library(COVID19)
## Warning: package 'COVID19' was built under R version 4.1.2
library(covid19.analytics)
## Warning: package 'covid19.analytics' was built under R version 4.1.1
library(coronavirus)
## Warning: package 'coronavirus' was built under R version 4.1.2
library("RTutorEconomicImpactsofCOVID19")
## Loading required package: RTutor
## Loading required package: shinyEvents
## Loading required package: shiny
## Warning: package 'shiny' was built under R version 4.1.2
## Loading required package: restorepoint
## Warning: package 'restorepoint' was built under R version 4.1.2
## Loading required package: markdown
## Loading required package: whisker
## Loading required package: stringr
## Loading required package: stringtools
## Loading required package: data.table
## Warning: package 'data.table' was built under R version 4.1.2
## Loading required package: tibble
## Warning: package 'tibble' was built under R version 4.1.2
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
## between, first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: dplyrExtras
## Loading required package: dtplyr
##
## Attaching package: 'dplyrExtras'
## The following object is masked from 'package:dplyr':
##
## mutate_if
## Loading required package: shinyAce
## Warning: package 'shinyAce' was built under R version 4.1.2
## Loading required package: shinyBS
## Warning: package 'shinyBS' was built under R version 4.1.2
## Loading required package: hwriter
## Warning: package 'hwriter' was built under R version 4.1.1
## Loading required package: RCurl
## Warning: package 'RCurl' was built under R version 4.1.1
## Loading required package: knitr
## Warning: package 'knitr' was built under R version 4.1.2
## Loading required package: jsonlite
## Warning: package 'jsonlite' was built under R version 4.1.2
##
## Attaching package: 'jsonlite'
## The following object is masked from 'package:shiny':
##
## validate
## Loading required package: DT
##
## Attaching package: 'DT'
## The following objects are masked from 'package:shiny':
##
## dataTableOutput, renderDataTable
## Loading required package: memoise
## Warning: package 'memoise' was built under R version 4.1.2
## Loading required package: yaml
## Loading required package: rmarkdown
## Warning: package 'rmarkdown' was built under R version 4.1.2
##
## Attaching package: 'RTutor'
## The following objects are masked from 'package:shinyEvents':
##
## autcomp.function.args, autocomp.cols,
## autocomp.find.current.function, autocomp.js, autocomp.vars,
## display, find.varname.at.end.of.string, fun.arg.names, sc,
## set.autocomplete.list
## The following objects are masked from 'package:utils':
##
## data, example
## The following object is masked from 'package:base':
##
## deparse1
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.1.2
## Loading required package: ggthemes
## Warning: package 'ggthemes' was built under R version 4.1.1
## Loading required package: tidyr
## Warning: package 'tidyr' was built under R version 4.1.2
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:RCurl':
##
## complete
## Loading required package: choroplethr
## Warning: package 'choroplethr' was built under R version 4.1.2
## Loading required package: acs
## Warning: package 'acs' was built under R version 4.1.2
## Loading required package: XML
## Warning: package 'XML' was built under R version 4.1.1
##
## Attaching package: 'acs'
## The following object is masked from 'package:dplyr':
##
## combine
## The following object is masked from 'package:shiny':
##
## span
## The following object is masked from 'package:base':
##
## apply
## Loading required package: tidyverse
## Warning: package 'tidyverse' was built under R version 4.1.2
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v readr 2.1.2 v forcats 0.5.1
## v purrr 0.3.4
## Warning: package 'readr' was built under R version 4.1.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::between() masks data.table::between()
## x acs::combine() masks dplyr::combine()
## x tidyr::complete() masks RCurl::complete()
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks data.table::first()
## x purrr::flatten() masks jsonlite::flatten()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks data.table::last()
## x purrr::modify() masks dplyrExtras::modify()
## x dplyrExtras::mutate_if() masks dplyr::mutate_if()
## x purrr::transpose() masks data.table::transpose()
## x jsonlite::validate() masks shiny::validate()
## Loading required package: lfe
## Warning: package 'lfe' was built under R version 4.1.2
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
#obtain all the records combined for "confirmed", "deaths" and "recovered" cases *aggregated* data
covid19.data.ALLcases <- covid19.data()
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
# obtain time series data for "confirmed" cases
covid19.confirmed.cases <- covid19.data("ts-confirmed")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:26:26 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
# reads all possible datasets, returning a list
covid19.all.datasets <- covid19.data("ALL")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:26:29 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:26:31 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2022-02-25 06:26:33 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 269
## --------------------------------------------------------------------------------
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/time_series_19-covid-Confirmed.csv.RDS
## Data retrieved on 2022-02-25 06:26:33 || Range of dates on data: 2020-01-22--2020-03-23 | Nbr of records: 501
## --------------------------------------------------------------------------------
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/time_series_19-covid-Deaths.csv.RDS
## Data retrieved on 2022-02-25 06:26:33 || Range of dates on data: 2020-01-22--2020-03-23 | Nbr of records: 501
## --------------------------------------------------------------------------------
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/time_series_19-covid-Recovered.csv.RDS
## Data retrieved on 2022-02-25 06:26:33 || Range of dates on data: 2020-01-22--2020-03-23 | Nbr of records: 501
## --------------------------------------------------------------------------------
# reads the latest aggregated data
covid19.ALL.agg.cases <- covid19.data("aggregated")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
# reads time series data for casualties
covid19.TS.deaths <- covid19.data("ts-deaths")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:26:35 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
# reads testing data
testing.data <- covid19.testing.data()
## Data obtained from OWID repo:
## https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/testing/covid-testing-all-observations.csv
# obtain covid19's genomic data
covid19.gen.seq <- covid19.genomic.data()
## Loading required package: ape
## Warning: package 'ape' was built under R version 4.1.1
## Retrieving data from NCBI...
## 29903-none-character

