = 0.0298)
## tau (square root of estimated tau^2 value): 0.3409
## I^2 (residual heterogeneity / unaccounted variability): 74.99%
## H^2 (unaccounted variability / sampling variability): 4.00
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 81) = 218.7485, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0174, p-val = 0.8950
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3097 0.0786 3.9383 <.0001 0.1556 0.4638 ***
## gamification 0.0133 0.1007 0.1320 0.8950 -0.1840 0.2106
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1