Introduction:

The goal of this project is just to display that you’ve gotten used to working with the data and that you are on track to create your prediction algorithm. Please submit a report on R Pubs (http://rpubs.com/) that explains your exploratory analysis and your goals for the eventual app and algorithm. This document should be concise and explain only the major features of the data you have identified and briefly summarize your plans for creating the prediction algorithm and Shiny app in a way that would be understandable to a non-data scientist manager. You should make use of tables and plots to illustrate important summaries of the data set. The motivation for this project is to:
* Demonstrate that you’ve downloaded the data and have successfully loaded it in. * Create a basic report of summary statistics about the data sets. * Report any interesting findings that you amassed so far. * Get feedback on your plans for creating a prediction algorithm and Shiny app.

Load data

I set the directory and load 3 data.

# Put your data in your working directory first
blogs <- readLines("en_US.blogs.txt",warn=FALSE,encoding="UTF-8",skipNul=TRUE)
news <- readLines("en_US.news.txt",warn=FALSE,encoding="UTF-8", skipNul=TRUE)
twitter <- readLines("en_US.twitter.txt",warn=FALSE,encoding="UTF-8",skipNul=TRUE)

Summarize data

Summarize the contents, which has file size, number of rows, number of character and number of words in each file. And make the table

stats <- data.frame(
  FileName=c("en_US.blogs","en_US.news","en_US.twitter"),
  FileSizeinMB=c(file.info('en_US.blogs.txt')$size/1024^2,
                 file.info('en_US.news.txt')$size/1024^2,
                 file.info('en_US.twitter.txt')$size/1024^2),
  t(rbind(sapply(list(blogs,news,twitter), stri_stats_general),
          WordCount = sapply(list(blogs, news, twitter), stri_stats_latex)[4,]))
)
knitr::kable(stats)
FileName FileSizeinMB Lines LinesNEmpty Chars CharsNWhite WordCount
en_US.blogs 200.4242 899288 899288 206824382 170389539 37570839
en_US.news 196.2775 77259 77259 15639408 13072698 2651432
en_US.twitter 159.3641 2360148 2360148 162096241 134082806 30451170

Clean data

Data sets are really big, so using sample() function, I sample 1% of each file.

set.seed(12345)
# sample data set only 1% of each file
sample_data<-c(sample(blogs,length(blogs)*0.01),
               sample(news,length(news)*0.01),
               sample(twitter,length(twitter)*0.01))
sample_data <-  iconv(sample_data,"latin1","ASCII",sub="")
rm(blogs, news, twitter)

Build corpus

Build corpus, and check it making data frame.

library(tm)
library(NLP)
corpus<-VCorpus(VectorSource(sample_data))
corpus1<-tm_map(corpus,removePunctuation)
corpus2<-tm_map(corpus1,stripWhitespace)
corpus3<-tm_map(corpus2,tolower)
corpus4<-tm_map(corpus3,removeNumbers)
corpus5<-tm_map(corpus4,PlainTextDocument)
corpus6<-tm_map(corpus5,removeWords,stopwords("english"))
corpus_result<-data.frame(text=unlist(sapply(corpus6,'[',"content")),stringsAsFactors = FALSE)
rm(corpus, corpus1, corpus2, corpus3, corpus4, corpus5)

Wordcloud

To examine the data, we will produce a word clouds showing frequently used terms in the datasets. The word clouds show generally the top words with size varying by frequency.

corpus <- Corpus(DirSource("Sample"), readerControl = list(reader=readPlain, language="en_US"))

#Create function to transform the data
removeURL <- function(x) gsub("http[[:alnum:]]*","",x)
removeSign <- function(x) gsub("[[:punct:]]","",x)
removeNum <- function(x) gsub("[[:digit:]]","",x)
removeapo <- function(x) gsub("'","",x)
removeNonASCII <- function(x) iconv(x, "latin1", "ASCII", sub="")
removerepeat <- function(x) gsub("([[:alpha:]])\\1{2,}", "\\1\\1", x)
toLowerCase <- function(x) sapply(x,tolower)
removeSpace <- function(x) gsub("\\s+"," ",x)

#Transform the corpus
corpus<-tm_map(corpus,content_transformer(removeapo))#remove apostrophe
corpus<-tm_map(corpus,content_transformer(removeNum))#remove numbers
corpus<-tm_map(corpus,content_transformer(removeURL)) #remove web url
corpus<-tm_map(corpus,content_transformer(removeSign)) #remove number and punctuation except apostrophe
corpus<-tm_map(corpus,content_transformer(removeNonASCII)) #remove non-ASCII
corpus<-tm_map(corpus,content_transformer(toLowerCase))# convert uppercase to lowercase
corpus<-tm_map(corpus,content_transformer(removerepeat))# remove repeated alphabets in a words
corpus<-tm_map(corpus,content_transformer(removeSpace)) #remove multiple space
corpus<-tm_map(corpus,removeWords,stopwords("english")) #remove common english words
wordcloud(corpus, max.words=125, random.order=TRUE, rot.per=.15, colors=colorRampPalette(brewer.pal(9,"Blues"))(32), scale=c(3, .3))