# display the actual RNA seq
covid19.gen.seq$NC_045512.2
## [1] "a" "t" "t" "a" "a" "a" "g" "g" "t" "t" "t" "a" "t" "a" "c" "c" "t" "t"
## [19] "c" "c" "c" "a" "g" "g" "t" "a" "a" "c" "a" "a" "a" "c" "c" "a" "a" "c"
## [37] "c" "a" "a" "c" "t" "t" "t" "c" "g" "a" "t" "c" "t" "c" "t" "t" "g" "t"
## [55] "a" "g" "a" "t" "c" "t" "g" "t" "t" "c" "t" "c" "t" "a" "a" "a" "c" "g"
## [73] "a" "a" "c" "t" "t" "t" "a" "a" "a" "a" "t" "c" "t" "g" "t" "g" "t" "g"
## [91] "g" "c" "t" "g" "t" "c" "a" "c" "t" "c" "g" "g" "c" "t" "g" "c" "a" "t"
## [109] "g" "c" "t" "t" "a" "g" "t" "g" "c" "a" "c" "t" "c" "a" "c" "g" "c" "a"
## [127] "g" "t" "a" "t" "a" "a" "t" "t" "a" "a" "t" "a" "a" "c" "t" "a" "a" "t"
## [145] "t" "a" "c" "t" "g" "t" "c" "g" "t" "t" "g" "a" "c" "a" "g" "g" "a" "c"
## [163] "a" "c" "g" "a" "g" "t" "a" "a" "c" "t" "c" "g" "t" "c" "t" "a" "t" "c"
## [181] "t" "t" "c" "t" "g" "c" "a" "g" "g" "c" "t" "g" "c" "t" "t" "a" "c" "g"
## [199] "g" "t" "t" "t" "c" "g" "t" "c" "c" "g" "t" "g" "t" "t" "g" "c" "a" "g"
## [217] "c" "c" "g" "a" "t" "c" "a" "t" "c" "a" "g" "c" "a" "c" "a" "t" "c" "t"
## [235] "a" "g" "g" "t" "t" "t" "c" "g" "t" "c" "c" "g" "g" "g" "t" "g" "t" "g"
## [253] "a" "c" "c" "g" "a" "a" "a" "g" "g" "t" "a" "a" "g" "a" "t" "g" "g" "a"
## [271] "g" "a" "g" "c" "c" "t" "t" "g" "t" "c" "c" "c" "t" "g" "g" "t" "t" "t"
## [289] "c" "a" "a" "c" "g" "a" "g" "a" "a" "a" "a" "c" "a" "c" "a" "c" "g" "t"
## [307] "c" "c" "a" "a" "c" "t" "c" "a" "g" "t" "t" "t" "g" "c" "c" "t" "g" "t"
## [325] "t" "t" "t" "a" "c" "a" "g" "g" "t" "t" "c" "g" "c" "g" "a" "c" "g" "t"
## [343] "g" "c" "t" "c" "g" "t" "a" "c" "g" "t" "g" "g" "c" "t" "t" "t" "g" "g"
## [361] "a" "g" "a" "c" "t" "c" "c" "g" "t" "g" "g" "a" "g" "g" "a" "g" "g" "t"
## [379] "c" "t" "t" "a" "t" "c" "a" "g" "a" "g" "g" "c" "a" "c" "g" "t" "c" "a"
## [397] "a" "c" "a" "t" "c" "t" "t" "a" "a" "a" "g" "a" "t" "g" "g" "c" "a" "c"
## [415] "t" "t" "g" "t" "g" "g" "c" "t" "t" "a" "g" "t" "a" "g" "a" "a" "g" "t"
## [433] "t" "g" "a" "a" "a" "a" "a" "g" "g" "c" "g" "t" "t" "t" "t" "g" "c" "c"
## [451] "t" "c" "a" "a" "c" "t" "t" "g" "a" "a" "c" "a" "g" "c" "c" "c" "t" "a"
## [469] "t" "g" "t" "g" "t" "t" "c" "a" "t" "c" "a" "a" "a" "c" "g" "t" "t" "c"
## [487] "g" "g" "a" "t" "g" "c" "t" "c" "g" "a" "a" "c" "t" "g" "c" "a" "c" "c"
## [505] "t" "c" "a" "t" "g" "g" "t" "c" "a" "t" "g" "t" "t" "a" "t" "g" "g" "t"
## [523] "t" "g" "a" "g" "c" "t" "g" "g" "t" "a" "g" "c" "a" "g" "a" "a" "c" "t"
## [541] "c" "g" "a" "a" "g" "g" "c" "a" "t" "t" "c" "a" "g" "t" "a" "c" "g" "g"
## [559] "t" "c" "g" "t" "a" "g" "t" "g" "g" "t" "g" "a" "g" "a" "c" "a" "c" "t"
## [577] "t" "g" "g" "t" "g" "t" "c" "c" "t" "t" "g" "t" "c" "c" "c" "t" "c" "a"
## [595] "t" "g" "t" "g" "g" "g" "c" "g" "a" "a" "a" "t" "a" "c" "c" "a" "g" "t"
## [613] "g" "g" "c" "t" "t" "a" "c" "c" "g" "c" "a" "a" "g" "g" "t" "t" "c" "t"
## [631] "t" "c" "t" "t" "c" "g" "t" "a" "a" "g" "a" "a" "c" "g" "g" "t" "a" "a"
## [649] "t" "a" "a" "a" "g" "g" "a" "g" "c" "t" "g" "g" "t" "g" "g" "c" "c" "a"
## [667] "t" "a" "g" "t" "t" "a" "c" "g" "g" "c" "g" "c" "c" "g" "a" "t" "c" "t"
## [685] "a" "a" "a" "g" "t" "c" "a" "t" "t" "t" "g" "a" "c" "t" "t" "a" "g" "g"
## [703] "c" "g" "a" "c" "g" "a" "g" "c" "t" "t" "g" "g" "c" "a" "c" "t" "g" "a"
## [721] "t" "c" "c" "t" "t" "a" "t" "g" "a" "a" "g" "a" "t" "t" "t" "t" "c" "a"
## [739] "a" "g" "a" "a" "a" "a" "c" "t" "g" "g" "a" "a" "c" "a" "c" "t" "a" "a"
## [757] "a" "c" "a" "t" "a" "g" "c" "a" "g" "t" "g" "g" "t" "g" "t" "t" "a" "c"
## [775] "c" "c" "g" "t" "g" "a" "a" "c" "t" "c" "a" "t" "g" "c" "g" "t" "g" "a"
## [793] "g" "c" "t" "t" "a" "a" "c" "g" "g" "a" "g" "g" "g" "g" "c" "a" "t" "a"
## [811] "c" "a" "c" "t" "c" "g" "c" "t" "a" "t" "g" "t" "c" "g" "a" "t" "a" "a"
## [829] "c" "a" "a" "c" "t" "t" "c" "t" "g" "t" "g" "g" "c" "c" "c" "t" "g" "a"
## [847] "t" "g" "g" "c" "t" "a" "c" "c" "c" "t" "c" "t" "t" "g" "a" "g" "t" "g"
## [865] "c" "a" "t" "t" "a" "a" "a" "g" "a" "c" "c" "t" "t" "c" "t" "a" "g" "c"
## [883] "a" "c" "g" "t" "g" "c" "t" "g" "g" "t" "a" "a" "a" "g" "c" "t" "t" "c"
## [901] "a" "t" "g" "c" "a" "c" "t" "t" "t" "g" "t" "c" "c" "g" "a" "a" "c" "a"
## [919] "a" "c" "t" "g" "g" "a" "c" "t" "t" "t" "a" "t" "t" "g" "a" "c" "a" "c"
## [937] "t" "a" "a" "g" "a" "g" "g" "g" "g" "t" "g" "t" "a" "t" "a" "c" "t" "g"
## [955] "c" "t" "g" "c" "c" "g" "t" "g" "a" "a" "c" "a" "t" "g" "a" "g" "c" "a"
## [973] "t" "g" "a" "a" "a" "t" "t" "g" "c" "t" "t" "g" "g" "t" "a" "c" "a" "c"
## [991] "g" "g" "a" "a" "c" "g" "t" "t" "c" "t" "g" "a" "a" "a" "a" "g" "a" "g"
## [1009] "c" "t" "a" "t" "g" "a" "a" "t" "t" "g" "c" "a" "g" "a" "c" "a" "c" "c"
## [1027] "t" "t" "t" "t" "g" "a" "a" "a" "t" "t" "a" "a" "a" "t" "t" "g" "g" "c"
## [1045] "a" "a" "a" "g" "a" "a" "a" "t" "t" "t" "g" "a" "c" "a" "c" "c" "t" "t"
## [1063] "c" "a" "a" "t" "g" "g" "g" "g" "a" "a" "t" "g" "t" "c" "c" "a" "a" "a"
## [1081] "t" "t" "t" "t" "g" "t" "a" "t" "t" "t" "c" "c" "c" "t" "t" "a" "a" "a"
## [1099] "t" "t" "c" "c" "a" "t" "a" "a" "t" "c" "a" "a" "g" "a" "c" "t" "a" "t"
## [1117] "t" "c" "a" "a" "c" "c" "a" "a" "g" "g" "g" "t" "t" "g" "a" "a" "a" "a"
## [1135] "g" "a" "a" "a" "a" "a" "g" "c" "t" "t" "g" "a" "t" "g" "g" "c" "t" "t"
## [1153] "t" "a" "t" "g" "g" "g" "t" "a" "g" "a" "a" "t" "t" "c" "g" "a" "t" "c"
## [1171] "t" "g" "t" "c" "t" "a" "t" "c" "c" "a" "g" "t" "t" "g" "c" "g" "t" "c"
## [1189] "a" "c" "c" "a" "a" "a" "t" "g" "a" "a" "t" "g" "c" "a" "a" "c" "c" "a"
## [1207] "a" "a" "t" "g" "t" "g" "c" "c" "t" "t" "t" "c" "a" "a" "c" "t" "c" "t"
## [1225] "c" "a" "t" "g" "a" "a" "g" "t" "g" "t" "g" "a" "t" "c" "a" "t" "t" "g"
## [1243] "t" "g" "g" "t" "g" "a" "a" "a" "c" "t" "t" "c" "a" "t" "g" "g" "c" "a"
## [1261] "g" "a" "c" "g" "g" "g" "c" "g" "a" "t" "t" "t" "t" "g" "t" "t" "a" "a"
## [1279] "a" "g" "c" "c" "a" "c" "t" "t" "g" "c" "g" "a" "a" "t" "t" "t" "t" "g"
## [1297] "t" "g" "g" "c" "a" "c" "t" "g" "a" "g" "a" "a" "t" "t" "t" "g" "a" "c"
## [1315] "t" "a" "a" "a" "g" "a" "a" "g" "g" "t" "g" "c" "c" "a" "c" "t" "a" "c"
## [1333] "t" "t" "g" "t" "g" "g" "t" "t" "a" "c" "t" "t" "a" "c" "c" "c" "c" "a"
## [1351] "a" "a" "a" "t" "g" "c" "t" "g" "t" "t" "g" "t" "t" "a" "a" "a" "a" "t"
## [1369] "t" "t" "a" "t" "t" "g" "t" "c" "c" "a" "g" "c" "a" "t" "g" "t" "c" "a"
## [1387] "c" "a" "a" "t" "t" "c" "a" "g" "a" "a" "g" "t" "a" "g" "g" "a" "c" "c"
## [1405] "t" "g" "a" "g" "c" "a" "t" "a" "g" "t" "c" "t" "t" "g" "c" "c" "g" "a"
## [1423] "a" "t" "a" "c" "c" "a" "t" "a" "a" "t" "g" "a" "a" "t" "c" "t" "g" "g"
## [1441] "c" "t" "t" "g" "a" "a" "a" "a" "c" "c" "a" "t" "t" "c" "t" "t" "c" "g"
## [1459] "t" "a" "a" "g" "g" "g" "t" "g" "g" "t" "c" "g" "c" "a" "c" "t" "a" "t"
## [1477] "t" "g" "c" "c" "t" "t" "t" "g" "g" "a" "g" "g" "c" "t" "g" "t" "g" "t"
## [1495] "g" "t" "t" "c" "t" "c" "t" "t" "a" "t" "g" "t" "t" "g" "g" "t" "t" "g"
## [1513] "c" "c" "a" "t" "a" "a" "c" "a" "a" "g" "t" "g" "t" "g" "c" "c" "t" "a"
## [1531] "t" "t" "g" "g" "g" "t" "t" "c" "c" "a" "c" "g" "t" "g" "c" "t" "a" "g"
## [1549] "c" "g" "c" "t" "a" "a" "c" "a" "t" "a" "g" "g" "t" "t" "g" "t" "a" "a"
## [1567] "c" "c" "a" "t" "a" "c" "a" "g" "g" "t" "g" "t" "t" "g" "t" "t" "g" "g"
## [1585] "a" "g" "a" "a" "g" "g" "t" "t" "c" "c" "g" "a" "a" "g" "g" "t" "c" "t"
## [1603] "t" "a" "a" "t" "g" "a" "c" "a" "a" "c" "c" "t" "t" "c" "t" "t" "g" "a"
## [1621] "a" "a" "t" "a" "c" "t" "c" "c" "a" "a" "a" "a" "a" "g" "a" "g" "a" "a"
## [1639] "a" "g" "t" "c" "a" "a" "c" "a" "t" "c" "a" "a" "t" "a" "t" "t" "g" "t"
## [1657] "t" "g" "g" "t" "g" "a" "c" "t" "t" "t" "a" "a" "a" "c" "t" "t" "a" "a"
## [1675] "t" "g" "a" "a" "g" "a" "g" "a" "t" "c" "g" "c" "c" "a" "t" "t" "a" "t"
## [1693] "t" "t" "t" "g" "g" "c" "a" "t" "c" "t" "t" "t" "t" "t" "c" "t" "g" "c"
## [1711] "t" "t" "c" "c" "a" "c" "a" "a" "g" "t" "g" "c" "t" "t" "t" "t" "g" "t"
## [1729] "g" "g" "a" "a" "a" "c" "t" "g" "t" "g" "a" "a" "a" "g" "g" "t" "t" "t"
## [1747] "g" "g" "a" "t" "t" "a" "t" "a" "a" "a" "g" "c" "a" "t" "t" "c" "a" "a"
## [1765] "a" "c" "a" "a" "a" "t" "t" "g" "t" "t" "g" "a" "a" "t" "c" "c" "t" "g"
## [1783] "t" "g" "g" "t" "a" "a" "t" "t" "t" "t" "a" "a" "a" "g" "t" "t" "a" "c"
## [1801] "a" "a" "a" "a" "g" "g" "a" "a" "a" "a" "g" "c" "t" "a" "a" "a" "a" "a"
## [1819] "a" "g" "g" "t" "g" "c" "c" "t" "g" "g" "a" "a" "t" "a" "t" "t" "g" "g"
## [1837] "t" "g" "a" "a" "c" "a" "g" "a" "a" "a" "t" "c" "a" "a" "t" "a" "c" "t"
## [1855] "g" "a" "g" "t" "c" "c" "t" "c" "t" "t" "t" "a" "t" "g" "c" "a" "t" "t"
## [1873] "t" "g" "c" "a" "t" "c" "a" "g" "a" "g" "g" "c" "t" "g" "c" "t" "c" "g"
## [1891] "t" "g" "t" "t" "g" "t" "a" "c" "g" "a" "t" "c" "a" "a" "t" "t" "t" "t"
## [1909] "c" "t" "c" "c" "c" "g" "c" "a" "c" "t" "c" "t" "t" "g" "a" "a" "a" "c"
## [1927] "t" "g" "c" "t" "c" "a" "a" "a" "a" "t" "t" "c" "t" "g" "t" "g" "c" "g"
## [1945] "t" "g" "t" "t" "t" "t" "a" "c" "a" "g" "a" "a" "g" "g" "c" "c" "g" "c"
## [1963] "t" "a" "t" "a" "a" "c" "a" "a" "t" "a" "c" "t" "a" "g" "a" "t" "g" "g"
## [1981] "a" "a" "t" "t" "t" "c" "a" "c" "a" "g" "t" "a" "t" "t" "c" "a" "c" "t"
## [1999] "g" "a" "g" "a" "c" "t" "c" "a" "t" "t" "g" "a" "t" "g" "c" "t" "a" "t"
## [2017] "g" "a" "t" "g" "t" "t" "c" "a" "c" "a" "t" "c" "t" "g" "a" "t" "t" "t"
## [2035] "g" "g" "c" "t" "a" "c" "t" "a" "a" "c" "a" "a" "t" "c" "t" "a" "g" "t"
## [2053] "t" "g" "t" "a" "a" "t" "g" "g" "c" "c" "t" "a" "c" "a" "t" "t" "a" "c"
## [2071] "a" "g" "g" "t" "g" "g" "t" "g" "t" "t" "g" "t" "t" "c" "a" "g" "t" "t"
## [2089] "g" "a" "c" "t" "t" "c" "g" "c" "a" "g" "t" "g" "g" "c" "t" "a" "a" "c"
## [2107] "t" "a" "a" "c" "a" "t" "c" "t" "t" "t" "g" "g" "c" "a" "c" "t" "g" "t"
## [2125] "t" "t" "a" "t" "g" "a" "a" "a" "a" "a" "c" "t" "c" "a" "a" "a" "c" "c"
## [2143] "c" "g" "t" "c" "c" "t" "t" "g" "a" "t" "t" "g" "g" "c" "t" "t" "g" "a"
## [2161] "a" "g" "a" "g" "a" "a" "g" "t" "t" "t" "a" "a" "g" "g" "a" "a" "g" "g"
## [2179] "t" "g" "t" "a" "g" "a" "g" "t" "t" "t" "c" "t" "t" "a" "g" "a" "g" "a"
## [2197] "c" "g" "g" "t" "t" "g" "g" "g" "a" "a" "a" "t" "t" "g" "t" "t" "a" "a"
## [2215] "a" "t" "t" "t" "a" "t" "c" "t" "c" "a" "a" "c" "c" "t" "g" "t" "g" "c"
## [2233] "t" "t" "g" "t" "g" "a" "a" "a" "t" "t" "g" "t" "c" "g" "g" "t" "g" "g"
## [2251] "a" "c" "a" "a" "a" "t" "t" "g" "t" "c" "a" "c" "c" "t" "g" "t" "g" "c"
## [2269] "a" "a" "a" "g" "g" "a" "a" "a" "t" "t" "a" "a" "g" "g" "a" "g" "a" "g"
## [2287] "t" "g" "t" "t" "c" "a" "g" "a" "c" "a" "t" "t" "c" "t" "t" "t" "a" "a"
## [2305] "g" "c" "t" "t" "g" "t" "a" "a" "a" "t" "a" "a" "a" "t" "t" "t" "t" "t"
## [2323] "g" "g" "c" "t" "t" "t" "g" "t" "g" "t" "g" "c" "t" "g" "a" "c" "t" "c"
## [2341] "t" "a" "t" "c" "a" "t" "t" "a" "t" "t" "g" "g" "t" "g" "g" "a" "g" "c"
## [2359] "t" "a" "a" "a" "c" "t" "t" "a" "a" "a" "g" "c" "c" "t" "t" "g" "a" "a"
## [2377] "t" "t" "t" "a" "g" "g" "t" "g" "a" "a" "a" "c" "a" "t" "t" "t" "g" "t"
## [2395] "c" "a" "c" "g" "c" "a" "c" "t" "c" "a" "a" "a" "g" "g" "g" "a" "t" "t"
## [2413] "g" "t" "a" "c" "a" "g" "a" "a" "a" "g" "t" "g" "t" "g" "t" "t" "a" "a"
## [2431] "a" "t" "c" "c" "a" "g" "a" "g" "a" "a" "g" "a" "a" "a" "c" "t" "g" "g"
## [2449] "c" "c" "t" "a" "c" "t" "c" "a" "t" "g" "c" "c" "t" "c" "t" "a" "a" "a"
## [2467] "a" "g" "c" "c" "c" "c" "a" "a" "a" "a" "g" "a" "a" "a" "t" "t" "a" "t"
## [2485] "c" "t" "t" "c" "t" "t" "a" "g" "a" "g" "g" "g" "a" "g" "a" "a" "a" "c"
## [2503] "a" "c" "t" "t" "c" "c" "c" "a" "c" "a" "g" "a" "a" "g" "t" "g" "t" "t"
## [2521] "a" "a" "c" "a" "g" "a" "g" "g" "a" "a" "g" "t" "t" "g" "t" "c" "t" "t"
## [2539] "g" "a" "a" "a" "a" "c" "t" "g" "g" "t" "g" "a" "t" "t" "t" "a" "c" "a"
## [2557] "a" "c" "c" "a" "t" "t" "a" "g" "a" "a" "c" "a" "a" "c" "c" "t" "a" "c"
## [2575] "t" "a" "g" "t" "g" "a" "a" "g" "c" "t" "g" "t" "t" "g" "a" "a" "g" "c"
## [2593] "t" "c" "c" "a" "t" "t" "g" "g" "t" "t" "g" "g" "t" "a" "c" "a" "c" "c"
## [2611] "a" "g" "t" "t" "t" "g" "t" "a" "t" "t" "a" "a" "c" "g" "g" "g" "c" "t"
## [2629] "t" "a" "t" "g" "t" "t" "g" "c" "t" "c" "g" "a" "a" "a" "t" "c" "a" "a"
## [2647] "a" "g" "a" "c" "a" "c" "a" "g" "a" "a" "a" "a" "g" "t" "a" "c" "t" "g"
## [2665] "t" "g" "c" "c" "c" "t" "t" "g" "c" "a" "c" "c" "t" "a" "a" "t" "a" "t"
## [2683] "g" "a" "t" "g" "g" "t" "a" "a" "c" "a" "a" "a" "c" "a" "a" "t" "a" "c"
## [2701] "c" "t" "t" "c" "a" "c" "a" "c" "t" "c" "a" "a" "a" "g" "g" "c" "g" "g"
## [2719] "t" "g" "c" "a" "c" "c" "a" "a" "c" "a" "a" "a" "g" "g" "t" "t" "a" "c"
## [2737] "t" "t" "t" "t" "g" "g" "t" "g" "a" "t" "g" "a" "c" "a" "c" "t" "g" "t"
## [2755] "g" "a" "t" "a" "g" "a" "a" "g" "t" "g" "c" "a" "a" "g" "g" "t" "t" "a"
## [2773] "c" "a" "a" "g" "a" "g" "t" "g" "t" "g" "a" "a" "t" "a" "t" "c" "a" "c"
## [2791] "t" "t" "t" "t" "g" "a" "a" "c" "t" "t" "g" "a" "t" "g" "a" "a" "a" "g"
## [2809] "g" "a" "t" "t" "g" "a" "t" "a" "a" "a" "g" "t" "a" "c" "t" "t" "a" "a"
## [2827] "t" "g" "a" "g" "a" "a" "g" "t" "g" "c" "t" "c" "t" "g" "c" "c" "t" "a"
## [2845] "t" "a" "c" "a" "g" "t" "t" "g" "a" "a" "c" "t" "c" "g" "g" "t" "a" "c"
## [2863] "a" "g" "a" "a" "g" "t" "a" "a" "a" "t" "g" "a" "g" "t" "t" "c" "g" "c"
## [2881] "c" "t" "g" "t" "g" "t" "t" "g" "t" "g" "g" "c" "a" "g" "a" "t" "g" "c"
## [2899] "t" "g" "t" "c" "a" "t" "a" "a" "a" "a" "a" "c" "t" "t" "t" "g" "c" "a"
## [2917] "a" "c" "c" "a" "g" "t" "a" "t" "c" "t" "g" "a" "a" "t" "t" "a" "c" "t"
## [2935] "t" "a" "c" "a" "c" "c" "a" "c" "t" "g" "g" "g" "c" "a" "t" "t" "g" "a"
## [2953] "t" "t" "t" "a" "g" "a" "t" "g" "a" "g" "t" "g" "g" "a" "g" "t" "a" "t"
## [2971] "g" "g" "c" "t" "a" "c" "a" "t" "a" "c" "t" "a" "c" "t" "t" "a" "t" "t"
## [2989] "t" "g" "a" "t" "g" "a" "g" "t" "c" "t" "g" "g" "t" "g" "a" "g" "t" "t"
## [3007] "t" "a" "a" "a" "t" "t" "g" "g" "c" "t" "t" "c" "a" "c" "a" "t" "a" "t"
## [3025] "g" "t" "a" "t" "t" "g" "t" "t" "c" "t" "t" "t" "c" "t" "a" "c" "c" "c"
## [3043] "t" "c" "c" "a" "g" "a" "t" "g" "a" "g" "g" "a" "t" "g" "a" "a" "g" "a"
## [3061] "a" "g" "a" "a" "g" "g" "t" "g" "a" "t" "t" "g" "t" "g" "a" "a" "g" "a"
## [3079] "a" "g" "a" "a" "g" "a" "g" "t" "t" "t" "g" "a" "g" "c" "c" "a" "t" "c"
## [3097] "a" "a" "c" "t" "c" "a" "a" "t" "a" "t" "g" "a" "g" "t" "a" "t" "g" "g"
## [3115] "t" "a" "c" "t" "g" "a" "a" "g" "a" "t" "g" "a" "t" "t" "a" "c" "c" "a"
## [3133] "a" "g" "g" "t" "a" "a" "a" "c" "c" "t" "t" "t" "g" "g" "a" "a" "t" "t"
## [3151] "t" "g" "g" "t" "g" "c" "c" "a" "c" "t" "t" "c" "t" "g" "c" "t" "g" "c"
## [3169] "t" "c" "t" "t" "c" "a" "a" "c" "c" "t" "g" "a" "a" "g" "a" "a" "g" "a"
## [3187] "g" "c" "a" "a" "g" "a" "a" "g" "a" "a" "g" "a" "t" "t" "g" "g" "t" "t"
## [3205] "a" "g" "a" "t" "g" "a" "t" "g" "a" "t" "a" "g" "t" "c" "a" "a" "c" "a"
## [3223] "a" "a" "c" "t" "g" "t" "t" "g" "g" "t" "c" "a" "a" "c" "a" "a" "g" "a"
## [3241] "c" "g" "g" "c" "a" "g" "t" "g" "a" "g" "g" "a" "c" "a" "a" "t" "c" "a"
## [3259] "g" "a" "c" "a" "a" "c" "t" "a" "c" "t" "a" "t" "t" "c" "a" "a" "a" "c"
## [3277] "a" "a" "t" "t" "g" "t" "t" "g" "a" "g" "g" "t" "t" "c" "a" "a" "c" "c"
## [3295] "t" "c" "a" "a" "t" "t" "a" "g" "a" "g" "a" "t" "g" "g" "a" "a" "c" "t"
## [3313] "t" "a" "c" "a" "c" "c" "a" "g" "t" "t" "g" "t" "t" "c" "a" "g" "a" "c"
## [3331] "t" "a" "t" "t" "g" "a" "a" "g" "t" "g" "a" "a" "t" "a" "g" "t" "t" "t"
## [3349] "t" "a" "g" "t" "g" "g" "t" "t" "a" "t" "t" "t" "a" "a" "a" "a" "c" "t"
## [3367] "t" "a" "c" "t" "g" "a" "c" "a" "a" "t" "g" "t" "a" "t" "a" "c" "a" "t"
## [3385] "t" "a" "a" "a" "a" "a" "t" "g" "c" "a" "g" "a" "c" "a" "t" "t" "g" "t"
## [3403] "g" "g" "a" "a" "g" "a" "a" "g" "c" "t" "a" "a" "a" "a" "a" "g" "g" "t"
## [3421] "a" "a" "a" "a" "c" "c" "a" "a" "c" "a" "g" "t" "g" "g" "t" "t" "g" "t"
## [3439] "t" "a" "a" "t" "g" "c" "a" "g" "c" "c" "a" "a" "t" "g" "t" "t" "t" "a"
## [3457] "c" "c" "t" "t" "a" "a" "a" "c" "a" "t" "g" "g" "a" "g" "g" "a" "g" "g"
## [3475] "t" "g" "t" "t" "g" "c" "a" "g" "g" "a" "g" "c" "c" "t" "t" "a" "a" "a"
## [3493] "t" "a" "a" "g" "g" "c" "t" "a" "c" "t" "a" "a" "c" "a" "a" "t" "g" "c"
## [3511] "c" "a" "t" "g" "c" "a" "a" "g" "t" "t" "g" "a" "a" "t" "c" "t" "g" "a"
## [3529] "t" "g" "a" "t" "t" "a" "c" "a" "t" "a" "g" "c" "t" "a" "c" "t" "a" "a"
## [3547] "t" "g" "g" "a" "c" "c" "a" "c" "t" "t" "a" "a" "a" "g" "t" "g" "g" "g"
## [3565] "t" "g" "g" "t" "a" "g" "t" "t" "g" "t" "g" "t" "t" "t" "t" "a" "a" "g"
## [3583] "c" "g" "g" "a" "c" "a" "c" "a" "a" "t" "c" "t" "t" "g" "c" "t" "a" "a"
## [3601] "a" "c" "a" "c" "t" "g" "t" "c" "t" "t" "c" "a" "t" "g" "t" "t" "g" "t"
## [3619] "c" "g" "g" "c" "c" "c" "a" "a" "a" "t" "g" "t" "t" "a" "a" "c" "a" "a"
## [3637] "a" "g" "g" "t" "g" "a" "a" "g" "a" "c" "a" "t" "t" "c" "a" "a" "c" "t"
## [3655] "t" "c" "t" "t" "a" "a" "g" "a" "g" "t" "g" "c" "t" "t" "a" "t" "g" "a"
## [3673] "a" "a" "a" "t" "t" "t" "t" "a" "a" "t" "c" "a" "g" "c" "a" "c" "g" "a"
## [3691] "a" "g" "t" "t" "c" "t" "a" "c" "t" "t" "g" "c" "a" "c" "c" "a" "t" "t"
## [3709] "a" "t" "t" "a" "t" "c" "a" "g" "c" "t" "g" "g" "t" "a" "t" "t" "t" "t"
## [3727] "t" "g" "g" "t" "g" "c" "t" "g" "a" "c" "c" "c" "t" "a" "t" "a" "c" "a"
## [3745] "t" "t" "c" "t" "t" "t" "a" "a" "g" "a" "g" "t" "t" "t" "g" "t" "g" "t"
## [3763] "a" "g" "a" "t" "a" "c" "t" "g" "t" "t" "c" "g" "c" "a" "c" "a" "a" "a"
## [3781] "t" "g" "t" "c" "t" "a" "c" "t" "t" "a" "g" "c" "t" "g" "t" "c" "t" "t"
## [3799] "t" "g" "a" "t" "a" "a" "a" "a" "a" "t" "c" "t" "c" "t" "a" "t" "g" "a"
## [3817] "c" "a" "a" "a" "c" "t" "t" "g" "t" "t" "t" "c" "a" "a" "g" "c" "t" "t"
## [3835] "t" "t" "t" "g" "g" "a" "a" "a" "t" "g" "a" "a" "g" "a" "g" "t" "g" "a"
## [3853] "a" "a" "a" "g" "c" "a" "a" "g" "t" "t" "g" "a" "a" "c" "a" "a" "a" "a"
## [3871] "g" "a" "t" "c" "g" "c" "t" "g" "a" "g" "a" "t" "t" "c" "c" "t" "a" "a"
## [3889] "a" "g" "a" "g" "g" "a" "a" "g" "t" "t" "a" "a" "g" "c" "c" "a" "t" "t"
## [3907] "t" "a" "t" "a" "a" "c" "t" "g" "a" "a" "a" "g" "t" "a" "a" "a" "c" "c"
## [3925] "t" "t" "c" "a" "g" "t" "t" "g" "a" "a" "c" "a" "g" "a" "g" "a" "a" "a"
## [3943] "a" "c" "a" "a" "g" "a" "t" "g" "a" "t" "a" "a" "g" "a" "a" "a" "a" "t"
## [3961] "c" "a" "a" "a" "g" "c" "t" "t" "g" "t" "g" "t" "t" "g" "a" "a" "g" "a"
## [3979] "a" "g" "t" "t" "a" "c" "a" "a" "c" "a" "a" "c" "t" "c" "t" "g" "g" "a"
## [3997] "a" "g" "a" "a" "a" "c" "t" "a" "a" "g" "t" "t" "c" "c" "t" "c" "a" "c"
## [4015] "a" "g" "a" "a" "a" "a" "c" "t" "t" "g" "t" "t" "a" "c" "t" "t" "t" "a"
## [4033] "t" "a" "t" "t" "g" "a" "c" "a" "t" "t" "a" "a" "t" "g" "g" "c" "a" "a"
## [4051] "t" "c" "t" "t" "c" "a" "t" "c" "c" "a" "g" "a" "t" "t" "c" "t" "g" "c"
## [4069] "c" "a" "c" "t" "c" "t" "t" "g" "t" "t" "a" "g" "t" "g" "a" "c" "a" "t"
## [4087] "t" "g" "a" "c" "a" "t" "c" "a" "c" "t" "t" "t" "c" "t" "t" "a" "a" "a"
## [4105] "g" "a" "a" "a" "g" "a" "t" "g" "c" "t" "c" "c" "a" "t" "a" "t" "a" "t"
## [4123] "a" "g" "t" "g" "g" "g" "t" "g" "a" "t" "g" "t" "t" "g" "t" "t" "c" "a"
## [4141] "a" "g" "a" "g" "g" "g" "t" "g" "t" "t" "t" "t" "a" "a" "c" "t" "g" "c"
## [4159] "t" "g" "t" "g" "g" "t" "t" "a" "t" "a" "c" "c" "t" "a" "c" "t" "a" "a"
## [4177] "a" "a" "a" "g" "g" "c" "t" "g" "g" "t" "g" "g" "c" "a" "c" "t" "a" "c"
## [4195] "t" "g" "a" "a" "a" "t" "g" "c" "t" "a" "g" "c" "g" "a" "a" "a" "g" "c"
## [4213] "t" "t" "t" "g" "a" "g" "a" "a" "a" "a" "g" "t" "g" "c" "c" "a" "a" "c"
## [4231] "a" "g" "a" "c" "a" "a" "t" "t" "a" "t" "a" "t" "a" "a" "c" "c" "a" "c"
## [4249] "t" "t" "a" "c" "c" "c" "g" "g" "g" "t" "c" "a" "g" "g" "g" "t" "t" "t"
## [4267] "a" "a" "a" "t" "g" "g" "t" "t" "a" "c" "a" "c" "t" "g" "t" "a" "g" "a"
## [4285] "g" "g" "a" "g" "g" "c" "a" "a" "a" "g" "a" "c" "a" "g" "t" "g" "c" "t"
## [4303] "t" "a" "a" "a" "a" "a" "g" "t" "g" "t" "a" "a" "a" "a" "g" "t" "g" "c"
## [4321] "c" "t" "t" "t" "t" "a" "c" "a" "t" "t" "c" "t" "a" "c" "c" "a" "t" "c"
## [4339] "t" "a" "t" "t" "a" "t" "c" "t" "c" "t" "a" "a" "t" "g" "a" "g" "a" "a"
## [4357] "g" "c" "a" "a" "g" "a" "a" "a" "t" "t" "c" "t" "t" "g" "g" "a" "a" "c"
## [4375] "t" "g" "t" "t" "t" "c" "t" "t" "g" "g" "a" "a" "t" "t" "t" "g" "c" "g"
## [4393] "a" "g" "a" "a" "a" "t" "g" "c" "t" "t" "g" "c" "a" "c" "a" "t" "g" "c"
## [4411] "a" "g" "a" "a" "g" "a" "a" "a" "c" "a" "c" "g" "c" "a" "a" "a" "t" "t"
## [4429] "a" "a" "t" "g" "c" "c" "t" "g" "t" "c" "t" "g" "t" "g" "t" "g" "g" "a"
## [4447] "a" "a" "c" "t" "a" "a" "a" "g" "c" "c" "a" "t" "a" "g" "t" "t" "t" "c"
## [4465] "a" "a" "c" "t" "a" "t" "a" "c" "a" "g" "c" "g" "t" "a" "a" "a" "t" "a"
## [4483] "t" "a" "a" "g" "g" "g" "t" "a" "t" "t" "a" "a" "a" "a" "t" "a" "c" "a"
## [4501] "a" "g" "a" "g" "g" "g" "t" "g" "t" "g" "g" "t" "t" "g" "a" "t" "t" "a"
## [4519] "t" "g" "g" "t" "g" "c" "t" "a" "g" "a" "t" "t" "t" "t" "a" "c" "t" "t"
## [4537] "t" "t" "a" "c" "a" "c" "c" "a" "g" "t" "a" "a" "a" "a" "c" "a" "a" "c"
## [4555] "t" "g" "t" "a" "g" "c" "g" "t" "c" "a" "c" "t" "t" "a" "t" "c" "a" "a"
## [4573] "c" "a" "c" "a" "c" "t" "t" "a" "a" "c" "g" "a" "t" "c" "t" "a" "a" "a"
## [4591] "t" "g" "a" "a" "a" "c" "t" "c" "t" "t" "g" "t" "t" "a" "c" "a" "a" "t"
## [4609] "g" "c" "c" "a" "c" "t" "t" "g" "g" "c" "t" "a" "t" "g" "t" "a" "a" "c"
## [4627] "a" "c" "a" "t" "g" "g" "c" "t" "t" "a" "a" "a" "t" "t" "t" "g" "g" "a"
## [4645] "a" "g" "a" "a" "g" "c" "t" "g" "c" "t" "c" "g" "g" "t" "a" "t" "a" "t"
## [4663] "g" "a" "g" "a" "t" "c" "t" "c" "t" "c" "a" "a" "a" "g" "t" "g" "c" "c"
## [4681] "a" "g" "c" "t" "a" "c" "a" "g" "t" "t" "t" "c" "t" "g" "t" "t" "t" "c"
## [4699] "t" "t" "c" "a" "c" "c" "t" "g" "a" "t" "g" "c" "t" "g" "t" "t" "a" "c"
## [4717] "a" "g" "c" "g" "t" "a" "t" "a" "a" "t" "g" "g" "t" "t" "a" "t" "c" "t"
## [4735] "t" "a" "c" "t" "t" "c" "t" "t" "c" "t" "t" "c" "t" "a" "a" "a" "a" "c"
## [4753] "a" "c" "c" "t" "g" "a" "a" "g" "a" "a" "c" "a" "t" "t" "t" "t" "a" "t"
## [4771] "t" "g" "a" "a" "a" "c" "c" "a" "t" "c" "t" "c" "a" "c" "t" "t" "g" "c"
## [4789] "t" "g" "g" "t" "t" "c" "c" "t" "a" "t" "a" "a" "a" "g" "a" "t" "t" "g"
## [4807] "g" "t" "c" "c" "t" "a" "t" "t" "c" "t" "g" "g" "a" "c" "a" "a" "t" "c"
## [4825] "t" "a" "c" "a" "c" "a" "a" "c" "t" "a" "g" "g" "t" "a" "t" "a" "g" "a"
## [4843] "a" "t" "t" "t" "c" "t" "t" "a" "a" "g" "a" "g" "a" "g" "g" "t" "g" "a"
## [4861] "t" "a" "a" "a" "a" "g" "t" "g" "t" "a" "t" "a" "t" "t" "a" "c" "a" "c"
## [4879] "t" "a" "g" "t" "a" "a" "t" "c" "c" "t" "a" "c" "c" "a" "c" "a" "t" "t"
## [4897] "c" "c" "a" "c" "c" "t" "a" "g" "a" "t" "g" "g" "t" "g" "a" "a" "g" "t"
## [4915] "t" "a" "t" "c" "a" "c" "c" "t" "t" "t" "g" "a" "c" "a" "a" "t" "c" "t"
## [4933] "t" "a" "a" "g" "a" "c" "a" "c" "t" "t" "c" "t" "t" "t" "c" "t" "t" "t"
## [4951] "g" "a" "g" "a" "g" "a" "a" "g" "t" "g" "a" "g" "g" "a" "c" "t" "a" "t"
## [4969] "t" "a" "a" "g" "g" "t" "g" "t" "t" "t" "a" "c" "a" "a" "c" "a" "g" "t"
## [4987] "a" "g" "a" "c" "a" "a" "c" "a" "t" "t" "a" "a" "c" "c" "t" "c" "c" "a"
## [5005] "c" "a" "c" "g" "c" "a" "a" "g" "t" "t" "g" "t" "g" "g" "a" "c" "a" "t"
## [5023] "g" "t" "c" "a" "a" "t" "g" "a" "c" "a" "t" "a" "t" "g" "g" "a" "c" "a"
## [5041] "a" "c" "a" "g" "t" "t" "t" "g" "g" "t" "c" "c" "a" "a" "c" "t" "t" "a"
## [5059] "t" "t" "t" "g" "g" "a" "t" "g" "g" "a" "g" "c" "t" "g" "a" "t" "g" "t"
## [5077] "t" "a" "c" "t" "a" "a" "a" "a" "t" "a" "a" "a" "a" "c" "c" "t" "c" "a"
## [5095] "t" "a" "a" "t" "t" "c" "a" "c" "a" "t" "g" "a" "a" "g" "g" "t" "a" "a"
## [5113] "a" "a" "c" "a" "t" "t" "t" "t" "a" "t" "g" "t" "t" "t" "t" "a" "c" "c"
## [5131] "t" "a" "a" "t" "g" "a" "t" "g" "a" "c" "a" "c" "t" "c" "t" "a" "c" "g"
## [5149] "t" "g" "t" "t" "g" "a" "g" "g" "c" "t" "t" "t" "t" "g" "a" "g" "t" "a"
## [5167] "c" "t" "a" "c" "c" "a" "c" "a" "c" "a" "a" "c" "t" "g" "a" "t" "c" "c"
## [5185] "t" "a" "g" "t" "t" "t" "t" "c" "t" "g" "g" "g" "t" "a" "g" "g" "t" "a"
## [5203] "c" "a" "t" "g" "t" "c" "a" "g" "c" "a" "t" "t" "a" "a" "a" "t" "c" "a"
## [5221] "c" "a" "c" "t" "a" "a" "a" "a" "a" "g" "t" "g" "g" "a" "a" "a" "t" "a"
## [5239] "c" "c" "c" "a" "c" "a" "a" "g" "t" "t" "a" "a" "t" "g" "g" "t" "t" "t"
## [5257] "a" "a" "c" "t" "t" "c" "t" "a" "t" "t" "a" "a" "a" "t" "g" "g" "g" "c"
## [5275] "a" "g" "a" "t" "a" "a" "c" "a" "a" "c" "t" "g" "t" "t" "a" "t" "c" "t"
## [5293] "t" "g" "c" "c" "a" "c" "t" "g" "c" "a" "t" "t" "g" "t" "t" "a" "a" "c"
## [5311] "a" "c" "t" "c" "c" "a" "a" "c" "a" "a" "a" "t" "a" "g" "a" "g" "t" "t"
## [5329] "g" "a" "a" "g" "t" "t" "t" "a" "a" "t" "c" "c" "a" "c" "c" "t" "g" "c"
## [5347] "t" "c" "t" "a" "c" "a" "a" "g" "a" "t" "g" "c" "t" "t" "a" "t" "t" "a"
## [5365] "c" "a" "g" "a" "g" "c" "a" "a" "g" "g" "g" "c" "t" "g" "g" "t" "g" "a"
## [5383] "a" "g" "c" "t" "g" "c" "t" "a" "a" "c" "t" "t" "t" "t" "g" "t" "g" "c"
## [5401] "a" "c" "t" "t" "a" "t" "c" "t" "t" "a" "g" "c" "c" "t" "a" "c" "t" "g"
## [5419] "t" "a" "a" "t" "a" "a" "g" "a" "c" "a" "g" "t" "a" "g" "g" "t" "g" "a"
## [5437] "g" "t" "t" "a" "g" "g" "t" "g" "a" "t" "g" "t" "t" "a" "g" "a" "g" "a"
## [5455] "a" "a" "c" "a" "a" "t" "g" "a" "g" "t" "t" "a" "c" "t" "t" "g" "t" "t"
## [5473] "t" "c" "a" "a" "c" "a" "t" "g" "c" "c" "a" "a" "t" "t" "t" "a" "g" "a"
## [5491] "t" "t" "c" "t" "t" "g" "c" "a" "a" "a" "a" "g" "a" "g" "t" "c" "t" "t"
## [5509] "g" "a" "a" "c" "g" "t" "g" "g" "t" "g" "t" "g" "t" "a" "a" "a" "a" "c"
## [5527] "t" "t" "g" "t" "g" "g" "a" "c" "a" "a" "c" "a" "g" "c" "a" "g" "a" "c"
## [5545] "a" "a" "c" "c" "c" "t" "t" "a" "a" "g" "g" "g" "t" "g" "t" "a" "g" "a"
## [5563] "a" "g" "c" "t" "g" "t" "t" "a" "t" "g" "t" "a" "c" "a" "t" "g" "g" "g"
## [5581] "c" "a" "c" "a" "c" "t" "t" "t" "c" "t" "t" "a" "t" "g" "a" "a" "c" "a"
## [5599] "a" "t" "t" "t" "a" "a" "g" "a" "a" "a" "g" "g" "t" "g" "t" "t" "c" "a"
## [5617] "g" "a" "t" "a" "c" "c" "t" "t" "g" "t" "a" "c" "g" "t" "g" "t" "g" "g"
## [5635] "t" "a" "a" "a" "c" "a" "a" "g" "c" "t" "a" "c" "a" "a" "a" "a" "t" "a"
## [5653] "t" "c" "t" "a" "g" "t" "a" "c" "a" "a" "c" "a" "g" "g" "a" "g" "t" "c"
## [5671] "a" "c" "c" "t" "t" "t" "t" "g" "t" "t" "a" "t" "g" "a" "t" "g" "t" "c"
## [5689] "a" "g" "c" "a" "c" "c" "a" "c" "c" "t" "g" "c" "t" "c" "a" "g" "t" "a"
## [5707] "t" "g" "a" "a" "c" "t" "t" "a" "a" "g" "c" "a" "t" "g" "g" "t" "a" "c"
## [5725] "a" "t" "t" "t" "a" "c" "t" "t" "g" "t" "g" "c" "t" "a" "g" "t" "g" "a"
## [5743] "g" "t" "a" "c" "a" "c" "t" "g" "g" "t" "a" "a" "t" "t" "a" "c" "c" "a"
## [5761] "g" "t" "g" "t" "g" "g" "t" "c" "a" "c" "t" "a" "t" "a" "a" "a" "c" "a"
## [5779] "t" "a" "t" "a" "a" "c" "t" "t" "c" "t" "a" "a" "a" "g" "a" "a" "a" "c"
## [5797] "t" "t" "t" "g" "t" "a" "t" "t" "g" "c" "a" "t" "a" "g" "a" "c" "g" "g"
## [5815] "t" "g" "c" "t" "t" "t" "a" "c" "t" "t" "a" "c" "a" "a" "a" "g" "t" "c"
## [5833] "c" "t" "c" "a" "g" "a" "a" "t" "a" "c" "a" "a" "a" "g" "g" "t" "c" "c"
## [5851] "t" "a" "t" "t" "a" "c" "g" "g" "a" "t" "g" "t" "t" "t" "t" "c" "t" "a"
## [5869] "c" "a" "a" "a" "g" "a" "a" "a" "a" "c" "a" "g" "t" "t" "a" "c" "a" "c"
## [5887] "a" "a" "c" "a" "a" "c" "c" "a" "t" "a" "a" "a" "a" "c" "c" "a" "g" "t"
## [5905] "t" "a" "c" "t" "t" "a" "t" "a" "a" "a" "t" "t" "g" "g" "a" "t" "g" "g"
## [5923] "t" "g" "t" "t" "g" "t" "t" "t" "g" "t" "a" "c" "a" "g" "a" "a" "a" "t"
## [5941] "t" "g" "a" "c" "c" "c" "t" "a" "a" "g" "t" "t" "g" "g" "a" "c" "a" "a"
## [5959] "t" "t" "a" "t" "t" "a" "t" "a" "a" "g" "a" "a" "a" "g" "a" "c" "a" "a"
## [5977] "t" "t" "c" "t" "t" "a" "t" "t" "t" "c" "a" "c" "a" "g" "a" "g" "c" "a"
## [5995] "a" "c" "c" "a" "a" "t" "t" "g" "a" "t" "c" "t" "t" "g" "t" "a" "c" "c"
## [6013] "a" "a" "a" "c" "c" "a" "a" "c" "c" "a" "t" "a" "t" "c" "c" "a" "a" "a"
## [6031] "c" "g" "c" "a" "a" "g" "c" "t" "t" "c" "g" "a" "t" "a" "a" "t" "t" "t"
## [6049] "t" "a" "a" "g" "t" "t" "t" "g" "t" "a" "t" "g" "t" "g" "a" "t" "a" "a"
## [6067] "t" "a" "t" "c" "a" "a" "a" "t" "t" "t" "g" "c" "t" "g" "a" "t" "g" "a"
## [6085] "t" "t" "t" "a" "a" "a" "c" "c" "a" "g" "t" "t" "a" "a" "c" "t" "g" "g"
## [6103] "t" "t" "a" "t" "a" "a" "g" "a" "a" "a" "c" "c" "t" "g" "c" "t" "t" "c"
## [6121] "a" "a" "g" "a" "g" "a" "g" "c" "t" "t" "a" "a" "a" "g" "t" "t" "a" "c"
## [6139] "a" "t" "t" "t" "t" "t" "c" "c" "c" "t" "g" "a" "c" "t" "t" "a" "a" "a"
## [6157] "t" "g" "g" "t" "g" "a" "t" "g" "t" "g" "g" "t" "g" "g" "c" "t" "a" "t"
## [6175] "t" "g" "a" "t" "t" "a" "t" "a" "a" "a" "c" "a" "c" "t" "a" "c" "a" "c"
## [6193] "a" "c" "c" "c" "t" "c" "t" "t" "t" "t" "a" "a" "g" "a" "a" "a" "g" "g"
## [6211] "a" "g" "c" "t" "a" "a" "a" "t" "t" "g" "t" "t" "a" "c" "a" "t" "a" "a"
## [6229] "a" "c" "c" "t" "a" "t" "t" "g" "t" "t" "t" "g" "g" "c" "a" "t" "g" "t"
## [6247] "t" "a" "a" "c" "a" "a" "t" "g" "c" "a" "a" "c" "t" "a" "a" "t" "a" "a"
## [6265] "a" "g" "c" "c" "a" "c" "g" "t" "a" "t" "a" "a" "a" "c" "c" "a" "a" "a"
## [6283] "t" "a" "c" "c" "t" "g" "g" "t" "g" "t" "a" "t" "a" "c" "g" "t" "t" "g"
## [6301] "t" "c" "t" "t" "t" "g" "g" "a" "g" "c" "a" "c" "a" "a" "a" "a" "c" "c"
## [6319] "a" "g" "t" "t" "g" "a" "a" "a" "c" "a" "t" "c" "a" "a" "a" "t" "t" "c"
## [6337] "g" "t" "t" "t" "g" "a" "t" "g" "t" "a" "c" "t" "g" "a" "a" "g" "t" "c"
## [6355] "a" "g" "a" "g" "g" "a" "c" "g" "c" "g" "c" "a" "g" "g" "g" "a" "a" "t"
## [6373] "g" "g" "a" "t" "a" "a" "t" "c" "t" "t" "g" "c" "c" "t" "g" "c" "g" "a"
## [6391] "a" "g" "a" "t" "c" "t" "a" "a" "a" "a" "c" "c" "a" "g" "t" "c" "t" "c"
## [6409] "t" "g" "a" "a" "g" "a" "a" "g" "t" "a" "g" "t" "g" "g" "a" "a" "a" "a"
## [6427] "t" "c" "c" "t" "a" "c" "c" "a" "t" "a" "c" "a" "g" "a" "a" "a" "g" "a"
## [6445] "c" "g" "t" "t" "c" "t" "t" "g" "a" "g" "t" "g" "t" "a" "a" "t" "g" "t"
## [6463] "g" "a" "a" "a" "a" "c" "t" "a" "c" "c" "g" "a" "a" "g" "t" "t" "g" "t"
## [6481] "a" "g" "g" "a" "g" "a" "c" "a" "t" "t" "a" "t" "a" "c" "t" "t" "a" "a"
## [6499] "a" "c" "c" "a" "g" "c" "a" "a" "a" "t" "a" "a" "t" "a" "g" "t" "t" "t"
## [6517] "a" "a" "a" "a" "a" "t" "t" "a" "c" "a" "g" "a" "a" "g" "a" "g" "g" "t"
## [6535] "t" "g" "g" "c" "c" "a" "c" "a" "c" "a" "g" "a" "t" "c" "t" "a" "a" "t"
## [6553] "g" "g" "c" "t" "g" "c" "t" "t" "a" "t" "g" "t" "a" "g" "a" "c" "a" "a"
## [6571] "t" "t" "c" "t" "a" "g" "t" "c" "t" "t" "a" "c" "t" "a" "t" "t" "a" "a"
## [6589] "g" "a" "a" "a" "c" "c" "t" "a" "a" "t" "g" "a" "a" "t" "t" "a" "t" "c"
## [6607] "t" "a" "g" "a" "g" "t" "a" "t" "t" "a" "g" "g" "t" "t" "t" "g" "a" "a"
## [6625] "a" "a" "c" "c" "c" "t" "t" "g" "c" "t" "a" "c" "t" "c" "a" "t" "g" "g"
## [6643] "t" "t" "t" "a" "g" "c" "t" "g" "c" "t" "g" "t" "t" "a" "a" "t" "a" "g"
## [6661] "t" "g" "t" "c" "c" "c" "t" "t" "g" "g" "g" "a" "t" "a" "c" "t" "a" "t"
## [6679] "a" "g" "c" "t" "a" "a" "t" "t" "a" "t" "g" "c" "t" "a" "a" "g" "c" "c"
## [6697] "t" "t" "t" "t" "c" "t" "t" "a" "a" "c" "a" "a" "a" "g" "t" "t" "g" "t"
## [6715] "t" "a" "g" "t" "a" "c" "a" "a" "c" "t" "a" "c" "t" "a" "a" "c" "a" "t"
## [6733] "a" "g" "t" "t" "a" "c" "a" "c" "g" "g" "t" "g" "t" "t" "t" "a" "a" "a"
## [6751] "c" "c" "g" "t" "g" "t" "t" "t" "g" "t" "a" "c" "t" "a" "a" "t" "t" "a"
## [6769] "t" "a" "t" "g" "c" "c" "t" "t" "a" "t" "t" "t" "c" "t" "t" "t" "a" "c"
## [6787] "t" "t" "t" "a" "t" "t" "g" "c" "t" "a" "c" "a" "a" "t" "t" "g" "t" "g"
## [6805] "t" "a" "c" "t" "t" "t" "t" "a" "c" "t" "a" "g" "a" "a" "g" "t" "a" "c"
## [6823] "a" "a" "a" "t" "t" "c" "t" "a" "g" "a" "a" "t" "t" "a" "a" "a" "g" "c"
## [6841] "a" "t" "c" "t" "a" "t" "g" "c" "c" "g" "a" "c" "t" "a" "c" "t" "a" "t"
## [6859] "a" "g" "c" "a" "a" "a" "g" "a" "a" "t" "a" "c" "t" "g" "t" "t" "a" "a"
## [6877] "g" "a" "g" "t" "g" "t" "c" "g" "g" "t" "a" "a" "a" "t" "t" "t" "t" "g"
## [6895] "t" "c" "t" "a" "g" "a" "g" "g" "c" "t" "t" "c" "a" "t" "t" "t" "a" "a"
## [6913] "t" "t" "a" "t" "t" "t" "g" "a" "a" "g" "t" "c" "a" "c" "c" "t" "a" "a"
## [6931] "t" "t" "t" "t" "t" "c" "t" "a" "a" "a" "c" "t" "g" "a" "t" "a" "a" "a"
## [6949] "t" "a" "t" "t" "a" "t" "a" "a" "t" "t" "t" "g" "g" "t" "t" "t" "t" "t"
## [6967] "a" "c" "t" "a" "t" "t" "a" "a" "g" "t" "g" "t" "t" "t" "g" "c" "c" "t"
## [6985] "a" "g" "g" "t" "t" "c" "t" "t" "t" "a" "a" "t" "c" "t" "a" "c" "t" "c"
## [7003] "a" "a" "c" "c" "g" "c" "t" "g" "c" "t" "t" "t" "a" "g" "g" "t" "g" "t"
## [7021] "t" "t" "t" "a" "a" "t" "g" "t" "c" "t" "a" "a" "t" "t" "t" "a" "g" "g"
## [7039] "c" "a" "t" "g" "c" "c" "t" "t" "c" "t" "t" "a" "c" "t" "g" "t" "a" "c"
## [7057] "t" "g" "g" "t" "t" "a" "c" "a" "g" "a" "g" "a" "a" "g" "g" "c" "t" "a"
## [7075] "t" "t" "t" "g" "a" "a" "c" "t" "c" "t" "a" "c" "t" "a" "a" "t" "g" "t"
## [7093] "c" "a" "c" "t" "a" "t" "t" "g" "c" "a" "a" "c" "c" "t" "a" "c" "t" "g"
## [7111] "t" "a" "c" "t" "g" "g" "t" "t" "c" "t" "a" "t" "a" "c" "c" "t" "t" "g"
## [7129] "t" "a" "g" "t" "g" "t" "t" "t" "g" "t" "c" "t" "t" "a" "g" "t" "g" "g"
## [7147] "t" "t" "t" "a" "g" "a" "t" "t" "c" "t" "t" "t" "a" "g" "a" "c" "a" "c"
## [7165] "c" "t" "a" "t" "c" "c" "t" "t" "c" "t" "t" "t" "a" "g" "a" "a" "a" "c"
## [7183] "t" "a" "t" "a" "c" "a" "a" "a" "t" "t" "a" "c" "c" "a" "t" "t" "t" "c"
## [7201] "a" "t" "c" "t" "t" "t" "t" "a" "a" "a" "t" "g" "g" "g" "a" "t" "t" "t"
## [7219] "a" "a" "c" "t" "g" "c" "t" "t" "t" "t" "g" "g" "c" "t" "t" "a" "g" "t"
## [7237] "t" "g" "c" "a" "g" "a" "g" "t" "g" "g" "t" "t" "t" "t" "t" "g" "g" "c"
## [7255] "a" "t" "a" "t" "a" "t" "t" "c" "t" "t" "t" "t" "c" "a" "c" "t" "a" "g"
## [7273] "g" "t" "t" "t" "t" "t" "c" "t" "a" "t" "g" "t" "a" "c" "t" "t" "g" "g"
## [7291] "a" "t" "t" "g" "g" "c" "t" "g" "c" "a" "a" "t" "c" "a" "t" "g" "c" "a"
## [7309] "a" "t" "t" "g" "t" "t" "t" "t" "t" "c" "a" "g" "c" "t" "a" "t" "t" "t"
## [7327] "t" "g" "c" "a" "g" "t" "a" "c" "a" "t" "t" "t" "t" "a" "t" "t" "a" "g"
## [7345] "t" "a" "a" "t" "t" "c" "t" "t" "g" "g" "c" "t" "t" "a" "t" "g" "t" "g"
## [7363] "g" "t" "t" "a" "a" "t" "a" "a" "t" "t" "a" "a" "t" "c" "t" "t" "g" "t"
## [7381] "a" "c" "a" "a" "a" "t" "g" "g" "c" "c" "c" "c" "g" "a" "t" "t" "t" "c"
## [7399] "a" "g" "c" "t" "a" "t" "g" "g" "t" "t" "a" "g" "a" "a" "t" "g" "t" "a"
## [7417] "c" "a" "t" "c" "t" "t" "c" "t" "t" "t" "g" "c" "a" "t" "c" "a" "t" "t"
## [7435] "t" "t" "a" "t" "t" "a" "t" "g" "t" "a" "t" "g" "g" "a" "a" "a" "a" "g"
## [7453] "t" "t" "a" "t" "g" "t" "g" "c" "a" "t" "g" "t" "t" "g" "t" "a" "g" "a"
## [7471] "c" "g" "g" "t" "t" "g" "t" "a" "a" "t" "t" "c" "a" "t" "c" "a" "a" "c"
## [7489] "t" "t" "g" "t" "a" "t" "g" "a" "t" "g" "t" "g" "t" "t" "a" "c" "a" "a"
## [7507] "a" "c" "g" "t" "a" "a" "t" "a" "g" "a" "g" "c" "a" "a" "c" "a" "a" "g"
## [7525] "a" "g" "t" "c" "g" "a" "a" "t" "g" "t" "a" "c" "a" "a" "c" "t" "a" "t"
## [7543] "t" "g" "t" "t" "a" "a" "t" "g" "g" "t" "g" "t" "t" "a" "g" "a" "a" "g"
## [7561] "g" "t" "c" "c" "t" "t" "t" "t" "a" "t" "g" "t" "c" "t" "a" "t" "g" "c"
## [7579] "t" "a" "a" "t" "g" "g" "a" "g" "g" "t" "a" "a" "a" "g" "g" "c" "t" "t"
## [7597] "t" "t" "g" "c" "a" "a" "a" "c" "t" "a" "c" "a" "c" "a" "a" "t" "t" "g"
## [7615] "g" "a" "a" "t" "t" "g" "t" "g" "t" "t" "a" "a" "t" "t" "g" "t" "g" "a"
## [7633] "t" "a" "c" "a" "t" "t" "c" "t" "g" "t" "g" "c" "t" "g" "g" "t" "a" "g"
## [7651] "t" "a" "c" "a" "t" "t" "t" "a" "t" "t" "a" "g" "t" "g" "a" "t" "g" "a"
## [7669] "a" "g" "t" "t" "g" "c" "g" "a" "g" "a" "g" "a" "c" "t" "t" "g" "t" "c"
## [7687] "a" "c" "t" "a" "c" "a" "g" "t" "t" "t" "a" "a" "a" "a" "g" "a" "c" "c"
## [7705] "a" "a" "t" "a" "a" "a" "t" "c" "c" "t" "a" "c" "t" "g" "a" "c" "c" "a"
## [7723] "g" "t" "c" "t" "t" "c" "t" "t" "a" "c" "a" "t" "c" "g" "t" "t" "g" "a"
## [7741] "t" "a" "g" "t" "g" "t" "t" "a" "c" "a" "g" "t" "g" "a" "a" "g" "a" "a"
## [7759] "t" "g" "g" "t" "t" "c" "c" "a" "t" "c" "c" "a" "t" "c" "t" "t" "t" "a"
## [7777] "c" "t" "t" "t" "g" "a" "t" "a" "a" "a" "g" "c" "t" "g" "g" "t" "c" "a"
## [7795] "a" "a" "a" "g" "a" "c" "t" "t" "a" "t" "g" "a" "a" "a" "g" "a" "c" "a"
## [7813] "t" "t" "c" "t" "c" "t" "c" "t" "c" "t" "c" "a" "t" "t" "t" "t" "g" "t"
## [7831] "t" "a" "a" "c" "t" "t" "a" "g" "a" "c" "a" "a" "c" "c" "t" "g" "a" "g"
## [7849] "a" "g" "c" "t" "a" "a" "t" "a" "a" "c" "a" "c" "t" "a" "a" "a" "g" "g"
## [7867] "t" "t" "c" "a" "t" "t" "g" "c" "c" "t" "a" "t" "t" "a" "a" "t" "g" "t"
## [7885] "t" "a" "t" "a" "g" "t" "t" "t" "t" "t" "g" "a" "t" "g" "g" "t" "a" "a"
## [7903] "a" "t" "c" "a" "a" "a" "a" "t" "g" "t" "g" "a" "a" "g" "a" "a" "t" "c"
## [7921] "a" "t" "c" "t" "g" "c" "a" "a" "a" "a" "t" "c" "a" "g" "c" "g" "t" "c"
## [7939] "t" "g" "t" "t" "t" "a" "c" "t" "a" "c" "a" "g" "t" "c" "a" "g" "c" "t"
## [7957] "t" "a" "t" "g" "t" "g" "t" "c" "a" "a" "c" "c" "t" "a" "t" "a" "c" "t"
## [7975] "g" "t" "t" "a" "c" "t" "a" "g" "a" "t" "c" "a" "g" "g" "c" "a" "t" "t"
## [7993] "a" "g" "t" "g" "t" "c" "t" "g" "a" "t" "g" "t" "t" "g" "g" "t" "g" "a"
## [8011] "t" "a" "g" "t" "g" "c" "g" "g" "a" "a" "g" "t" "t" "g" "c" "a" "g" "t"
## [8029] "t" "a" "a" "a" "a" "t" "g" "t" "t" "t" "g" "a" "t" "g" "c" "t" "t" "a"
## [8047] "c" "g" "t" "t" "a" "a" "t" "a" "c" "g" "t" "t" "t" "t" "c" "a" "t" "c"
## [8065] "a" "a" "c" "t" "t" "t" "t" "a" "a" "c" "g" "t" "a" "c" "c" "a" "a" "t"
## [8083] "g" "g" "a" "a" "a" "a" "a" "c" "t" "c" "a" "a" "a" "a" "c" "a" "c" "t"
## [8101] "a" "g" "t" "t" "g" "c" "a" "a" "c" "t" "g" "c" "a" "g" "a" "a" "g" "c"
## [8119] "t" "g" "a" "a" "c" "t" "t" "g" "c" "a" "a" "a" "g" "a" "a" "t" "g" "t"
## [8137] "g" "t" "c" "c" "t" "t" "a" "g" "a" "c" "a" "a" "t" "g" "t" "c" "t" "t"
## [8155] "a" "t" "c" "t" "a" "c" "t" "t" "t" "t" "a" "t" "t" "t" "c" "a" "g" "c"
## [8173] "a" "g" "c" "t" "c" "g" "g" "c" "a" "a" "g" "g" "g" "t" "t" "t" "g" "t"
## [8191] "t" "g" "a" "t" "t" "c" "a" "g" "a" "t" "g" "t" "a" "g" "a" "a" "a" "c"
## [8209] "t" "a" "a" "a" "g" "a" "t" "g" "t" "t" "g" "t" "t" "g" "a" "a" "t" "g"
## [8227] "t" "c" "t" "t" "a" "a" "a" "t" "t" "g" "t" "c" "a" "c" "a" "t" "c" "a"
## [8245] "a" "t" "c" "t" "g" "a" "c" "a" "t" "a" "g" "a" "a" "g" "t" "t" "a" "c"
## [8263] "t" "g" "g" "c" "g" "a" "t" "a" "g" "t" "t" "g" "t" "a" "a" "t" "a" "a"
## [8281] "c" "t" "a" "t" "a" "t" "g" "c" "t" "c" "a" "c" "c" "t" "a" "t" "a" "a"
## [8299] "c" "a" "a" "a" "g" "t" "t" "g" "a" "a" "a" "a" "c" "a" "t" "g" "a" "c"
## [8317] "a" "c" "c" "c" "c" "g" "t" "g" "a" "c" "c" "t" "t" "g" "g" "t" "g" "c"
## [8335] "t" "t" "g" "t" "a" "t" "t" "g" "a" "c" "t" "g" "t" "a" "g" "t" "g" "c"
## [8353] "g" "c" "g" "t" "c" "a" "t" "a" "t" "t" "a" "a" "t" "g" "c" "g" "c" "a"
## [8371] "g" "g" "t" "a" "g" "c" "a" "a" "a" "a" "a" "g" "t" "c" "a" "c" "a" "a"
## [8389] "c" "a" "t" "t" "g" "c" "t" "t" "t" "g" "a" "t" "a" "t" "g" "g" "a" "a"
## [8407] "c" "g" "t" "t" "a" "a" "a" "g" "a" "t" "t" "t" "c" "a" "t" "g" "t" "c"
## [8425] "a" "t" "t" "g" "t" "c" "t" "g" "a" "a" "c" "a" "a" "c" "t" "a" "c" "g"
## [8443] "a" "a" "a" "a" "c" "a" "a" "a" "t" "a" "c" "g" "t" "a" "g" "t" "g" "c"
## [8461] "t" "g" "c" "t" "a" "a" "a" "a" "a" "g" "a" "a" "t" "a" "a" "c" "t" "t"
## [8479] "a" "c" "c" "t" "t" "t" "t" "a" "a" "g" "t" "t" "g" "a" "c" "a" "t" "g"
## [8497] "t" "g" "c" "a" "a" "c" "t" "a" "c" "t" "a" "g" "a" "c" "a" "a" "g" "t"
## [8515] "t" "g" "t" "t" "a" "a" "t" "g" "t" "t" "g" "t" "a" "a" "c" "a" "a" "c"
## [8533] "a" "a" "a" "g" "a" "t" "a" "g" "c" "a" "c" "t" "t" "a" "a" "g" "g" "g"
## [8551] "t" "g" "g" "t" "a" "a" "a" "a" "t" "t" "g" "t" "t" "a" "a" "t" "a" "a"
## [8569] "t" "t" "g" "g" "t" "t" "g" "a" "a" "g" "c" "a" "g" "t" "t" "a" "a" "t"
## [8587] "t" "a" "a" "a" "g" "t" "t" "a" "c" "a" "c" "t" "t" "g" "t" "g" "t" "t"
## [8605] "c" "c" "t" "t" "t" "t" "t" "g" "t" "t" "g" "c" "t" "g" "c" "t" "a" "t"
## [8623] "t" "t" "t" "c" "t" "a" "t" "t" "t" "a" "a" "t" "a" "a" "c" "a" "c" "c"
## [8641] "t" "g" "t" "t" "c" "a" "t" "g" "t" "c" "a" "t" "g" "t" "c" "t" "a" "a"
## [8659] "a" "c" "a" "t" "a" "c" "t" "g" "a" "c" "t" "t" "t" "t" "c" "a" "a" "g"
## [8677] "t" "g" "a" "a" "a" "t" "c" "a" "t" "a" "g" "g" "a" "t" "a" "c" "a" "a"
## [8695] "g" "g" "c" "t" "a" "t" "t" "g" "a" "t" "g" "g" "t" "g" "g" "t" "g" "t"
## [8713] "c" "a" "c" "t" "c" "g" "t" "g" "a" "c" "a" "t" "a" "g" "c" "a" "t" "c"
## [8731] "t" "a" "c" "a" "g" "a" "t" "a" "c" "t" "t" "g" "t" "t" "t" "t" "g" "c"
## [8749] "t" "a" "a" "c" "a" "a" "a" "c" "a" "t" "g" "c" "t" "g" "a" "t" "t" "t"
## [8767] "t" "g" "a" "c" "a" "c" "a" "t" "g" "g" "t" "t" "t" "a" "g" "c" "c" "a"
## [8785] "g" "c" "g" "t" "g" "g" "t" "g" "g" "t" "a" "g" "t" "t" "a" "t" "a" "c"
## [8803] "t" "a" "a" "t" "g" "a" "c" "a" "a" "a" "g" "c" "t" "t" "g" "c" "c" "c"
## [8821] "a" "t" "t" "g" "a" "t" "t" "g" "c" "t" "g" "c" "a" "g" "t" "c" "a" "t"
## [8839] "a" "a" "c" "a" "a" "g" "a" "g" "a" "a" "g" "t" "g" "g" "g" "t" "t" "t"
## [8857] "t" "g" "t" "c" "g" "t" "g" "c" "c" "t" "g" "g" "t" "t" "t" "g" "c" "c"
## [8875] "t" "g" "g" "c" "a" "c" "g" "a" "t" "a" "t" "t" "a" "c" "g" "c" "a" "c"
## [8893] "a" "a" "c" "t" "a" "a" "t" "g" "g" "t" "g" "a" "c" "t" "t" "t" "t" "t"
## [8911] "g" "c" "a" "t" "t" "t" "c" "t" "t" "a" "c" "c" "t" "a" "g" "a" "g" "t"
## [8929] "t" "t" "t" "t" "a" "g" "t" "g" "c" "a" "g" "t" "t" "g" "g" "t" "a" "a"
## [8947] "c" "a" "t" "c" "t" "g" "t" "t" "a" "c" "a" "c" "a" "c" "c" "a" "t" "c"
## [8965] "a" "a" "a" "a" "c" "t" "t" "a" "t" "a" "g" "a" "g" "t" "a" "c" "a" "c"
## [8983] "t" "g" "a" "c" "t" "t" "t" "g" "c" "a" "a" "c" "a" "t" "c" "a" "g" "c"
## [9001] "t" "t" "g" "t" "g" "t" "t" "t" "t" "g" "g" "c" "t" "g" "c" "t" "g" "a"
## [9019] "a" "t" "g" "t" "a" "c" "a" "a" "t" "t" "t" "t" "t" "a" "a" "a" "g" "a"
## [9037] "t" "g" "c" "t" "t" "c" "t" "g" "g" "t" "a" "a" "g" "c" "c" "a" "g" "t"
## [9055] "a" "c" "c" "a" "t" "a" "t" "t" "g" "t" "t" "a" "t" "g" "a" "t" "a" "c"
## [9073] "c" "a" "a" "t" "g" "t" "a" "c" "t" "a" "g" "a" "a" "g" "g" "t" "t" "c"
## [9091] "t" "g" "t" "t" "g" "c" "t" "t" "a" "t" "g" "a" "a" "a" "g" "t" "t" "t"
## [9109] "a" "c" "g" "c" "c" "c" "t" "g" "a" "c" "a" "c" "a" "c" "g" "t" "t" "a"
## [9127] "t" "g" "t" "g" "c" "t" "c" "a" "t" "g" "g" "a" "t" "g" "g" "c" "t" "c"
## [9145] "t" "a" "t" "t" "a" "t" "t" "c" "a" "a" "t" "t" "t" "c" "c" "t" "a" "a"
## [9163] "c" "a" "c" "c" "t" "a" "c" "c" "t" "t" "g" "a" "a" "g" "g" "t" "t" "c"
## [9181] "t" "g" "t" "t" "a" "g" "a" "g" "t" "g" "g" "t" "a" "a" "c" "a" "a" "c"
## [9199] "t" "t" "t" "t" "g" "a" "t" "t" "c" "t" "g" "a" "g" "t" "a" "c" "t" "g"
## [9217] "t" "a" "g" "g" "c" "a" "c" "g" "g" "c" "a" "c" "t" "t" "g" "t" "g" "a"
## [9235] "a" "a" "g" "a" "t" "c" "a" "g" "a" "a" "g" "c" "t" "g" "g" "t" "g" "t"
## [9253] "t" "t" "g" "t" "g" "t" "a" "t" "c" "t" "a" "c" "t" "a" "g" "t" "g" "g"
## [9271] "t" "a" "g" "a" "t" "g" "g" "g" "t" "a" "c" "t" "t" "a" "a" "c" "a" "a"
## [9289] "t" "g" "a" "t" "t" "a" "t" "t" "a" "c" "a" "g" "a" "t" "c" "t" "t" "t"
## [9307] "a" "c" "c" "a" "g" "g" "a" "g" "t" "t" "t" "t" "c" "t" "g" "t" "g" "g"
## [9325] "t" "g" "t" "a" "g" "a" "t" "g" "c" "t" "g" "t" "a" "a" "a" "t" "t" "t"
## [9343] "a" "c" "t" "t" "a" "c" "t" "a" "a" "t" "a" "t" "g" "t" "t" "t" "a" "c"
## [9361] "a" "c" "c" "a" "c" "t" "a" "a" "t" "t" "c" "a" "a" "c" "c" "t" "a" "t"
## [9379] "t" "g" "g" "t" "g" "c" "t" "t" "t" "g" "g" "a" "c" "a" "t" "a" "t" "c"
## [9397] "a" "g" "c" "a" "t" "c" "t" "a" "t" "a" "g" "t" "a" "g" "c" "t" "g" "g"
## [9415] "t" "g" "g" "t" "a" "t" "t" "g" "t" "a" "g" "c" "t" "a" "t" "c" "g" "t"
## [9433] "a" "g" "t" "a" "a" "c" "a" "t" "g" "c" "c" "t" "t" "g" "c" "c" "t" "a"
## [9451] "c" "t" "a" "t" "t" "t" "t" "a" "t" "g" "a" "g" "g" "t" "t" "t" "a" "g"
## [9469] "a" "a" "g" "a" "g" "c" "t" "t" "t" "t" "g" "g" "t" "g" "a" "a" "t" "a"
## [9487] "c" "a" "g" "t" "c" "a" "t" "g" "t" "a" "g" "t" "t" "g" "c" "c" "t" "t"
## [9505] "t" "a" "a" "t" "a" "c" "t" "t" "t" "a" "c" "t" "a" "t" "t" "c" "c" "t"
## [9523] "t" "a" "t" "g" "t" "c" "a" "t" "t" "c" "a" "c" "t" "g" "t" "a" "c" "t"
## [9541] "c" "t" "g" "t" "t" "t" "a" "a" "c" "a" "c" "c" "a" "g" "t" "t" "t" "a"
## [9559] "c" "t" "c" "a" "t" "t" "c" "t" "t" "a" "c" "c" "t" "g" "g" "t" "g" "t"
## [9577] "t" "t" "a" "t" "t" "c" "t" "g" "t" "t" "a" "t" "t" "t" "a" "c" "t" "t"
## [9595] "g" "t" "a" "c" "t" "t" "g" "a" "c" "a" "t" "t" "t" "t" "a" "t" "c" "t"
## [9613] "t" "a" "c" "t" "a" "a" "t" "g" "a" "t" "g" "t" "t" "t" "c" "t" "t" "t"
## [9631] "t" "t" "t" "a" "g" "c" "a" "c" "a" "t" "a" "t" "t" "c" "a" "g" "t" "g"
## [9649] "g" "a" "t" "g" "g" "t" "t" "a" "t" "g" "t" "t" "c" "a" "c" "a" "c" "c"
## [9667] "t" "t" "t" "a" "g" "t" "a" "c" "c" "t" "t" "t" "c" "t" "g" "g" "a" "t"
## [9685] "a" "a" "c" "a" "a" "t" "t" "g" "c" "t" "t" "a" "t" "a" "t" "c" "a" "t"
## [9703] "t" "t" "g" "t" "a" "t" "t" "t" "c" "c" "a" "c" "a" "a" "a" "g" "c" "a"
## [9721] "t" "t" "t" "c" "t" "a" "t" "t" "g" "g" "t" "t" "c" "t" "t" "t" "a" "g"
## [9739] "t" "a" "a" "t" "t" "a" "c" "c" "t" "a" "a" "a" "g" "a" "g" "a" "c" "g"
## [9757] "t" "g" "t" "a" "g" "t" "c" "t" "t" "t" "a" "a" "t" "g" "g" "t" "g" "t"
## [9775] "t" "t" "c" "c" "t" "t" "t" "a" "g" "t" "a" "c" "t" "t" "t" "t" "g" "a"
## [9793] "a" "g" "a" "a" "g" "c" "t" "g" "c" "g" "c" "t" "g" "t" "g" "c" "a" "c"
## [9811] "c" "t" "t" "t" "t" "t" "g" "t" "t" "a" "a" "a" "t" "a" "a" "a" "g" "a"
## [9829] "a" "a" "t" "g" "t" "a" "t" "c" "t" "a" "a" "a" "g" "t" "t" "g" "c" "g"
## [9847] "t" "a" "g" "t" "g" "a" "t" "g" "t" "g" "c" "t" "a" "t" "t" "a" "c" "c"
## [9865] "t" "c" "t" "t" "a" "c" "g" "c" "a" "a" "t" "a" "t" "a" "a" "t" "a" "g"
## [9883] "a" "t" "a" "c" "t" "t" "a" "g" "c" "t" "c" "t" "t" "t" "a" "t" "a" "a"
## [9901] "t" "a" "a" "g" "t" "a" "c" "a" "a" "g" "t" "a" "t" "t" "t" "t" "a" "g"
## [9919] "t" "g" "g" "a" "g" "c" "a" "a" "t" "g" "g" "a" "t" "a" "c" "a" "a" "c"
## [9937] "t" "a" "g" "c" "t" "a" "c" "a" "g" "a" "g" "a" "a" "g" "c" "t" "g" "c"
## [9955] "t" "t" "g" "t" "t" "g" "t" "c" "a" "t" "c" "t" "c" "g" "c" "a" "a" "a"
## [9973] "g" "g" "c" "t" "c" "t" "c" "a" "a" "t" "g" "a" "c" "t" "t" "c" "a" "g"
## [9991] "t" "a" "a" "c" "t" "c" "a" "g" "g" "t" "t" "c" "t" "g" "a" "t" "g" "t"
## [10009] "t" "c" "t" "t" "t" "a" "c" "c" "a" "a" "c" "c" "a" "c" "c" "a" "c" "a"
## [10027] "a" "a" "c" "c" "t" "c" "t" "a" "t" "c" "a" "c" "c" "t" "c" "a" "g" "c"
## [10045] "t" "g" "t" "t" "t" "t" "g" "c" "a" "g" "a" "g" "t" "g" "g" "t" "t" "t"
## [10063] "t" "a" "g" "a" "a" "a" "a" "a" "t" "g" "g" "c" "a" "t" "t" "c" "c" "c"
## [10081] "a" "t" "c" "t" "g" "g" "t" "a" "a" "a" "g" "t" "t" "g" "a" "g" "g" "g"
## [10099] "t" "t" "g" "t" "a" "t" "g" "g" "t" "a" "c" "a" "a" "g" "t" "a" "a" "c"
## [10117] "t" "t" "g" "t" "g" "g" "t" "a" "c" "a" "a" "c" "t" "a" "c" "a" "c" "t"
## [10135] "t" "a" "a" "c" "g" "g" "t" "c" "t" "t" "t" "g" "g" "c" "t" "t" "g" "a"
## [10153] "t" "g" "a" "c" "g" "t" "a" "g" "t" "t" "t" "a" "c" "t" "g" "t" "c" "c"
## [10171] "a" "a" "g" "a" "c" "a" "t" "g" "t" "g" "a" "t" "c" "t" "g" "c" "a" "c"
## [10189] "c" "t" "c" "t" "g" "a" "a" "g" "a" "c" "a" "t" "g" "c" "t" "t" "a" "a"
## [10207] "c" "c" "c" "t" "a" "a" "t" "t" "a" "t" "g" "a" "a" "g" "a" "t" "t" "t"
## [10225] "a" "c" "t" "c" "a" "t" "t" "c" "g" "t" "a" "a" "g" "t" "c" "t" "a" "a"
## [10243] "t" "c" "a" "t" "a" "a" "t" "t" "t" "c" "t" "t" "g" "g" "t" "a" "c" "a"
## [10261] "g" "g" "c" "t" "g" "g" "t" "a" "a" "t" "g" "t" "t" "c" "a" "a" "c" "t"
## [10279] "c" "a" "g" "g" "g" "t" "t" "a" "t" "t" "g" "g" "a" "c" "a" "t" "t" "c"
## [10297] "t" "a" "t" "g" "c" "a" "a" "a" "a" "t" "t" "g" "t" "g" "t" "a" "c" "t"
## [10315] "t" "a" "a" "g" "c" "t" "t" "a" "a" "g" "g" "t" "t" "g" "a" "t" "a" "c"
## [10333] "a" "g" "c" "c" "a" "a" "t" "c" "c" "t" "a" "a" "g" "a" "c" "a" "c" "c"
## [10351] "t" "a" "a" "g" "t" "a" "t" "a" "a" "g" "t" "t" "t" "g" "t" "t" "c" "g"
## [10369] "c" "a" "t" "t" "c" "a" "a" "c" "c" "a" "g" "g" "a" "c" "a" "g" "a" "c"
## [10387] "t" "t" "t" "t" "t" "c" "a" "g" "t" "g" "t" "t" "a" "g" "c" "t" "t" "g"
## [10405] "t" "t" "a" "c" "a" "a" "t" "g" "g" "t" "t" "c" "a" "c" "c" "a" "t" "c"
## [10423] "t" "g" "g" "t" "g" "t" "t" "t" "a" "c" "c" "a" "a" "t" "g" "t" "g" "c"
## [10441] "t" "a" "t" "g" "a" "g" "g" "c" "c" "c" "a" "a" "t" "t" "t" "c" "a" "c"
## [10459] "t" "a" "t" "t" "a" "a" "g" "g" "g" "t" "t" "c" "a" "t" "t" "c" "c" "t"
## [10477] "t" "a" "a" "t" "g" "g" "t" "t" "c" "a" "t" "g" "t" "g" "g" "t" "a" "g"
## [10495] "t" "g" "t" "t" "g" "g" "t" "t" "t" "t" "a" "a" "c" "a" "t" "a" "g" "a"
## [10513] "t" "t" "a" "t" "g" "a" "c" "t" "g" "t" "g" "t" "c" "t" "c" "t" "t" "t"
## [10531] "t" "t" "g" "t" "t" "a" "c" "a" "t" "g" "c" "a" "c" "c" "a" "t" "a" "t"
## [10549] "g" "g" "a" "a" "t" "t" "a" "c" "c" "a" "a" "c" "t" "g" "g" "a" "g" "t"
## [10567] "t" "c" "a" "t" "g" "c" "t" "g" "g" "c" "a" "c" "a" "g" "a" "c" "t" "t"
## [10585] "a" "g" "a" "a" "g" "g" "t" "a" "a" "c" "t" "t" "t" "t" "a" "t" "g" "g"
## [10603] "a" "c" "c" "t" "t" "t" "t" "g" "t" "t" "g" "a" "c" "a" "g" "g" "c" "a"
## [10621] "a" "a" "c" "a" "g" "c" "a" "c" "a" "a" "g" "c" "a" "g" "c" "t" "g" "g"
## [10639] "t" "a" "c" "g" "g" "a" "c" "a" "c" "a" "a" "c" "t" "a" "t" "t" "a" "c"
## [10657] "a" "g" "t" "t" "a" "a" "t" "g" "t" "t" "t" "t" "a" "g" "c" "t" "t" "g"
## [10675] "g" "t" "t" "g" "t" "a" "c" "g" "c" "t" "g" "c" "t" "g" "t" "t" "a" "t"
## [10693] "a" "a" "a" "t" "g" "g" "a" "g" "a" "c" "a" "g" "g" "t" "g" "g" "t" "t"
## [10711] "t" "c" "t" "c" "a" "a" "t" "c" "g" "a" "t" "t" "t" "a" "c" "c" "a" "c"
## [10729] "a" "a" "c" "t" "c" "t" "t" "a" "a" "t" "g" "a" "c" "t" "t" "t" "a" "a"
## [10747] "c" "c" "t" "t" "g" "t" "g" "g" "c" "t" "a" "t" "g" "a" "a" "g" "t" "a"
## [10765] "c" "a" "a" "t" "t" "a" "t" "g" "a" "a" "c" "c" "t" "c" "t" "a" "a" "c"
## [10783] "a" "c" "a" "a" "g" "a" "c" "c" "a" "t" "g" "t" "t" "g" "a" "c" "a" "t"
## [10801] "a" "c" "t" "a" "g" "g" "a" "c" "c" "t" "c" "t" "t" "t" "c" "t" "g" "c"
## [10819] "t" "c" "a" "a" "a" "c" "t" "g" "g" "a" "a" "t" "t" "g" "c" "c" "g" "t"
## [10837] "t" "t" "t" "a" "g" "a" "t" "a" "t" "g" "t" "g" "t" "g" "c" "t" "t" "c"
## [10855] "a" "t" "t" "a" "a" "a" "a" "g" "a" "a" "t" "t" "a" "c" "t" "g" "c" "a"
## [10873] "a" "a" "a" "t" "g" "g" "t" "a" "t" "g" "a" "a" "t" "g" "g" "a" "c" "g"
## [10891] "t" "a" "c" "c" "a" "t" "a" "t" "t" "g" "g" "g" "t" "a" "g" "t" "g" "c"
## [10909] "t" "t" "t" "a" "t" "t" "a" "g" "a" "a" "g" "a" "t" "g" "a" "a" "t" "t"
## [10927] "t" "a" "c" "a" "c" "c" "t" "t" "t" "t" "g" "a" "t" "g" "t" "t" "g" "t"
## [10945] "t" "a" "g" "a" "c" "a" "a" "t" "g" "c" "t" "c" "a" "g" "g" "t" "g" "t"
## [10963] "t" "a" "c" "t" "t" "t" "c" "c" "a" "a" "a" "g" "t" "g" "c" "a" "g" "t"
## [10981] "g" "a" "a" "a" "a" "g" "a" "a" "c" "a" "a" "t" "c" "a" "a" "g" "g" "g"
## [10999] "t" "a" "c" "a" "c" "a" "c" "c" "a" "c" "t" "g" "g" "t" "t" "g" "t" "t"
## [11017] "a" "c" "t" "c" "a" "c" "a" "a" "t" "t" "t" "t" "g" "a" "c" "t" "t" "c"
## [11035] "a" "c" "t" "t" "t" "t" "a" "g" "t" "t" "t" "t" "a" "g" "t" "c" "c" "a"
## [11053] "g" "a" "g" "t" "a" "c" "t" "c" "a" "a" "t" "g" "g" "t" "c" "t" "t" "t"
## [11071] "g" "t" "t" "c" "t" "t" "t" "t" "t" "t" "t" "t" "g" "t" "a" "t" "g" "a"
## [11089] "a" "a" "a" "t" "g" "c" "c" "t" "t" "t" "t" "t" "a" "c" "c" "t" "t" "t"
## [11107] "t" "g" "c" "t" "a" "t" "g" "g" "g" "t" "a" "t" "t" "a" "t" "t" "g" "c"
## [11125] "t" "a" "t" "g" "t" "c" "t" "g" "c" "t" "t" "t" "t" "g" "c" "a" "a" "t"
## [11143] "g" "a" "t" "g" "t" "t" "t" "g" "t" "c" "a" "a" "a" "c" "a" "t" "a" "a"
## [11161] "g" "c" "a" "t" "g" "c" "a" "t" "t" "t" "c" "t" "c" "t" "g" "t" "t" "t"
## [11179] "g" "t" "t" "t" "t" "t" "g" "t" "t" "a" "c" "c" "t" "t" "c" "t" "c" "t"
## [11197] "t" "g" "c" "c" "a" "c" "t" "g" "t" "a" "g" "c" "t" "t" "a" "t" "t" "t"
## [11215] "t" "a" "a" "t" "a" "t" "g" "g" "t" "c" "t" "a" "t" "a" "t" "g" "c" "c"
## [11233] "t" "g" "c" "t" "a" "g" "t" "t" "g" "g" "g" "t" "g" "a" "t" "g" "c" "g"
## [11251] "t" "a" "t" "t" "a" "t" "g" "a" "c" "a" "t" "g" "g" "t" "t" "g" "g" "a"
## [11269] "t" "a" "t" "g" "g" "t" "t" "g" "a" "t" "a" "c" "t" "a" "g" "t" "t" "t"
## [11287] "g" "t" "c" "t" "g" "g" "t" "t" "t" "t" "a" "a" "g" "c" "t" "a" "a" "a"
## [11305] "a" "g" "a" "c" "t" "g" "t" "g" "t" "t" "a" "t" "g" "t" "a" "t" "g" "c"
## [11323] "a" "t" "c" "a" "g" "c" "t" "g" "t" "a" "g" "t" "g" "t" "t" "a" "c" "t"
## [11341] "a" "a" "t" "c" "c" "t" "t" "a" "t" "g" "a" "c" "a" "g" "c" "a" "a" "g"
## [11359] "a" "a" "c" "t" "g" "t" "g" "t" "a" "t" "g" "a" "t" "g" "a" "t" "g" "g"
## [11377] "t" "g" "c" "t" "a" "g" "g" "a" "g" "a" "g" "t" "g" "t" "g" "g" "a" "c"
## [11395] "a" "c" "t" "t" "a" "t" "g" "a" "a" "t" "g" "t" "c" "t" "t" "g" "a" "c"
## [11413] "a" "c" "t" "c" "g" "t" "t" "t" "a" "t" "a" "a" "a" "g" "t" "t" "t" "a"
## [11431] "t" "t" "a" "t" "g" "g" "t" "a" "a" "t" "g" "c" "t" "t" "t" "a" "g" "a"
## [11449] "t" "c" "a" "a" "g" "c" "c" "a" "t" "t" "t" "c" "c" "a" "t" "g" "t" "g"
## [11467] "g" "g" "c" "t" "c" "t" "t" "a" "t" "a" "a" "t" "c" "t" "c" "t" "g" "t"
## [11485] "t" "a" "c" "t" "t" "c" "t" "a" "a" "c" "t" "a" "c" "t" "c" "a" "g" "g"
## [11503] "t" "g" "t" "a" "g" "t" "t" "a" "c" "a" "a" "c" "t" "g" "t" "c" "a" "t"
## [11521] "g" "t" "t" "t" "t" "t" "g" "g" "c" "c" "a" "g" "a" "g" "g" "t" "a" "t"
## [11539] "t" "g" "t" "t" "t" "t" "t" "a" "t" "g" "t" "g" "t" "g" "t" "t" "g" "a"
## [11557] "g" "t" "a" "t" "t" "g" "c" "c" "c" "t" "a" "t" "t" "t" "t" "c" "t" "t"
## [11575] "c" "a" "t" "a" "a" "c" "t" "g" "g" "t" "a" "a" "t" "a" "c" "a" "c" "t"
## [11593] "t" "c" "a" "g" "t" "g" "t" "a" "t" "a" "a" "t" "g" "c" "t" "a" "g" "t"
## [11611] "t" "t" "a" "t" "t" "g" "t" "t" "t" "c" "t" "t" "a" "g" "g" "c" "t" "a"
## [11629] "t" "t" "t" "t" "t" "g" "t" "a" "c" "t" "t" "g" "t" "t" "a" "c" "t" "t"
## [11647] "t" "g" "g" "c" "c" "t" "c" "t" "t" "t" "t" "g" "t" "t" "t" "a" "c" "t"
## [11665] "c" "a" "a" "c" "c" "g" "c" "t" "a" "c" "t" "t" "t" "a" "g" "a" "c" "t"
## [11683] "g" "a" "c" "t" "c" "t" "t" "g" "g" "t" "g" "t" "t" "t" "a" "t" "g" "a"
## [11701] "t" "t" "a" "c" "t" "t" "a" "g" "t" "t" "t" "c" "t" "a" "c" "a" "c" "a"
## [11719] "g" "g" "a" "g" "t" "t" "t" "a" "g" "a" "t" "a" "t" "a" "t" "g" "a" "a"
## [11737] "t" "t" "c" "a" "c" "a" "g" "g" "g" "a" "c" "t" "a" "c" "t" "c" "c" "c"
## [11755] "a" "c" "c" "c" "a" "a" "g" "a" "a" "t" "a" "g" "c" "a" "t" "a" "g" "a"
## [11773] "t" "g" "c" "c" "t" "t" "c" "a" "a" "a" "c" "t" "c" "a" "a" "c" "a" "t"
## [11791] "t" "a" "a" "a" "t" "t" "g" "t" "t" "g" "g" "g" "t" "g" "t" "t" "g" "g"
## [11809] "t" "g" "g" "c" "a" "a" "a" "c" "c" "t" "t" "g" "t" "a" "t" "c" "a" "a"
## [11827] "a" "g" "t" "a" "g" "c" "c" "a" "c" "t" "g" "t" "a" "c" "a" "g" "t" "c"
## [11845] "t" "a" "a" "a" "a" "t" "g" "t" "c" "a" "g" "a" "t" "g" "t" "a" "a" "a"
## [11863] "g" "t" "g" "c" "a" "c" "a" "t" "c" "a" "g" "t" "a" "g" "t" "c" "t" "t"
## [11881] "a" "c" "t" "c" "t" "c" "a" "g" "t" "t" "t" "t" "g" "c" "a" "a" "c" "a"
## [11899] "a" "c" "t" "c" "a" "g" "a" "g" "t" "a" "g" "a" "a" "t" "c" "a" "t" "c"
## [11917] "a" "t" "c" "t" "a" "a" "a" "t" "t" "g" "t" "g" "g" "g" "c" "t" "c" "a"
## [11935] "a" "t" "g" "t" "g" "t" "c" "c" "a" "g" "t" "t" "a" "c" "a" "c" "a" "a"
## [11953] "t" "g" "a" "c" "a" "t" "t" "c" "t" "c" "t" "t" "a" "g" "c" "t" "a" "a"
## [11971] "a" "g" "a" "t" "a" "c" "t" "a" "c" "t" "g" "a" "a" "g" "c" "c" "t" "t"
## [11989] "t" "g" "a" "a" "a" "a" "a" "a" "t" "g" "g" "t" "t" "t" "c" "a" "c" "t"
## [12007] "a" "c" "t" "t" "t" "c" "t" "g" "t" "t" "t" "t" "g" "c" "t" "t" "t" "c"
## [12025] "c" "a" "t" "g" "c" "a" "g" "g" "g" "t" "g" "c" "t" "g" "t" "a" "g" "a"
## [12043] "c" "a" "t" "a" "a" "a" "c" "a" "a" "g" "c" "t" "t" "t" "g" "t" "g" "a"
## [12061] "a" "g" "a" "a" "a" "t" "g" "c" "t" "g" "g" "a" "c" "a" "a" "c" "a" "g"
## [12079] "g" "g" "c" "a" "a" "c" "c" "t" "t" "a" "c" "a" "a" "g" "c" "t" "a" "t"
## [12097] "a" "g" "c" "c" "t" "c" "a" "g" "a" "g" "t" "t" "t" "a" "g" "t" "t" "c"
## [12115] "c" "c" "t" "t" "c" "c" "a" "t" "c" "a" "t" "a" "t" "g" "c" "a" "g" "c"
## [12133] "t" "t" "t" "t" "g" "c" "t" "a" "c" "t" "g" "c" "t" "c" "a" "a" "g" "a"
## [12151] "a" "g" "c" "t" "t" "a" "t" "g" "a" "g" "c" "a" "g" "g" "c" "t" "g" "t"
## [12169] "t" "g" "c" "t" "a" "a" "t" "g" "g" "t" "g" "a" "t" "t" "c" "t" "g" "a"
## [12187] "a" "g" "t" "t" "g" "t" "t" "c" "t" "t" "a" "a" "a" "a" "a" "g" "t" "t"
## [12205] "g" "a" "a" "g" "a" "a" "g" "t" "c" "t" "t" "t" "g" "a" "a" "t" "g" "t"
## [12223] "g" "g" "c" "t" "a" "a" "a" "t" "c" "t" "g" "a" "a" "t" "t" "t" "g" "a"
## [12241] "c" "c" "g" "t" "g" "a" "t" "g" "c" "a" "g" "c" "c" "a" "t" "g" "c" "a"
## [12259] "a" "c" "g" "t" "a" "a" "g" "t" "t" "g" "g" "a" "a" "a" "a" "g" "a" "t"
## [12277] "g" "g" "c" "t" "g" "a" "t" "c" "a" "a" "g" "c" "t" "a" "t" "g" "a" "c"
## [12295] "c" "c" "a" "a" "a" "t" "g" "t" "a" "t" "a" "a" "a" "c" "a" "g" "g" "c"
## [12313] "t" "a" "g" "a" "t" "c" "t" "g" "a" "g" "g" "a" "c" "a" "a" "g" "a" "g"
## [12331] "g" "g" "c" "a" "a" "a" "a" "g" "t" "t" "a" "c" "t" "a" "g" "t" "g" "c"
## [12349] "t" "a" "t" "g" "c" "a" "g" "a" "c" "a" "a" "t" "g" "c" "t" "t" "t" "t"
## [12367] "c" "a" "c" "t" "a" "t" "g" "c" "t" "t" "a" "g" "a" "a" "a" "g" "t" "t"
## [12385] "g" "g" "a" "t" "a" "a" "t" "g" "a" "t" "g" "c" "a" "c" "t" "c" "a" "a"
## [12403] "c" "a" "a" "c" "a" "t" "t" "a" "t" "c" "a" "a" "c" "a" "a" "t" "g" "c"
## [12421] "a" "a" "g" "a" "g" "a" "t" "g" "g" "t" "t" "g" "t" "g" "t" "t" "c" "c"
## [12439] "c" "t" "t" "g" "a" "a" "c" "a" "t" "a" "a" "t" "a" "c" "c" "t" "c" "t"
## [12457] "t" "a" "c" "a" "a" "c" "a" "g" "c" "a" "g" "c" "c" "a" "a" "a" "c" "t"
## [12475] "a" "a" "t" "g" "g" "t" "t" "g" "t" "c" "a" "t" "a" "c" "c" "a" "g" "a"
## [12493] "c" "t" "a" "t" "a" "a" "c" "a" "c" "a" "t" "a" "t" "a" "a" "a" "a" "a"
## [12511] "t" "a" "c" "g" "t" "g" "t" "g" "a" "t" "g" "g" "t" "a" "c" "a" "a" "c"
## [12529] "a" "t" "t" "t" "a" "c" "t" "t" "a" "t" "g" "c" "a" "t" "c" "a" "g" "c"
## [12547] "a" "t" "t" "g" "t" "g" "g" "g" "a" "a" "a" "t" "c" "c" "a" "a" "c" "a"
## [12565] "g" "g" "t" "t" "g" "t" "a" "g" "a" "t" "g" "c" "a" "g" "a" "t" "a" "g"
## [12583] "t" "a" "a" "a" "a" "t" "t" "g" "t" "t" "c" "a" "a" "c" "t" "t" "a" "g"
## [12601] "t" "g" "a" "a" "a" "t" "t" "a" "g" "t" "a" "t" "g" "g" "a" "c" "a" "a"
## [12619] "t" "t" "c" "a" "c" "c" "t" "a" "a" "t" "t" "t" "a" "g" "c" "a" "t" "g"
## [12637] "g" "c" "c" "t" "c" "t" "t" "a" "t" "t" "g" "t" "a" "a" "c" "a" "g" "c"
## [12655] "t" "t" "t" "a" "a" "g" "g" "g" "c" "c" "a" "a" "t" "t" "c" "t" "g" "c"
## [12673] "t" "g" "t" "c" "a" "a" "a" "t" "t" "a" "c" "a" "g" "a" "a" "t" "a" "a"
## [12691] "t" "g" "a" "g" "c" "t" "t" "a" "g" "t" "c" "c" "t" "g" "t" "t" "g" "c"
## [12709] "a" "c" "t" "a" "c" "g" "a" "c" "a" "g" "a" "t" "g" "t" "c" "t" "t" "g"
## [12727] "t" "g" "c" "t" "g" "c" "c" "g" "g" "t" "a" "c" "t" "a" "c" "a" "c" "a"
## [12745] "a" "a" "c" "t" "g" "c" "t" "t" "g" "c" "a" "c" "t" "g" "a" "t" "g" "a"
## [12763] "c" "a" "a" "t" "g" "c" "g" "t" "t" "a" "g" "c" "t" "t" "a" "c" "t" "a"
## [12781] "c" "a" "a" "c" "a" "c" "a" "a" "c" "a" "a" "a" "g" "g" "g" "a" "g" "g"
## [12799] "t" "a" "g" "g" "t" "t" "t" "g" "t" "a" "c" "t" "t" "g" "c" "a" "c" "t"
## [12817] "g" "t" "t" "a" "t" "c" "c" "g" "a" "t" "t" "t" "a" "c" "a" "g" "g" "a"
## [12835] "t" "t" "t" "g" "a" "a" "a" "t" "g" "g" "g" "c" "t" "a" "g" "a" "t" "t"
## [12853] "c" "c" "c" "t" "a" "a" "g" "a" "g" "t" "g" "a" "t" "g" "g" "a" "a" "c"
## [12871] "t" "g" "g" "t" "a" "c" "t" "a" "t" "c" "t" "a" "t" "a" "c" "a" "g" "a"
## [12889] "a" "c" "t" "g" "g" "a" "a" "c" "c" "a" "c" "c" "t" "t" "g" "t" "a" "g"
## [12907] "g" "t" "t" "t" "g" "t" "t" "a" "c" "a" "g" "a" "c" "a" "c" "a" "c" "c"
## [12925] "t" "a" "a" "a" "g" "g" "t" "c" "c" "t" "a" "a" "a" "g" "t" "g" "a" "a"
## [12943] "g" "t" "a" "t" "t" "t" "a" "t" "a" "c" "t" "t" "t" "a" "t" "t" "a" "a"
## [12961] "a" "g" "g" "a" "t" "t" "a" "a" "a" "c" "a" "a" "c" "c" "t" "a" "a" "a"
## [12979] "t" "a" "g" "a" "g" "g" "t" "a" "t" "g" "g" "t" "a" "c" "t" "t" "g" "g"
## [12997] "t" "a" "g" "t" "t" "t" "a" "g" "c" "t" "g" "c" "c" "a" "c" "a" "g" "t"
## [13015] "a" "c" "g" "t" "c" "t" "a" "c" "a" "a" "g" "c" "t" "g" "g" "t" "a" "a"
## [13033] "t" "g" "c" "a" "a" "c" "a" "g" "a" "a" "g" "t" "g" "c" "c" "t" "g" "c"
## [13051] "c" "a" "a" "t" "t" "c" "a" "a" "c" "t" "g" "t" "a" "t" "t" "a" "t" "c"
## [13069] "t" "t" "t" "c" "t" "g" "t" "g" "c" "t" "t" "t" "t" "g" "c" "t" "g" "t"
## [13087] "a" "g" "a" "t" "g" "c" "t" "g" "c" "t" "a" "a" "a" "g" "c" "t" "t" "a"
## [13105] "c" "a" "a" "a" "g" "a" "t" "t" "a" "t" "c" "t" "a" "g" "c" "t" "a" "g"
## [13123] "t" "g" "g" "g" "g" "g" "a" "c" "a" "a" "c" "c" "a" "a" "t" "c" "a" "c"
## [13141] "t" "a" "a" "t" "t" "g" "t" "g" "t" "t" "a" "a" "g" "a" "t" "g" "t" "t"
## [13159] "g" "t" "g" "t" "a" "c" "a" "c" "a" "c" "a" "c" "t" "g" "g" "t" "a" "c"
## [13177] "t" "g" "g" "t" "c" "a" "g" "g" "c" "a" "a" "t" "a" "a" "c" "a" "g" "t"
## [13195] "t" "a" "c" "a" "c" "c" "g" "g" "a" "a" "g" "c" "c" "a" "a" "t" "a" "t"
## [13213] "g" "g" "a" "t" "c" "a" "a" "g" "a" "a" "t" "c" "c" "t" "t" "t" "g" "g"
## [13231] "t" "g" "g" "t" "g" "c" "a" "t" "c" "g" "t" "g" "t" "t" "g" "t" "c" "t"
## [13249] "g" "t" "a" "c" "t" "g" "c" "c" "g" "t" "t" "g" "c" "c" "a" "c" "a" "t"
## [13267] "a" "g" "a" "t" "c" "a" "t" "c" "c" "a" "a" "a" "t" "c" "c" "t" "a" "a"
## [13285] "a" "g" "g" "a" "t" "t" "t" "t" "g" "t" "g" "a" "c" "t" "t" "a" "a" "a"
## [13303] "a" "g" "g" "t" "a" "a" "g" "t" "a" "t" "g" "t" "a" "c" "a" "a" "a" "t"
## [13321] "a" "c" "c" "t" "a" "c" "a" "a" "c" "t" "t" "g" "t" "g" "c" "t" "a" "a"
## [13339] "t" "g" "a" "c" "c" "c" "t" "g" "t" "g" "g" "g" "t" "t" "t" "t" "a" "c"
## [13357] "a" "c" "t" "t" "a" "a" "a" "a" "a" "c" "a" "c" "a" "g" "t" "c" "t" "g"
## [13375] "t" "a" "c" "c" "g" "t" "c" "t" "g" "c" "g" "g" "t" "a" "t" "g" "t" "g"
## [13393] "g" "a" "a" "a" "g" "g" "t" "t" "a" "t" "g" "g" "c" "t" "g" "t" "a" "g"
## [13411] "t" "t" "g" "t" "g" "a" "t" "c" "a" "a" "c" "t" "c" "c" "g" "c" "g" "a"
## [13429] "a" "c" "c" "c" "a" "t" "g" "c" "t" "t" "c" "a" "g" "t" "c" "a" "g" "c"
## [13447] "t" "g" "a" "t" "g" "c" "a" "c" "a" "a" "t" "c" "g" "t" "t" "t" "t" "t"
## [13465] "a" "a" "a" "c" "g" "g" "g" "t" "t" "t" "g" "c" "g" "g" "t" "g" "t" "a"
## [13483] "a" "g" "t" "g" "c" "a" "g" "c" "c" "c" "g" "t" "c" "t" "t" "a" "c" "a"
## [13501] "c" "c" "g" "t" "g" "c" "g" "g" "c" "a" "c" "a" "g" "g" "c" "a" "c" "t"
## [13519] "a" "g" "t" "a" "c" "t" "g" "a" "t" "g" "t" "c" "g" "t" "a" "t" "a" "c"
## [13537] "a" "g" "g" "g" "c" "t" "t" "t" "t" "g" "a" "c" "a" "t" "c" "t" "a" "c"
## [13555] "a" "a" "t" "g" "a" "t" "a" "a" "a" "g" "t" "a" "g" "c" "t" "g" "g" "t"
## [13573] "t" "t" "t" "g" "c" "t" "a" "a" "a" "t" "t" "c" "c" "t" "a" "a" "a" "a"
## [13591] "a" "c" "t" "a" "a" "t" "t" "g" "t" "t" "g" "t" "c" "g" "c" "t" "t" "c"
## [13609] "c" "a" "a" "g" "a" "a" "a" "a" "g" "g" "a" "c" "g" "a" "a" "g" "a" "t"
## [13627] "g" "a" "c" "a" "a" "t" "t" "t" "a" "a" "t" "t" "g" "a" "t" "t" "c" "t"
## [13645] "t" "a" "c" "t" "t" "t" "g" "t" "a" "g" "t" "t" "a" "a" "g" "a" "g" "a"
## [13663] "c" "a" "c" "a" "c" "t" "t" "t" "c" "t" "c" "t" "a" "a" "c" "t" "a" "c"
## [13681] "c" "a" "a" "c" "a" "t" "g" "a" "a" "g" "a" "a" "a" "c" "a" "a" "t" "t"
## [13699] "t" "a" "t" "a" "a" "t" "t" "t" "a" "c" "t" "t" "a" "a" "g" "g" "a" "t"
## [13717] "t" "g" "t" "c" "c" "a" "g" "c" "t" "g" "t" "t" "g" "c" "t" "a" "a" "a"
## [13735] "c" "a" "t" "g" "a" "c" "t" "t" "c" "t" "t" "t" "a" "a" "g" "t" "t" "t"
## [13753] "a" "g" "a" "a" "t" "a" "g" "a" "c" "g" "g" "t" "g" "a" "c" "a" "t" "g"
## [13771] "g" "t" "a" "c" "c" "a" "c" "a" "t" "a" "t" "a" "t" "c" "a" "c" "g" "t"
## [13789] "c" "a" "a" "c" "g" "t" "c" "t" "t" "a" "c" "t" "a" "a" "a" "t" "a" "c"
## [13807] "a" "c" "a" "a" "t" "g" "g" "c" "a" "g" "a" "c" "c" "t" "c" "g" "t" "c"
## [13825] "t" "a" "t" "g" "c" "t" "t" "t" "a" "a" "g" "g" "c" "a" "t" "t" "t" "t"
## [13843] "g" "a" "t" "g" "a" "a" "g" "g" "t" "a" "a" "t" "t" "g" "t" "g" "a" "c"
## [13861] "a" "c" "a" "t" "t" "a" "a" "a" "a" "g" "a" "a" "a" "t" "a" "c" "t" "t"
## [13879] "g" "t" "c" "a" "c" "a" "t" "a" "c" "a" "a" "t" "t" "g" "t" "t" "g" "t"
## [13897] "g" "a" "t" "g" "a" "t" "g" "a" "t" "t" "a" "t" "t" "t" "c" "a" "a" "t"
## [13915] "a" "a" "a" "a" "a" "g" "g" "a" "c" "t" "g" "g" "t" "a" "t" "g" "a" "t"
## [13933] "t" "t" "t" "g" "t" "a" "g" "a" "a" "a" "a" "c" "c" "c" "a" "g" "a" "t"
## [13951] "a" "t" "a" "t" "t" "a" "c" "g" "c" "g" "t" "a" "t" "a" "c" "g" "c" "c"
## [13969] "a" "a" "c" "t" "t" "a" "g" "g" "t" "g" "a" "a" "c" "g" "t" "g" "t" "a"
## [13987] "c" "g" "c" "c" "a" "a" "g" "c" "t" "t" "t" "g" "t" "t" "a" "a" "a" "a"
## [14005] "a" "c" "a" "g" "t" "a" "c" "a" "a" "t" "t" "c" "t" "g" "t" "g" "a" "t"
## [14023] "g" "c" "c" "a" "t" "g" "c" "g" "a" "a" "a" "t" "g" "c" "t" "g" "g" "t"
## [14041] "a" "t" "t" "g" "t" "t" "g" "g" "t" "g" "t" "a" "c" "t" "g" "a" "c" "a"
## [14059] "t" "t" "a" "g" "a" "t" "a" "a" "t" "c" "a" "a" "g" "a" "t" "c" "t" "c"
## [14077] "a" "a" "t" "g" "g" "t" "a" "a" "c" "t" "g" "g" "t" "a" "t" "g" "a" "t"
## [14095] "t" "t" "c" "g" "g" "t" "g" "a" "t" "t" "t" "c" "a" "t" "a" "c" "a" "a"
## [14113] "a" "c" "c" "a" "c" "g" "c" "c" "a" "g" "g" "t" "a" "g" "t" "g" "g" "a"
## [14131] "g" "t" "t" "c" "c" "t" "g" "t" "t" "g" "t" "a" "g" "a" "t" "t" "c" "t"
## [14149] "t" "a" "t" "t" "a" "t" "t" "c" "a" "t" "t" "g" "t" "t" "a" "a" "t" "g"
## [14167] "c" "c" "t" "a" "t" "a" "t" "t" "a" "a" "c" "c" "t" "t" "g" "a" "c" "c"
## [14185] "a" "g" "g" "g" "c" "t" "t" "t" "a" "a" "c" "t" "g" "c" "a" "g" "a" "g"
## [14203] "t" "c" "a" "c" "a" "t" "g" "t" "t" "g" "a" "c" "a" "c" "t" "g" "a" "c"
## [14221] "t" "t" "a" "a" "c" "a" "a" "a" "g" "c" "c" "t" "t" "a" "c" "a" "t" "t"
## [14239] "a" "a" "g" "t" "g" "g" "g" "a" "t" "t" "t" "g" "t" "t" "a" "a" "a" "a"
## [14257] "t" "a" "t" "g" "a" "c" "t" "t" "c" "a" "c" "g" "g" "a" "a" "g" "a" "g"
## [14275] "a" "g" "g" "t" "t" "a" "a" "a" "a" "c" "t" "c" "t" "t" "t" "g" "a" "c"
## [14293] "c" "g" "t" "t" "a" "t" "t" "t" "t" "a" "a" "a" "t" "a" "t" "t" "g" "g"
## [14311] "g" "a" "t" "c" "a" "g" "a" "c" "a" "t" "a" "c" "c" "a" "c" "c" "c" "a"
## [14329] "a" "a" "t" "t" "g" "t" "g" "t" "t" "a" "a" "c" "t" "g" "t" "t" "t" "g"
## [14347] "g" "a" "t" "g" "a" "c" "a" "g" "a" "t" "g" "c" "a" "t" "t" "c" "t" "g"
## [14365] "c" "a" "t" "t" "g" "t" "g" "c" "a" "a" "a" "c" "t" "t" "t" "a" "a" "t"
## [14383] "g" "t" "t" "t" "t" "a" "t" "t" "c" "t" "c" "t" "a" "c" "a" "g" "t" "g"
## [14401] "t" "t" "c" "c" "c" "a" "c" "c" "t" "a" "c" "a" "a" "g" "t" "t" "t" "t"
## [14419] "g" "g" "a" "c" "c" "a" "c" "t" "a" "g" "t" "g" "a" "g" "a" "a" "a" "a"
## [14437] "a" "t" "a" "t" "t" "t" "g" "t" "t" "g" "a" "t" "g" "g" "t" "g" "t" "t"
## [14455] "c" "c" "a" "t" "t" "t" "g" "t" "a" "g" "t" "t" "t" "c" "a" "a" "c" "t"
## [14473] "g" "g" "a" "t" "a" "c" "c" "a" "c" "t" "t" "c" "a" "g" "a" "g" "a" "g"
## [14491] "c" "t" "a" "g" "g" "t" "g" "t" "t" "g" "t" "a" "c" "a" "t" "a" "a" "t"
## [14509] "c" "a" "g" "g" "a" "t" "g" "t" "a" "a" "a" "c" "t" "t" "a" "c" "a" "t"
## [14527] "a" "g" "c" "t" "c" "t" "a" "g" "a" "c" "t" "t" "a" "g" "t" "t" "t" "t"
## [14545] "a" "a" "g" "g" "a" "a" "t" "t" "a" "c" "t" "t" "g" "t" "g" "t" "a" "t"
## [14563] "g" "c" "t" "g" "c" "t" "g" "a" "c" "c" "c" "t" "g" "c" "t" "a" "t" "g"
## [14581] "c" "a" "c" "g" "c" "t" "g" "c" "t" "t" "c" "t" "g" "g" "t" "a" "a" "t"
## [14599] "c" "t" "a" "t" "t" "a" "c" "t" "a" "g" "a" "t" "a" "a" "a" "c" "g" "c"
## [14617] "a" "c" "t" "a" "c" "g" "t" "g" "c" "t" "t" "t" "t" "c" "a" "g" "t" "a"
## [14635] "g" "c" "t" "g" "c" "a" "c" "t" "t" "a" "c" "t" "a" "a" "c" "a" "a" "t"
## [14653] "g" "t" "t" "g" "c" "t" "t" "t" "t" "c" "a" "a" "a" "c" "t" "g" "t" "c"
## [14671] "a" "a" "a" "c" "c" "c" "g" "g" "t" "a" "a" "t" "t" "t" "t" "a" "a" "c"
## [14689] "a" "a" "a" "g" "a" "c" "t" "t" "c" "t" "a" "t" "g" "a" "c" "t" "t" "t"
## [14707] "g" "c" "t" "g" "t" "g" "t" "c" "t" "a" "a" "g" "g" "g" "t" "t" "t" "c"
## [14725] "t" "t" "t" "a" "a" "g" "g" "a" "a" "g" "g" "a" "a" "g" "t" "t" "c" "t"
## [14743] "g" "t" "t" "g" "a" "a" "t" "t" "a" "a" "a" "a" "c" "a" "c" "t" "t" "c"
## [14761] "t" "t" "c" "t" "t" "t" "g" "c" "t" "c" "a" "g" "g" "a" "t" "g" "g" "t"
## [14779] "a" "a" "t" "g" "c" "t" "g" "c" "t" "a" "t" "c" "a" "g" "c" "g" "a" "t"
## [14797] "t" "a" "t" "g" "a" "c" "t" "a" "c" "t" "a" "t" "c" "g" "t" "t" "a" "t"
## [14815] "a" "a" "t" "c" "t" "a" "c" "c" "a" "a" "c" "a" "a" "t" "g" "t" "g" "t"
## [14833] "g" "a" "t" "a" "t" "c" "a" "g" "a" "c" "a" "a" "c" "t" "a" "c" "t" "a"
## [14851] "t" "t" "t" "g" "t" "a" "g" "t" "t" "g" "a" "a" "g" "t" "t" "g" "t" "t"
## [14869] "g" "a" "t" "a" "a" "g" "t" "a" "c" "t" "t" "t" "g" "a" "t" "t" "g" "t"
## [14887] "t" "a" "c" "g" "a" "t" "g" "g" "t" "g" "g" "c" "t" "g" "t" "a" "t" "t"
## [14905] "a" "a" "t" "g" "c" "t" "a" "a" "c" "c" "a" "a" "g" "t" "c" "a" "t" "c"
## [14923] "g" "t" "c" "a" "a" "c" "a" "a" "c" "c" "t" "a" "g" "a" "c" "a" "a" "a"
## [14941] "t" "c" "a" "g" "c" "t" "g" "g" "t" "t" "t" "t" "c" "c" "a" "t" "t" "t"
## [14959] "a" "a" "t" "a" "a" "a" "t" "g" "g" "g" "g" "t" "a" "a" "g" "g" "c" "t"
## [14977] "a" "g" "a" "c" "t" "t" "t" "a" "t" "t" "a" "t" "g" "a" "t" "t" "c" "a"
## [14995] "a" "t" "g" "a" "g" "t" "t" "a" "t" "g" "a" "g" "g" "a" "t" "c" "a" "a"
## [15013] "g" "a" "t" "g" "c" "a" "c" "t" "t" "t" "t" "c" "g" "c" "a" "t" "a" "t"
## [15031] "a" "c" "a" "a" "a" "a" "c" "g" "t" "a" "a" "t" "g" "t" "c" "a" "t" "c"
## [15049] "c" "c" "t" "a" "c" "t" "a" "t" "a" "a" "c" "t" "c" "a" "a" "a" "t" "g"
## [15067] "a" "a" "t" "c" "t" "t" "a" "a" "g" "t" "a" "t" "g" "c" "c" "a" "t" "t"
## [15085] "a" "g" "t" "g" "c" "a" "a" "a" "g" "a" "a" "t" "a" "g" "a" "g" "c" "t"
## [15103] "c" "g" "c" "a" "c" "c" "g" "t" "a" "g" "c" "t" "g" "g" "t" "g" "t" "c"
## [15121] "t" "c" "t" "a" "t" "c" "t" "g" "t" "a" "g" "t" "a" "c" "t" "a" "t" "g"
## [15139] "a" "c" "c" "a" "a" "t" "a" "g" "a" "c" "a" "g" "t" "t" "t" "c" "a" "t"
## [15157] "c" "a" "a" "a" "a" "a" "t" "t" "a" "t" "t" "g" "a" "a" "a" "t" "c" "a"
## [15175] "a" "t" "a" "g" "c" "c" "g" "c" "c" "a" "c" "t" "a" "g" "a" "g" "g" "a"
## [15193] "g" "c" "t" "a" "c" "t" "g" "t" "a" "g" "t" "a" "a" "t" "t" "g" "g" "a"
## [15211] "a" "c" "a" "a" "g" "c" "a" "a" "a" "t" "t" "c" "t" "a" "t" "g" "g" "t"
## [15229] "g" "g" "t" "t" "g" "g" "c" "a" "c" "a" "a" "c" "a" "t" "g" "t" "t" "a"
## [15247] "a" "a" "a" "a" "c" "t" "g" "t" "t" "t" "a" "t" "a" "g" "t" "g" "a" "t"
## [15265] "g" "t" "a" "g" "a" "a" "a" "a" "c" "c" "c" "t" "c" "a" "c" "c" "t" "t"
## [15283] "a" "t" "g" "g" "g" "t" "t" "g" "g" "g" "a" "t" "t" "a" "t" "c" "c" "t"
## [15301] "a" "a" "a" "t" "g" "t" "g" "a" "t" "a" "g" "a" "g" "c" "c" "a" "t" "g"
## [15319] "c" "c" "t" "a" "a" "c" "a" "t" "g" "c" "t" "t" "a" "g" "a" "a" "t" "t"
## [15337] "a" "t" "g" "g" "c" "c" "t" "c" "a" "c" "t" "t" "g" "t" "t" "c" "t" "t"
## [15355] "g" "c" "t" "c" "g" "c" "a" "a" "a" "c" "a" "t" "a" "c" "a" "a" "c" "g"
## [15373] "t" "g" "t" "t" "g" "t" "a" "g" "c" "t" "t" "g" "t" "c" "a" "c" "a" "c"
## [15391] "c" "g" "t" "t" "t" "c" "t" "a" "t" "a" "g" "a" "t" "t" "a" "g" "c" "t"
## [15409] "a" "a" "t" "g" "a" "g" "t" "g" "t" "g" "c" "t" "c" "a" "a" "g" "t" "a"
## [15427] "t" "t" "g" "a" "g" "t" "g" "a" "a" "a" "t" "g" "g" "t" "c" "a" "t" "g"
## [15445] "t" "g" "t" "g" "g" "c" "g" "g" "t" "t" "c" "a" "c" "t" "a" "t" "a" "t"
## [15463] "g" "t" "t" "a" "a" "a" "c" "c" "a" "g" "g" "t" "g" "g" "a" "a" "c" "c"
## [15481] "t" "c" "a" "t" "c" "a" "g" "g" "a" "g" "a" "t" "g" "c" "c" "a" "c" "a"
## [15499] "a" "c" "t" "g" "c" "t" "t" "a" "t" "g" "c" "t" "a" "a" "t" "a" "g" "t"
## [15517] "g" "t" "t" "t" "t" "t" "a" "a" "c" "a" "t" "t" "t" "g" "t" "c" "a" "a"
## [15535] "g" "c" "t" "g" "t" "c" "a" "c" "g" "g" "c" "c" "a" "a" "t" "g" "t" "t"
## [15553] "a" "a" "t" "g" "c" "a" "c" "t" "t" "t" "t" "a" "t" "c" "t" "a" "c" "t"
## [15571] "g" "a" "t" "g" "g" "t" "a" "a" "c" "a" "a" "a" "a" "t" "t" "g" "c" "c"
## [15589] "g" "a" "t" "a" "a" "g" "t" "a" "t" "g" "t" "c" "c" "g" "c" "a" "a" "t"
## [15607] "t" "t" "a" "c" "a" "a" "c" "a" "c" "a" "g" "a" "c" "t" "t" "t" "a" "t"
## [15625] "g" "a" "g" "t" "g" "t" "c" "t" "c" "t" "a" "t" "a" "g" "a" "a" "a" "t"
## [15643] "a" "g" "a" "g" "a" "t" "g" "t" "t" "g" "a" "c" "a" "c" "a" "g" "a" "c"
## [15661] "t" "t" "t" "g" "t" "g" "a" "a" "t" "g" "a" "g" "t" "t" "t" "t" "a" "c"
## [15679] "g" "c" "a" "t" "a" "t" "t" "t" "g" "c" "g" "t" "a" "a" "a" "c" "a" "t"
## [15697] "t" "t" "c" "t" "c" "a" "a" "t" "g" "a" "t" "g" "a" "t" "a" "c" "t" "c"
## [15715] "t" "c" "t" "g" "a" "c" "g" "a" "t" "g" "c" "t" "g" "t" "t" "g" "t" "g"
## [15733] "t" "g" "t" "t" "t" "c" "a" "a" "t" "a" "g" "c" "a" "c" "t" "t" "a" "t"
## [15751] "g" "c" "a" "t" "c" "t" "c" "a" "a" "g" "g" "t" "c" "t" "a" "g" "t" "g"
## [15769] "g" "c" "t" "a" "g" "c" "a" "t" "a" "a" "a" "g" "a" "a" "c" "t" "t" "t"
## [15787] "a" "a" "g" "t" "c" "a" "g" "t" "t" "c" "t" "t" "t" "a" "t" "t" "a" "t"
## [15805] "c" "a" "a" "a" "a" "c" "a" "a" "t" "g" "t" "t" "t" "t" "t" "a" "t" "g"
## [15823] "t" "c" "t" "g" "a" "a" "g" "c" "a" "a" "a" "a" "t" "g" "t" "t" "g" "g"
## [15841] "a" "c" "t" "g" "a" "g" "a" "c" "t" "g" "a" "c" "c" "t" "t" "a" "c" "t"
## [15859] "a" "a" "a" "g" "g" "a" "c" "c" "t" "c" "a" "t" "g" "a" "a" "t" "t" "t"
## [15877] "t" "g" "c" "t" "c" "t" "c" "a" "a" "c" "a" "t" "a" "c" "a" "a" "t" "g"
## [15895] "c" "t" "a" "g" "t" "t" "a" "a" "a" "c" "a" "g" "g" "g" "t" "g" "a" "t"
## [15913] "g" "a" "t" "t" "a" "t" "g" "t" "g" "t" "a" "c" "c" "t" "t" "c" "c" "t"
## [15931] "t" "a" "c" "c" "c" "a" "g" "a" "t" "c" "c" "a" "t" "c" "a" "a" "g" "a"
## [15949] "a" "t" "c" "c" "t" "a" "g" "g" "g" "g" "c" "c" "g" "g" "c" "t" "g" "t"
## [15967] "t" "t" "t" "g" "t" "a" "g" "a" "t" "g" "a" "t" "a" "t" "c" "g" "t" "a"
## [15985] "a" "a" "a" "a" "c" "a" "g" "a" "t" "g" "g" "t" "a" "c" "a" "c" "t" "t"
## [16003] "a" "t" "g" "a" "t" "t" "g" "a" "a" "c" "g" "g" "t" "t" "c" "g" "t" "g"
## [16021] "t" "c" "t" "t" "t" "a" "g" "c" "t" "a" "t" "a" "g" "a" "t" "g" "c" "t"
## [16039] "t" "a" "c" "c" "c" "a" "c" "t" "t" "a" "c" "t" "a" "a" "a" "c" "a" "t"
## [16057] "c" "c" "t" "a" "a" "t" "c" "a" "g" "g" "a" "g" "t" "a" "t" "g" "c" "t"
## [16075] "g" "a" "t" "g" "t" "c" "t" "t" "t" "c" "a" "t" "t" "t" "g" "t" "a" "c"
## [16093] "t" "t" "a" "c" "a" "a" "t" "a" "c" "a" "t" "a" "a" "g" "a" "a" "a" "g"
## [16111] "c" "t" "a" "c" "a" "t" "g" "a" "t" "g" "a" "g" "t" "t" "a" "a" "c" "a"
## [16129] "g" "g" "a" "c" "a" "c" "a" "t" "g" "t" "t" "a" "g" "a" "c" "a" "t" "g"
## [16147] "t" "a" "t" "t" "c" "t" "g" "t" "t" "a" "t" "g" "c" "t" "t" "a" "c" "t"
## [16165] "a" "a" "t" "g" "a" "t" "a" "a" "c" "a" "c" "t" "t" "c" "a" "a" "g" "g"
## [16183] "t" "a" "t" "t" "g" "g" "g" "a" "a" "c" "c" "t" "g" "a" "g" "t" "t" "t"
## [16201] "t" "a" "t" "g" "a" "g" "g" "c" "t" "a" "t" "g" "t" "a" "c" "a" "c" "a"
## [16219] "c" "c" "g" "c" "a" "t" "a" "c" "a" "g" "t" "c" "t" "t" "a" "c" "a" "g"
## [16237] "g" "c" "t" "g" "t" "t" "g" "g" "g" "g" "c" "t" "t" "g" "t" "g" "t" "t"
## [16255] "c" "t" "t" "t" "g" "c" "a" "a" "t" "t" "c" "a" "c" "a" "g" "a" "c" "t"
## [16273] "t" "c" "a" "t" "t" "a" "a" "g" "a" "t" "g" "t" "g" "g" "t" "g" "c" "t"
## [16291] "t" "g" "c" "a" "t" "a" "c" "g" "t" "a" "g" "a" "c" "c" "a" "t" "t" "c"
## [16309] "t" "t" "a" "t" "g" "t" "t" "g" "t" "a" "a" "a" "t" "g" "c" "t" "g" "t"
## [16327] "t" "a" "c" "g" "a" "c" "c" "a" "t" "g" "t" "c" "a" "t" "a" "t" "c" "a"
## [16345] "a" "c" "a" "t" "c" "a" "c" "a" "t" "a" "a" "a" "t" "t" "a" "g" "t" "c"
## [16363] "t" "t" "g" "t" "c" "t" "g" "t" "t" "a" "a" "t" "c" "c" "g" "t" "a" "t"
## [16381] "g" "t" "t" "t" "g" "c" "a" "a" "t" "g" "c" "t" "c" "c" "a" "g" "g" "t"
## [16399] "t" "g" "t" "g" "a" "t" "g" "t" "c" "a" "c" "a" "g" "a" "t" "g" "t" "g"
## [16417] "a" "c" "t" "c" "a" "a" "c" "t" "t" "t" "a" "c" "t" "t" "a" "g" "g" "a"
## [16435] "g" "g" "t" "a" "t" "g" "a" "g" "c" "t" "a" "t" "t" "a" "t" "t" "g" "t"
## [16453] "a" "a" "a" "t" "c" "a" "c" "a" "t" "a" "a" "a" "c" "c" "a" "c" "c" "c"
## [16471] "a" "t" "t" "a" "g" "t" "t" "t" "t" "c" "c" "a" "t" "t" "g" "t" "g" "t"
## [16489] "g" "c" "t" "a" "a" "t" "g" "g" "a" "c" "a" "a" "g" "t" "t" "t" "t" "t"
## [16507] "g" "g" "t" "t" "t" "a" "t" "a" "t" "a" "a" "a" "a" "a" "t" "a" "c" "a"
## [16525] "t" "g" "t" "g" "t" "t" "g" "g" "t" "a" "g" "c" "g" "a" "t" "a" "a" "t"
## [16543] "g" "t" "t" "a" "c" "t" "g" "a" "c" "t" "t" "t" "a" "a" "t" "g" "c" "a"
## [16561] "a" "t" "t" "g" "c" "a" "a" "c" "a" "t" "g" "t" "g" "a" "c" "t" "g" "g"
## [16579] "a" "c" "a" "a" "a" "t" "g" "c" "t" "g" "g" "t" "g" "a" "t" "t" "a" "c"
## [16597] "a" "t" "t" "t" "t" "a" "g" "c" "t" "a" "a" "c" "a" "c" "c" "t" "g" "t"
## [16615] "a" "c" "t" "g" "a" "a" "a" "g" "a" "c" "t" "c" "a" "a" "g" "c" "t" "t"
## [16633] "t" "t" "t" "g" "c" "a" "g" "c" "a" "g" "a" "a" "a" "c" "g" "c" "t" "c"
## [16651] "a" "a" "a" "g" "c" "t" "a" "c" "t" "g" "a" "g" "g" "a" "g" "a" "c" "a"
## [16669] "t" "t" "t" "a" "a" "a" "c" "t" "g" "t" "c" "t" "t" "a" "t" "g" "g" "t"
## [16687] "a" "t" "t" "g" "c" "t" "a" "c" "t" "g" "t" "a" "c" "g" "t" "g" "a" "a"
## [16705] "g" "t" "g" "c" "t" "g" "t" "c" "t" "g" "a" "c" "a" "g" "a" "g" "a" "a"
## [16723] "t" "t" "a" "c" "a" "t" "c" "t" "t" "t" "c" "a" "t" "g" "g" "g" "a" "a"
## [16741] "g" "t" "t" "g" "g" "t" "a" "a" "a" "c" "c" "t" "a" "g" "a" "c" "c" "a"
## [16759] "c" "c" "a" "c" "t" "t" "a" "a" "c" "c" "g" "a" "a" "a" "t" "t" "a" "t"
## [16777] "g" "t" "c" "t" "t" "t" "a" "c" "t" "g" "g" "t" "t" "a" "t" "c" "g" "t"
## [16795] "g" "t" "a" "a" "c" "t" "a" "a" "a" "a" "a" "c" "a" "g" "t" "a" "a" "a"
## [16813] "g" "t" "a" "c" "a" "a" "a" "t" "a" "g" "g" "a" "g" "a" "g" "t" "a" "c"
## [16831] "a" "c" "c" "t" "t" "t" "g" "a" "a" "a" "a" "a" "g" "g" "t" "g" "a" "c"
## [16849] "t" "a" "t" "g" "g" "t" "g" "a" "t" "g" "c" "t" "g" "t" "t" "g" "t" "t"
## [16867] "t" "a" "c" "c" "g" "a" "g" "g" "t" "a" "c" "a" "a" "c" "a" "a" "c" "t"
## [16885] "t" "a" "c" "a" "a" "a" "t" "t" "a" "a" "a" "t" "g" "t" "t" "g" "g" "t"
## [16903] "g" "a" "t" "t" "a" "t" "t" "t" "t" "g" "t" "g" "c" "t" "g" "a" "c" "a"
## [16921] "t" "c" "a" "c" "a" "t" "a" "c" "a" "g" "t" "a" "a" "t" "g" "c" "c" "a"
## [16939] "t" "t" "a" "a" "g" "t" "g" "c" "a" "c" "c" "t" "a" "c" "a" "c" "t" "a"
## [16957] "g" "t" "g" "c" "c" "a" "c" "a" "a" "g" "a" "g" "c" "a" "c" "t" "a" "t"
## [16975] "g" "t" "t" "a" "g" "a" "a" "t" "t" "a" "c" "t" "g" "g" "c" "t" "t" "a"
## [16993] "t" "a" "c" "c" "c" "a" "a" "c" "a" "c" "t" "c" "a" "a" "t" "a" "t" "c"
## [17011] "t" "c" "a" "g" "a" "t" "g" "a" "g" "t" "t" "t" "t" "c" "t" "a" "g" "c"
## [17029] "a" "a" "t" "g" "t" "t" "g" "c" "a" "a" "a" "t" "t" "a" "t" "c" "a" "a"
## [17047] "a" "a" "g" "g" "t" "t" "g" "g" "t" "a" "t" "g" "c" "a" "a" "a" "a" "g"
## [17065] "t" "a" "t" "t" "c" "t" "a" "c" "a" "c" "t" "c" "c" "a" "g" "g" "g" "a"
## [17083] "c" "c" "a" "c" "c" "t" "g" "g" "t" "a" "c" "t" "g" "g" "t" "a" "a" "g"
## [17101] "a" "g" "t" "c" "a" "t" "t" "t" "t" "g" "c" "t" "a" "t" "t" "g" "g" "c"
## [17119] "c" "t" "a" "g" "c" "t" "c" "t" "c" "t" "a" "c" "t" "a" "c" "c" "c" "t"
## [17137] "t" "c" "t" "g" "c" "t" "c" "g" "c" "a" "t" "a" "g" "t" "g" "t" "a" "t"
## [17155] "a" "c" "a" "g" "c" "t" "t" "g" "c" "t" "c" "t" "c" "a" "t" "g" "c" "c"
## [17173] "g" "c" "t" "g" "t" "t" "g" "a" "t" "g" "c" "a" "c" "t" "a" "t" "g" "t"
## [17191] "g" "a" "g" "a" "a" "g" "g" "c" "a" "t" "t" "a" "a" "a" "a" "t" "a" "t"
## [17209] "t" "t" "g" "c" "c" "t" "a" "t" "a" "g" "a" "t" "a" "a" "a" "t" "g" "t"
## [17227] "a" "g" "t" "a" "g" "a" "a" "t" "t" "a" "t" "a" "c" "c" "t" "g" "c" "a"
## [17245] "c" "g" "t" "g" "c" "t" "c" "g" "t" "g" "t" "a" "g" "a" "g" "t" "g" "t"
## [17263] "t" "t" "t" "g" "a" "t" "a" "a" "a" "t" "t" "c" "a" "a" "a" "g" "t" "g"
## [17281] "a" "a" "t" "t" "c" "a" "a" "c" "a" "t" "t" "a" "g" "a" "a" "c" "a" "g"
## [17299] "t" "a" "t" "g" "t" "c" "t" "t" "t" "t" "g" "t" "a" "c" "t" "g" "t" "a"
## [17317] "a" "a" "t" "g" "c" "a" "t" "t" "g" "c" "c" "t" "g" "a" "g" "a" "c" "g"
## [17335] "a" "c" "a" "g" "c" "a" "g" "a" "t" "a" "t" "a" "g" "t" "t" "g" "t" "c"
## [17353] "t" "t" "t" "g" "a" "t" "g" "a" "a" "a" "t" "t" "t" "c" "a" "a" "t" "g"
## [17371] "g" "c" "c" "a" "c" "a" "a" "a" "t" "t" "a" "t" "g" "a" "t" "t" "t" "g"
## [17389] "a" "g" "t" "g" "t" "t" "g" "t" "c" "a" "a" "t" "g" "c" "c" "a" "g" "a"
## [17407] "t" "t" "a" "c" "g" "t" "g" "c" "t" "a" "a" "g" "c" "a" "c" "t" "a" "t"
## [17425] "g" "t" "g" "t" "a" "c" "a" "t" "t" "g" "g" "c" "g" "a" "c" "c" "c" "t"
## [17443] "g" "c" "t" "c" "a" "a" "t" "t" "a" "c" "c" "t" "g" "c" "a" "c" "c" "a"
## [17461] "c" "g" "c" "a" "c" "a" "t" "t" "g" "c" "t" "a" "a" "c" "t" "a" "a" "g"
## [17479] "g" "g" "c" "a" "c" "a" "c" "t" "a" "g" "a" "a" "c" "c" "a" "g" "a" "a"
## [17497] "t" "a" "t" "t" "t" "c" "a" "a" "t" "t" "c" "a" "g" "t" "g" "t" "g" "t"
## [17515] "a" "g" "a" "c" "t" "t" "a" "t" "g" "a" "a" "a" "a" "c" "t" "a" "t" "a"
## [17533] "g" "g" "t" "c" "c" "a" "g" "a" "c" "a" "t" "g" "t" "t" "c" "c" "t" "c"
## [17551] "g" "g" "a" "a" "c" "t" "t" "g" "t" "c" "g" "g" "c" "g" "t" "t" "g" "t"
## [17569] "c" "c" "t" "g" "c" "t" "g" "a" "a" "a" "t" "t" "g" "t" "t" "g" "a" "c"
## [17587] "a" "c" "t" "g" "t" "g" "a" "g" "t" "g" "c" "t" "t" "t" "g" "g" "t" "t"
## [17605] "t" "a" "t" "g" "a" "t" "a" "a" "t" "a" "a" "g" "c" "t" "t" "a" "a" "a"
## [17623] "g" "c" "a" "c" "a" "t" "a" "a" "a" "g" "a" "c" "a" "a" "a" "t" "c" "a"
## [17641] "g" "c" "t" "c" "a" "a" "t" "g" "c" "t" "t" "t" "a" "a" "a" "a" "t" "g"
## [17659] "t" "t" "t" "t" "a" "t" "a" "a" "g" "g" "g" "t" "g" "t" "t" "a" "t" "c"
## [17677] "a" "c" "g" "c" "a" "t" "g" "a" "t" "g" "t" "t" "t" "c" "a" "t" "c" "t"
## [17695] "g" "c" "a" "a" "t" "t" "a" "a" "c" "a" "g" "g" "c" "c" "a" "c" "a" "a"
## [17713] "a" "t" "a" "g" "g" "c" "g" "t" "g" "g" "t" "a" "a" "g" "a" "g" "a" "a"
## [17731] "t" "t" "c" "c" "t" "t" "a" "c" "a" "c" "g" "t" "a" "a" "c" "c" "c" "t"
## [17749] "g" "c" "t" "t" "g" "g" "a" "g" "a" "a" "a" "a" "g" "c" "t" "g" "t" "c"
## [17767] "t" "t" "t" "a" "t" "t" "t" "c" "a" "c" "c" "t" "t" "a" "t" "a" "a" "t"
## [17785] "t" "c" "a" "c" "a" "g" "a" "a" "t" "g" "c" "t" "g" "t" "a" "g" "c" "c"
## [17803] "t" "c" "a" "a" "a" "g" "a" "t" "t" "t" "t" "g" "g" "g" "a" "c" "t" "a"
## [17821] "c" "c" "a" "a" "c" "t" "c" "a" "a" "a" "c" "t" "g" "t" "t" "g" "a" "t"
## [17839] "t" "c" "a" "t" "c" "a" "c" "a" "g" "g" "g" "c" "t" "c" "a" "g" "a" "a"
## [17857] "t" "a" "t" "g" "a" "c" "t" "a" "t" "g" "t" "c" "a" "t" "a" "t" "t" "c"
## [17875] "a" "c" "t" "c" "a" "a" "a" "c" "c" "a" "c" "t" "g" "a" "a" "a" "c" "a"
## [17893] "g" "c" "t" "c" "a" "c" "t" "c" "t" "t" "g" "t" "a" "a" "t" "g" "t" "a"
## [17911] "a" "a" "c" "a" "g" "a" "t" "t" "t" "a" "a" "t" "g" "t" "t" "g" "c" "t"
## [17929] "a" "t" "t" "a" "c" "c" "a" "g" "a" "g" "c" "a" "a" "a" "a" "g" "t" "a"
## [17947] "g" "g" "c" "a" "t" "a" "c" "t" "t" "t" "g" "c" "a" "t" "a" "a" "t" "g"
## [17965] "t" "c" "t" "g" "a" "t" "a" "g" "a" "g" "a" "c" "c" "t" "t" "t" "a" "t"
## [17983] "g" "a" "c" "a" "a" "g" "t" "t" "g" "c" "a" "a" "t" "t" "t" "a" "c" "a"
## [18001] "a" "g" "t" "c" "t" "t" "g" "a" "a" "a" "t" "t" "c" "c" "a" "c" "g" "t"
## [18019] "a" "g" "g" "a" "a" "t" "g" "t" "g" "g" "c" "a" "a" "c" "t" "t" "t" "a"
## [18037] "c" "a" "a" "g" "c" "t" "g" "a" "a" "a" "a" "t" "g" "t" "a" "a" "c" "a"
## [18055] "g" "g" "a" "c" "t" "c" "t" "t" "t" "a" "a" "a" "g" "a" "t" "t" "g" "t"
## [18073] "a" "g" "t" "a" "a" "g" "g" "t" "a" "a" "t" "c" "a" "c" "t" "g" "g" "g"
## [18091] "t" "t" "a" "c" "a" "t" "c" "c" "t" "a" "c" "a" "c" "a" "g" "g" "c" "a"
## [18109] "c" "c" "t" "a" "c" "a" "c" "a" "c" "c" "t" "c" "a" "g" "t" "g" "t" "t"
## [18127] "g" "a" "c" "a" "c" "t" "a" "a" "a" "t" "t" "c" "a" "a" "a" "a" "c" "t"
## [18145] "g" "a" "a" "g" "g" "t" "t" "t" "a" "t" "g" "t" "g" "t" "t" "g" "a" "c"
## [18163] "a" "t" "a" "c" "c" "t" "g" "g" "c" "a" "t" "a" "c" "c" "t" "a" "a" "g"
## [18181] "g" "a" "c" "a" "t" "g" "a" "c" "c" "t" "a" "t" "a" "g" "a" "a" "g" "a"
## [18199] "c" "t" "c" "a" "t" "c" "t" "c" "t" "a" "t" "g" "a" "t" "g" "g" "g" "t"
## [18217] "t" "t" "t" "a" "a" "a" "a" "t" "g" "a" "a" "t" "t" "a" "t" "c" "a" "a"
## [18235] "g" "t" "t" "a" "a" "t" "g" "g" "t" "t" "a" "c" "c" "c" "t" "a" "a" "c"
## [18253] "a" "t" "g" "t" "t" "t" "a" "t" "c" "a" "c" "c" "c" "g" "c" "g" "a" "a"
## [18271] "g" "a" "a" "g" "c" "t" "a" "t" "a" "a" "g" "a" "c" "a" "t" "g" "t" "a"
## [18289] "c" "g" "t" "g" "c" "a" "t" "g" "g" "a" "t" "t" "g" "g" "c" "t" "t" "c"
## [18307] "g" "a" "t" "g" "t" "c" "g" "a" "g" "g" "g" "g" "t" "g" "t" "c" "a" "t"
## [18325] "g" "c" "t" "a" "c" "t" "a" "g" "a" "g" "a" "a" "g" "c" "t" "g" "t" "t"
## [18343] "g" "g" "t" "a" "c" "c" "a" "a" "t" "t" "t" "a" "c" "c" "t" "t" "t" "a"
## [18361] "c" "a" "g" "c" "t" "a" "g" "g" "t" "t" "t" "t" "t" "c" "t" "a" "c" "a"
## [18379] "g" "g" "t" "g" "t" "t" "a" "a" "c" "c" "t" "a" "g" "t" "t" "g" "c" "t"
## [18397] "g" "t" "a" "c" "c" "t" "a" "c" "a" "g" "g" "t" "t" "a" "t" "g" "t" "t"
## [18415] "g" "a" "t" "a" "c" "a" "c" "c" "t" "a" "a" "t" "a" "a" "t" "a" "c" "a"
## [18433] "g" "a" "t" "t" "t" "t" "t" "c" "c" "a" "g" "a" "g" "t" "t" "a" "g" "t"
## [18451] "g" "c" "t" "a" "a" "a" "c" "c" "a" "c" "c" "g" "c" "c" "t" "g" "g" "a"
## [18469] "g" "a" "t" "c" "a" "a" "t" "t" "t" "a" "a" "a" "c" "a" "c" "c" "t" "c"
## [18487] "a" "t" "a" "c" "c" "a" "c" "t" "t" "a" "t" "g" "t" "a" "c" "a" "a" "a"
## [18505] "g" "g" "a" "c" "t" "t" "c" "c" "t" "t" "g" "g" "a" "a" "t" "g" "t" "a"
## [18523] "g" "t" "g" "c" "g" "t" "a" "t" "a" "a" "a" "g" "a" "t" "t" "g" "t" "a"
## [18541] "c" "a" "a" "a" "t" "g" "t" "t" "a" "a" "g" "t" "g" "a" "c" "a" "c" "a"
## [18559] "c" "t" "t" "a" "a" "a" "a" "a" "t" "c" "t" "c" "t" "c" "t" "g" "a" "c"
## [18577] "a" "g" "a" "g" "t" "c" "g" "t" "a" "t" "t" "t" "g" "t" "c" "t" "t" "a"
## [18595] "t" "g" "g" "g" "c" "a" "c" "a" "t" "g" "g" "c" "t" "t" "t" "g" "a" "g"
## [18613] "t" "t" "g" "a" "c" "a" "t" "c" "t" "a" "t" "g" "a" "a" "g" "t" "a" "t"
## [18631] "t" "t" "t" "g" "t" "g" "a" "a" "a" "a" "t" "a" "g" "g" "a" "c" "c" "t"
## [18649] "g" "a" "g" "c" "g" "c" "a" "c" "c" "t" "g" "t" "t" "g" "t" "c" "t" "a"
## [18667] "t" "g" "t" "g" "a" "t" "a" "g" "a" "c" "g" "t" "g" "c" "c" "a" "c" "a"
## [18685] "t" "g" "c" "t" "t" "t" "t" "c" "c" "a" "c" "t" "g" "c" "t" "t" "c" "a"
## [18703] "g" "a" "c" "a" "c" "t" "t" "a" "t" "g" "c" "c" "t" "g" "t" "t" "g" "g"
## [18721] "c" "a" "t" "c" "a" "t" "t" "c" "t" "a" "t" "t" "g" "g" "a" "t" "t" "t"
## [18739] "g" "a" "t" "t" "a" "c" "g" "t" "c" "t" "a" "t" "a" "a" "t" "c" "c" "g"
## [18757] "t" "t" "t" "a" "t" "g" "a" "t" "t" "g" "a" "t" "g" "t" "t" "c" "a" "a"
## [18775] "c" "a" "a" "t" "g" "g" "g" "g" "t" "t" "t" "t" "a" "c" "a" "g" "g" "t"
## [18793] "a" "a" "c" "c" "t" "a" "c" "a" "a" "a" "g" "c" "a" "a" "c" "c" "a" "t"
## [18811] "g" "a" "t" "c" "t" "g" "t" "a" "t" "t" "g" "t" "c" "a" "a" "g" "t" "c"
## [18829] "c" "a" "t" "g" "g" "t" "a" "a" "t" "g" "c" "a" "c" "a" "t" "g" "t" "a"
## [18847] "g" "c" "t" "a" "g" "t" "t" "g" "t" "g" "a" "t" "g" "c" "a" "a" "t" "c"
## [18865] "a" "t" "g" "a" "c" "t" "a" "g" "g" "t" "g" "t" "c" "t" "a" "g" "c" "t"
## [18883] "g" "t" "c" "c" "a" "c" "g" "a" "g" "t" "g" "c" "t" "t" "t" "g" "t" "t"
## [18901] "a" "a" "g" "c" "g" "t" "g" "t" "t" "g" "a" "c" "t" "g" "g" "a" "c" "t"
## [18919] "a" "t" "t" "g" "a" "a" "t" "a" "t" "c" "c" "t" "a" "t" "a" "a" "t" "t"
## [18937] "g" "g" "t" "g" "a" "t" "g" "a" "a" "c" "t" "g" "a" "a" "g" "a" "t" "t"
## [18955] "a" "a" "t" "g" "c" "g" "g" "c" "t" "t" "g" "t" "a" "g" "a" "a" "a" "g"
## [18973] "g" "t" "t" "c" "a" "a" "c" "a" "c" "a" "t" "g" "g" "t" "t" "g" "t" "t"
## [18991] "a" "a" "a" "g" "c" "t" "g" "c" "a" "t" "t" "a" "t" "t" "a" "g" "c" "a"
## [19009] "g" "a" "c" "a" "a" "a" "t" "t" "c" "c" "c" "a" "g" "t" "t" "c" "t" "t"
## [19027] "c" "a" "c" "g" "a" "c" "a" "t" "t" "g" "g" "t" "a" "a" "c" "c" "c" "t"
## [19045] "a" "a" "a" "g" "c" "t" "a" "t" "t" "a" "a" "g" "t" "g" "t" "g" "t" "a"
## [19063] "c" "c" "t" "c" "a" "a" "g" "c" "t" "g" "a" "t" "g" "t" "a" "g" "a" "a"
## [19081] "t" "g" "g" "a" "a" "g" "t" "t" "c" "t" "a" "t" "g" "a" "t" "g" "c" "a"
## [19099] "c" "a" "g" "c" "c" "t" "t" "g" "t" "a" "g" "t" "g" "a" "c" "a" "a" "a"
## [19117] "g" "c" "t" "t" "a" "t" "a" "a" "a" "a" "t" "a" "g" "a" "a" "g" "a" "a"
## [19135] "t" "t" "a" "t" "t" "c" "t" "a" "t" "t" "c" "t" "t" "a" "t" "g" "c" "c"
## [19153] "a" "c" "a" "c" "a" "t" "t" "c" "t" "g" "a" "c" "a" "a" "a" "t" "t" "c"
## [19171] "a" "c" "a" "g" "a" "t" "g" "g" "t" "g" "t" "a" "t" "g" "c" "c" "t" "a"
## [19189] "t" "t" "t" "t" "g" "g" "a" "a" "t" "t" "g" "c" "a" "a" "t" "g" "t" "c"
## [19207] "g" "a" "t" "a" "g" "a" "t" "a" "t" "c" "c" "t" "g" "c" "t" "a" "a" "t"
## [19225] "t" "c" "c" "a" "t" "t" "g" "t" "t" "t" "g" "t" "a" "g" "a" "t" "t" "t"
## [19243] "g" "a" "c" "a" "c" "t" "a" "g" "a" "g" "t" "g" "c" "t" "a" "t" "c" "t"
## [19261] "a" "a" "c" "c" "t" "t" "a" "a" "c" "t" "t" "g" "c" "c" "t" "g" "g" "t"
## [19279] "t" "g" "t" "g" "a" "t" "g" "g" "t" "g" "g" "c" "a" "g" "t" "t" "t" "g"
## [19297] "t" "a" "t" "g" "t" "a" "a" "a" "t" "a" "a" "a" "c" "a" "t" "g" "c" "a"
## [19315] "t" "t" "c" "c" "a" "c" "a" "c" "a" "c" "c" "a" "g" "c" "t" "t" "t" "t"
## [19333] "g" "a" "t" "a" "a" "a" "a" "g" "t" "g" "c" "t" "t" "t" "t" "g" "t" "t"
## [19351] "a" "a" "t" "t" "t" "a" "a" "a" "a" "c" "a" "a" "t" "t" "a" "c" "c" "a"
## [19369] "t" "t" "t" "t" "t" "c" "t" "a" "t" "t" "a" "c" "t" "c" "t" "g" "a" "c"
## [19387] "a" "g" "t" "c" "c" "a" "t" "g" "t" "g" "a" "g" "t" "c" "t" "c" "a" "t"
## [19405] "g" "g" "a" "a" "a" "a" "c" "a" "a" "g" "t" "a" "g" "t" "g" "t" "c" "a"
## [19423] "g" "a" "t" "a" "t" "a" "g" "a" "t" "t" "a" "t" "g" "t" "a" "c" "c" "a"
## [19441] "c" "t" "a" "a" "a" "g" "t" "c" "t" "g" "c" "t" "a" "c" "g" "t" "g" "t"
## [19459] "a" "t" "a" "a" "c" "a" "c" "g" "t" "t" "g" "c" "a" "a" "t" "t" "t" "a"
## [19477] "g" "g" "t" "g" "g" "t" "g" "c" "t" "g" "t" "c" "t" "g" "t" "a" "g" "a"
## [19495] "c" "a" "t" "c" "a" "t" "g" "c" "t" "a" "a" "t" "g" "a" "g" "t" "a" "c"
## [19513] "a" "g" "a" "t" "t" "g" "t" "a" "t" "c" "t" "c" "g" "a" "t" "g" "c" "t"
## [19531] "t" "a" "t" "a" "a" "c" "a" "t" "g" "a" "t" "g" "a" "t" "c" "t" "c" "a"
## [19549] "g" "c" "t" "g" "g" "c" "t" "t" "t" "a" "g" "c" "t" "t" "g" "t" "g" "g"
## [19567] "g" "t" "t" "t" "a" "c" "a" "a" "a" "c" "a" "a" "t" "t" "t" "g" "a" "t"
## [19585] "a" "c" "t" "t" "a" "t" "a" "a" "c" "c" "t" "c" "t" "g" "g" "a" "a" "c"
## [19603] "a" "c" "t" "t" "t" "t" "a" "c" "a" "a" "g" "a" "c" "t" "t" "c" "a" "g"
## [19621] "a" "g" "t" "t" "t" "a" "g" "a" "a" "a" "a" "t" "g" "t" "g" "g" "c" "t"
## [19639] "t" "t" "t" "a" "a" "t" "g" "t" "t" "g" "t" "a" "a" "a" "t" "a" "a" "g"
## [19657] "g" "g" "a" "c" "a" "c" "t" "t" "t" "g" "a" "t" "g" "g" "a" "c" "a" "a"
## [19675] "c" "a" "g" "g" "g" "t" "g" "a" "a" "g" "t" "a" "c" "c" "a" "g" "t" "t"
## [19693] "t" "c" "t" "a" "t" "c" "a" "t" "t" "a" "a" "t" "a" "a" "c" "a" "c" "t"
## [19711] "g" "t" "t" "t" "a" "c" "a" "c" "a" "a" "a" "a" "g" "t" "t" "g" "a" "t"
## [19729] "g" "g" "t" "g" "t" "t" "g" "a" "t" "g" "t" "a" "g" "a" "a" "t" "t" "g"
## [19747] "t" "t" "t" "g" "a" "a" "a" "a" "t" "a" "a" "a" "a" "c" "a" "a" "c" "a"
## [19765] "t" "t" "a" "c" "c" "t" "g" "t" "t" "a" "a" "t" "g" "t" "a" "g" "c" "a"
## [19783] "t" "t" "t" "g" "a" "g" "c" "t" "t" "t" "g" "g" "g" "c" "t" "a" "a" "g"
## [19801] "c" "g" "c" "a" "a" "c" "a" "t" "t" "a" "a" "a" "c" "c" "a" "g" "t" "a"
## [19819] "c" "c" "a" "g" "a" "g" "g" "t" "g" "a" "a" "a" "a" "t" "a" "c" "t" "c"
## [19837] "a" "a" "t" "a" "a" "t" "t" "t" "g" "g" "g" "t" "g" "t" "g" "g" "a" "c"
## [19855] "a" "t" "t" "g" "c" "t" "g" "c" "t" "a" "a" "t" "a" "c" "t" "g" "t" "g"
## [19873] "a" "t" "c" "t" "g" "g" "g" "a" "c" "t" "a" "c" "a" "a" "a" "a" "g" "a"
## [19891] "g" "a" "t" "g" "c" "t" "c" "c" "a" "g" "c" "a" "c" "a" "t" "a" "t" "a"
## [19909] "t" "c" "t" "a" "c" "t" "a" "t" "t" "g" "g" "t" "g" "t" "t" "t" "g" "t"
## [19927] "t" "c" "t" "a" "t" "g" "a" "c" "t" "g" "a" "c" "a" "t" "a" "g" "c" "c"
## [19945] "a" "a" "g" "a" "a" "a" "c" "c" "a" "a" "c" "t" "g" "a" "a" "a" "c" "g"
## [19963] "a" "t" "t" "t" "g" "t" "g" "c" "a" "c" "c" "a" "c" "t" "c" "a" "c" "t"
## [19981] "g" "t" "c" "t" "t" "t" "t" "t" "t" "g" "a" "t" "g" "g" "t" "a" "g" "a"
## [19999] "g" "t" "t" "g" "a" "t" "g" "g" "t" "c" "a" "a" "g" "t" "a" "g" "a" "c"
## [20017] "t" "t" "a" "t" "t" "t" "a" "g" "a" "a" "a" "t" "g" "c" "c" "c" "g" "t"
## [20035] "a" "a" "t" "g" "g" "t" "g" "t" "t" "c" "t" "t" "a" "t" "t" "a" "c" "a"
## [20053] "g" "a" "a" "g" "g" "t" "a" "g" "t" "g" "t" "t" "a" "a" "a" "g" "g" "t"
## [20071] "t" "t" "a" "c" "a" "a" "c" "c" "a" "t" "c" "t" "g" "t" "a" "g" "g" "t"
## [20089] "c" "c" "c" "a" "a" "a" "c" "a" "a" "g" "c" "t" "a" "g" "t" "c" "t" "t"
## [20107] "a" "a" "t" "g" "g" "a" "g" "t" "c" "a" "c" "a" "t" "t" "a" "a" "t" "t"
## [20125] "g" "g" "a" "g" "a" "a" "g" "c" "c" "g" "t" "a" "a" "a" "a" "a" "c" "a"
## [20143] "c" "a" "g" "t" "t" "c" "a" "a" "t" "t" "a" "t" "t" "a" "t" "a" "a" "g"
## [20161] "a" "a" "a" "g" "t" "t" "g" "a" "t" "g" "g" "t" "g" "t" "t" "g" "t" "c"
## [20179] "c" "a" "a" "c" "a" "a" "t" "t" "a" "c" "c" "t" "g" "a" "a" "a" "c" "t"
## [20197] "t" "a" "c" "t" "t" "t" "a" "c" "t" "c" "a" "g" "a" "g" "t" "a" "g" "a"
## [20215] "a" "a" "t" "t" "t" "a" "c" "a" "a" "g" "a" "a" "t" "t" "t" "a" "a" "a"
## [20233] "c" "c" "c" "a" "g" "g" "a" "g" "t" "c" "a" "a" "a" "t" "g" "g" "a" "a"
## [20251] "a" "t" "t" "g" "a" "t" "t" "t" "c" "t" "t" "a" "g" "a" "a" "t" "t" "a"
## [20269] "g" "c" "t" "a" "t" "g" "g" "a" "t" "g" "a" "a" "t" "t" "c" "a" "t" "t"
## [20287] "g" "a" "a" "c" "g" "g" "t" "a" "t" "a" "a" "a" "t" "t" "a" "g" "a" "a"
## [20305] "g" "g" "c" "t" "a" "t" "g" "c" "c" "t" "t" "c" "g" "a" "a" "c" "a" "t"
## [20323] "a" "t" "c" "g" "t" "t" "t" "a" "t" "g" "g" "a" "g" "a" "t" "t" "t" "t"
## [20341] "a" "g" "t" "c" "a" "t" "a" "g" "t" "c" "a" "g" "t" "t" "a" "g" "g" "t"
## [20359] "g" "g" "t" "t" "t" "a" "c" "a" "t" "c" "t" "a" "c" "t" "g" "a" "t" "t"
## [20377] "g" "g" "a" "c" "t" "a" "g" "c" "t" "a" "a" "a" "c" "g" "t" "t" "t" "t"
## [20395] "a" "a" "g" "g" "a" "a" "t" "c" "a" "c" "c" "t" "t" "t" "t" "g" "a" "a"
## [20413] "t" "t" "a" "g" "a" "a" "g" "a" "t" "t" "t" "t" "a" "t" "t" "c" "c" "t"
## [20431] "a" "t" "g" "g" "a" "c" "a" "g" "t" "a" "c" "a" "g" "t" "t" "a" "a" "a"
## [20449] "a" "a" "c" "t" "a" "t" "t" "t" "c" "a" "t" "a" "a" "c" "a" "g" "a" "t"
## [20467] "g" "c" "g" "c" "a" "a" "a" "c" "a" "g" "g" "t" "t" "c" "a" "t" "c" "t"
## [20485] "a" "a" "g" "t" "g" "t" "g" "t" "g" "t" "g" "t" "t" "c" "t" "g" "t" "t"
## [20503] "a" "t" "t" "g" "a" "t" "t" "t" "a" "t" "t" "a" "c" "t" "t" "g" "a" "t"
## [20521] "g" "a" "t" "t" "t" "t" "g" "t" "t" "g" "a" "a" "a" "t" "a" "a" "t" "a"
## [20539] "a" "a" "a" "t" "c" "c" "c" "a" "a" "g" "a" "t" "t" "t" "a" "t" "c" "t"
## [20557] "g" "t" "a" "g" "t" "t" "t" "c" "t" "a" "a" "g" "g" "t" "t" "g" "t" "c"
## [20575] "a" "a" "a" "g" "t" "g" "a" "c" "t" "a" "t" "t" "g" "a" "c" "t" "a" "t"
## [20593] "a" "c" "a" "g" "a" "a" "a" "t" "t" "t" "c" "a" "t" "t" "t" "a" "t" "g"
## [20611] "c" "t" "t" "t" "g" "g" "t" "g" "t" "a" "a" "a" "g" "a" "t" "g" "g" "c"
## [20629] "c" "a" "t" "g" "t" "a" "g" "a" "a" "a" "c" "a" "t" "t" "t" "t" "a" "c"
## [20647] "c" "c" "a" "a" "a" "a" "t" "t" "a" "c" "a" "a" "t" "c" "t" "a" "g" "t"
## [20665] "c" "a" "a" "g" "c" "g" "t" "g" "g" "c" "a" "a" "c" "c" "g" "g" "g" "t"
## [20683] "g" "t" "t" "g" "c" "t" "a" "t" "g" "c" "c" "t" "a" "a" "t" "c" "t" "t"
## [20701] "t" "a" "c" "a" "a" "a" "a" "t" "g" "c" "a" "a" "a" "g" "a" "a" "t" "g"
## [20719] "c" "t" "a" "t" "t" "a" "g" "a" "a" "a" "a" "g" "t" "g" "t" "g" "a" "c"
## [20737] "c" "t" "t" "c" "a" "a" "a" "a" "t" "t" "a" "t" "g" "g" "t" "g" "a" "t"
## [20755] "a" "g" "t" "g" "c" "a" "a" "c" "a" "t" "t" "a" "c" "c" "t" "a" "a" "a"
## [20773] "g" "g" "c" "a" "t" "a" "a" "t" "g" "a" "t" "g" "a" "a" "t" "g" "t" "c"
## [20791] "g" "c" "a" "a" "a" "a" "t" "a" "t" "a" "c" "t" "c" "a" "a" "c" "t" "g"
## [20809] "t" "g" "t" "c" "a" "a" "t" "a" "t" "t" "t" "a" "a" "a" "c" "a" "c" "a"
## [20827] "t" "t" "a" "a" "c" "a" "t" "t" "a" "g" "c" "t" "g" "t" "a" "c" "c" "c"
## [20845] "t" "a" "t" "a" "a" "t" "a" "t" "g" "a" "g" "a" "g" "t" "t" "a" "t" "a"
## [20863] "c" "a" "t" "t" "t" "t" "g" "g" "t" "g" "c" "t" "g" "g" "t" "t" "c" "t"
## [20881] "g" "a" "t" "a" "a" "a" "g" "g" "a" "g" "t" "t" "g" "c" "a" "c" "c" "a"
## [20899] "g" "g" "t" "a" "c" "a" "g" "c" "t" "g" "t" "t" "t" "t" "a" "a" "g" "a"
## [20917] "c" "a" "g" "t" "g" "g" "t" "t" "g" "c" "c" "t" "a" "c" "g" "g" "g" "t"
## [20935] "a" "c" "g" "c" "t" "g" "c" "t" "t" "g" "t" "c" "g" "a" "t" "t" "c" "a"
## [20953] "g" "a" "t" "c" "t" "t" "a" "a" "t" "g" "a" "c" "t" "t" "t" "g" "t" "c"
## [20971] "t" "c" "t" "g" "a" "t" "g" "c" "a" "g" "a" "t" "t" "c" "a" "a" "c" "t"
## [20989] "t" "t" "g" "a" "t" "t" "g" "g" "t" "g" "a" "t" "t" "g" "t" "g" "c" "a"
## [21007] "a" "c" "t" "g" "t" "a" "c" "a" "t" "a" "c" "a" "g" "c" "t" "a" "a" "t"
## [21025] "a" "a" "a" "t" "g" "g" "g" "a" "t" "c" "t" "c" "a" "t" "t" "a" "t" "t"
## [21043] "a" "g" "t" "g" "a" "t" "a" "t" "g" "t" "a" "c" "g" "a" "c" "c" "c" "t"
## [21061] "a" "a" "g" "a" "c" "t" "a" "a" "a" "a" "a" "t" "g" "t" "t" "a" "c" "a"
## [21079] "a" "a" "a" "g" "a" "a" "a" "a" "t" "g" "a" "c" "t" "c" "t" "a" "a" "a"
## [21097] "g" "a" "g" "g" "g" "t" "t" "t" "t" "t" "t" "c" "a" "c" "t" "t" "a" "c"
## [21115] "a" "t" "t" "t" "g" "t" "g" "g" "g" "t" "t" "t" "a" "t" "a" "c" "a" "a"
## [21133] "c" "a" "a" "a" "a" "g" "c" "t" "a" "g" "c" "t" "c" "t" "t" "g" "g" "a"
## [21151] "g" "g" "t" "t" "c" "c" "g" "t" "g" "g" "c" "t" "a" "t" "a" "a" "a" "g"
## [21169] "a" "t" "a" "a" "c" "a" "g" "a" "a" "c" "a" "t" "t" "c" "t" "t" "g" "g"
## [21187] "a" "a" "t" "g" "c" "t" "g" "a" "t" "c" "t" "t" "t" "a" "t" "a" "a" "g"
## [21205] "c" "t" "c" "a" "t" "g" "g" "g" "a" "c" "a" "c" "t" "t" "c" "g" "c" "a"
## [21223] "t" "g" "g" "t" "g" "g" "a" "c" "a" "g" "c" "c" "t" "t" "t" "g" "t" "t"
## [21241] "a" "c" "t" "a" "a" "t" "g" "t" "g" "a" "a" "t" "g" "c" "g" "t" "c" "a"
## [21259] "t" "c" "a" "t" "c" "t" "g" "a" "a" "g" "c" "a" "t" "t" "t" "t" "t" "a"
## [21277] "a" "t" "t" "g" "g" "a" "t" "g" "t" "a" "a" "t" "t" "a" "t" "c" "t" "t"
## [21295] "g" "g" "c" "a" "a" "a" "c" "c" "a" "c" "g" "c" "g" "a" "a" "c" "a" "a"
## [21313] "a" "t" "a" "g" "a" "t" "g" "g" "t" "t" "a" "t" "g" "t" "c" "a" "t" "g"
## [21331] "c" "a" "t" "g" "c" "a" "a" "a" "t" "t" "a" "c" "a" "t" "a" "t" "t" "t"
## [21349] "t" "g" "g" "a" "g" "g" "a" "a" "t" "a" "c" "a" "a" "a" "t" "c" "c" "a"
## [21367] "a" "t" "t" "c" "a" "g" "t" "t" "g" "t" "c" "t" "t" "c" "c" "t" "a" "t"
## [21385] "t" "c" "t" "t" "t" "a" "t" "t" "t" "g" "a" "c" "a" "t" "g" "a" "g" "t"
## [21403] "a" "a" "a" "t" "t" "t" "c" "c" "c" "c" "t" "t" "a" "a" "a" "t" "t" "a"
## [21421] "a" "g" "g" "g" "g" "t" "a" "c" "t" "g" "c" "t" "g" "t" "t" "a" "t" "g"
## [21439] "t" "c" "t" "t" "t" "a" "a" "a" "a" "g" "a" "a" "g" "g" "t" "c" "a" "a"
## [21457] "a" "t" "c" "a" "a" "t" "g" "a" "t" "a" "t" "g" "a" "t" "t" "t" "t" "a"
## [21475] "t" "c" "t" "c" "t" "t" "c" "t" "t" "a" "g" "t" "a" "a" "a" "g" "g" "t"
## [21493] "a" "g" "a" "c" "t" "t" "a" "t" "a" "a" "t" "t" "a" "g" "a" "g" "a" "a"
## [21511] "a" "a" "c" "a" "a" "c" "a" "g" "a" "g" "t" "t" "g" "t" "t" "a" "t" "t"
## [21529] "t" "c" "t" "a" "g" "t" "g" "a" "t" "g" "t" "t" "c" "t" "t" "g" "t" "t"
## [21547] "a" "a" "c" "a" "a" "c" "t" "a" "a" "a" "c" "g" "a" "a" "c" "a" "a" "t"
## [21565] "g" "t" "t" "t" "g" "t" "t" "t" "t" "t" "c" "t" "t" "g" "t" "t" "t" "t"
## [21583] "a" "t" "t" "g" "c" "c" "a" "c" "t" "a" "g" "t" "c" "t" "c" "t" "a" "g"
## [21601] "t" "c" "a" "g" "t" "g" "t" "g" "t" "t" "a" "a" "t" "c" "t" "t" "a" "c"
## [21619] "a" "a" "c" "c" "a" "g" "a" "a" "c" "t" "c" "a" "a" "t" "t" "a" "c" "c"
## [21637] "c" "c" "c" "t" "g" "c" "a" "t" "a" "c" "a" "c" "t" "a" "a" "t" "t" "c"
## [21655] "t" "t" "t" "c" "a" "c" "a" "c" "g" "t" "g" "g" "t" "g" "t" "t" "t" "a"
## [21673] "t" "t" "a" "c" "c" "c" "t" "g" "a" "c" "a" "a" "a" "g" "t" "t" "t" "t"
## [21691] "c" "a" "g" "a" "t" "c" "c" "t" "c" "a" "g" "t" "t" "t" "t" "a" "c" "a"
## [21709] "t" "t" "c" "a" "a" "c" "t" "c" "a" "g" "g" "a" "c" "t" "t" "g" "t" "t"
## [21727] "c" "t" "t" "a" "c" "c" "t" "t" "t" "c" "t" "t" "t" "t" "c" "c" "a" "a"
## [21745] "t" "g" "t" "t" "a" "c" "t" "t" "g" "g" "t" "t" "c" "c" "a" "t" "g" "c"
## [21763] "t" "a" "t" "a" "c" "a" "t" "g" "t" "c" "t" "c" "t" "g" "g" "g" "a" "c"
## [21781] "c" "a" "a" "t" "g" "g" "t" "a" "c" "t" "a" "a" "g" "a" "g" "g" "t" "t"
## [21799] "t" "g" "a" "t" "a" "a" "c" "c" "c" "t" "g" "t" "c" "c" "t" "a" "c" "c"
## [21817] "a" "t" "t" "t" "a" "a" "t" "g" "a" "t" "g" "g" "t" "g" "t" "t" "t" "a"
## [21835] "t" "t" "t" "t" "g" "c" "t" "t" "c" "c" "a" "c" "t" "g" "a" "g" "a" "a"
## [21853] "g" "t" "c" "t" "a" "a" "c" "a" "t" "a" "a" "t" "a" "a" "g" "a" "g" "g"
## [21871] "c" "t" "g" "g" "a" "t" "t" "t" "t" "t" "g" "g" "t" "a" "c" "t" "a" "c"
## [21889] "t" "t" "t" "a" "g" "a" "t" "t" "c" "g" "a" "a" "g" "a" "c" "c" "c" "a"
## [21907] "g" "t" "c" "c" "c" "t" "a" "c" "t" "t" "a" "t" "t" "g" "t" "t" "a" "a"
## [21925] "t" "a" "a" "c" "g" "c" "t" "a" "c" "t" "a" "a" "t" "g" "t" "t" "g" "t"
## [21943] "t" "a" "t" "t" "a" "a" "a" "g" "t" "c" "t" "g" "t" "g" "a" "a" "t" "t"
## [21961] "t" "c" "a" "a" "t" "t" "t" "t" "g" "t" "a" "a" "t" "g" "a" "t" "c" "c"
## [21979] "a" "t" "t" "t" "t" "t" "g" "g" "g" "t" "g" "t" "t" "t" "a" "t" "t" "a"
## [21997] "c" "c" "a" "c" "a" "a" "a" "a" "a" "c" "a" "a" "c" "a" "a" "a" "a" "g"
## [22015] "t" "t" "g" "g" "a" "t" "g" "g" "a" "a" "a" "g" "t" "g" "a" "g" "t" "t"
## [22033] "c" "a" "g" "a" "g" "t" "t" "t" "a" "t" "t" "c" "t" "a" "g" "t" "g" "c"
## [22051] "g" "a" "a" "t" "a" "a" "t" "t" "g" "c" "a" "c" "t" "t" "t" "t" "g" "a"
## [22069] "a" "t" "a" "t" "g" "t" "c" "t" "c" "t" "c" "a" "g" "c" "c" "t" "t" "t"
## [22087] "t" "c" "t" "t" "a" "t" "g" "g" "a" "c" "c" "t" "t" "g" "a" "a" "g" "g"
## [22105] "a" "a" "a" "a" "c" "a" "g" "g" "g" "t" "a" "a" "t" "t" "t" "c" "a" "a"
## [22123] "a" "a" "a" "t" "c" "t" "t" "a" "g" "g" "g" "a" "a" "t" "t" "t" "g" "t"
## [22141] "g" "t" "t" "t" "a" "a" "g" "a" "a" "t" "a" "t" "t" "g" "a" "t" "g" "g"
## [22159] "t" "t" "a" "t" "t" "t" "t" "a" "a" "a" "a" "t" "a" "t" "a" "t" "t" "c"
## [22177] "t" "a" "a" "g" "c" "a" "c" "a" "c" "g" "c" "c" "t" "a" "t" "t" "a" "a"
## [22195] "t" "t" "t" "a" "g" "t" "g" "c" "g" "t" "g" "a" "t" "c" "t" "c" "c" "c"
## [22213] "t" "c" "a" "g" "g" "g" "t" "t" "t" "t" "t" "c" "g" "g" "c" "t" "t" "t"
## [22231] "a" "g" "a" "a" "c" "c" "a" "t" "t" "g" "g" "t" "a" "g" "a" "t" "t" "t"
## [22249] "g" "c" "c" "a" "a" "t" "a" "g" "g" "t" "a" "t" "t" "a" "a" "c" "a" "t"
## [22267] "c" "a" "c" "t" "a" "g" "g" "t" "t" "t" "c" "a" "a" "a" "c" "t" "t" "t"
## [22285] "a" "c" "t" "t" "g" "c" "t" "t" "t" "a" "c" "a" "t" "a" "g" "a" "a" "g"
## [22303] "t" "t" "a" "t" "t" "t" "g" "a" "c" "t" "c" "c" "t" "g" "g" "t" "g" "a"
## [22321] "t" "t" "c" "t" "t" "c" "t" "t" "c" "a" "g" "g" "t" "t" "g" "g" "a" "c"
## [22339] "a" "g" "c" "t" "g" "g" "t" "g" "c" "t" "g" "c" "a" "g" "c" "t" "t" "a"
## [22357] "t" "t" "a" "t" "g" "t" "g" "g" "g" "t" "t" "a" "t" "c" "t" "t" "c" "a"
## [22375] "a" "c" "c" "t" "a" "g" "g" "a" "c" "t" "t" "t" "t" "c" "t" "a" "t" "t"
## [22393] "a" "a" "a" "a" "t" "a" "t" "a" "a" "t" "g" "a" "a" "a" "a" "t" "g" "g"
## [22411] "a" "a" "c" "c" "a" "t" "t" "a" "c" "a" "g" "a" "t" "g" "c" "t" "g" "t"
## [22429] "a" "g" "a" "c" "t" "g" "t" "g" "c" "a" "c" "t" "t" "g" "a" "c" "c" "c"
## [22447] "t" "c" "t" "c" "t" "c" "a" "g" "a" "a" "a" "c" "a" "a" "a" "g" "t" "g"
## [22465] "t" "a" "c" "g" "t" "t" "g" "a" "a" "a" "t" "c" "c" "t" "t" "c" "a" "c"
## [22483] "t" "g" "t" "a" "g" "a" "a" "a" "a" "a" "g" "g" "a" "a" "t" "c" "t" "a"
## [22501] "t" "c" "a" "a" "a" "c" "t" "t" "c" "t" "a" "a" "c" "t" "t" "t" "a" "g"
## [22519] "a" "g" "t" "c" "c" "a" "a" "c" "c" "a" "a" "c" "a" "g" "a" "a" "t" "c"
## [22537] "t" "a" "t" "t" "g" "t" "t" "a" "g" "a" "t" "t" "t" "c" "c" "t" "a" "a"
## [22555] "t" "a" "t" "t" "a" "c" "a" "a" "a" "c" "t" "t" "g" "t" "g" "c" "c" "c"
## [22573] "t" "t" "t" "t" "g" "g" "t" "g" "a" "a" "g" "t" "t" "t" "t" "t" "a" "a"
## [22591] "c" "g" "c" "c" "a" "c" "c" "a" "g" "a" "t" "t" "t" "g" "c" "a" "t" "c"
## [22609] "t" "g" "t" "t" "t" "a" "t" "g" "c" "t" "t" "g" "g" "a" "a" "c" "a" "g"
## [22627] "g" "a" "a" "g" "a" "g" "a" "a" "t" "c" "a" "g" "c" "a" "a" "c" "t" "g"
## [22645] "t" "g" "t" "t" "g" "c" "t" "g" "a" "t" "t" "a" "t" "t" "c" "t" "g" "t"
## [22663] "c" "c" "t" "a" "t" "a" "t" "a" "a" "t" "t" "c" "c" "g" "c" "a" "t" "c"
## [22681] "a" "t" "t" "t" "t" "c" "c" "a" "c" "t" "t" "t" "t" "a" "a" "g" "t" "g"
## [22699] "t" "t" "a" "t" "g" "g" "a" "g" "t" "g" "t" "c" "t" "c" "c" "t" "a" "c"
## [22717] "t" "a" "a" "a" "t" "t" "a" "a" "a" "t" "g" "a" "t" "c" "t" "c" "t" "g"
## [22735] "c" "t" "t" "t" "a" "c" "t" "a" "a" "t" "g" "t" "c" "t" "a" "t" "g" "c"
## [22753] "a" "g" "a" "t" "t" "c" "a" "t" "t" "t" "g" "t" "a" "a" "t" "t" "a" "g"
## [22771] "a" "g" "g" "t" "g" "a" "t" "g" "a" "a" "g" "t" "c" "a" "g" "a" "c" "a"
## [22789] "a" "a" "t" "c" "g" "c" "t" "c" "c" "a" "g" "g" "g" "c" "a" "a" "a" "c"
## [22807] "t" "g" "g" "a" "a" "a" "g" "a" "t" "t" "g" "c" "t" "g" "a" "t" "t" "a"
## [22825] "t" "a" "a" "t" "t" "a" "t" "a" "a" "a" "t" "t" "a" "c" "c" "a" "g" "a"
## [22843] "t" "g" "a" "t" "t" "t" "t" "a" "c" "a" "g" "g" "c" "t" "g" "c" "g" "t"
## [22861] "t" "a" "t" "a" "g" "c" "t" "t" "g" "g" "a" "a" "t" "t" "c" "t" "a" "a"
## [22879] "c" "a" "a" "t" "c" "t" "t" "g" "a" "t" "t" "c" "t" "a" "a" "g" "g" "t"
## [22897] "t" "g" "g" "t" "g" "g" "t" "a" "a" "t" "t" "a" "t" "a" "a" "t" "t" "a"
## [22915] "c" "c" "t" "g" "t" "a" "t" "a" "g" "a" "t" "t" "g" "t" "t" "t" "a" "g"
## [22933] "g" "a" "a" "g" "t" "c" "t" "a" "a" "t" "c" "t" "c" "a" "a" "a" "c" "c"
## [22951] "t" "t" "t" "t" "g" "a" "g" "a" "g" "a" "g" "a" "t" "a" "t" "t" "t" "c"
## [22969] "a" "a" "c" "t" "g" "a" "a" "a" "t" "c" "t" "a" "t" "c" "a" "g" "g" "c"
## [22987] "c" "g" "g" "t" "a" "g" "c" "a" "c" "a" "c" "c" "t" "t" "g" "t" "a" "a"
## [23005] "t" "g" "g" "t" "g" "t" "t" "g" "a" "a" "g" "g" "t" "t" "t" "t" "a" "a"
## [23023] "t" "t" "g" "t" "t" "a" "c" "t" "t" "t" "c" "c" "t" "t" "t" "a" "c" "a"
## [23041] "a" "t" "c" "a" "t" "a" "t" "g" "g" "t" "t" "t" "c" "c" "a" "a" "c" "c"
## [23059] "c" "a" "c" "t" "a" "a" "t" "g" "g" "t" "g" "t" "t" "g" "g" "t" "t" "a"
## [23077] "c" "c" "a" "a" "c" "c" "a" "t" "a" "c" "a" "g" "a" "g" "t" "a" "g" "t"
## [23095] "a" "g" "t" "a" "c" "t" "t" "t" "c" "t" "t" "t" "t" "g" "a" "a" "c" "t"
## [23113] "t" "c" "t" "a" "c" "a" "t" "g" "c" "a" "c" "c" "a" "g" "c" "a" "a" "c"
## [23131] "t" "g" "t" "t" "t" "g" "t" "g" "g" "a" "c" "c" "t" "a" "a" "a" "a" "a"
## [23149] "g" "t" "c" "t" "a" "c" "t" "a" "a" "t" "t" "t" "g" "g" "t" "t" "a" "a"
## [23167] "a" "a" "a" "c" "a" "a" "a" "t" "g" "t" "g" "t" "c" "a" "a" "t" "t" "t"
## [23185] "c" "a" "a" "c" "t" "t" "c" "a" "a" "t" "g" "g" "t" "t" "t" "a" "a" "c"
## [23203] "a" "g" "g" "c" "a" "c" "a" "g" "g" "t" "g" "t" "t" "c" "t" "t" "a" "c"
## [23221] "t" "g" "a" "g" "t" "c" "t" "a" "a" "c" "a" "a" "a" "a" "a" "g" "t" "t"
## [23239] "t" "c" "t" "g" "c" "c" "t" "t" "t" "c" "c" "a" "a" "c" "a" "a" "t" "t"
## [23257] "t" "g" "g" "c" "a" "g" "a" "g" "a" "c" "a" "t" "t" "g" "c" "t" "g" "a"
## [23275] "c" "a" "c" "t" "a" "c" "t" "g" "a" "t" "g" "c" "t" "g" "t" "c" "c" "g"
## [23293] "t" "g" "a" "t" "c" "c" "a" "c" "a" "g" "a" "c" "a" "c" "t" "t" "g" "a"
## [23311] "g" "a" "t" "t" "c" "t" "t" "g" "a" "c" "a" "t" "t" "a" "c" "a" "c" "c"
## [23329] "a" "t" "g" "t" "t" "c" "t" "t" "t" "t" "g" "g" "t" "g" "g" "t" "g" "t"
## [23347] "c" "a" "g" "t" "g" "t" "t" "a" "t" "a" "a" "c" "a" "c" "c" "a" "g" "g"
## [23365] "a" "a" "c" "a" "a" "a" "t" "a" "c" "t" "t" "c" "t" "a" "a" "c" "c" "a"
## [23383] "g" "g" "t" "t" "g" "c" "t" "g" "t" "t" "c" "t" "t" "t" "a" "t" "c" "a"
## [23401] "g" "g" "a" "t" "g" "t" "t" "a" "a" "c" "t" "g" "c" "a" "c" "a" "g" "a"
## [23419] "a" "g" "t" "c" "c" "c" "t" "g" "t" "t" "g" "c" "t" "a" "t" "t" "c" "a"
## [23437] "t" "g" "c" "a" "g" "a" "t" "c" "a" "a" "c" "t" "t" "a" "c" "t" "c" "c"
## [23455] "t" "a" "c" "t" "t" "g" "g" "c" "g" "t" "g" "t" "t" "t" "a" "t" "t" "c"
## [23473] "t" "a" "c" "a" "g" "g" "t" "t" "c" "t" "a" "a" "t" "g" "t" "t" "t" "t"
## [23491] "t" "c" "a" "a" "a" "c" "a" "c" "g" "t" "g" "c" "a" "g" "g" "c" "t" "g"
## [23509] "t" "t" "t" "a" "a" "t" "a" "g" "g" "g" "g" "c" "t" "g" "a" "a" "c" "a"
## [23527] "t" "g" "t" "c" "a" "a" "c" "a" "a" "c" "t" "c" "a" "t" "a" "t" "g" "a"
## [23545] "g" "t" "g" "t" "g" "a" "c" "a" "t" "a" "c" "c" "c" "a" "t" "t" "g" "g"
## [23563] "t" "g" "c" "a" "g" "g" "t" "a" "t" "a" "t" "g" "c" "g" "c" "t" "a" "g"
## [23581] "t" "t" "a" "t" "c" "a" "g" "a" "c" "t" "c" "a" "g" "a" "c" "t" "a" "a"
## [23599] "t" "t" "c" "t" "c" "c" "t" "c" "g" "g" "c" "g" "g" "g" "c" "a" "c" "g"
## [23617] "t" "a" "g" "t" "g" "t" "a" "g" "c" "t" "a" "g" "t" "c" "a" "a" "t" "c"
## [23635] "c" "a" "t" "c" "a" "t" "t" "g" "c" "c" "t" "a" "c" "a" "c" "t" "a" "t"
## [23653] "g" "t" "c" "a" "c" "t" "t" "g" "g" "t" "g" "c" "a" "g" "a" "a" "a" "a"
## [23671] "t" "t" "c" "a" "g" "t" "t" "g" "c" "t" "t" "a" "c" "t" "c" "t" "a" "a"
## [23689] "t" "a" "a" "c" "t" "c" "t" "a" "t" "t" "g" "c" "c" "a" "t" "a" "c" "c"
## [23707] "c" "a" "c" "a" "a" "a" "t" "t" "t" "t" "a" "c" "t" "a" "t" "t" "a" "g"
## [23725] "t" "g" "t" "t" "a" "c" "c" "a" "c" "a" "g" "a" "a" "a" "t" "t" "c" "t"
## [23743] "a" "c" "c" "a" "g" "t" "g" "t" "c" "t" "a" "t" "g" "a" "c" "c" "a" "a"
## [23761] "g" "a" "c" "a" "t" "c" "a" "g" "t" "a" "g" "a" "t" "t" "g" "t" "a" "c"
## [23779] "a" "a" "t" "g" "t" "a" "c" "a" "t" "t" "t" "g" "t" "g" "g" "t" "g" "a"
## [23797] "t" "t" "c" "a" "a" "c" "t" "g" "a" "a" "t" "g" "c" "a" "g" "c" "a" "a"
## [23815] "t" "c" "t" "t" "t" "t" "g" "t" "t" "g" "c" "a" "a" "t" "a" "t" "g" "g"
## [23833] "c" "a" "g" "t" "t" "t" "t" "t" "g" "t" "a" "c" "a" "c" "a" "a" "t" "t"
## [23851] "a" "a" "a" "c" "c" "g" "t" "g" "c" "t" "t" "t" "a" "a" "c" "t" "g" "g"
## [23869] "a" "a" "t" "a" "g" "c" "t" "g" "t" "t" "g" "a" "a" "c" "a" "a" "g" "a"
## [23887] "c" "a" "a" "a" "a" "a" "c" "a" "c" "c" "c" "a" "a" "g" "a" "a" "g" "t"
## [23905] "t" "t" "t" "t" "g" "c" "a" "c" "a" "a" "g" "t" "c" "a" "a" "a" "c" "a"
## [23923] "a" "a" "t" "t" "t" "a" "c" "a" "a" "a" "a" "c" "a" "c" "c" "a" "c" "c"
## [23941] "a" "a" "t" "t" "a" "a" "a" "g" "a" "t" "t" "t" "t" "g" "g" "t" "g" "g"
## [23959] "t" "t" "t" "t" "a" "a" "t" "t" "t" "t" "t" "c" "a" "c" "a" "a" "a" "t"
## [23977] "a" "t" "t" "a" "c" "c" "a" "g" "a" "t" "c" "c" "a" "t" "c" "a" "a" "a"
## [23995] "a" "c" "c" "a" "a" "g" "c" "a" "a" "g" "a" "g" "g" "t" "c" "a" "t" "t"
## [24013] "t" "a" "t" "t" "g" "a" "a" "g" "a" "t" "c" "t" "a" "c" "t" "t" "t" "t"
## [24031] "c" "a" "a" "c" "a" "a" "a" "g" "t" "g" "a" "c" "a" "c" "t" "t" "g" "c"
## [24049] "a" "g" "a" "t" "g" "c" "t" "g" "g" "c" "t" "t" "c" "a" "t" "c" "a" "a"
## [24067] "a" "c" "a" "a" "t" "a" "t" "g" "g" "t" "g" "a" "t" "t" "g" "c" "c" "t"
## [24085] "t" "g" "g" "t" "g" "a" "t" "a" "t" "t" "g" "c" "t" "g" "c" "t" "a" "g"
## [24103] "a" "g" "a" "c" "c" "t" "c" "a" "t" "t" "t" "g" "t" "g" "c" "a" "c" "a"
## [24121] "a" "a" "a" "g" "t" "t" "t" "a" "a" "c" "g" "g" "c" "c" "t" "t" "a" "c"
## [24139] "t" "g" "t" "t" "t" "t" "g" "c" "c" "a" "c" "c" "t" "t" "t" "g" "c" "t"
## [24157] "c" "a" "c" "a" "g" "a" "t" "g" "a" "a" "a" "t" "g" "a" "t" "t" "g" "c"
## [24175] "t" "c" "a" "a" "t" "a" "c" "a" "c" "t" "t" "c" "t" "g" "c" "a" "c" "t"
## [24193] "g" "t" "t" "a" "g" "c" "g" "g" "g" "t" "a" "c" "a" "a" "t" "c" "a" "c"
## [24211] "t" "t" "c" "t" "g" "g" "t" "t" "g" "g" "a" "c" "c" "t" "t" "t" "g" "g"
## [24229] "t" "g" "c" "a" "g" "g" "t" "g" "c" "t" "g" "c" "a" "t" "t" "a" "c" "a"
## [24247] "a" "a" "t" "a" "c" "c" "a" "t" "t" "t" "g" "c" "t" "a" "t" "g" "c" "a"
## [24265] "a" "a" "t" "g" "g" "c" "t" "t" "a" "t" "a" "g" "g" "t" "t" "t" "a" "a"
## [24283] "t" "g" "g" "t" "a" "t" "t" "g" "g" "a" "g" "t" "t" "a" "c" "a" "c" "a"
## [24301] "g" "a" "a" "t" "g" "t" "t" "c" "t" "c" "t" "a" "t" "g" "a" "g" "a" "a"
## [24319] "c" "c" "a" "a" "a" "a" "a" "t" "t" "g" "a" "t" "t" "g" "c" "c" "a" "a"
## [24337] "c" "c" "a" "a" "t" "t" "t" "a" "a" "t" "a" "g" "t" "g" "c" "t" "a" "t"
## [24355] "t" "g" "g" "c" "a" "a" "a" "a" "t" "t" "c" "a" "a" "g" "a" "c" "t" "c"
## [24373] "a" "c" "t" "t" "t" "c" "t" "t" "c" "c" "a" "c" "a" "g" "c" "a" "a" "g"
## [24391] "t" "g" "c" "a" "c" "t" "t" "g" "g" "a" "a" "a" "a" "c" "t" "t" "c" "a"
## [24409] "a" "g" "a" "t" "g" "t" "g" "g" "t" "c" "a" "a" "c" "c" "a" "a" "a" "a"
## [24427] "t" "g" "c" "a" "c" "a" "a" "g" "c" "t" "t" "t" "a" "a" "a" "c" "a" "c"
## [24445] "g" "c" "t" "t" "g" "t" "t" "a" "a" "a" "c" "a" "a" "c" "t" "t" "a" "g"
## [24463] "c" "t" "c" "c" "a" "a" "t" "t" "t" "t" "g" "g" "t" "g" "c" "a" "a" "t"
## [24481] "t" "t" "c" "a" "a" "g" "t" "g" "t" "t" "t" "t" "a" "a" "a" "t" "g" "a"
## [24499] "t" "a" "t" "c" "c" "t" "t" "t" "c" "a" "c" "g" "t" "c" "t" "t" "g" "a"
## [24517] "c" "a" "a" "a" "g" "t" "t" "g" "a" "g" "g" "c" "t" "g" "a" "a" "g" "t"
## [24535] "g" "c" "a" "a" "a" "t" "t" "g" "a" "t" "a" "g" "g" "t" "t" "g" "a" "t"
## [24553] "c" "a" "c" "a" "g" "g" "c" "a" "g" "a" "c" "t" "t" "c" "a" "a" "a" "g"
## [24571] "t" "t" "t" "g" "c" "a" "g" "a" "c" "a" "t" "a" "t" "g" "t" "g" "a" "c"
## [24589] "t" "c" "a" "a" "c" "a" "a" "t" "t" "a" "a" "t" "t" "a" "g" "a" "g" "c"
## [24607] "t" "g" "c" "a" "g" "a" "a" "a" "t" "c" "a" "g" "a" "g" "c" "t" "t" "c"
## [24625] "t" "g" "c" "t" "a" "a" "t" "c" "t" "t" "g" "c" "t" "g" "c" "t" "a" "c"
## [24643] "t" "a" "a" "a" "a" "t" "g" "t" "c" "a" "g" "a" "g" "t" "g" "t" "g" "t"
## [24661] "a" "c" "t" "t" "g" "g" "a" "c" "a" "a" "t" "c" "a" "a" "a" "a" "a" "g"
## [24679] "a" "g" "t" "t" "g" "a" "t" "t" "t" "t" "t" "g" "t" "g" "g" "a" "a" "a"
## [24697] "g" "g" "g" "c" "t" "a" "t" "c" "a" "t" "c" "t" "t" "a" "t" "g" "t" "c"
## [24715] "c" "t" "t" "c" "c" "c" "t" "c" "a" "g" "t" "c" "a" "g" "c" "a" "c" "c"
## [24733] "t" "c" "a" "t" "g" "g" "t" "g" "t" "a" "g" "t" "c" "t" "t" "c" "t" "t"
## [24751] "g" "c" "a" "t" "g" "t" "g" "a" "c" "t" "t" "a" "t" "g" "t" "c" "c" "c"
## [24769] "t" "g" "c" "a" "c" "a" "a" "g" "a" "a" "a" "a" "g" "a" "a" "c" "t" "t"
## [24787] "c" "a" "c" "a" "a" "c" "t" "g" "c" "t" "c" "c" "t" "g" "c" "c" "a" "t"
## [24805] "t" "t" "g" "t" "c" "a" "t" "g" "a" "t" "g" "g" "a" "a" "a" "a" "g" "c"
## [24823] "a" "c" "a" "c" "t" "t" "t" "c" "c" "t" "c" "g" "t" "g" "a" "a" "g" "g"
## [24841] "t" "g" "t" "c" "t" "t" "t" "g" "t" "t" "t" "c" "a" "a" "a" "t" "g" "g"
## [24859] "c" "a" "c" "a" "c" "a" "c" "t" "g" "g" "t" "t" "t" "g" "t" "a" "a" "c"
## [24877] "a" "c" "a" "a" "a" "g" "g" "a" "a" "t" "t" "t" "t" "t" "a" "t" "g" "a"
## [24895] "a" "c" "c" "a" "c" "a" "a" "a" "t" "c" "a" "t" "t" "a" "c" "t" "a" "c"
## [24913] "a" "g" "a" "c" "a" "a" "c" "a" "c" "a" "t" "t" "t" "g" "t" "g" "t" "c"
## [24931] "t" "g" "g" "t" "a" "a" "c" "t" "g" "t" "g" "a" "t" "g" "t" "t" "g" "t"
## [24949] "a" "a" "t" "a" "g" "g" "a" "a" "t" "t" "g" "t" "c" "a" "a" "c" "a" "a"
## [24967] "c" "a" "c" "a" "g" "t" "t" "t" "a" "t" "g" "a" "t" "c" "c" "t" "t" "t"
## [24985] "g" "c" "a" "a" "c" "c" "t" "g" "a" "a" "t" "t" "a" "g" "a" "c" "t" "c"
## [25003] "a" "t" "t" "c" "a" "a" "g" "g" "a" "g" "g" "a" "g" "t" "t" "a" "g" "a"
## [25021] "t" "a" "a" "a" "t" "a" "t" "t" "t" "t" "a" "a" "g" "a" "a" "t" "c" "a"
## [25039] "t" "a" "c" "a" "t" "c" "a" "c" "c" "a" "g" "a" "t" "g" "t" "t" "g" "a"
## [25057] "t" "t" "t" "a" "g" "g" "t" "g" "a" "c" "a" "t" "c" "t" "c" "t" "g" "g"
## [25075] "c" "a" "t" "t" "a" "a" "t" "g" "c" "t" "t" "c" "a" "g" "t" "t" "g" "t"
## [25093] "a" "a" "a" "c" "a" "t" "t" "c" "a" "a" "a" "a" "a" "g" "a" "a" "a" "t"
## [25111] "t" "g" "a" "c" "c" "g" "c" "c" "t" "c" "a" "a" "t" "g" "a" "g" "g" "t"
## [25129] "t" "g" "c" "c" "a" "a" "g" "a" "a" "t" "t" "t" "a" "a" "a" "t" "g" "a"
## [25147] "a" "t" "c" "t" "c" "t" "c" "a" "t" "c" "g" "a" "t" "c" "t" "c" "c" "a"
## [25165] "a" "g" "a" "a" "c" "t" "t" "g" "g" "a" "a" "a" "g" "t" "a" "t" "g" "a"
## [25183] "g" "c" "a" "g" "t" "a" "t" "a" "t" "a" "a" "a" "a" "t" "g" "g" "c" "c"
## [25201] "a" "t" "g" "g" "t" "a" "c" "a" "t" "t" "t" "g" "g" "c" "t" "a" "g" "g"
## [25219] "t" "t" "t" "t" "a" "t" "a" "g" "c" "t" "g" "g" "c" "t" "t" "g" "a" "t"
## [25237] "t" "g" "c" "c" "a" "t" "a" "g" "t" "a" "a" "t" "g" "g" "t" "g" "a" "c"
## [25255] "a" "a" "t" "t" "a" "t" "g" "c" "t" "t" "t" "g" "c" "t" "g" "t" "a" "t"
## [25273] "g" "a" "c" "c" "a" "g" "t" "t" "g" "c" "t" "g" "t" "a" "g" "t" "t" "g"
## [25291] "t" "c" "t" "c" "a" "a" "g" "g" "g" "c" "t" "g" "t" "t" "g" "t" "t" "c"
## [25309] "t" "t" "g" "t" "g" "g" "a" "t" "c" "c" "t" "g" "c" "t" "g" "c" "a" "a"
## [25327] "a" "t" "t" "t" "g" "a" "t" "g" "a" "a" "g" "a" "c" "g" "a" "c" "t" "c"
## [25345] "t" "g" "a" "g" "c" "c" "a" "g" "t" "g" "c" "t" "c" "a" "a" "a" "g" "g"
## [25363] "a" "g" "t" "c" "a" "a" "a" "t" "t" "a" "c" "a" "t" "t" "a" "c" "a" "c"
## [25381] "a" "t" "a" "a" "a" "c" "g" "a" "a" "c" "t" "t" "a" "t" "g" "g" "a" "t"
## [25399] "t" "t" "g" "t" "t" "t" "a" "t" "g" "a" "g" "a" "a" "t" "c" "t" "t" "c"
## [25417] "a" "c" "a" "a" "t" "t" "g" "g" "a" "a" "c" "t" "g" "t" "a" "a" "c" "t"
## [25435] "t" "t" "g" "a" "a" "g" "c" "a" "a" "g" "g" "t" "g" "a" "a" "a" "t" "c"
## [25453] "a" "a" "g" "g" "a" "t" "g" "c" "t" "a" "c" "t" "c" "c" "t" "t" "c" "a"
## [25471] "g" "a" "t" "t" "t" "t" "g" "t" "t" "c" "g" "c" "g" "c" "t" "a" "c" "t"
## [25489] "g" "c" "a" "a" "c" "g" "a" "t" "a" "c" "c" "g" "a" "t" "a" "c" "a" "a"
## [25507] "g" "c" "c" "t" "c" "a" "c" "t" "c" "c" "c" "t" "t" "t" "c" "g" "g" "a"
## [25525] "t" "g" "g" "c" "t" "t" "a" "t" "t" "g" "t" "t" "g" "g" "c" "g" "t" "t"
## [25543] "g" "c" "a" "c" "t" "t" "c" "t" "t" "g" "c" "t" "g" "t" "t" "t" "t" "t"
## [25561] "c" "a" "g" "a" "g" "c" "g" "c" "t" "t" "c" "c" "a" "a" "a" "a" "t" "c"
## [25579] "a" "t" "a" "a" "c" "c" "c" "t" "c" "a" "a" "a" "a" "a" "g" "a" "g" "a"
## [25597] "t" "g" "g" "c" "a" "a" "c" "t" "a" "g" "c" "a" "c" "t" "c" "t" "c" "c"
## [25615] "a" "a" "g" "g" "g" "t" "g" "t" "t" "c" "a" "c" "t" "t" "t" "g" "t" "t"
## [25633] "t" "g" "c" "a" "a" "c" "t" "t" "g" "c" "t" "g" "t" "t" "g" "t" "t" "g"
## [25651] "t" "t" "t" "g" "t" "a" "a" "c" "a" "g" "t" "t" "t" "a" "c" "t" "c" "a"
## [25669] "c" "a" "c" "c" "t" "t" "t" "t" "g" "c" "t" "c" "g" "t" "t" "g" "c" "t"
## [25687] "g" "c" "t" "g" "g" "c" "c" "t" "t" "g" "a" "a" "g" "c" "c" "c" "c" "t"
## [25705] "t" "t" "t" "c" "t" "c" "t" "a" "t" "c" "t" "t" "t" "a" "t" "g" "c" "t"
## [25723] "t" "t" "a" "g" "t" "c" "t" "a" "c" "t" "t" "c" "t" "t" "g" "c" "a" "g"
## [25741] "a" "g" "t" "a" "t" "a" "a" "a" "c" "t" "t" "t" "g" "t" "a" "a" "g" "a"
## [25759] "a" "t" "a" "a" "t" "a" "a" "t" "g" "a" "g" "g" "c" "t" "t" "t" "g" "g"
## [25777] "c" "t" "t" "t" "g" "c" "t" "g" "g" "a" "a" "a" "t" "g" "c" "c" "g" "t"
## [25795] "t" "c" "c" "a" "a" "a" "a" "a" "c" "c" "c" "a" "t" "t" "a" "c" "t" "t"
## [25813] "t" "a" "t" "g" "a" "t" "g" "c" "c" "a" "a" "c" "t" "a" "t" "t" "t" "t"
## [25831] "c" "t" "t" "t" "g" "c" "t" "g" "g" "c" "a" "t" "a" "c" "t" "a" "a" "t"
## [25849] "t" "g" "t" "t" "a" "c" "g" "a" "c" "t" "a" "t" "t" "g" "t" "a" "t" "a"
## [25867] "c" "c" "t" "t" "a" "c" "a" "a" "t" "a" "g" "t" "g" "t" "a" "a" "c" "t"
## [25885] "t" "c" "t" "t" "c" "a" "a" "t" "t" "g" "t" "c" "a" "t" "t" "a" "c" "t"
## [25903] "t" "c" "a" "g" "g" "t" "g" "a" "t" "g" "g" "c" "a" "c" "a" "a" "c" "a"
## [25921] "a" "g" "t" "c" "c" "t" "a" "t" "t" "t" "c" "t" "g" "a" "a" "c" "a" "t"
## [25939] "g" "a" "c" "t" "a" "c" "c" "a" "g" "a" "t" "t" "g" "g" "t" "g" "g" "t"
## [25957] "t" "a" "t" "a" "c" "t" "g" "a" "a" "a" "a" "a" "t" "g" "g" "g" "a" "a"
## [25975] "t" "c" "t" "g" "g" "a" "g" "t" "a" "a" "a" "a" "g" "a" "c" "t" "g" "t"
## [25993] "g" "t" "t" "g" "t" "a" "t" "t" "a" "c" "a" "c" "a" "g" "t" "t" "a" "c"
## [26011] "t" "t" "c" "a" "c" "t" "t" "c" "a" "g" "a" "c" "t" "a" "t" "t" "a" "c"
## [26029] "c" "a" "g" "c" "t" "g" "t" "a" "c" "t" "c" "a" "a" "c" "t" "c" "a" "a"
## [26047] "t" "t" "g" "a" "g" "t" "a" "c" "a" "g" "a" "c" "a" "c" "t" "g" "g" "t"
## [26065] "g" "t" "t" "g" "a" "a" "c" "a" "t" "g" "t" "t" "a" "c" "c" "t" "t" "c"
## [26083] "t" "t" "c" "a" "t" "c" "t" "a" "c" "a" "a" "t" "a" "a" "a" "a" "t" "t"
## [26101] "g" "t" "t" "g" "a" "t" "g" "a" "g" "c" "c" "t" "g" "a" "a" "g" "a" "a"
## [26119] "c" "a" "t" "g" "t" "c" "c" "a" "a" "a" "t" "t" "c" "a" "c" "a" "c" "a"
## [26137] "a" "t" "c" "g" "a" "c" "g" "g" "t" "t" "c" "a" "t" "c" "c" "g" "g" "a"
## [26155] "g" "t" "t" "g" "t" "t" "a" "a" "t" "c" "c" "a" "g" "t" "a" "a" "t" "g"
## [26173] "g" "a" "a" "c" "c" "a" "a" "t" "t" "t" "a" "t" "g" "a" "t" "g" "a" "a"
## [26191] "c" "c" "g" "a" "c" "g" "a" "c" "g" "a" "c" "t" "a" "c" "t" "a" "g" "c"
## [26209] "g" "t" "g" "c" "c" "t" "t" "t" "g" "t" "a" "a" "g" "c" "a" "c" "a" "a"
## [26227] "g" "c" "t" "g" "a" "t" "g" "a" "g" "t" "a" "c" "g" "a" "a" "c" "t" "t"
## [26245] "a" "t" "g" "t" "a" "c" "t" "c" "a" "t" "t" "c" "g" "t" "t" "t" "c" "g"
## [26263] "g" "a" "a" "g" "a" "g" "a" "c" "a" "g" "g" "t" "a" "c" "g" "t" "t" "a"
## [26281] "a" "t" "a" "g" "t" "t" "a" "a" "t" "a" "g" "c" "g" "t" "a" "c" "t" "t"
## [26299] "c" "t" "t" "t" "t" "t" "c" "t" "t" "g" "c" "t" "t" "t" "c" "g" "t" "g"
## [26317] "g" "t" "a" "t" "t" "c" "t" "t" "g" "c" "t" "a" "g" "t" "t" "a" "c" "a"
## [26335] "c" "t" "a" "g" "c" "c" "a" "t" "c" "c" "t" "t" "a" "c" "t" "g" "c" "g"
## [26353] "c" "t" "t" "c" "g" "a" "t" "t" "g" "t" "g" "t" "g" "c" "g" "t" "a" "c"
## [26371] "t" "g" "c" "t" "g" "c" "a" "a" "t" "a" "t" "t" "g" "t" "t" "a" "a" "c"
## [26389] "g" "t" "g" "a" "g" "t" "c" "t" "t" "g" "t" "a" "a" "a" "a" "c" "c" "t"
## [26407] "t" "c" "t" "t" "t" "t" "t" "a" "c" "g" "t" "t" "t" "a" "c" "t" "c" "t"
## [26425] "c" "g" "t" "g" "t" "t" "a" "a" "a" "a" "a" "t" "c" "t" "g" "a" "a" "t"
## [26443] "t" "c" "t" "t" "c" "t" "a" "g" "a" "g" "t" "t" "c" "c" "t" "g" "a" "t"
## [26461] "c" "t" "t" "c" "t" "g" "g" "t" "c" "t" "a" "a" "a" "c" "g" "a" "a" "c"
## [26479] "t" "a" "a" "a" "t" "a" "t" "t" "a" "t" "a" "t" "t" "a" "g" "t" "t" "t"
## [26497] "t" "t" "c" "t" "g" "t" "t" "t" "g" "g" "a" "a" "c" "t" "t" "t" "a" "a"
## [26515] "t" "t" "t" "t" "a" "g" "c" "c" "a" "t" "g" "g" "c" "a" "g" "a" "t" "t"
## [26533] "c" "c" "a" "a" "c" "g" "g" "t" "a" "c" "t" "a" "t" "t" "a" "c" "c" "g"
## [26551] "t" "t" "g" "a" "a" "g" "a" "g" "c" "t" "t" "a" "a" "a" "a" "a" "g" "c"
## [26569] "t" "c" "c" "t" "t" "g" "a" "a" "c" "a" "a" "t" "g" "g" "a" "a" "c" "c"
## [26587] "t" "a" "g" "t" "a" "a" "t" "a" "g" "g" "t" "t" "t" "c" "c" "t" "a" "t"
## [26605] "t" "c" "c" "t" "t" "a" "c" "a" "t" "g" "g" "a" "t" "t" "t" "g" "t" "c"
## [26623] "t" "t" "c" "t" "a" "c" "a" "a" "t" "t" "t" "g" "c" "c" "t" "a" "t" "g"
## [26641] "c" "c" "a" "a" "c" "a" "g" "g" "a" "a" "t" "a" "g" "g" "t" "t" "t" "t"
## [26659] "t" "g" "t" "a" "t" "a" "t" "a" "a" "t" "t" "a" "a" "g" "t" "t" "a" "a"
## [26677] "t" "t" "t" "t" "c" "c" "t" "c" "t" "g" "g" "c" "t" "g" "t" "t" "a" "t"
## [26695] "g" "g" "c" "c" "a" "g" "t" "a" "a" "c" "t" "t" "t" "a" "g" "c" "t" "t"
## [26713] "g" "t" "t" "t" "t" "g" "t" "g" "c" "t" "t" "g" "c" "t" "g" "c" "t" "g"
## [26731] "t" "t" "t" "a" "c" "a" "g" "a" "a" "t" "a" "a" "a" "t" "t" "g" "g" "a"
## [26749] "t" "c" "a" "c" "c" "g" "g" "t" "g" "g" "a" "a" "t" "t" "g" "c" "t" "a"
## [26767] "t" "c" "g" "c" "a" "a" "t" "g" "g" "c" "t" "t" "g" "t" "c" "t" "t" "g"
## [26785] "t" "a" "g" "g" "c" "t" "t" "g" "a" "t" "g" "t" "g" "g" "c" "t" "c" "a"
## [26803] "g" "c" "t" "a" "c" "t" "t" "c" "a" "t" "t" "g" "c" "t" "t" "c" "t" "t"
## [26821] "t" "c" "a" "g" "a" "c" "t" "g" "t" "t" "t" "g" "c" "g" "c" "g" "t" "a"
## [26839] "c" "g" "c" "g" "t" "t" "c" "c" "a" "t" "g" "t" "g" "g" "t" "c" "a" "t"
## [26857] "t" "c" "a" "a" "t" "c" "c" "a" "g" "a" "a" "a" "c" "t" "a" "a" "c" "a"
## [26875] "t" "t" "c" "t" "t" "c" "t" "c" "a" "a" "c" "g" "t" "g" "c" "c" "a" "c"
## [26893] "t" "c" "c" "a" "t" "g" "g" "c" "a" "c" "t" "a" "t" "t" "c" "t" "g" "a"
## [26911] "c" "c" "a" "g" "a" "c" "c" "g" "c" "t" "t" "c" "t" "a" "g" "a" "a" "a"
## [26929] "g" "t" "g" "a" "a" "c" "t" "c" "g" "t" "a" "a" "t" "c" "g" "g" "a" "g"
## [26947] "c" "t" "g" "t" "g" "a" "t" "c" "c" "t" "t" "c" "g" "t" "g" "g" "a" "c"
## [26965] "a" "t" "c" "t" "t" "c" "g" "t" "a" "t" "t" "g" "c" "t" "g" "g" "a" "c"
## [26983] "a" "c" "c" "a" "t" "c" "t" "a" "g" "g" "a" "c" "g" "c" "t" "g" "t" "g"
## [27001] "a" "c" "a" "t" "c" "a" "a" "g" "g" "a" "c" "c" "t" "g" "c" "c" "t" "a"
## [27019] "a" "a" "g" "a" "a" "a" "t" "c" "a" "c" "t" "g" "t" "t" "g" "c" "t" "a"
## [27037] "c" "a" "t" "c" "a" "c" "g" "a" "a" "c" "g" "c" "t" "t" "t" "c" "t" "t"
## [27055] "a" "t" "t" "a" "c" "a" "a" "a" "t" "t" "g" "g" "g" "a" "g" "c" "t" "t"
## [27073] "c" "g" "c" "a" "g" "c" "g" "t" "g" "t" "a" "g" "c" "a" "g" "g" "t" "g"
## [27091] "a" "c" "t" "c" "a" "g" "g" "t" "t" "t" "t" "g" "c" "t" "g" "c" "a" "t"
## [27109] "a" "c" "a" "g" "t" "c" "g" "c" "t" "a" "c" "a" "g" "g" "a" "t" "t" "g"
## [27127] "g" "c" "a" "a" "c" "t" "a" "t" "a" "a" "a" "t" "t" "a" "a" "a" "c" "a"
## [27145] "c" "a" "g" "a" "c" "c" "a" "t" "t" "c" "c" "a" "g" "t" "a" "g" "c" "a"
## [27163] "g" "t" "g" "a" "c" "a" "a" "t" "a" "t" "t" "g" "c" "t" "t" "t" "g" "c"
## [27181] "t" "t" "g" "t" "a" "c" "a" "g" "t" "a" "a" "g" "t" "g" "a" "c" "a" "a"
## [27199] "c" "a" "g" "a" "t" "g" "t" "t" "t" "c" "a" "t" "c" "t" "c" "g" "t" "t"
## [27217] "g" "a" "c" "t" "t" "t" "c" "a" "g" "g" "t" "t" "a" "c" "t" "a" "t" "a"
## [27235] "g" "c" "a" "g" "a" "g" "a" "t" "a" "t" "t" "a" "c" "t" "a" "a" "t" "t"
## [27253] "a" "t" "t" "a" "t" "g" "a" "g" "g" "a" "c" "t" "t" "t" "t" "a" "a" "a"
## [27271] "g" "t" "t" "t" "c" "c" "a" "t" "t" "t" "g" "g" "a" "a" "t" "c" "t" "t"
## [27289] "g" "a" "t" "t" "a" "c" "a" "t" "c" "a" "t" "a" "a" "a" "c" "c" "t" "c"
## [27307] "a" "t" "a" "a" "t" "t" "a" "a" "a" "a" "a" "t" "t" "t" "a" "t" "c" "t"
## [27325] "a" "a" "g" "t" "c" "a" "c" "t" "a" "a" "c" "t" "g" "a" "g" "a" "a" "t"
## [27343] "a" "a" "a" "t" "a" "t" "t" "c" "t" "c" "a" "a" "t" "t" "a" "g" "a" "t"
## [27361] "g" "a" "a" "g" "a" "g" "c" "a" "a" "c" "c" "a" "a" "t" "g" "g" "a" "g"
## [27379] "a" "t" "t" "g" "a" "t" "t" "a" "a" "a" "c" "g" "a" "a" "c" "a" "t" "g"
## [27397] "a" "a" "a" "a" "t" "t" "a" "t" "t" "c" "t" "t" "t" "t" "c" "t" "t" "g"
## [27415] "g" "c" "a" "c" "t" "g" "a" "t" "a" "a" "c" "a" "c" "t" "c" "g" "c" "t"
## [27433] "a" "c" "t" "t" "g" "t" "g" "a" "g" "c" "t" "t" "t" "a" "t" "c" "a" "c"
## [27451] "t" "a" "c" "c" "a" "a" "g" "a" "g" "t" "g" "t" "g" "t" "t" "a" "g" "a"
## [27469] "g" "g" "t" "a" "c" "a" "a" "c" "a" "g" "t" "a" "c" "t" "t" "t" "t" "a"
## [27487] "a" "a" "a" "g" "a" "a" "c" "c" "t" "t" "g" "c" "t" "c" "t" "t" "c" "t"
## [27505] "g" "g" "a" "a" "c" "a" "t" "a" "c" "g" "a" "g" "g" "g" "c" "a" "a" "t"
## [27523] "t" "c" "a" "c" "c" "a" "t" "t" "t" "c" "a" "t" "c" "c" "t" "c" "t" "a"
## [27541] "g" "c" "t" "g" "a" "t" "a" "a" "c" "a" "a" "a" "t" "t" "t" "g" "c" "a"
## [27559] "c" "t" "g" "a" "c" "t" "t" "g" "c" "t" "t" "t" "a" "g" "c" "a" "c" "t"
## [27577] "c" "a" "a" "t" "t" "t" "g" "c" "t" "t" "t" "t" "g" "c" "t" "t" "g" "t"
## [27595] "c" "c" "t" "g" "a" "c" "g" "g" "c" "g" "t" "a" "a" "a" "a" "c" "a" "c"
## [27613] "g" "t" "c" "t" "a" "t" "c" "a" "g" "t" "t" "a" "c" "g" "t" "g" "c" "c"
## [27631] "a" "g" "a" "t" "c" "a" "g" "t" "t" "t" "c" "a" "c" "c" "t" "a" "a" "a"
## [27649] "c" "t" "g" "t" "t" "c" "a" "t" "c" "a" "g" "a" "c" "a" "a" "g" "a" "g"
## [27667] "g" "a" "a" "g" "t" "t" "c" "a" "a" "g" "a" "a" "c" "t" "t" "t" "a" "c"
## [27685] "t" "c" "t" "c" "c" "a" "a" "t" "t" "t" "t" "t" "c" "t" "t" "a" "t" "t"
## [27703] "g" "t" "t" "g" "c" "g" "g" "c" "a" "a" "t" "a" "g" "t" "g" "t" "t" "t"
## [27721] "a" "t" "a" "a" "c" "a" "c" "t" "t" "t" "g" "c" "t" "t" "c" "a" "c" "a"
## [27739] "c" "t" "c" "a" "a" "a" "a" "g" "a" "a" "a" "g" "a" "c" "a" "g" "a" "a"
## [27757] "t" "g" "a" "t" "t" "g" "a" "a" "c" "t" "t" "t" "c" "a" "t" "t" "a" "a"
## [27775] "t" "t" "g" "a" "c" "t" "t" "c" "t" "a" "t" "t" "t" "g" "t" "g" "c" "t"
## [27793] "t" "t" "t" "t" "a" "g" "c" "c" "t" "t" "t" "c" "t" "g" "c" "t" "a" "t"
## [27811] "t" "c" "c" "t" "t" "g" "t" "t" "t" "t" "a" "a" "t" "t" "a" "t" "g" "c"
## [27829] "t" "t" "a" "t" "t" "a" "t" "c" "t" "t" "t" "t" "g" "g" "t" "t" "c" "t"
## [27847] "c" "a" "c" "t" "t" "g" "a" "a" "c" "t" "g" "c" "a" "a" "g" "a" "t" "c"
## [27865] "a" "t" "a" "a" "t" "g" "a" "a" "a" "c" "t" "t" "g" "t" "c" "a" "c" "g"
## [27883] "c" "c" "t" "a" "a" "a" "c" "g" "a" "a" "c" "a" "t" "g" "a" "a" "a" "t"
## [27901] "t" "t" "c" "t" "t" "g" "t" "t" "t" "t" "c" "t" "t" "a" "g" "g" "a" "a"
## [27919] "t" "c" "a" "t" "c" "a" "c" "a" "a" "c" "t" "g" "t" "a" "g" "c" "t" "g"
## [27937] "c" "a" "t" "t" "t" "c" "a" "c" "c" "a" "a" "g" "a" "a" "t" "g" "t" "a"
## [27955] "g" "t" "t" "t" "a" "c" "a" "g" "t" "c" "a" "t" "g" "t" "a" "c" "t" "c"
## [27973] "a" "a" "c" "a" "t" "c" "a" "a" "c" "c" "a" "t" "a" "t" "g" "t" "a" "g"
## [27991] "t" "t" "g" "a" "t" "g" "a" "c" "c" "c" "g" "t" "g" "t" "c" "c" "t" "a"
## [28009] "t" "t" "c" "a" "c" "t" "t" "c" "t" "a" "t" "t" "c" "t" "a" "a" "a" "t"
## [28027] "g" "g" "t" "a" "t" "a" "t" "t" "a" "g" "a" "g" "t" "a" "g" "g" "a" "g"
## [28045] "c" "t" "a" "g" "a" "a" "a" "a" "t" "c" "a" "g" "c" "a" "c" "c" "t" "t"
## [28063] "t" "a" "a" "t" "t" "g" "a" "a" "t" "t" "g" "t" "g" "c" "g" "t" "g" "g"
## [28081] "a" "t" "g" "a" "g" "g" "c" "t" "g" "g" "t" "t" "c" "t" "a" "a" "a" "t"
## [28099] "c" "a" "c" "c" "c" "a" "t" "t" "c" "a" "g" "t" "a" "c" "a" "t" "c" "g"
## [28117] "a" "t" "a" "t" "c" "g" "g" "t" "a" "a" "t" "t" "a" "t" "a" "c" "a" "g"
## [28135] "t" "t" "t" "c" "c" "t" "g" "t" "t" "t" "a" "c" "c" "t" "t" "t" "t" "a"
## [28153] "c" "a" "a" "t" "t" "a" "a" "t" "t" "g" "c" "c" "a" "g" "g" "a" "a" "c"
## [28171] "c" "t" "a" "a" "a" "t" "t" "g" "g" "g" "t" "a" "g" "t" "c" "t" "t" "g"
## [28189] "t" "a" "g" "t" "g" "c" "g" "t" "t" "g" "t" "t" "c" "g" "t" "t" "c" "t"
## [28207] "a" "t" "g" "a" "a" "g" "a" "c" "t" "t" "t" "t" "t" "a" "g" "a" "g" "t"
## [28225] "a" "t" "c" "a" "t" "g" "a" "c" "g" "t" "t" "c" "g" "t" "g" "t" "t" "g"
## [28243] "t" "t" "t" "t" "a" "g" "a" "t" "t" "t" "c" "a" "t" "c" "t" "a" "a" "a"
## [28261] "c" "g" "a" "a" "c" "a" "a" "a" "c" "t" "a" "a" "a" "a" "t" "g" "t" "c"
## [28279] "t" "g" "a" "t" "a" "a" "t" "g" "g" "a" "c" "c" "c" "c" "a" "a" "a" "a"
## [28297] "t" "c" "a" "g" "c" "g" "a" "a" "a" "t" "g" "c" "a" "c" "c" "c" "c" "g"
## [28315] "c" "a" "t" "t" "a" "c" "g" "t" "t" "t" "g" "g" "t" "g" "g" "a" "c" "c"
## [28333] "c" "t" "c" "a" "g" "a" "t" "t" "c" "a" "a" "c" "t" "g" "g" "c" "a" "g"
## [28351] "t" "a" "a" "c" "c" "a" "g" "a" "a" "t" "g" "g" "a" "g" "a" "a" "c" "g"
## [28369] "c" "a" "g" "t" "g" "g" "g" "g" "c" "g" "c" "g" "a" "t" "c" "a" "a" "a"
## [28387] "a" "c" "a" "a" "c" "g" "t" "c" "g" "g" "c" "c" "c" "c" "a" "a" "g" "g"
## [28405] "t" "t" "t" "a" "c" "c" "c" "a" "a" "t" "a" "a" "t" "a" "c" "t" "g" "c"
## [28423] "g" "t" "c" "t" "t" "g" "g" "t" "t" "c" "a" "c" "c" "g" "c" "t" "c" "t"
## [28441] "c" "a" "c" "t" "c" "a" "a" "c" "a" "t" "g" "g" "c" "a" "a" "g" "g" "a"
## [28459] "a" "g" "a" "c" "c" "t" "t" "a" "a" "a" "t" "t" "c" "c" "c" "t" "c" "g"
## [28477] "a" "g" "g" "a" "c" "a" "a" "g" "g" "c" "g" "t" "t" "c" "c" "a" "a" "t"
## [28495] "t" "a" "a" "c" "a" "c" "c" "a" "a" "t" "a" "g" "c" "a" "g" "t" "c" "c"
## [28513] "a" "g" "a" "t" "g" "a" "c" "c" "a" "a" "a" "t" "t" "g" "g" "c" "t" "a"
## [28531] "c" "t" "a" "c" "c" "g" "a" "a" "g" "a" "g" "c" "t" "a" "c" "c" "a" "g"
## [28549] "a" "c" "g" "a" "a" "t" "t" "c" "g" "t" "g" "g" "t" "g" "g" "t" "g" "a"
## [28567] "c" "g" "g" "t" "a" "a" "a" "a" "t" "g" "a" "a" "a" "g" "a" "t" "c" "t"
## [28585] "c" "a" "g" "t" "c" "c" "a" "a" "g" "a" "t" "g" "g" "t" "a" "t" "t" "t"
## [28603] "c" "t" "a" "c" "t" "a" "c" "c" "t" "a" "g" "g" "a" "a" "c" "t" "g" "g"
## [28621] "g" "c" "c" "a" "g" "a" "a" "g" "c" "t" "g" "g" "a" "c" "t" "t" "c" "c"
## [28639] "c" "t" "a" "t" "g" "g" "t" "g" "c" "t" "a" "a" "c" "a" "a" "a" "g" "a"
## [28657] "c" "g" "g" "c" "a" "t" "c" "a" "t" "a" "t" "g" "g" "g" "t" "t" "g" "c"
## [28675] "a" "a" "c" "t" "g" "a" "g" "g" "g" "a" "g" "c" "c" "t" "t" "g" "a" "a"
## [28693] "t" "a" "c" "a" "c" "c" "a" "a" "a" "a" "g" "a" "t" "c" "a" "c" "a" "t"
## [28711] "t" "g" "g" "c" "a" "c" "c" "c" "g" "c" "a" "a" "t" "c" "c" "t" "g" "c"
## [28729] "t" "a" "a" "c" "a" "a" "t" "g" "c" "t" "g" "c" "a" "a" "t" "c" "g" "t"
## [28747] "g" "c" "t" "a" "c" "a" "a" "c" "t" "t" "c" "c" "t" "c" "a" "a" "g" "g"
## [28765] "a" "a" "c" "a" "a" "c" "a" "t" "t" "g" "c" "c" "a" "a" "a" "a" "g" "g"
## [28783] "c" "t" "t" "c" "t" "a" "c" "g" "c" "a" "g" "a" "a" "g" "g" "g" "a" "g"
## [28801] "c" "a" "g" "a" "g" "g" "c" "g" "g" "c" "a" "g" "t" "c" "a" "a" "g" "c"
## [28819] "c" "t" "c" "t" "t" "c" "t" "c" "g" "t" "t" "c" "c" "t" "c" "a" "t" "c"
## [28837] "a" "c" "g" "t" "a" "g" "t" "c" "g" "c" "a" "a" "c" "a" "g" "t" "t" "c"
## [28855] "a" "a" "g" "a" "a" "a" "t" "t" "c" "a" "a" "c" "t" "c" "c" "a" "g" "g"
## [28873] "c" "a" "g" "c" "a" "g" "t" "a" "g" "g" "g" "g" "a" "a" "c" "t" "t" "c"
## [28891] "t" "c" "c" "t" "g" "c" "t" "a" "g" "a" "a" "t" "g" "g" "c" "t" "g" "g"
## [28909] "c" "a" "a" "t" "g" "g" "c" "g" "g" "t" "g" "a" "t" "g" "c" "t" "g" "c"
## [28927] "t" "c" "t" "t" "g" "c" "t" "t" "t" "g" "c" "t" "g" "c" "t" "g" "c" "t"
## [28945] "t" "g" "a" "c" "a" "g" "a" "t" "t" "g" "a" "a" "c" "c" "a" "g" "c" "t"
## [28963] "t" "g" "a" "g" "a" "g" "c" "a" "a" "a" "a" "t" "g" "t" "c" "t" "g" "g"
## [28981] "t" "a" "a" "a" "g" "g" "c" "c" "a" "a" "c" "a" "a" "c" "a" "a" "c" "a"
## [28999] "a" "g" "g" "c" "c" "a" "a" "a" "c" "t" "g" "t" "c" "a" "c" "t" "a" "a"
## [29017] "g" "a" "a" "a" "t" "c" "t" "g" "c" "t" "g" "c" "t" "g" "a" "g" "g" "c"
## [29035] "t" "t" "c" "t" "a" "a" "g" "a" "a" "g" "c" "c" "t" "c" "g" "g" "c" "a"
## [29053] "a" "a" "a" "a" "c" "g" "t" "a" "c" "t" "g" "c" "c" "a" "c" "t" "a" "a"
## [29071] "a" "g" "c" "a" "t" "a" "c" "a" "a" "t" "g" "t" "a" "a" "c" "a" "c" "a"
## [29089] "a" "g" "c" "t" "t" "t" "c" "g" "g" "c" "a" "g" "a" "c" "g" "t" "g" "g"
## [29107] "t" "c" "c" "a" "g" "a" "a" "c" "a" "a" "a" "c" "c" "c" "a" "a" "g" "g"
## [29125] "a" "a" "a" "t" "t" "t" "t" "g" "g" "g" "g" "a" "c" "c" "a" "g" "g" "a"
## [29143] "a" "c" "t" "a" "a" "t" "c" "a" "g" "a" "c" "a" "a" "g" "g" "a" "a" "c"
## [29161] "t" "g" "a" "t" "t" "a" "c" "a" "a" "a" "c" "a" "t" "t" "g" "g" "c" "c"
## [29179] "g" "c" "a" "a" "a" "t" "t" "g" "c" "a" "c" "a" "a" "t" "t" "t" "g" "c"
## [29197] "c" "c" "c" "c" "a" "g" "c" "g" "c" "t" "t" "c" "a" "g" "c" "g" "t" "t"
## [29215] "c" "t" "t" "c" "g" "g" "a" "a" "t" "g" "t" "c" "g" "c" "g" "c" "a" "t"
## [29233] "t" "g" "g" "c" "a" "t" "g" "g" "a" "a" "g" "t" "c" "a" "c" "a" "c" "c"
## [29251] "t" "t" "c" "g" "g" "g" "a" "a" "c" "g" "t" "g" "g" "t" "t" "g" "a" "c"
## [29269] "c" "t" "a" "c" "a" "c" "a" "g" "g" "t" "g" "c" "c" "a" "t" "c" "a" "a"
## [29287] "a" "t" "t" "g" "g" "a" "t" "g" "a" "c" "a" "a" "a" "g" "a" "t" "c" "c"
## [29305] "a" "a" "a" "t" "t" "t" "c" "a" "a" "a" "g" "a" "t" "c" "a" "a" "g" "t"
## [29323] "c" "a" "t" "t" "t" "t" "g" "c" "t" "g" "a" "a" "t" "a" "a" "g" "c" "a"
## [29341] "t" "a" "t" "t" "g" "a" "c" "g" "c" "a" "t" "a" "c" "a" "a" "a" "a" "c"
## [29359] "a" "t" "t" "c" "c" "c" "a" "c" "c" "a" "a" "c" "a" "g" "a" "g" "c" "c"
## [29377] "t" "a" "a" "a" "a" "a" "g" "g" "a" "c" "a" "a" "a" "a" "a" "g" "a" "a"
## [29395] "g" "a" "a" "g" "g" "c" "t" "g" "a" "t" "g" "a" "a" "a" "c" "t" "c" "a"
## [29413] "a" "g" "c" "c" "t" "t" "a" "c" "c" "g" "c" "a" "g" "a" "g" "a" "c" "a"
## [29431] "g" "a" "a" "g" "a" "a" "a" "c" "a" "g" "c" "a" "a" "a" "c" "t" "g" "t"
## [29449] "g" "a" "c" "t" "c" "t" "t" "c" "t" "t" "c" "c" "t" "g" "c" "t" "g" "c"
## [29467] "a" "g" "a" "t" "t" "t" "g" "g" "a" "t" "g" "a" "t" "t" "t" "c" "t" "c"
## [29485] "c" "a" "a" "a" "c" "a" "a" "t" "t" "g" "c" "a" "a" "c" "a" "a" "t" "c"
## [29503] "c" "a" "t" "g" "a" "g" "c" "a" "g" "t" "g" "c" "t" "g" "a" "c" "t" "c"
## [29521] "a" "a" "c" "t" "c" "a" "g" "g" "c" "c" "t" "a" "a" "a" "c" "t" "c" "a"
## [29539] "t" "g" "c" "a" "g" "a" "c" "c" "a" "c" "a" "c" "a" "a" "g" "g" "c" "a"
## [29557] "g" "a" "t" "g" "g" "g" "c" "t" "a" "t" "a" "t" "a" "a" "a" "c" "g" "t"
## [29575] "t" "t" "t" "c" "g" "c" "t" "t" "t" "t" "c" "c" "g" "t" "t" "t" "a" "c"
## [29593] "g" "a" "t" "a" "t" "a" "t" "a" "g" "t" "c" "t" "a" "c" "t" "c" "t" "t"
## [29611] "g" "t" "g" "c" "a" "g" "a" "a" "t" "g" "a" "a" "t" "t" "c" "t" "c" "g"
## [29629] "t" "a" "a" "c" "t" "a" "c" "a" "t" "a" "g" "c" "a" "c" "a" "a" "g" "t"
## [29647] "a" "g" "a" "t" "g" "t" "a" "g" "t" "t" "a" "a" "c" "t" "t" "t" "a" "a"
## [29665] "t" "c" "t" "c" "a" "c" "a" "t" "a" "g" "c" "a" "a" "t" "c" "t" "t" "t"
## [29683] "a" "a" "t" "c" "a" "g" "t" "g" "t" "g" "t" "a" "a" "c" "a" "t" "t" "a"
## [29701] "g" "g" "g" "a" "g" "g" "a" "c" "t" "t" "g" "a" "a" "a" "g" "a" "g" "c"
## [29719] "c" "a" "c" "c" "a" "c" "a" "t" "t" "t" "t" "c" "a" "c" "c" "g" "a" "g"
## [29737] "g" "c" "c" "a" "c" "g" "c" "g" "g" "a" "g" "t" "a" "c" "g" "a" "t" "c"
## [29755] "g" "a" "g" "t" "g" "t" "a" "c" "a" "g" "t" "g" "a" "a" "c" "a" "a" "t"
## [29773] "g" "c" "t" "a" "g" "g" "g" "a" "g" "a" "g" "c" "t" "g" "c" "c" "t" "a"
## [29791] "t" "a" "t" "g" "g" "a" "a" "g" "a" "g" "c" "c" "c" "t" "a" "a" "t" "g"
## [29809] "t" "g" "t" "a" "a" "a" "a" "t" "t" "a" "a" "t" "t" "t" "t" "a" "g" "t"
## [29827] "a" "g" "t" "g" "c" "t" "a" "t" "c" "c" "c" "c" "a" "t" "g" "t" "g" "a"
## [29845] "t" "t" "t" "t" "a" "a" "t" "a" "g" "c" "t" "t" "c" "t" "t" "a" "g" "g"
## [29863] "a" "g" "a" "a" "t" "g" "a" "c" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
## [29881] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
## [29899] "a" "a" "a" "a" "a"
# Pandemic historical records
pnds <- pandemics.data(tgt="pandemics")
## Data obtained fromPandemic historical records -- data from https://www.visualcapitalist.com/history-of-pandemics-deadliest/
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
# Pandemics vaccines development times
pnds.vacs <- pandemics.data(tgt="pandemics_vaccines")
## Data obtained fromPandemics vaccine development times -- data from https://www.visualcapitalist.com/the-race-to-save-lives-comparing-vaccine-development-timelines/
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
# summary report for an specific location with default number of entries
report.summary(geo.loc="Libya")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:27:13 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details = details, :
## Inconsistency of type.II in ts-confirmed data detected -- 90 records (out of
## 284) show inconsistencies in the data...
## ################################################################################
## ##### TS-CONFIRMED Cases -- Data dated: 2022-02-23 :: 2022-02-25 06:27:17
## ################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------
## For selected locations ts-confirmed Totals: 489940
## --------------------------------------------------------------------------------
## Country.Region Province.State Totals RelPerc GlobalPerc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1 Libya 489940 100 0.11 1373 1815 2307 2457 3773 3063
## --------------------------------------------------------------------------------
## Global Perc. Average: 0.11 (sd: NA)
## Global Perc. Average in top 1 : 0.11 (sd: NA)
## --------------------------------------------------------------------------------
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:27:19 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details = details, :
## Inconsistency of type.II in ts-deaths data detected -- 78 records (out of 284)
## show inconsistencies in the data...