Plotting the data with frequencies

Now plotting the frequncies of the words that are used in news, twitter and the blogs.

corpus_tdm <- TermDocumentMatrix(corpus)
corpus_tdm_m <- as.matrix(corpus_tdm)
corpus_tdm_m_freq <- rowSums(corpus_tdm_m)
rm(corpus_tdm, corpus_tdm_m)
corpus_tdm_m_freq <-sort(corpus_tdm_m_freq, decreasing = TRUE)
barplot(corpus_tdm_m_freq[1:25], col = "Blue", las = 2, main = "Word Frequency of the data")

Build N-gram

Extract the word and frequency of N-grams.

library(RWeka)
one<-function(x) NGramTokenizer(x,Weka_control(min=1,max=1))
two<-function(x) NGramTokenizer(x,Weka_control(min=2,max=2))
thr<-function(x) NGramTokenizer(x,Weka_control(min=3,max=3))
one_table<-TermDocumentMatrix(corpus6,control=list(tokenize=one))
two_table<-TermDocumentMatrix(corpus6,control=list(tokenize=two))
thr_table<-TermDocumentMatrix(corpus6,control=list(tokenize=thr))
one_corpus<-findFreqTerms(one_table,lowfreq=1000)
two_corpus<-findFreqTerms(two_table,lowfreq=80)
thr_corpus<-findFreqTerms(thr_table,lowfreq=10)

# 1-gram
one_corpus_num<-rowSums(as.matrix(one_table[one_corpus,]))
one_corpus_table<-data.frame(Word=names(one_corpus_num),frequency=one_corpus_num)
one_corpus_sort <- one_corpus_table[order(-one_corpus_table$frequency),]
rownames(one_corpus_sort) <- NULL
knitr::kable(head(one_corpus_sort))
Word frequency
just 2576
like 2218
will 2211
one 2049
get 1869
can 1866
# 2-gram
two_corpus_num<-rowSums(as.matrix(two_table[two_corpus,]))
two_corpus_table<-data.frame(Word=names(two_corpus_num),frequency=two_corpus_num)
two_corpus_sort<-two_corpus_table[order(-two_corpus_table$frequency),]
rownames(two_corpus_sort) <- NULL
knitr::kable(head(two_corpus_sort))
Word frequency
cant wait 208
right now 206
dont know 164
last night 148
im going 130
feel like 125
# 3-gram
thr_corpus_num<-rowSums(as.matrix(thr_table[thr_corpus,]))
thr_corpus_table<-data.frame(Word=names(thr_corpus_num),frequency=thr_corpus_num)
thr_corpus_sort<-thr_corpus_table[order(-thr_corpus_table$frequency),]
rownames(thr_corpus_sort) <- NULL
knitr::kable(head(thr_corpus_sort))
Word frequency
cant wait see 45
happy mothers day 36
happy new year 24
im pretty sure 18
italy lakes holidays 18
little italy boston 17

Plot graph

Plot graphs of each N-gram words. I can confirm which word is the most frequency in those files.

library(ggplot2)
one_g <- ggplot(one_corpus_sort[1:10,],
                aes(x=reorder(Word,-frequency),y=frequency,fill=frequency)) +
  geom_bar(stat="identity") + 
  labs(title="Unigrams",x="Words",y="Frequency") + 
  theme(axis.text.x=element_text(angle=90))
one_g

two_g <- ggplot(two_corpus_sort[1:10,],
                aes(x=reorder(Word,-frequency),y=frequency,fill=frequency)) + 
  geom_bar(stat="identity") + 
  labs(title="Bigrams",x="Words",y="Frequency") + 
  theme(axis.text.x=element_text(angle=90))
two_g

thr_g <- ggplot(thr_corpus_sort[1:10,],
                aes(x=reorder(Word,-frequency),y=frequency,fill=frequency)) + 
  geom_bar(stat="identity") + 
  labs(title="Trigrams",x="Words",y="Frequency") + 
  theme(axis.text.x=element_text(angle=90))
thr_g

Next plans

I do analyze initially. Next, I will make a predictive algorithm, and using shiny() app, I will check the result which input is coming.