## ################################################################################
## ##### TS-DEATHS Cases -- Data dated: 2022-02-23 :: 2022-02-25 06:27:22
## ################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------
## For selected locations ts-deaths Totals: 6222
## --------------------------------------------------------------------------------
## Country.Region Province.State Totals Perc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1 Libya 6222 1.27 12 9 10 13 11 14
## --------------------------------------------------------------------------------
## --------------------------------------------------------------------------------
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2022-02-25 06:27:24 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 269
## --------------------------------------------------------------------------------
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details = details, :
## Inconsistency of type.II in ts-recovered data detected -- 258 records (out of
## 269) show inconsistencies in the data...
## ################################################################################
## ##### TS-RECOVERED Cases -- Data dated: 2022-02-23 :: 2022-02-25 06:27:27
## ################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------
## For selected locations ts-recovered Totals: 0
## --------------------------------------------------------------------------------
## Country.Region Province.State Totals Perc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1 Libya 0 0 0 0 0 0 0 0
## --------------------------------------------------------------------------------
## --------------------------------------------------------------------------------
## ================================================================================
## Warning in report.summary(geo.loc = "Libya"): Graphical Output: Data yields non-
## positive results!
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## Possible <<Aggregated data-type>> detected...
## checking for ... Active Deaths Recovered Confirmed
## No critical issues have been found.
## Warning in chck.cols.qty(agg.critical.cols, data, disclose = disclose): Column Active has 10 entries reporting negative values!
## on entries: 33 417 489 1356 1449 1895 2563 2581 2738 3969
## Warning in chck.cols.qty(agg.critical.cols, data, disclose = disclose): number of 'active+recovered+deaths' cases does NOT match the number of 'confirmed' cases!
## on 8 entries -- 3956 3957 3959 3961 3966 3967 3969 3970
## || FIPS Admin2 Province_State Country_Region Last_Update Lat Long_ Confirmed Deaths Recovered Active Combined_Key Incident_Rate Case_Fatality_Ratio
## 3956 3957 3959 3961 3966 3967 3969 3970 || c(NA, NA, NA, NA, NA, NA, NA, NA) c("", "", "", "", "", "", "", "") c("Anguilla", "Bermuda", "Cayman Islands", "England", "Northern Ireland", "Scotland", "Unknown", "Wales") c("United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom") c("2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49") c(18.2206, 32.3078, 19.3133, 52.3555, 54.7877, 56.4907, NA, 52.1307) c(-63.0686, -64.7505, -81.2546, -1.1743, -6.4923, -4.2026, NA, -3.7837) c(16, 691, 390, 3358064, 104274, 180533, 0, 192912) c(0, 12, 2, 93816, 1861, 6112, 0, 4775) c(15, 653, 357, 0, 0, 0, 0, 0) c(2, 12, 28, 3358064, 104274, 180533, -106564, 192912) c("Anguilla, United Kingdom", "Bermuda, United Kingdom", "Cayman Islands, United Kingdom", "England, United Kingdom", "Northern Ireland, United Kingdom", "Scotland, United Kingdom", "Unknown, United Kingdom", "Wales, United Kingdom") c(113.318224236768, 1111.23600918536, 605.599513085819, 5998.98530115833, 5541.77295918367, 3304.46799553383, NA, 6146.43471611547) c(0, 1.73661360347323, 0.512820512820513, 2.7937525907785, 1.78472102345743, 3.38553062321016, NA, 2.47522186281828)
## *** 17 entries were removed due to data inconsistences
## >>> checking data consistency...
## This function applies to TimeSeries data only

## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY CONFIRMED Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:27:27
## ############################################################################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Libya 119402 0.12 1883 1.58 99586 83.4 17933 15.02
## ============================================================================================================================================
## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY DEATHS Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:27:27
## ############################################################################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Libya 119402 0.12 1883 1.58 99586 83.4 17933 15.02
## ============================================================================================================================================
## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY RECOVERED Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:27:27
## ############################################################################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Libya 119402 0.12 1883 1.58 99586 83.4 17933 15.02
## ============================================================================================================================================
## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY ACTIVE Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:27:27
## ############################################################################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Libya 119402 0.12 1883 1.58 99586 83.4 17933 15.02
## ============================================================================================================================================
## Confirmed Deaths Recovered Active
## Totals
## 119402 1883 99586 17933
## Average
## 119402 1883 99586 17933
## Standard Deviation
## NA NA NA NA
##
##
## * Statistical estimators computed considering 1 independent reported entries
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## Possible <<Aggregated data-type>> detected...
## checking for ... Active Deaths Recovered Confirmed
## No critical issues have been found.

##
##
## ********************************************************************************
## ******************************** OVERALL SUMMARY********************************
## ********************************************************************************
## **** Time Series LIBYA TOTS ****
## ts-confirmed ts-deaths ts-recovered
## 489940 6222 0
## 1.27% 0%
## **** Time Series LIBYA AVGS ****
## ts-confirmed ts-deaths ts-recovered
## 489940 6222 0
## 1.27% 0%
## **** Time Series LIBYA SDS ****
## ts-confirmed ts-deaths ts-recovered
## NA NA NA
## NA% NA%
##
##
## * Statistical estimators computed considering 1/1/1 independent reported entries per case-type
## ********************************************************************************
# summary report for an specific location with top 5
report.summary(Nentries=5, geo.loc="Libya")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:27:30 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details = details, :
## Inconsistency of type.II in ts-confirmed data detected -- 90 records (out of
## 284) show inconsistencies in the data...
## ################################################################################
## ##### TS-CONFIRMED Cases -- Data dated: 2022-02-23 :: 2022-02-25 06:27:34
## ################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------
## For selected locations ts-confirmed Totals: 489940
## --------------------------------------------------------------------------------
## Country.Region Province.State Totals RelPerc GlobalPerc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1 Libya 489940 100 0.11 1373 1815 2307 2457 3773 3063
## --------------------------------------------------------------------------------
## Global Perc. Average: 0.11 (sd: NA)
## Global Perc. Average in top 1 : 0.11 (sd: NA)
## --------------------------------------------------------------------------------
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:27:36 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details = details, :
## Inconsistency of type.II in ts-deaths data detected -- 78 records (out of 284)
## show inconsistencies in the data...

## ################################################################################
## ##### TS-DEATHS Cases -- Data dated: 2022-02-23 :: 2022-02-25 06:27:40
## ################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------
## For selected locations ts-deaths Totals: 6222
## --------------------------------------------------------------------------------
## Country.Region Province.State Totals Perc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1 Libya 6222 1.27 12 9 10 13 11 14
## --------------------------------------------------------------------------------
## --------------------------------------------------------------------------------
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2022-02-25 06:27:42 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 269
## --------------------------------------------------------------------------------
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details = details, :
## Inconsistency of type.II in ts-recovered data detected -- 258 records (out of
## 269) show inconsistencies in the data...
## ################################################################################
## ##### TS-RECOVERED Cases -- Data dated: 2022-02-23 :: 2022-02-25 06:27:45
## ################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------
## For selected locations ts-recovered Totals: 0
## --------------------------------------------------------------------------------
## Country.Region Province.State Totals Perc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1 Libya 0 0 0 0 0 0 0 0
## --------------------------------------------------------------------------------
## --------------------------------------------------------------------------------
## ================================================================================
## Warning in report.summary(Nentries = 5, geo.loc = "Libya"): Graphical Output:
## Data yields non-positive results!
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## Possible <<Aggregated data-type>> detected...
## checking for ... Active Deaths Recovered Confirmed
## No critical issues have been found.
## Warning in chck.cols.qty(agg.critical.cols, data, disclose = disclose): Column Active has 10 entries reporting negative values!
## on entries: 33 417 489 1356 1449 1895 2563 2581 2738 3969
## Warning in chck.cols.qty(agg.critical.cols, data, disclose = disclose): number of 'active+recovered+deaths' cases does NOT match the number of 'confirmed' cases!
## on 8 entries -- 3956 3957 3959 3961 3966 3967 3969 3970
## || FIPS Admin2 Province_State Country_Region Last_Update Lat Long_ Confirmed Deaths Recovered Active Combined_Key Incident_Rate Case_Fatality_Ratio
## 3956 3957 3959 3961 3966 3967 3969 3970 || c(NA, NA, NA, NA, NA, NA, NA, NA) c("", "", "", "", "", "", "", "") c("Anguilla", "Bermuda", "Cayman Islands", "England", "Northern Ireland", "Scotland", "Unknown", "Wales") c("United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom") c("2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49") c(18.2206, 32.3078, 19.3133, 52.3555, 54.7877, 56.4907, NA, 52.1307) c(-63.0686, -64.7505, -81.2546, -1.1743, -6.4923, -4.2026, NA, -3.7837) c(16, 691, 390, 3358064, 104274, 180533, 0, 192912) c(0, 12, 2, 93816, 1861, 6112, 0, 4775) c(15, 653, 357, 0, 0, 0, 0, 0) c(2, 12, 28, 3358064, 104274, 180533, -106564, 192912) c("Anguilla, United Kingdom", "Bermuda, United Kingdom", "Cayman Islands, United Kingdom", "England, United Kingdom", "Northern Ireland, United Kingdom", "Scotland, United Kingdom", "Unknown, United Kingdom", "Wales, United Kingdom") c(113.318224236768, 1111.23600918536, 605.599513085819, 5998.98530115833, 5541.77295918367, 3304.46799553383, NA, 6146.43471611547) c(0, 1.73661360347323, 0.512820512820513, 2.7937525907785, 1.78472102345743, 3.38553062321016, NA, 2.47522186281828)
## *** 17 entries were removed due to data inconsistences
## >>> checking data consistency...
## This function applies to TimeSeries data only

## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY CONFIRMED Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:27:45
## ############################################################################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Libya 119402 0.12 1883 1.58 99586 83.4 17933 15.02
## ============================================================================================================================================
## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY DEATHS Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:27:46
## ############################################################################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Libya 119402 0.12 1883 1.58 99586 83.4 17933 15.02
## ============================================================================================================================================
## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY RECOVERED Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:27:46
## ############################################################################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Libya 119402 0.12 1883 1.58 99586 83.4 17933 15.02
## ============================================================================================================================================
## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY ACTIVE Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:27:46
## ############################################################################################################################################
## Number of Countries/Regions reported: 1
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 1
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Libya 119402 0.12 1883 1.58 99586 83.4 17933 15.02
## ============================================================================================================================================
## Confirmed Deaths Recovered Active
## Totals
## 119402 1883 99586 17933
## Average
## 119402 1883 99586 17933
## Standard Deviation
## NA NA NA NA
##
##
## * Statistical estimators computed considering 1 independent reported entries
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## Possible <<Aggregated data-type>> detected...
## checking for ... Active Deaths Recovered Confirmed
## No critical issues have been found.

##
##
## ********************************************************************************
## ******************************** OVERALL SUMMARY********************************
## ********************************************************************************
## **** Time Series LIBYA TOTS ****
## ts-confirmed ts-deaths ts-recovered
## 489940 6222 0
## 1.27% 0%
## **** Time Series LIBYA AVGS ****
## ts-confirmed ts-deaths ts-recovered
## 489940 6222 0
## 1.27% 0%
## **** Time Series LIBYA SDS ****
## ts-confirmed ts-deaths ts-recovered
## NA NA NA
## NA% NA%
##
##
## * Statistical estimators computed considering 1/1/1 independent reported entries per case-type
## ********************************************************************************
# it can combine several locations
report.summary(Nentries=30, geo.loc=c("Egypt","Algeria","Qatar","Sudan","Saudi Arabia"))
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:27:48 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details = details, :
## Inconsistency of type.II in ts-confirmed data detected -- 90 records (out of
## 284) show inconsistencies in the data...
## ################################################################################
## ##### TS-CONFIRMED Cases -- Data dated: 2022-02-23 :: 2022-02-25 06:27:52
## ################################################################################
## Number of Countries/Regions reported: 5
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 5
## --------------------------------------------------------------------------------
## For selected locations ts-confirmed Totals: 1898440
## --------------------------------------------------------------------------------
## Country.Region Province.State Totals RelPerc GlobalPerc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1 Saudi Arabia 741864 39.08 0.17 627 841 1052 1569 2866 4541
## 2 Egypt 475341 25.04 0.11 1892 1989 2003 2071 2189 1809
## 3 Qatar 355397 18.72 0.08 365 394 416 447 783 2551
## 4 Algeria 264488 13.93 0.06 123 164 147 375 518 2521
## 5 Sudan 61350 3.23 0.01 99 28 1284 0 110 684
## --------------------------------------------------------------------------------
## Global Perc. Average: 0.09 (sd: 0.06)
## Global Perc. Average in top 5 : 0.09 (sd: 0.06)
## --------------------------------------------------------------------------------
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:27:53 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details = details, :
## Inconsistency of type.II in ts-deaths data detected -- 78 records (out of 284)
## show inconsistencies in the data...

## ################################################################################
## ##### TS-DEATHS Cases -- Data dated: 2022-02-23 :: 2022-02-25 06:27:57
## ################################################################################
## Number of Countries/Regions reported: 5
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 5
## --------------------------------------------------------------------------------
## For selected locations ts-deaths Totals: 44254
## --------------------------------------------------------------------------------
## Country.Region Province.State Totals Perc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1 Egypt 23889 5.03 32 51 54 61 62 35
## 2 Saudi Arabia 8990 1.21 3 1 2 1 3 2
## 3 Algeria 6816 2.58 4 7 8 10 12 8
## 4 Sudan 3895 6.35 1 2 61 0 6 7
## 5 Qatar 664 0.19 2 0 0 2 2 1
## --------------------------------------------------------------------------------
## --------------------------------------------------------------------------------
## ================================================================================
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2022-02-25 06:27:58 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 269
## --------------------------------------------------------------------------------
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## >>> checking data consistency...
## Warning in consistency.check(data, n0, nf, datasetName, details = details, :
## Inconsistency of type.II in ts-recovered data detected -- 258 records (out of
## 269) show inconsistencies in the data...
## ################################################################################
## ##### TS-RECOVERED Cases -- Data dated: 2022-02-23 :: 2022-02-25 06:28:02
## ################################################################################
## Number of Countries/Regions reported: 5
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 5
## --------------------------------------------------------------------------------
## For selected locations ts-recovered Totals: 0
## --------------------------------------------------------------------------------
## Country.Region Province.State Totals Perc LastDayChange t-2 t-3 t-7 t-14 t-30
## 1 Egypt 0 0 0 0 0 0 0 0
## 2 Algeria 0 0 0 0 0 0 0 0
## 3 Qatar 0 0 0 0 0 0 0 0
## 4 Sudan 0 0 0 0 0 0 0 0
## 5 Saudi Arabia 0 0 0 0 0 0 0 0
## --------------------------------------------------------------------------------
## --------------------------------------------------------------------------------
## ================================================================================
## Warning in report.summary(Nentries = 30, geo.loc = c("Egypt", "Algeria", :
## Graphical Output: Data yields non-positive results!
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## Possible <<Aggregated data-type>> detected...
## checking for ... Active Deaths Recovered Confirmed
## No critical issues have been found.
## Warning in chck.cols.qty(agg.critical.cols, data, disclose = disclose): Column Active has 10 entries reporting negative values!
## on entries: 33 417 489 1356 1449 1895 2563 2581 2738 3969
## Warning in chck.cols.qty(agg.critical.cols, data, disclose = disclose): number of 'active+recovered+deaths' cases does NOT match the number of 'confirmed' cases!
## on 8 entries -- 3956 3957 3959 3961 3966 3967 3969 3970
## || FIPS Admin2 Province_State Country_Region Last_Update Lat Long_ Confirmed Deaths Recovered Active Combined_Key Incident_Rate Case_Fatality_Ratio
## 3956 3957 3959 3961 3966 3967 3969 3970 || c(NA, NA, NA, NA, NA, NA, NA, NA) c("", "", "", "", "", "", "", "") c("Anguilla", "Bermuda", "Cayman Islands", "England", "Northern Ireland", "Scotland", "Unknown", "Wales") c("United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom", "United Kingdom") c("2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49", "2021-02-02 05:22:49") c(18.2206, 32.3078, 19.3133, 52.3555, 54.7877, 56.4907, NA, 52.1307) c(-63.0686, -64.7505, -81.2546, -1.1743, -6.4923, -4.2026, NA, -3.7837) c(16, 691, 390, 3358064, 104274, 180533, 0, 192912) c(0, 12, 2, 93816, 1861, 6112, 0, 4775) c(15, 653, 357, 0, 0, 0, 0, 0) c(2, 12, 28, 3358064, 104274, 180533, -106564, 192912) c("Anguilla, United Kingdom", "Bermuda, United Kingdom", "Cayman Islands, United Kingdom", "England, United Kingdom", "Northern Ireland, United Kingdom", "Scotland, United Kingdom", "Unknown, United Kingdom", "Wales, United Kingdom") c(113.318224236768, 1111.23600918536, 605.599513085819, 5998.98530115833, 5541.77295918367, 3304.46799553383, NA, 6146.43471611547) c(0, 1.73661360347323, 0.512820512820513, 2.7937525907785, 1.78472102345743, 3.38553062321016, NA, 2.47522186281828)
## *** 17 entries were removed due to data inconsistences
## >>> checking data consistency...
## This function applies to TimeSeries data only

## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY CONFIRMED Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:28:02
## ############################################################################################################################################
## Number of Countries/Regions reported: 5
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 5
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Saudi Arabia 368329 0.37 6379 1.73 359839 97.69 2111 0.57
## 2 Egypt 166492 0.17 9360 5.62 130107 78.15 27025 16.23
## 3 Qatar 151720 0.15 249 0.16 145953 96.20 5518 3.64
## 4 Algeria 107578 0.11 2894 2.69 73530 68.35 31154 28.96
## 5 Sudan 29449 0.03 1812 6.15 21504 73.02 6133 20.83
## ============================================================================================================================================
## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY DEATHS Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:28:02
## ############################################################################################################################################
## Number of Countries/Regions reported: 5
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 5
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Egypt 166492 0.17 9360 5.62 130107 78.15 27025 16.23
## 2 Saudi Arabia 368329 0.37 6379 1.73 359839 97.69 2111 0.57
## 3 Algeria 107578 0.11 2894 2.69 73530 68.35 31154 28.96
## 4 Sudan 29449 0.03 1812 6.15 21504 73.02 6133 20.83
## 5 Qatar 151720 0.15 249 0.16 145953 96.20 5518 3.64
## ============================================================================================================================================
## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY RECOVERED Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:28:02
## ############################################################################################################################################
## Number of Countries/Regions reported: 5
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 5
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Saudi Arabia 368329 0.37 6379 1.73 359839 97.69 2111 0.57
## 2 Qatar 151720 0.15 249 0.16 145953 96.20 5518 3.64
## 3 Egypt 166492 0.17 9360 5.62 130107 78.15 27025 16.23
## 4 Algeria 107578 0.11 2894 2.69 73530 68.35 31154 28.96
## 5 Sudan 29449 0.03 1812 6.15 21504 73.02 6133 20.83
## ============================================================================================================================================
## ############################################################################################################################################
## ##### AGGREGATED Data -- ORDERED BY ACTIVE Cases -- Data dated: 2021-02-02 :: 2022-02-25 06:28:02
## ############################################################################################################################################
## Number of Countries/Regions reported: 5
## Number of Cities/Provinces reported: 1
## Unique number of distinct geographical locations combined: 5
## --------------------------------------------------------------------------------------------------------------------------------------------
## Location Confirmed Perc.Confirmed Deaths Perc.Deaths Recovered Perc.Recovered Active Perc.Active
## 1 Algeria 107578 0.11 2894 2.69 73530 68.35 31154 28.96
## 2 Egypt 166492 0.17 9360 5.62 130107 78.15 27025 16.23
## 3 Sudan 29449 0.03 1812 6.15 21504 73.02 6133 20.83
## 4 Qatar 151720 0.15 249 0.16 145953 96.20 5518 3.64
## 5 Saudi Arabia 368329 0.37 6379 1.73 359839 97.69 2111 0.57
## ============================================================================================================================================
## Confirmed Deaths Recovered Active
## Totals
## 823568 20694 730933 71941
## Average
## 164713.6 4138.8 146186.6 14388.2
## Standard Deviation
## 125690.31 3686.92 129161.42 13586.2
##
##
## * Statistical estimators computed considering 5 independent reported entries
## >>> checking data integrity...
## checking for ... Country Province Lat Long
## No critical issues have been found.
## Possible <<Aggregated data-type>> detected...
## checking for ... Active Deaths Recovered Confirmed
## No critical issues have been found.

##
##
## ********************************************************************************
## ******************************** OVERALL SUMMARY********************************
## ********************************************************************************
## **** Time Series EGYPT,ALGERIA,QATAR,SUDAN,SAUDI ARABIA TOTS ****
## ts-confirmed ts-deaths ts-recovered
## 1898440 44254 0
## 2.33% 0%
## **** Time Series EGYPT,ALGERIA,QATAR,SUDAN,SAUDI ARABIA AVGS ****
## ts-confirmed ts-deaths ts-recovered
## 379688 8850.8 0
## 2.33% 0%
## **** Time Series EGYPT,ALGERIA,QATAR,SUDAN,SAUDI ARABIA SDS ****
## ts-confirmed ts-deaths ts-recovered
## 252745.49 8970.66 0
## 3.55% 0%
##
##
## * Statistical estimators computed considering 5/5/5 independent reported entries per case-type
## ********************************************************************************
# totals for confirmed cases for "Ontario"
tots.per.location(covid19.confirmed.cases,geo.loc="Libya")
## LIBYA -- 489940
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53389 -31573 -18261 30737 91779
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -90957.63 2763.79 -32.91 <2e-16 ***
## x.var 640.21 6.26 102.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 38160 on 762 degrees of freedom
## Multiple R-squared: 0.9321, Adjusted R-squared: 0.932
## F-statistic: 1.046e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7507 -1.3923 0.1198 1.8188 2.8132
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.7818585 0.1495524 25.29 <2e-16 ***
## x.var 0.0156259 0.0003387 46.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.065 on 762 degrees of freedom
## Multiple R-squared: 0.7364, Adjusted R-squared: 0.736
## F-statistic: 2128 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -220.50 -167.35 11.74 97.51 130.65
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.413e+00 3.470e-04 27124 <2e-16 ***
## x.var 5.121e-03 5.721e-07 8951 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 122639059 on 763 degrees of freedom
## Residual deviance: 13466385 on 762 degrees of freedom
## AIC: 13475131
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# total for confirmed cases for "Canada"
tots.per.location(covid19.confirmed.cases,geo.loc="Egypt")
## EGYPT -- 475341
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29380 -13550 -3333 11883 67994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -41302.596 1292.543 -31.95 <2e-16 ***
## x.var 587.238 2.927 200.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17850 on 762 degrees of freedom
## Multiple R-squared: 0.9814, Adjusted R-squared: 0.9814
## F-statistic: 4.024e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3213 -0.9065 0.4730 1.3987 2.4846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.0892644 0.1566383 45.26 <2e-16 ***
## x.var 0.0100880 0.0003548 28.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.163 on 762 degrees of freedom
## Multiple R-squared: 0.5148, Adjusted R-squared: 0.5142
## F-statistic: 808.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -287.37 -85.11 29.19 85.02 122.62
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.045e+01 2.584e-04 40449 <2e-16 ***
## x.var 3.584e-03 4.537e-07 7900 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 86357718 on 763 degrees of freedom
## Residual deviance: 12540366 on 762 degrees of freedom
## AIC: 12550086
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# total nbr of deaths for "Mainland China"
tots.per.location(covid19.TS.deaths,geo.loc="Saudi Arabia")
## SAUDI ARABIA -- 8990
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1720.6 -803.4 260.6 653.3 1391.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 178.8590 65.6926 2.723 0.00662 **
## x.var 13.7850 0.1488 92.651 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 907 on 762 degrees of freedom
## Multiple R-squared: 0.9185, Adjusted R-squared: 0.9184
## F-statistic: 8584 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8430 -0.8891 0.3191 1.4740 2.0395
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3069326 0.1307682 32.94 <2e-16 ***
## x.var 0.0086457 0.0002962 29.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.805 on 762 degrees of freedom
## Multiple R-squared: 0.5279, Adjusted R-squared: 0.5273
## F-statistic: 852.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -62.137 -26.057 6.603 19.457 31.179
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.398e+00 1.335e-03 5542 <2e-16 ***
## x.var 2.703e-03 2.456e-06 1100 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2049545 on 763 degrees of freedom
## Residual deviance: 711054 on 762 degrees of freedom
## AIC: 718163
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# total nbr of confirmed cases in Hubei including a confidence band based on moving average
tots.per.location(covid19.confirmed.cases,geo.loc="Egypt", confBnd=TRUE)
## EGYPT -- 475341
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29380 -13550 -3333 11883 67994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -41302.596 1292.543 -31.95 <2e-16 ***
## x.var 587.238 2.927 200.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17850 on 762 degrees of freedom
## Multiple R-squared: 0.9814, Adjusted R-squared: 0.9814
## F-statistic: 4.024e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3213 -0.9065 0.4730 1.3987 2.4846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.0892644 0.1566383 45.26 <2e-16 ***
## x.var 0.0100880 0.0003548 28.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.163 on 762 degrees of freedom
## Multiple R-squared: 0.5148, Adjusted R-squared: 0.5142
## F-statistic: 808.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -287.37 -85.11 29.19 85.02 122.62
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.045e+01 2.584e-04 40449 <2e-16 ***
## x.var 3.584e-03 4.537e-07 7900 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 86357718 on 763 degrees of freedom
## Residual deviance: 12540366 on 762 degrees of freedom
## AIC: 12550086
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# total nbr of confirmed cases in Hubei including a confidence band based on moving average
tots.per.location(covid19.confirmed.cases,geo.loc="Jordan", confBnd=TRUE)
## JORDAN -- 1599422
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -202304 -83838 -11614 78147 456969
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -257053.30 8750.92 -29.37 <2e-16 ***
## x.var 1831.81 19.82 92.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 120800 on 762 degrees of freedom
## Multiple R-squared: 0.9181, Adjusted R-squared: 0.918
## F-statistic: 8542 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0196 -0.9883 0.1215 1.6400 2.8394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3522516 0.1390049 31.31 <2e-16 ***
## x.var 0.0162762 0.0003148 51.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.919 on 762 degrees of freedom
## Multiple R-squared: 0.7782, Adjusted R-squared: 0.7779
## F-statistic: 2673 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -459.8 -324.9 -153.9 170.7 480.9
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.050e+01 2.029e-04 51777 <2e-16 ***
## x.var 5.065e-03 3.351e-07 15116 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 377996750 on 763 degrees of freedom
## Residual deviance: 68393439 on 762 degrees of freedom
## AIC: 68402846
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# total nbr of confirmed cases in Hubei including a confidence band based on moving average
tots.per.location(covid19.confirmed.cases,geo.loc="Qatar", confBnd=TRUE)
## QATAR -- 355397
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37877 -16157 46 15596 46086
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5507.634 1506.073 3.657 0.000273 ***
## x.var 397.696 3.411 116.591 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20790 on 762 degrees of freedom
## Multiple R-squared: 0.9469, Adjusted R-squared: 0.9468
## F-statistic: 1.359e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.8581 -0.9479 0.4874 1.5878 2.5111
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.5166879 0.1670742 44.99 <2e-16 ***
## x.var 0.0089854 0.0003784 23.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.307 on 762 degrees of freedom
## Multiple R-squared: 0.4253, Adjusted R-squared: 0.4245
## F-statistic: 563.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -328.17 -75.62 52.66 84.36 105.42
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.077e+01 2.480e-04 43406 <2e-16 ***
## x.var 2.696e-03 4.566e-07 5905 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 52686712 on 763 degrees of freedom
## Residual deviance: 14162372 on 762 degrees of freedom
## AIC: 14172077
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# total nbr of confirmed cases in Hubei including a confidence band based on moving average
tots.per.location(covid19.confirmed.cases,geo.loc="Sudan", confBnd=TRUE)
## SUDAN -- 61350
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4925.9 -2711.3 67.7 2372.2 8060.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3469.1908 218.9102 -15.85 <2e-16 ***
## x.var 74.3198 0.4958 149.90 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3022 on 762 degrees of freedom
## Multiple R-squared: 0.9672, Adjusted R-squared: 0.9672
## F-statistic: 2.247e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5276 -1.1704 0.4815 1.6181 2.5198
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9949111 0.1533921 32.56 <2e-16 ***
## x.var 0.0102436 0.0003474 29.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.118 on 762 degrees of freedom
## Multiple R-squared: 0.5329, Adjusted R-squared: 0.5323
## F-statistic: 869.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -119.902 -37.106 2.019 35.337 69.639
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.623e+00 6.723e-04 12828 <2e-16 ***
## x.var 3.276e-03 1.199e-06 2733 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 10922114 on 763 degrees of freedom
## Residual deviance: 2307030 on 762 degrees of freedom
## AIC: 2315145
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# total nbr of confirmed cases in Hubei including a confidence band based on moving average
tots.per.location(covid19.confirmed.cases,geo.loc="Kuwait", confBnd=TRUE)
## KUWAIT -- 616409
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49647 -21283 -4765 20124 109051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -71212.655 2414.900 -29.49 <2e-16 ***
## x.var 757.292 5.469 138.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33340 on 762 degrees of freedom
## Multiple R-squared: 0.9618, Adjusted R-squared: 0.9617
## F-statistic: 1.917e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3139 -0.9678 0.4746 1.5825 2.1174
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9629834 0.1502228 46.35 <2e-16 ***
## x.var 0.0106330 0.0003402 31.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.074 on 762 degrees of freedom
## Multiple R-squared: 0.5617, Adjusted R-squared: 0.5612
## F-statistic: 976.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -291.98 -126.27 32.86 77.91 169.52
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.042e+01 2.492e-04 41821 <2e-16 ***
## x.var 3.965e-03 4.298e-07 9227 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 119712401 on 763 degrees of freedom
## Residual deviance: 15624543 on 762 degrees of freedom
## AIC: 15634317
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# read the time series data for all the cases
all.data <- covid19.data('ts-ALL')
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:28:10 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:28:12 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2022-02-25 06:28:15 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 269
## --------------------------------------------------------------------------------
# run on all the cases
tots.per.location(all.data,"Libya")
## Processing confirmed cases
## LIBYA -- 489940
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53389 -31573 -18261 30737 91779
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -90957.63 2763.79 -32.91 <2e-16 ***
## x.var 640.21 6.26 102.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 38160 on 762 degrees of freedom
## Multiple R-squared: 0.9321, Adjusted R-squared: 0.932
## F-statistic: 1.046e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7507 -1.3923 0.1198 1.8188 2.8132
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.7818585 0.1495524 25.29 <2e-16 ***
## x.var 0.0156259 0.0003387 46.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.065 on 762 degrees of freedom
## Multiple R-squared: 0.7364, Adjusted R-squared: 0.736
## F-statistic: 2128 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -220.50 -167.35 11.74 97.51 130.65
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.413e+00 3.470e-04 27124 <2e-16 ***
## x.var 5.121e-03 5.721e-07 8951 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 122639059 on 763 degrees of freedom
## Residual deviance: 13466385 on 762 degrees of freedom
## AIC: 13475131
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## Processing death cases

## LIBYA -- 6222
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -584.69 -421.01 -85.95 425.88 1224.63
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.234e+03 3.296e+01 -37.43 <2e-16 ***
## x.var 9.165e+00 7.465e-02 122.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 455.1 on 762 degrees of freedom
## Multiple R-squared: 0.9519, Adjusted R-squared: 0.9518
## F-statistic: 1.507e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.34108 -1.32919 0.01945 1.28877 1.85501
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4858960 0.0959052 15.49 <2e-16 ***
## x.var 0.0120448 0.0002172 55.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.324 on 762 degrees of freedom
## Multiple R-squared: 0.8014, Adjusted R-squared: 0.8011
## F-statistic: 3075 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -27.8914 -21.8888 0.0592 9.2914 21.6681
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.331e+00 2.770e-03 1925 <2e-16 ***
## x.var 4.892e-03 4.603e-06 1063 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1726887 on 763 degrees of freedom
## Residual deviance: 221273 on 762 degrees of freedom
## AIC: 227181
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## Processing recovered cases

## LIBYA -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -71008 -59051 -26597 47252 137356
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23118.05 4708.26 4.910 1.11e-06 ***
## x.var 62.68 10.66 5.878 6.20e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65010 on 762 degrees of freedom
## Multiple R-squared: 0.04338, Adjusted R-squared: 0.04212
## F-statistic: 34.55 on 1 and 762 DF, p-value: 6.199e-09
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.778 -5.219 -0.369 5.521 6.700
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.7807285 0.3722516 18.215 < 2e-16 ***
## x.var -0.0023111 0.0008431 -2.741 0.00626 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.14 on 762 degrees of freedom
## Multiple R-squared: 0.009765, Adjusted R-squared: 0.008465
## F-statistic: 7.514 on 1 and 762 DF, p-value: 0.006265
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -388.7 -341.6 -239.5 203.4 451.0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.020e+01 3.851e-04 26483 <2e-16 ***
## x.var 1.355e-03 7.761e-07 1745 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 71995289 on 763 degrees of freedom
## Residual deviance: 68867587 on 762 degrees of freedom
## AIC: 68872987
##
## Number of Fisher Scoring iterations: 7
##
## --------------------------------------------------------------------------------

## [[1]]
## [[1]][[1]]
## [[1]][[1]][[1]]
## list()
##
## [[1]][[1]][[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24 2020-01-25 2020-01-26
## 1 LIBYA LIBYA 0 0 0 0 0
## 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02
## 1 0 0 0 0 0 0 0
## 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09
## 1 0 0 0 0 0 0 0
## 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16
## 1 0 0 0 0 0 0 0
## 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23
## 1 0 0 0 0 0 0 0
## 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01
## 1 0 0 0 0 0 0 0
## 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08
## 1 0 0 0 0 0 0 0
## 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15
## 1 0 0 0 0 0 0 0
## 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22
## 1 0 0 0 0 0 0 0
## 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29
## 1 0 1 1 1 1 3 8
## 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05
## 1 8 10 10 11 11 18 18
## 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12
## 1 19 20 21 24 24 24 25
## 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19
## 1 26 35 48 49 49 49 51
## 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26
## 1 51 51 59 60 61 61 61
## 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03
## 1 61 61 61 61 63 63 63
## 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10
## 1 63 63 64 64 64 64 64
## 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17
## 1 64 64 64 64 64 65 65
## 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24
## 1 65 68 69 71 72 75 75
## 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31
## 1 75 77 99 105 118 130 156
## 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07
## 1 168 182 196 209 239 256 256
## 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14
## 1 332 359 378 393 409 418 454
## 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21
## 1 467 484 500 510 520 544 571
## 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28
## 1 595 639 670 698 713 727 762
## 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05
## 1 802 824 874 891 918 989 1046
## 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12
## 1 1117 1182 1268 1342 1342 1389 1433
## 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19
## 1 1512 1563 1589 1652 1704 1791 1866
## 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26
## 1 1980 2088 2176 2314 2424 2547 2669
## 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02
## 1 2827 3017 3222 3438 3621 3691 3837
## 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09
## 1 4063 4224 4475 4879 5079 5232 5451
## 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16
## 1 5929 6302 6611 7050 7327 7738 8172
## 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23
## 1 8579 9068 9463 9707 10121 10437 10437
## 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30
## 1 11009 11281 11834 12274 12629 12958 13423
## 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06
## 1 13966 14624 15156 15773 16445 17094 17749
## 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13
## 1 18834 19583 20462 20939 21908 22348 22781
## 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20
## 1 23515 24144 24936 25822 26438 27234 27949
## 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27
## 1 28796 29446 30097 30632 31290 31828 32364
## 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04
## 1 33213 34014 34525 35208 35717 36087 36809
## 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11
## 1 37437 38468 39513 40292 41368 41686 42712
## 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18
## 1 43821 44985 45821 46676 47845 47845 48790
## 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25
## 1 49949 50906 51625 52620 53384 54374 56013
## 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01
## 1 57223 57975 58874 59656 60628 61095 62045
## 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08
## 1 62907 63688 64587 65440 66444 67039 68117
## 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15
## 1 69040 70010 70885 71804 72628 72628 73602
## 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22
## 1 74324 74936 75465 76006 76808 76808 77823
## 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29
## 1 78473 79180 79797 80407 81273 81273 82430
## 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06
## 1 82809 83417 84087 84849 85529 85529 86580
## 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13
## 1 87097 87986 88522 89183 89880 89880 90779
## 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20
## 1 91357 92017 92577 93283 93772 93772 94560
## 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27
## 1 95200 95706 96346 97192 97653 97653 98381
## 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03
## 1 98913 99350 99935 100277 100744 100744 101414
## 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10
## 1 101975 102456 102880 103515 104002 104002 104745
## 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17
## 1 105378 106030 106670 107434 108017 108017 109088
## 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24
## 1 109869 110465 111124 111746 112540 112540 113688
## 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31
## 1 114429 115299 116064 116779 117650 117650 118631
## 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07
## 1 119402 120434 121243 122013 122894 122894 124026
## 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14
## 1 124882 125561 126028 126361 126881 126881 127354
## 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21
## 1 127705 128036 128348 128740 129325 129325 129797
## 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28
## 1 130212 130701 131262 131833 132458 132458 133338
## 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07
## 1 134127 134967 135585 136587 137482 137482 138640
## 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14
## 1 139658 140688 141598 142671 143643 143643 144993
## 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21
## 1 146080 147121 148175 149207 150341 150341 151605
## 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28
## 1 152510 153411 154320 155232 156116 156116 156849
## 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04
## 1 157545 158251 158957 159980 161088 161088 162294
## 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11
## 1 163442 164318 165287 166156 166888 166888 167825
## 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18
## 1 168676 169504 170045 170558 171131 171131 171880
## 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25
## 1 172464 173089 173683 174216 174752 174752 175286
## 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02
## 1 175753 176254 176701 177072 177508 177508 177871
## 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09
## 1 178335 178672 178927 179193 179697 179697 179970
## 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16
## 1 180226 180692 180945 181179 181179 181179 181410
## 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23
## 1 181714 182012 182350 182649 182899 182899 183311
## 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30
## 1 183592 183932 184151 184472 184815 184815 185181
## 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06
## 1 185776 186072 186323 186567 186953 186953 187281
## 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13
## 1 187685 187928 188157 188386 188762 188762 189059
## 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20
## 1 189284 189555 189888 190146 190426 190426 190748
## 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27
## 1 191038 191253 191476 191660 192129 192129 192470
## 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04
## 1 192786 193238 193474 193905 194323 194323 195042
## 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11
## 1 195824 196894 198142 199526 201236 201236 204090
## 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18
## 1 206769 209409 212013 214568 217434 217434 221495
## 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25
## 1 224920 226701 226701 227433 229604 229604 233449
## 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01
## 1 236961 240309 243470 246200 249114 249114 253436
## 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08
## 1 256328 258467 260951 262948 264827 264827 267846
## 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15
## 1 269847 271981 274453 276739 279099 279099 281930
## 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22
## 1 284618 286894 289219 291168 293532 293532 295254
## 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29
## 1 296879 298773 300455 302177 303790 303790 305793
## 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05
## 1 307471 308972 310637 312116 313504 313504 315418
## 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12
## 1 316797 318069 319568 321370 322487 322487 323930
## 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19
## 1 325221 326370 327803 328856 329824 329824 330945
## 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26
## 1 332026 333064 334049 335055 335991 335991 336980
## 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03
## 1 337890 338576 339269 340084 341091 341091 341839
## 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10
## 1 342558 343240 343932 344847 345451 345451 346176
## 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17
## 1 346813 347364 348088 348647 349210 349210 349990
## 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24
## 1 350628 351224 351756 352192 352881 352881 353626
## 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31
## 1 354215 354866 355490 356086 356655 356655 357338
## 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07
## 1 357964 358463 359019 359667 360266 360266 360914
## 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14
## 1 361709 362318 362915 363483 364076 364076 364675
## 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21
## 1 365237 365830 366238 366789 367218 367218 367811
## 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28
## 1 368392 368987 369455 370187 370787 370787 371571
## 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05
## 1 372209 372636 373210 373739 374280 374280 374989
## 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12
## 1 375468 375869 376378 376873 377450 377450 378105
## 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19
## 1 378816 379328 379816 380464 381023 381023 381749
## 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26
## 1 382341 382884 383445 384005 384663 384663 385398
## 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02
## 1 386279 386878 387543 388183 388734 388734 389650
## 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09
## 1 390284 390935 391633 392276 392868 392868 393447
## 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16
## 1 393983 394470 395069 395687 396452 396452 397319
## 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23
## 1 398055 398940 400113 401444 403144 403144 405425
## 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30
## 1 407758 410821 413066 416223 419543 419543 425237
## 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06
## 1 429666 433932 438303 441959 445876 445876 450118
## 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13
## 1 452950 456276 459548 463321 466666 466666 470314
## 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20
## 1 473114 475604 478488 480945 482153 482153 484445
## 2022-02-21 2022-02-22 NA NA
## 1 486752 488567 489940 489940
##
##
## [[1]][[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24 2020-01-25 2020-01-26
## 1 LIBYA LIBYA 0 0 0 0 0
## 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02
## 1 0 0 0 0 0 0 0
## 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09
## 1 0 0 0 0 0 0 0
## 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16
## 1 0 0 0 0 0 0 0
## 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23
## 1 0 0 0 0 0 0 0
## 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01
## 1 0 0 0 0 0 0 0
## 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08
## 1 0 0 0 0 0 0 0
## 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15
## 1 0 0 0 0 0 0 0
## 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22
## 1 0 0 0 0 0 0 0
## 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29
## 1 0 0 0 0 0 0 0
## 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05
## 1 0 0 0 1 1 1 1
## 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12
## 1 1 1 1 1 1 1 1
## 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19
## 1 1 1 1 1 1 1 1
## 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26
## 1 1 1 1 2 2 2 2
## 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03
## 1 2 2 2 3 3 3 3
## 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10
## 1 3 3 3 3 3 3 3
## 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17
## 1 3 3 3 3 3 3 3
## 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24
## 1 3 3 3 3 3 3 3
## 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31
## 1 3 3 4 5 5 5 5
## 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07
## 1 5 5 5 5 5 5 5
## 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14
## 1 5 5 5 5 6 8 10
## 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21
## 1 10 10 10 10 10 10 10
## 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28
## 1 10 17 18 18 18 18 21
## 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05
## 1 23 24 25 26 27 27 32
## 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12
## 1 34 35 36 38 38 38 39
## 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19
## 1 40 42 43 46 47 48 48
## 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26
## 1 49 50 53 56 57 58 60
## 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02
## 1 64 67 76 73 74 80 83
## 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09
## 1 93 96 99 107 108 113 119
## 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16
## 1 125 132 132 135 139 145 153
## 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23
## 1 157 164 169 173 180 188 188
## 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30
## 1 199 203 210 219 226 231 232
## 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06
## 1 237 242 250 254 262 272 285
## 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13
## 1 296 314 324 339 352 354 362
## 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20
## 1 368 383 394 409 418 436 444
## 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27
## 1 450 460 469 474 491 499 520
## 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04
## 1 527 540 551 559 570 578 592
## 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11
## 1 596 602 608 616 621 623 631
## 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18
## 1 644 656 669 681 699 699 725
## 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25
## 1 732 746 765 768 774 790 795
## 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01
## 1 801 812 823 831 847 857 871
## 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08
## 1 880 893 900 907 915 920 929
## 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15
## 1 944 957 970 985 995 995 1017
## 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22
## 1 1025 1041 1053 1062 1068 1068 1089
## 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29
## 1 1102 1110 1125 1140 1153 1153 1166
## 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06
## 1 1183 1196 1200 1212 1219 1219 1231
## 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13
## 1 1243 1255 1261 1273 1278 1278 1299
## 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20
## 1 1314 1319 1324 1337 1346 1346 1353
## 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27
## 1 1369 1385 1393 1399 1415 1415 1436
## 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03
## 1 1440 1444 1459 1478 1487 1487 1510
## 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10
## 1 1526 1536 1546 1558 1568 1568 1581
## 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17
## 1 1589 1622 1629 1645 1651 1651 1665
## 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24
## 1 1698 1700 1715 1716 1737 1737 1763
## 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31
## 1 1782 1789 1802 1832 1842 1842 1877
## 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07
## 1 1883 1896 1914 1919 1936 1936 1953
## 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14
## 1 1974 1982 1989 2009 2014 2014 2018
## 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21
## 1 2042 2051 2056 2061 2088 2088 2114
## 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28
## 1 2116 2125 2151 2156 2174 2174 2179
## 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07
## 1 2210 2216 2219 2233 2236 2236 2273
## 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14
## 1 2288 2297 2330 2340 2348 2348 2386
## 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21
## 1 2402 2406 2422 2435 2487 2487 2506
## 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28
## 1 2513 2564 2582 2591 2602 2602 2618
## 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04
## 1 2653 2658 2667 2680 2684 2684 2737
## 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11
## 1 2757 2765 2772 2799 2807 2807 2823
## 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18
## 1 2828 2830 2834 2873 2882 2882 2896
## 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25
## 1 2908 2919 2924 2936 2947 2947 2996
## 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02
## 1 3005 3010 3019 3023 3029 3029 3039
## 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09
## 1 3047 3049 3058 3059 3063 3063 3070
## 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16
## 1 3072 3077 3082 3085 3085 3085 3088
## 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23
## 1 3092 3097 3097 3102 3105 3105 3111
## 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30
## 1 3112 3114 3115 3115 3116 3116 3125
## 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06
## 1 3126 3127 3131 3132 3137 3137 3143
## 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13
## 1 3146 3149 3152 3155 3158 3158 3161
## 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20
## 1 3165 3166 3166 3170 3173 3173 3174
## 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27
## 1 3178 3181 3183 3185 3185 3185 3187
## 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04
## 1 3191 3191 3193 3198 3205 3205 3211
## 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11
## 1 3213 3215 3223 3227 3232 3232 3240
## 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18
## 1 3243 3245 3248 3249 3253 3253 3281
## 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25
## 1 3299 3309 3309 3322 3344 3344 3375
## 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01
## 1 3398 3422 3453 3469 3509 3509 3548
## 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08
## 1 3579 3609 3635 3663 3689 3689 3719
## 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15
## 1 3750 3781 3811 3835 3869 3869 3904
## 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22
## 1 3933 3956 3968 4001 4017 4017 4051
## 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29
## 1 4076 4099 4126 4152 4165 4165 4184
## 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05
## 1 4213 4247 4263 4286 4308 4308 4323
## 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12
## 1 4343 4363 4374 4397 4410 4410 4427
## 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19
## 1 4441 4457 4469 4480 4490 4490 4501
## 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26
## 1 4517 4533 4560 4569 4588 4588 4606
## 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03
## 1 4617 4625 4636 4651 4664 4664 4686
## 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10
## 1 4702 4710 4720 4739 4757 4757 4775
## 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17
## 1 4792 4808 4832 4849 4860 4860 4883
## 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24
## 1 4904 4924 4945 4962 4982 4982 5006
## 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31
## 1 5028 5033 5048 5061 5078 5078 5099
## 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07
## 1 5122 5139 5157 5171 5186 5186 5207
## 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14
## 1 5218 5226 5241 5258 5275 5275 5296
## 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21
## 1 5307 5319 5332 5346 5365 5365 5380
## 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28
## 1 5390 5403 5414 5425 5430 5430 5438
## 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05
## 1 5448 5456 5466 5476 5480 5480 5493
## 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12
## 1 5499 5514 5518 5529 5540 5540 5553
## 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19
## 1 5561 5569 5576 5583 5589 5589 5598
## 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26
## 1 5607 5615 5626 5635 5641 5641 5651
## 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02
## 1 5665 5676 5685 5696 5710 5710 5722
## 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09
## 1 5727 5740 5752 5767 5778 5778 5788
## 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16
## 1 5796 5805 5813 5822 5828 5828 5841
## 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23
## 1 5853 5863 5874 5889 5907 5907 5921
## 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30
## 1 5936 5950 5967 5979 5993 5993 6007
## 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06
## 1 6017 6028 6035 6044 6052 6052 6067
## 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13
## 1 6080 6087 6096 6107 6113 6113 6125
## 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20
## 1 6135 6143 6156 6169 6178 6178 6191
## 2022-02-21 2022-02-22 NA NA
## 1 6201 6210 6222 6222
##
##
## [[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24 2020-01-25 2020-01-26
## 1 LIBYA LIBYA 0 0 0 0 0
## 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02
## 1 0 0 0 0 0 0 0
## 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09
## 1 0 0 0 0 0 0 0
## 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16
## 1 0 0 0 0 0 0 0
## 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23
## 1 0 0 0 0 0 0 0
## 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01
## 1 0 0 0 0 0 0 0
## 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08
## 1 0 0 0 0 0 0 0
## 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15
## 1 0 0 0 0 0 0 0
## 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22
## 1 0 0 0 0 0 0 0
## 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29
## 1 0 0 0 0 0 0 0
## 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05
## 1 0 1 0 0 0 0 0
## 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12
## 1 1 1 8 8 8 8 9
## 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19
## 1 9 9 9 11 11 11 11
## 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26
## 1 15 15 15 15 18 18 18
## 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03
## 1 18 18 18 18 18 22 22
## 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10
## 1 23 23 24 24 24 24 24
## 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17
## 1 28 28 28 28 28 28 35
## 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24
## 1 35 35 35 35 38 39 39
## 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31
## 1 40 40 40 41 41 50 52
## 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07
## 1 52 52 52 52 52 52 52
## 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14
## 1 57 58 59 59 59 62 63
## 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21
## 1 70 76 78 81 83 98 103
## 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28
## 1 116 132 138 140 142 171 196
## 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05
## 1 206 209 223 224 230 258 261
## 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12
## 1 269 295 306 307 307 340 341
## 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19
## 1 367 370 373 379 380 385 418
## 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26
## 1 441 479 489 501 504 510 553
## 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02
## 1 577 579 596 604 618 619 623
## 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09
## 1 625 633 640 652 660 691 701
## 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16
## 1 724 740 778 816 848 894 933
## 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23
## 1 969 1003 1018 1047 1053 1085 1085
## 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30
## 1 1096 1112 1152 1209 1310 1333 1410
## 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06
## 1 1459 1676 1746 1856 1910 2025 2081
## 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13
## 1 2126 2247 2329 2420 2506 12100 12183
## 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20
## 1 12762 13252 13498 13908 14207 14679 15068
## 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27
## 1 15384 15913 16430 16842 17508 17832 18128
## 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04
## 1 18518 18902 19361 19894 20334 20889 21429
## 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11
## 1 22076 22410 22831 23130 23453 23791 24038
## 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18
## 1 24466 25007 25301 25685 26062 26062 26889
## 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25
## 1 27262 27832 28440 29057 29619 29965 30731
## 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01
## 1 31515 32253 32962 33550 34369 35030 35853
## 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08
## 1 36608 36995 37610 38110 38624 39243 40119
## 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15
## 1 40780 41512 42098 42703 43259 43259 44133
## 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22
## 1 44733 45371 46127 46793 47587 47587 48914
## 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29
## 1 49592 50304 50914 51585 52299 52299 53266
## 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06
## 1 53818 54209 54712 55304 56048 56048 56702
## 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13
## 1 57380 57837 58578 59222 59839 59839 60895
## 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20
## 1 61453 62144 62720 63231 63886 63886 64810
## 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27
## 1 65532 66076 66756 67661 68289 68289 68990
## 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03
## 1 69763 70412 71273 72107 73252 73252 74381
## 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10
## 1 75288 76244 77435 78268 79193 79193 80292
## 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17
## 1 81237 82229 83311 84245 85068 85068 86125
## 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24
## 1 87197 88062 88930 89909 90952 90952 92250
## 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31
## 1 93342 94287 95406 96293 97357 97357 98706
## 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07
## 1 99586 100593 101348 102448 103312 103312 104539
## 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14
## 1 105422 106377 107386 108434 109262 109262 110143
## 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21
## 1 110965 111864 112731 113564 114305 114305 115357
## 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28
## 1 116120 117017 117991 118791 119492 119492 120240
## 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07
## 1 121116 122079 123003 123777 124712 124712 125842
## 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14
## 1 126878 128002 128928 129706 130625 130625 131778
## 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21
## 1 132697 133768 134923 136158 137073 137073 138312
## 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28
## 1 139361 140420 141413 142633 143697 143697 144964
## 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04
## 1 145882 146480 147147 147864 148288 148288 149238
## 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11
## 1 149836 150478 151189 151853 152328 152328 152921
## 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18
## 1 153644 154220 155117 155712 156344 156344 157010
## 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25
## 1 157658 158352 158891 159630 160113 160113 160643
## 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02
## 1 161160 161676 162188 162672 163191 163191 163716
## 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09
## 1 164196 164663 165058 165504 165931 165931 166340
## 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16
## 1 166680 167043 167322 167629 167629 167629 168128
## 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23
## 1 168378 168785 169070 169364 169733 169733 169945
## 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30
## 1 170195 170489 170768 171006 171279 171279 171637
## 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06
## 1 171874 172117 172420 172637 172916 172916 173189
## 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13
## 1 173394 173636 173877 174223 174434 174434 174666
## 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20
## 1 174976 175226 175471 175687 175923 175923 176217
## 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27
## 1 176450 176649 176869 177106 177358 177358 177600
## 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04
## 1 177882 178191 178387 178621 178871 178871 179095
## 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11
## 1 179398 179685 179970 180204 180484 180484 180860
## 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18
## 1 181203 181572 181987 182359 182785 182785 183436
## 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25
## 1 184053 184476 184476 184852 185468 185468 186355
## 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01
## 1 187221 187960 188973 189964 190978 190978 192184
## 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08
## 1 193144 194217 195639 0 0 0 0
## 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15
## 1 0 0 0 0 0 0 0
## 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22
## 1 0 0 0 0 0 0 0
## 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29
## 1 0 0 0 0 0 0 0
## 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05
## 1 0 0 0 0 0 0 0
## 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12
## 1 0 0 0 0 0 0 0
## 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19
## 1 0 0 0 0 0 0 0
## 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26
## 1 0 0 0 0 0 0 0
## 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03
## 1 0 0 0 0 0 0 0
## 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10
## 1 0 0 0 0 0 0 0
## 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17
## 1 0 0 0 0 0 0 0
## 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24
## 1 0 0 0 0 0 0 0
## 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31
## 1 0 0 0 0 0 0 0
## 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07
## 1 0 0 0 0 0 0 0
## 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14
## 1 0 0 0 0 0 0 0
## 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21
## 1 0 0 0 0 0 0 0
## 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28
## 1 0 0 0 0 0 0 0
## 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05
## 1 0 0 0 0 0 0 0
## 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12
## 1 0 0 0 0 0 0 0
## 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19
## 1 0 0 0 0 0 0 0
## 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26
## 1 0 0 0 0 0 0 0
## 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02
## 1 0 0 0 0 0 0 0
## 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09
## 1 0 0 0 0 0 0 0
## 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16
## 1 0 0 0 0 0 0 0
## 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23
## 1 0 0 0 0 0 0 0
## 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30
## 1 0 0 0 0 0 0 0
## 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06
## 1 0 0 0 0 0 0 0
## 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13
## 1 0 0 0 0 0 0 0
## 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20
## 1 0 0 0 0 0 0 0
## 2022-02-21 2022-02-22 NA NA
## 1 0 0 0 0
# read the time series data for all the cases
all.data <- covid19.data('ts-ALL')
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:28:20 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:28:21 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2022-02-25 06:28:23 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 269
## --------------------------------------------------------------------------------
# run on all the cases
tots.per.location(all.data,"United Arab Emirates")
## Processing confirmed cases
## UNITED ARAB EMIRATES -- 876624
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -109043 -50854 4140 52349 149017
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -150368.48 4808.54 -31.27 <2e-16 ***
## x.var 1351.68 10.89 124.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 66390 on 762 degrees of freedom
## Multiple R-squared: 0.9529, Adjusted R-squared: 0.9528
## F-statistic: 1.54e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.4333 -0.8355 0.7090 1.3195 1.7317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.3576941 0.1347218 54.61 <2e-16 ***
## x.var 0.0108042 0.0003051 35.41 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.86 on 762 degrees of freedom
## Multiple R-squared: 0.622, Adjusted R-squared: 0.6215
## F-statistic: 1254 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -353.12 -204.42 -73.22 183.61 277.25
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.075e+01 2.014e-04 53380 <2e-16 ***
## x.var 4.305e-03 3.423e-07 12578 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 234133452 on 763 degrees of freedom
## Residual deviance: 34657229 on 762 degrees of freedom
## AIC: 34667399
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## Processing death cases

## UNITED ARAB EMIRATES -- 2298
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -300.7 -165.7 33.5 162.2 288.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -291.75151 12.36628 -23.59 <2e-16 ***
## x.var 3.64965 0.02801 130.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 170.7 on 762 degrees of freedom
## Multiple R-squared: 0.9571, Adjusted R-squared: 0.957
## F-statistic: 1.698e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6049 -0.6012 0.5042 0.8253 1.4077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1519276 0.0923262 34.14 <2e-16 ***
## x.var 0.0078107 0.0002091 37.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.275 on 762 degrees of freedom
## Multiple R-squared: 0.6468, Adjusted R-squared: 0.6463
## F-statistic: 1395 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -21.895 -6.372 -2.111 7.679 15.402
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.263e+00 3.395e-03 1550.4 <2e-16 ***
## x.var 3.728e-03 5.919e-06 629.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 563982 on 763 degrees of freedom
## Residual deviance: 88814 on 762 degrees of freedom
## AIC: 94801
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## Processing recovered cases

## UNITED ARAB EMIRATES -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -224215 -189885 -69927 102926 476449
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 86714.72 14929.11 5.808 9.26e-09 ***
## x.var 179.97 33.81 5.323 1.35e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 206100 on 762 degrees of freedom
## Multiple R-squared: 0.03585, Adjusted R-squared: 0.03458
## F-statistic: 28.33 on 1 and 762 DF, p-value: 1.346e-07
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.729 -5.156 1.541 4.762 7.282
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.7368053 0.3811539 28.169 <2e-16 ***
## x.var -0.0082227 0.0008633 -9.525 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.262 on 762 degrees of freedom
## Multiple R-squared: 0.1064, Adjusted R-squared: 0.1052
## F-statistic: 90.73 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -686.1 -613.5 -228.9 253.7 858.4
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.147e+01 2.075e-04 55286 <2e-16 ***
## x.var 1.172e-03 4.242e-07 2763 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 208136554 on 763 degrees of freedom
## Residual deviance: 200347322 on 762 degrees of freedom
## AIC: 200354112
##
## Number of Fisher Scoring iterations: 7
##
## --------------------------------------------------------------------------------

## [[1]]
## [[1]][[1]]
## [[1]][[1]][[1]]
## list()
##
## [[1]][[1]][[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24
## 1 UNITED ARAB EMIRATES UNITED ARAB EMIRATES 0 0 0
## 2020-01-25 2020-01-26 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31
## 1 0 0 0 0 4 4 4
## 2020-02-01 2020-02-02 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07
## 1 4 5 5 5 5 5 5
## 2020-02-08 2020-02-09 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14
## 1 7 7 8 8 8 8 8
## 2020-02-15 2020-02-16 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21
## 1 8 9 9 9 9 9 9
## 2020-02-22 2020-02-23 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28
## 1 13 13 13 13 13 13 19
## 2020-02-29 2020-03-01 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06
## 1 21 21 21 27 27 29 29
## 2020-03-07 2020-03-08 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13
## 1 45 45 45 74 74 85 85
## 2020-03-14 2020-03-15 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20
## 1 85 98 98 98 113 140 140
## 2020-03-21 2020-03-22 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27
## 1 153 153 198 248 333 333 405
## 2020-03-28 2020-03-29 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03
## 1 468 570 611 664 814 1024 1264
## 2020-04-04 2020-04-05 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10
## 1 1505 1799 2076 2359 2659 2990 3360
## 2020-04-11 2020-04-12 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17
## 1 3736 4123 4521 4933 5365 5825 6302
## 2020-04-18 2020-04-19 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24
## 1 6302 6781 7265 7755 8238 8756 9281
## 2020-04-25 2020-04-26 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01
## 1 9813 10349 10839 11380 11929 12481 13038
## 2020-05-02 2020-05-03 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08
## 1 13599 14163 14730 15192 15738 16240 16793
## 2020-05-09 2020-05-10 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15
## 1 17417 18198 18878 19661 20386 21084 21831
## 2020-05-16 2020-05-17 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22
## 1 22627 23358 24190 25063 26004 26898 27892
## 2020-05-23 2020-05-24 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29
## 1 28704 29485 30307 31086 31969 32532 33170
## 2020-05-30 2020-05-31 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05
## 1 33896 34557 35192 35788 36359 37018 37642
## 2020-06-06 2020-06-07 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12
## 1 38268 38808 39376 39904 40507 40986 41499
## 2020-06-13 2020-06-14 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19
## 1 41990 42294 42636 42982 43364 43752 44145
## 2020-06-20 2020-06-21 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26
## 1 44533 44925 45303 45683 46133 46563 46973
## 2020-06-27 2020-06-28 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03
## 1 47360 47797 48246 48667 49069 49469 50141
## 2020-07-04 2020-07-05 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10
## 1 50857 51540 52068 52600 53045 53577 54050
## 2020-07-11 2020-07-12 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17
## 1 54453 54854 55198 55573 55848 56129 56422
## 2020-07-18 2020-07-19 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24
## 1 56711 56922 57193 57498 57734 57988 58249
## 2020-07-25 2020-07-26 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31
## 1 58562 58913 59177 59546 59921 60223 60506
## 2020-08-01 2020-08-02 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07
## 1 60760 60999 61163 61352 61606 61845 62061
## 2020-08-08 2020-08-09 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14
## 1 62300 62525 62704 62966 63212 63489 63819
## 2020-08-15 2020-08-16 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21
## 1 64102 64312 64541 64906 65341 65802 66193
## 2020-08-22 2020-08-23 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28
## 1 66617 67007 67282 67621 68020 68511 68901
## 2020-08-29 2020-08-30 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04
## 1 69328 69690 70231 70805 71540 72154 72766
## 2020-09-05 2020-09-06 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11
## 1 73471 73984 74454 75098 75981 76911 77842
## 2020-09-12 2020-09-13 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18
## 1 78849 79489 80266 80940 81782 82568 83433
## 2020-09-19 2020-09-20 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25
## 1 84242 84916 85595 86447 87530 88532 89540
## 2020-09-26 2020-09-27 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02
## 1 90618 91469 92095 93090 94190 95348 96529
## 2020-10-03 2020-10-04 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09
## 1 97760 98801 99733 100794 101840 102929 104004
## 2020-10-10 2020-10-11 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16
## 1 105133 106229 107293 108608 110039 111437 112849
## 2020-10-17 2020-10-18 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23
## 1 114387 115602 116517 117594 119132 120710 122273
## 2020-10-24 2020-10-25 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30
## 1 123764 125123 126234 127624 129024 130336 131508
## 2020-10-31 2020-11-01 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06
## 1 132629 133907 135141 136149 137310 138599 139891
## 2020-11-07 2020-11-08 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13
## 1 141032 142143 143289 144385 145599 146735 147961
## 2020-11-14 2020-11-15 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20
## 1 149135 150345 151554 152809 154101 155254 156523
## 2020-11-21 2020-11-22 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27
## 1 157785 158990 160055 161365 162662 163967 165250
## 2020-11-28 2020-11-29 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04
## 1 166502 167753 168860 170149 171434 172751 174062
## 2020-12-05 2020-12-06 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11
## 1 175276 176429 177577 178837 180150 181405 182601
## 2020-12-12 2020-12-13 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18
## 1 183755 184949 186041 187267 188545 189866 191150
## 2020-12-19 2020-12-20 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25
## 1 192404 193575 194652 195878 197124 198435 199665
## 2020-12-26 2020-12-27 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01
## 1 200892 201836 202863 204369 206092 207822 209678
## 2021-01-02 2021-01-03 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08
## 1 211641 213231 214732 216699 218766 221754 224704
## 2021-01-09 2021-01-10 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15
## 1 227702 230578 232982 236225 239587 242969 246376
## 2021-01-16 2021-01-17 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22
## 1 249808 253261 256732 260223 263729 267258 270810
## 2021-01-23 2021-01-24 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29
## 1 274376 277955 281546 285147 289086 293052 297014
## 2021-01-30 2021-01-31 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05
## 1 300661 303609 306339 309649 313626 316875 320126
## 2021-02-06 2021-02-07 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12
## 1 323402 326495 329293 332603 336142 339667 342974
## 2021-02-13 2021-02-14 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19
## 1 345605 348772 351895 355131 358583 361877 365017
## 2021-02-20 2021-02-21 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26
## 1 368175 370425 372530 375535 378637 381662 385160
## 2021-02-27 2021-02-28 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05
## 1 388594 391524 394050 396771 399463 402205 405277
## 2021-03-06 2021-03-07 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12
## 1 408236 410849 413332 415705 417909 419996 422246
## 2021-03-13 2021-03-14 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19
## 1 424405 426397 428295 430313 432364 434465 436625
## 2021-03-20 2021-03-21 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26
## 1 438638 440355 442226 444398 446594 448637 450765
## 2021-03-27 2021-03-28 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02
## 1 453069 455197 457071 459360 461444 463759 465939
## 2021-04-03 2021-04-04 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09
## 1 468023 470136 472148 474136 476019 478131 480006
## 2021-04-10 2021-04-11 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16
## 1 481937 483747 485675 487697 489495 491423 493266
## 2021-04-17 2021-04-18 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23
## 1 495224 497154 498957 500860 502791 504872 506845
## 2021-04-24 2021-04-25 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30
## 1 508925 510738 512497 514591 516301 518262 520236
## 2021-05-01 2021-05-02 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07
## 1 521948 523795 525567 527266 529220 530944 532710
## 2021-05-08 2021-05-09 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14
## 1 534445 536017 537524 539138 540646 542158 543610
## 2021-05-15 2021-05-16 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21
## 1 544931 546182 547411 548681 550029 551430 552920
## 2021-05-22 2021-05-23 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28
## 1 554516 556107 557619 559291 561048 563215 565451
## 2021-05-29 2021-05-30 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04
## 1 567263 569073 570836 572804 574958 576947 579009
## 2021-06-05 2021-06-06 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11
## 1 581197 583071 585039 587244 589423 589423 593894
## 2021-06-12 2021-06-13 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18
## 1 596017 597986 599823 601950 603961 606128 608070
## 2021-06-19 2021-06-20 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25
## 1 610179 612029 613993 616160 618148 620309 622532
## 2021-06-26 2021-06-27 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02
## 1 624814 626936 628976 631160 632907 634582 636245
## 2021-07-03 2021-07-04 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09
## 1 637877 639476 641049 642601 644114 645653 647182
## 2021-07-10 2021-07-11 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16
## 1 648702 650220 651762 653284 654813 656354 657884
## 2021-07-17 2021-07-18 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23
## 1 659449 660978 662486 664027 665533 667080 668601
## 2021-07-24 2021-07-25 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30
## 1 670108 671636 673185 674724 676251 677801 679321
## 2021-07-31 2021-08-01 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06
## 1 680858 682377 683914 685462 686981 688489 690009
## 2021-08-07 2021-08-08 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13
## 1 691554 692964 694285 695619 696906 698166 699381
## 2021-08-14 2021-08-15 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20
## 1 700587 701776 702885 704000 705089 706166 707236
## 2021-08-21 2021-08-22 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27
## 1 708302 709378 710438 711428 712411 713402 714396
## 2021-08-28 2021-08-29 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03
## 1 715394 716381 717374 718370 719355 720330 721308
## 2021-09-04 2021-09-05 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10
## 1 722292 723263 724240 725192 726025 726797 727541
## 2021-09-11 2021-09-12 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17
## 1 728266 728886 729518 730135 730743 731307 731828
## 2021-09-18 2021-09-19 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24
## 1 732299 732690 733003 733325 733643 733972 734275
## 2021-09-25 2021-09-26 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01
## 1 734596 734894 735180 735457 735727 735992 736268
## 2021-10-02 2021-10-03 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08
## 1 736524 736708 736897 737073 737229 737373 737509
## 2021-10-09 2021-10-10 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15
## 1 737655 737766 737890 738026 738152 738268 738372
## 2021-10-16 2021-10-17 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22
## 1 738487 738586 738690 738812 738924 739018 739106
## 2021-10-23 2021-10-24 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29
## 1 739190 739284 739381 739471 739566 739654 739736
## 2021-10-30 2021-10-31 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05
## 1 739824 739905 739983 740057 740136 740209 740289
## 2021-11-06 2021-11-07 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12
## 1 740362 740432 740500 740572 740647 740729 740801
## 2021-11-13 2021-11-14 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19
## 1 740879 740945 741006 741074 741148 741214 741291
## 2021-11-20 2021-11-21 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26
## 1 741370 741433 741500 741570 741643 741720 741790
## 2021-11-27 2021-11-28 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03
## 1 741858 741918 741976 742041 742109 742109 742163
## 2021-12-04 2021-12-05 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10
## 1 742214 742328 742376 742438 742507 742567 742641
## 2021-12-11 2021-12-12 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17
## 1 742719 742802 742894 743004 743152 743352 743586
## 2021-12-18 2021-12-19 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24
## 1 743586 744137 744438 744890 745555 746557 747909
## 2021-12-25 2021-12-26 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31
## 1 749530 751333 753065 754911 757145 759511 761937
## 2022-01-01 2022-01-02 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07
## 1 764493 767093 769608 772189 774897 777584 780211
## 2022-01-08 2022-01-09 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14
## 1 782866 785625 788187 790698 793314 795997 799065
## 2022-01-15 2022-01-16 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21
## 1 802181 805248 808237 811029 813931 816945 819866
## 2022-01-22 2022-01-23 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28
## 1 822886 825699 828328 830832 833201 835839 838384
## 2022-01-29 2022-01-30 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04
## 1 840739 843030 845058 847142 849305 851537 853651
## 2022-02-05 2022-02-06 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11
## 1 855642 857657 859361 860976 862514 864102 865576
## 2022-02-12 2022-02-13 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18
## 1 866971 868237 869428 870358 871315 872210 873092
## 2022-02-19 2022-02-20 2022-02-21 2022-02-22 NA NA
## 1 873882 874607 875258 875884 876624 876624
##
##
## [[1]][[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24
## 1 UNITED ARAB EMIRATES UNITED ARAB EMIRATES 0 0 0
## 2020-01-25 2020-01-26 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31
## 1 0 0 0 0 0 0 0
## 2020-02-01 2020-02-02 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07
## 1 0 0 0 0 0 0 0
## 2020-02-08 2020-02-09 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14
## 1 0 0 0 0 0 0 0
## 2020-02-15 2020-02-16 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21
## 1 0 0 0 0 0 0 0
## 2020-02-22 2020-02-23 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28
## 1 0 0 0 0 0 0 0
## 2020-02-29 2020-03-01 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06
## 1 0 0 0 0 0 0 0
## 2020-03-07 2020-03-08 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13
## 1 0 0 0 0 0 0 0
## 2020-03-14 2020-03-15 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20
## 1 0 0 0 0 0 0 2
## 2020-03-21 2020-03-22 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27
## 1 2 2 2 2 2 2 2
## 2020-03-28 2020-03-29 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03
## 1 2 3 5 6 8 8 9
## 2020-04-04 2020-04-05 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10
## 1 10 10 11 12 12 14 16
## 2020-04-11 2020-04-12 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17
## 1 20 22 25 28 33 35 37
## 2020-04-18 2020-04-19 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24
## 1 37 41 43 46 52 56 64
## 2020-04-25 2020-04-26 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01
## 1 71 76 82 89 98 105 111
## 2020-05-02 2020-05-03 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08
## 1 119 126 137 146 157 165 174
## 2020-05-09 2020-05-10 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15
## 1 185 198 201 203 206 208 210
## 2020-05-16 2020-05-17 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22
## 1 214 220 224 227 233 237 241
## 2020-05-23 2020-05-24 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29
## 1 244 245 248 253 255 258 260
## 2020-05-30 2020-05-31 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05
## 1 262 264 266 269 270 273 274
## 2020-06-06 2020-06-07 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12
## 1 275 276 281 283 284 286 287
## 2020-06-13 2020-06-14 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19
## 1 288 289 291 293 295 298 300
## 2020-06-20 2020-06-21 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26
## 1 301 302 303 305 307 308 310
## 2020-06-27 2020-06-28 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03
## 1 311 313 314 315 316 317 318
## 2020-07-04 2020-07-05 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10
## 1 321 323 324 326 327 328 330
## 2020-07-11 2020-07-12 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17
## 1 331 333 334 335 335 335 337
## 2020-07-18 2020-07-19 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24
## 1 338 339 340 341 342 342 343
## 2020-07-25 2020-07-26 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31
## 1 343 344 345 347 347 349 351
## 2020-08-01 2020-08-02 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07
## 1 351 351 351 351 353 354 356
## 2020-08-08 2020-08-09 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14
## 1 356 357 357 358 358 358 359
## 2020-08-15 2020-08-16 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21
## 1 361 364 364 366 367 369 370
## 2020-08-22 2020-08-23 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28
## 1 372 375 376 377 378 378 379
## 2020-08-29 2020-08-30 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04
## 1 379 382 384 384 387 387 387
## 2020-09-05 2020-09-06 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11
## 1 388 388 390 391 393 398 398
## 2020-09-12 2020-09-13 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18
## 1 399 399 399 401 402 402 403
## 2020-09-19 2020-09-20 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25
## 1 404 404 405 405 406 407 409
## 2020-09-26 2020-09-27 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02
## 1 411 412 413 416 419 421 424
## 2020-10-03 2020-10-04 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09
## 1 426 426 429 435 436 438 442
## 2020-10-10 2020-10-11 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16
## 1 443 445 446 448 450 452 455
## 2020-10-17 2020-10-18 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23
## 1 459 463 466 470 472 474 475
## 2020-10-24 2020-10-25 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30
## 1 475 477 480 482 485 488 490
## 2020-10-31 2020-11-01 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06
## 1 495 496 497 503 505 508 510
## 2020-11-07 2020-11-08 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13
## 1 514 514 515 518 520 523 528
## 2020-11-14 2020-11-15 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20
## 1 528 530 534 538 542 544 547
## 2020-11-21 2020-11-22 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27
## 1 548 552 554 559 563 564 567
## 2020-11-28 2020-11-29 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04
## 1 569 570 572 576 580 585 586
## 2020-12-05 2020-12-06 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11
## 1 589 592 594 596 598 602 607
## 2020-12-12 2020-12-13 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18
## 1 609 617 618 622 626 629 630
## 2020-12-19 2020-12-20 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25
## 1 634 637 639 642 645 647 653
## 2020-12-26 2020-12-27 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01
## 1 655 657 660 662 665 669 671
## 2021-01-02 2021-01-03 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08
## 1 674 679 682 685 689 694 697
## 2021-01-09 2021-01-10 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15
## 1 702 708 711 717 723 726 733
## 2021-01-16 2021-01-17 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22
## 1 740 745 751 756 762 766 776
## 2021-01-23 2021-01-24 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29
## 1 783 792 798 805 811 819 826
## 2021-01-30 2021-01-31 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05
## 1 838 850 859 866 878 888 902
## 2021-02-06 2021-02-07 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12
## 1 914 921 930 947 956 974 986
## 2021-02-13 2021-02-14 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19
## 1 1001 1014 1027 1041 1055 1073 1093
## 2021-02-20 2021-02-21 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26
## 1 1108 1125 1140 1145 1164 1182 1198
## 2021-02-27 2021-02-28 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05
## 1 1213 1221 1238 1253 1269 1286 1296
## 2021-03-06 2021-03-07 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12
## 1 1310 1322 1335 1345 1353 1369 1378
## 2021-03-13 2021-03-14 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19
## 1 1388 1395 1402 1406 1414 1424 1428
## 2021-03-20 2021-03-21 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26
## 1 1433 1438 1445 1451 1456 1466 1472
## 2021-03-27 2021-03-28 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02
## 1 1477 1481 1486 1492 1497 1499 1502
## 2021-04-03 2021-04-04 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09
## 1 1504 1510 1512 1516 1520 1523 1526
## 2021-04-10 2021-04-11 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16
## 1 1529 1531 1533 1537 1541 1545 1547
## 2021-04-17 2021-04-18 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23
## 1 1550 1554 1556 1559 1561 1565 1567
## 2021-04-24 2021-04-25 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30
## 1 1569 1571 1573 1578 1580 1584 1587
## 2021-05-01 2021-05-02 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07
## 1 1591 1593 1596 1598 1601 1604 1607
## 2021-05-08 2021-05-09 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14
## 1 1610 1613 1615 1617 1619 1623 1626
## 2021-05-15 2021-05-16 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21
## 1 1629 1631 1633 1637 1639 1642 1644
## 2021-05-22 2021-05-23 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28
## 1 1648 1651 1654 1658 1661 1664 1668
## 2021-05-29 2021-05-30 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04
## 1 1673 1677 1680 1684 1686 1689 1691
## 2021-06-05 2021-06-06 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11
## 1 1696 1699 1702 1704 1710 1710 1720
## 2021-06-12 2021-06-13 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18
## 1 1724 1726 1730 1734 1738 1741 1747
## 2021-06-19 2021-06-20 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25
## 1 1752 1757 1763 1767 1773 1775 1782
## 2021-06-26 2021-06-27 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02
## 1 1792 1796 1802 1807 1811 1819 1825
## 2021-07-03 2021-07-04 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09
## 1 1831 1834 1839 1843 1847 1849 1853
## 2021-07-10 2021-07-11 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16
## 1 1860 1866 1870 1876 1880 1885 1892
## 2021-07-17 2021-07-18 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23
## 1 1896 1898 1900 1904 1907 1910 1913
## 2021-07-24 2021-07-25 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30
## 1 1916 1920 1927 1929 1934 1939 1943
## 2021-07-31 2021-08-01 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06
## 1 1949 1951 1956 1960 1965 1967 1969
## 2021-08-07 2021-08-08 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13
## 1 1971 1975 1978 1982 1988 1992 1994
## 2021-08-14 2021-08-15 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20
## 1 1997 2001 2003 2006 2009 2012 2014
## 2021-08-21 2021-08-22 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27
## 1 2018 2020 2024 2026 2028 2031 2035
## 2021-08-28 2021-08-29 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03
## 1 2036 2038 2039 2041 2043 2043 2044
## 2021-09-04 2021-09-05 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10
## 1 2045 2046 2048 2050 2053 2057 2060
## 2021-09-11 2021-09-12 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17
## 1 2062 2062 2064 2066 2068 2069 2071
## 2021-09-18 2021-09-19 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24
## 1 2073 2075 2077 2078 2080 2083 2086
## 2021-09-25 2021-09-26 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01
## 1 2089 2090 2094 2094 2095 2097 2100
## 2021-10-02 2021-10-03 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08
## 1 2100 2102 2103 2104 2107 2109 2111
## 2021-10-09 2021-10-10 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15
## 1 2113 2113 2114 2115 2116 2117 2118
## 2021-10-16 2021-10-17 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22
## 1 2118 2120 2120 2122 2124 2126 2128
## 2021-10-23 2021-10-24 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29
## 1 2129 2130 2131 2134 2135 2135 2136
## 2021-10-30 2021-10-31 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05
## 1 2136 2136 2136 2137 2137 2137 2138
## 2021-11-06 2021-11-07 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12
## 1 2139 2140 2142 2142 2142 2142 2142
## 2021-11-13 2021-11-14 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19
## 1 2143 2143 2144 2144 2144 2144 2144
## 2021-11-20 2021-11-21 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26
## 1 2144 2144 2144 2144 2145 2145 2145
## 2021-11-27 2021-11-28 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03
## 1 2145 2146 2146 2147 2148 2148 2148
## 2021-12-04 2021-12-05 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10
## 1 2148 2148 2149 2149 2149 2149 2151
## 2021-12-11 2021-12-12 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17
## 1 2151 2151 2151 2151 2151 2151 2151
## 2021-12-18 2021-12-19 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24
## 1 2151 2151 2152 2154 2154 2154 2155
## 2021-12-25 2021-12-26 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31
## 1 2156 2158 2159 2160 2160 2162 2164
## 2022-01-01 2022-01-02 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07
## 1 2165 2168 2169 2170 2170 2170 2170
## 2022-01-08 2022-01-09 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14
## 1 2173 2174 2174 2177 2181 2182 2185
## 2022-01-15 2022-01-16 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21
## 1 2188 2191 2195 2198 2200 2204 2207
## 2022-01-22 2022-01-23 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28
## 1 2211 2214 2219 2224 2228 2232 2234
## 2022-01-29 2022-01-30 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04
## 1 2239 2240 2243 2248 2251 2253 2258
## 2022-02-05 2022-02-06 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11
## 1 2262 2264 2265 2269 2273 2278 2283
## 2022-02-12 2022-02-13 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18
## 1 2284 2285 2287 2288 2289 2290 2292
## 2022-02-19 2022-02-20 2022-02-21 2022-02-22 NA NA
## 1 2293 2294 2296 2297 2298 2298
##
##
## [[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24
## 1 UNITED ARAB EMIRATES UNITED ARAB EMIRATES 0 0 0
## 2020-01-25 2020-01-26 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31
## 1 0 0 0 0 0 0 0
## 2020-02-01 2020-02-02 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07
## 1 0 0 0 0 0 0 0
## 2020-02-08 2020-02-09 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14
## 1 0 0 0 0 1 1 1
## 2020-02-15 2020-02-16 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21
## 1 3 4 4 4 4 4 4
## 2020-02-22 2020-02-23 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28
## 1 4 4 4 4 4 4 5
## 2020-02-29 2020-03-01 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06
## 1 5 5 5 5 5 5 5
## 2020-03-07 2020-03-08 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13
## 1 7 7 7 12 17 17 17
## 2020-03-14 2020-03-15 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20
## 1 17 23 23 23 26 31 31
## 2020-03-21 2020-03-22 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27
## 1 38 38 38 45 52 52 52
## 2020-03-28 2020-03-29 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03
## 1 52 58 61 61 61 96 108
## 2020-04-04 2020-04-05 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10
## 1 125 144 167 186 239 268 418
## 2020-04-11 2020-04-12 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17
## 1 588 680 852 933 1034 1095 1188
## 2020-04-18 2020-04-19 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24
## 1 1188 1286 1360 1443 1546 1637 1760
## 2020-04-25 2020-04-26 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01
## 1 1887 1978 2090 2181 2329 2429 2543
## 2020-05-02 2020-05-03 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08
## 1 2664 2763 2966 3153 3359 3572 3837
## 2020-05-09 2020-05-10 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15
## 1 4295 4804 5381 6012 6523 6930 7328
## 2020-05-16 2020-05-17 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22
## 1 7931 8512 9577 10791 11809 12755 13798
## 2020-05-23 2020-05-24 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29
## 1 14495 15056 15657 15982 16371 16685 17097
## 2020-05-30 2020-05-31 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05
## 1 17546 17932 18338 18726 19153 19572 20337
## 2020-06-06 2020-06-07 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12
## 1 21061 21806 22275 22740 24017 25234 25946
## 2020-06-13 2020-06-14 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19
## 1 26761 27462 28129 28861 29537 30241 30996
## 2020-06-20 2020-06-21 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26
## 1 31754 32415 33046 33703 34405 35165 35469
## 2020-06-27 2020-06-28 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03
## 1 35834 36411 37076 37566 38160 38664 39153
## 2020-07-04 2020-07-05 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10
## 1 39857 40297 40721 41714 42282 43570 43969
## 2020-07-11 2020-07-12 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17
## 1 44648 45140 45513 46025 46418 47412 48448
## 2020-07-18 2020-07-19 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24
## 1 48917 49269 49621 49964 50354 50848 51235
## 2020-07-25 2020-07-26 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31
## 1 51628 52182 52510 52905 53202 53626 53909
## 2020-08-01 2020-08-02 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07
## 1 54255 54615 54863 55090 55385 55739 56015
## 2020-08-08 2020-08-09 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14
## 1 56245 56568 56766 56961 57193 57372 57473
## 2020-08-15 2020-08-16 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21
## 1 57571 57694 57794 57909 58022 58153 58296
## 2020-08-22 2020-08-23 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28
## 1 58408 58488 58582 58754 59070 59472 59861
## 2020-08-29 2020-08-30 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04
## 1 60202 60600 60931 61491 62029 62668 63158
## 2020-09-05 2020-09-06 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11
## 1 63652 66095 66533 66943 67359 67945 68462
## 2020-09-12 2020-09-13 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18
## 1 68983 69451 69981 70635 71456 72117 72790
## 2020-09-19 2020-09-20 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25
## 1 73512 74273 75086 76025 76995 77937 78819
## 2020-09-26 2020-09-27 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02
## 1 79676 80544 81462 82538 83724 84903 86071
## 2020-10-03 2020-10-04 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09
## 1 87122 88123 89410 90556 91710 93479 94903
## 2020-10-10 2020-10-11 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16
## 1 95973 97284 98555 100007 101659 103325 104943
## 2020-10-17 2020-10-18 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23
## 1 106354 107516 108811 110313 111814 113364 115068
## 2020-10-24 2020-10-25 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30
## 1 116894 118931 120750 122458 124647 126147 127607
## 2020-10-31 2020-11-01 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06
## 1 128902 130508 132024 133490 134983 136118 136936
## 2020-11-07 2020-11-08 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13
## 1 137608 138291 138959 139701 140442 141215 141883
## 2020-11-14 2020-11-15 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20
## 1 142561 143252 143932 144647 145537 146469 147309
## 2020-11-21 2020-11-22 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27
## 1 148080 148871 149578 150261 151044 151870 152708
## 2020-11-28 2020-11-29 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04
## 1 153449 154185 154899 155667 156380 157035 157828
## 2020-12-05 2020-12-06 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11
## 1 158498 159132 159711 160295 161084 161741 162435
## 2020-12-12 2020-12-13 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18
## 1 163048 163679 164349 165023 165749 166541 167306
## 2020-12-19 2020-12-20 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25
## 1 168129 168995 169840 171451 172984 174479 175865
## 2020-12-26 2020-12-27 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01
## 1 177407 178672 179925 181400 183007 184442 186019
## 2021-01-02 2021-01-03 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08
## 1 188100 189709 191455 193321 195520 199178 201396
## 2021-01-09 2021-01-10 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15
## 1 203660 206114 208366 210561 213149 215820 218988
## 2021-01-16 2021-01-17 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22
## 1 222106 225374 228364 231675 235421 239322 243267
## 2021-01-23 2021-01-24 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29
## 1 247318 251484 255304 259194 263730 267024 269999
## 2021-01-30 2021-01-31 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05
## 1 272769 276958 281410 285201 289276 293180 297040
## 2021-02-06 2021-02-07 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12
## 1 301081 305759 309692 313060 316053 319787 323191
## 2021-02-13 2021-02-14 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19
## 1 326780 331839 336731 340365 343935 347366 351715
## 2021-02-20 2021-02-21 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26
## 1 356013 359697 363052 366567 370381 375059 377537
## 2021-02-27 2021-02-28 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05
## 1 379708 381225 382332 383998 385587 387278 389304
## 2021-03-06 2021-03-07 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12
## 1 391205 392792 394649 396433 398126 399803 401539
## 2021-03-13 2021-03-14 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19
## 1 403478 405647 408085 410736 413477 416105 418496
## 2021-03-20 2021-03-21 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26
## 1 420736 422696 424840 427188 429573 431773 434035
## 2021-03-27 2021-03-28 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02
## 1 436463 438706 440731 443153 445355 447790 450111
## 2021-04-03 2021-04-04 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09
## 1 452321 454600 456747 458885 460841 463032 464971
## 2021-04-10 2021-04-11 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16
## 1 466804 468456 470175 471906 473398 475012 476518
## 2021-04-17 2021-04-18 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23
## 1 478063 479566 481326 483180 485078 486920 488664
## 2021-04-24 2021-04-25 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30
## 1 490457 492109 493689 495589 497140 498943 500779
## 2021-05-01 2021-05-02 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07
## 1 502460 504251 506020 507706 509658 511340 513068
## 2021-05-08 2021-05-09 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14
## 1 514769 516329 517805 519405 520882 522356 523778
## 2021-05-15 2021-05-16 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21
## 1 525080 526302 527519 528769 530085 531459 532910
## 2021-05-22 2021-05-23 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28
## 1 534481 536050 537531 539161 540886 543023 545229
## 2021-05-29 2021-05-30 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04
## 1 547008 548785 550525 552479 554589 556549 558584
## 2021-06-05 2021-06-06 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11
## 1 560734 562576 564509 566677 568828 568828 573194
## 2021-06-12 2021-06-13 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18
## 1 575288 577234 579045 581139 583115 585242 587160
## 2021-06-19 2021-06-20 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25
## 1 589235 591061 592984 595086 597008 599131 601308
## 2021-06-26 2021-06-27 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02
## 1 603541 605618 607606 609711 611442 612998 614636
## 2021-07-03 2021-07-04 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09
## 1 616197 617767 619294 620812 622301 623826 625332
## 2021-07-10 2021-07-11 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16
## 1 626800 628290 629809 631294 632775 634272 635759
## 2021-07-17 2021-07-18 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23
## 1 637267 638771 640248 641750 643234 644753 646227
## 2021-07-24 2021-07-25 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30
## 1 647682 649173 650683 652180 653675 655183 656680
## 2021-07-31 2021-08-01 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06
## 1 658198 659664 661156 662660 664130 0 0
## 2021-08-07 2021-08-08 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13
## 1 0 0 0 0 0 0 0
## 2021-08-14 2021-08-15 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20
## 1 0 0 0 0 0 0 0
## 2021-08-21 2021-08-22 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27
## 1 0 0 0 0 0 0 0
## 2021-08-28 2021-08-29 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03
## 1 0 0 0 0 0 0 0
## 2021-09-04 2021-09-05 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10
## 1 0 0 0 0 0 0 0
## 2021-09-11 2021-09-12 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17
## 1 0 0 0 0 0 0 0
## 2021-09-18 2021-09-19 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24
## 1 0 0 0 0 0 0 0
## 2021-09-25 2021-09-26 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01
## 1 0 0 0 0 0 0 0
## 2021-10-02 2021-10-03 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08
## 1 0 0 0 0 0 0 0
## 2021-10-09 2021-10-10 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15
## 1 0 0 0 0 0 0 0
## 2021-10-16 2021-10-17 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22
## 1 0 0 0 0 0 0 0
## 2021-10-23 2021-10-24 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29
## 1 0 0 0 0 0 0 0
## 2021-10-30 2021-10-31 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05
## 1 0 0 0 0 0 0 0
## 2021-11-06 2021-11-07 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12
## 1 0 0 0 0 0 0 0
## 2021-11-13 2021-11-14 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19
## 1 0 0 0 0 0 0 0
## 2021-11-20 2021-11-21 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26
## 1 0 0 0 0 0 0 0
## 2021-11-27 2021-11-28 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03
## 1 0 0 0 0 0 0 0
## 2021-12-04 2021-12-05 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10
## 1 0 0 0 0 0 0 0
## 2021-12-11 2021-12-12 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17
## 1 0 0 0 0 0 0 0
## 2021-12-18 2021-12-19 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24
## 1 0 0 0 0 0 0 0
## 2021-12-25 2021-12-26 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31
## 1 0 0 0 0 0 0 0
## 2022-01-01 2022-01-02 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07
## 1 0 0 0 0 0 0 0
## 2022-01-08 2022-01-09 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14
## 1 0 0 0 0 0 0 0
## 2022-01-15 2022-01-16 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21
## 1 0 0 0 0 0 0 0
## 2022-01-22 2022-01-23 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28
## 1 0 0 0 0 0 0 0
## 2022-01-29 2022-01-30 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04
## 1 0 0 0 0 0 0 0
## 2022-02-05 2022-02-06 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11
## 1 0 0 0 0 0 0 0
## 2022-02-12 2022-02-13 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18
## 1 0 0 0 0 0 0 0
## 2022-02-19 2022-02-20 2022-02-21 2022-02-22 NA NA
## 1 0 0 0 0 0 0
# read the time series data for all the cases
all.data <- covid19.data('ts-ALL')
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:28:28 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:28:29 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2022-02-25 06:28:31 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 269
## --------------------------------------------------------------------------------
# run on all the cases
tots.per.location(all.data,"Egypt")
## Processing confirmed cases
## EGYPT -- 475341
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29380 -13550 -3333 11883 67994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -41302.596 1292.543 -31.95 <2e-16 ***
## x.var 587.238 2.927 200.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17850 on 762 degrees of freedom
## Multiple R-squared: 0.9814, Adjusted R-squared: 0.9814
## F-statistic: 4.024e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3213 -0.9065 0.4730 1.3987 2.4846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.0892644 0.1566383 45.26 <2e-16 ***
## x.var 0.0100880 0.0003548 28.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.163 on 762 degrees of freedom
## Multiple R-squared: 0.5148, Adjusted R-squared: 0.5142
## F-statistic: 808.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -287.37 -85.11 29.19 85.02 122.62
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.045e+01 2.584e-04 40449 <2e-16 ***
## x.var 3.584e-03 4.537e-07 7900 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 86357718 on 763 degrees of freedom
## Residual deviance: 12540366 on 762 degrees of freedom
## AIC: 12550086
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## Processing death cases

## EGYPT -- 23889
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1617.33 -659.42 12.67 579.52 2325.69
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2358.8457 58.5805 -40.27 <2e-16 ***
## x.var 33.1528 0.1327 249.88 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 808.8 on 762 degrees of freedom
## Multiple R-squared: 0.9879, Adjusted R-squared: 0.9879
## F-statistic: 6.244e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1119 -0.8092 0.4447 1.1462 2.0326
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.690584 0.124532 37.67 <2e-16 ***
## x.var 0.009160 0.000282 32.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.719 on 762 degrees of freedom
## Multiple R-squared: 0.5806, Adjusted R-squared: 0.58
## F-statistic: 1055 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -68.511 -25.348 8.246 17.654 31.614
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.570e+00 1.091e-03 6940 <2e-16 ***
## x.var 3.596e-03 1.914e-06 1879 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4952882 on 763 degrees of freedom
## Residual deviance: 773248 on 762 degrees of freedom
## AIC: 780827
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## Processing recovered cases

## EGYPT -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -81092 -74351 -32312 59932 158261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54092.98 5390.76 10.034 < 2e-16 ***
## x.var 35.34 12.21 2.894 0.00391 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 74430 on 762 degrees of freedom
## Multiple R-squared: 0.01088, Adjusted R-squared: 0.009577
## F-statistic: 8.378 on 1 and 762 DF, p-value: 0.003907
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.158 -4.766 1.492 4.502 6.607
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.1662402 0.3622580 28.064 <2e-16 ***
## x.var -0.0078751 0.0008205 -9.598 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.002 on 762 degrees of freedom
## Multiple R-squared: 0.1079, Adjusted R-squared: 0.1067
## F-statistic: 92.13 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -405.0 -385.3 -146.8 207.5 464.4
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.091e+01 2.935e-04 37191.7 <2e-16 ***
## x.var 5.241e-04 6.334e-07 827.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 73497472 on 763 degrees of freedom
## Residual deviance: 72810116 on 762 degrees of freedom
## AIC: 72816542
##
## Number of Fisher Scoring iterations: 7
##
## --------------------------------------------------------------------------------

## [[1]]
## [[1]][[1]]
## [[1]][[1]][[1]]
## list()
##
## [[1]][[1]][[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24 2020-01-25 2020-01-26
## 1 EGYPT EGYPT 0 0 0 0 0
## 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02
## 1 0 0 0 0 0 0 0
## 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09
## 1 0 0 0 0 0 0 0
## 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16
## 1 0 0 0 0 1 1 1
## 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23
## 1 1 1 1 1 1 1 1
## 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01
## 1 1 1 1 1 1 1 2
## 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08
## 1 2 2 2 3 15 15 49
## 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15
## 1 55 59 60 67 80 109 110
## 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22
## 1 150 196 196 256 285 294 327
## 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29
## 1 366 402 456 495 536 576 609
## 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05
## 1 656 710 779 865 985 1070 1173
## 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12
## 1 1322 1450 1560 1699 1794 1939 2065
## 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19
## 1 2190 2350 2505 2673 2844 3032 3144
## 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26
## 1 3333 3490 3659 3891 4092 4319 4534
## 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03
## 1 4782 5042 5268 5537 5895 6193 6465
## 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10
## 1 6813 7201 7588 7981 8476 8964 9400
## 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17
## 1 9746 10093 10431 10829 11228 11719 12229
## 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24
## 1 12764 13484 14229 15003 15786 16513 17265
## 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31
## 1 17967 18756 19666 20793 22082 23449 24985
## 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07
## 1 26384 27536 28615 29767 31115 32612 34079
## 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14
## 1 35444 36829 38284 39726 41303 42980 44598
## 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21
## 1 46289 47856 49219 50437 52211 53758 55233
## 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28
## 1 56809 58141 59561 61130 62755 63923 65188
## 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05
## 1 66754 68311 69814 71299 72711 74035 75253
## 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12
## 1 76222 77279 78304 79254 80235 81158 82070
## 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19
## 1 83001 83930 84843 85771 86474 87172 87775
## 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26
## 1 88402 89078 89745 90413 91072 91583 92062
## 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02
## 1 92482 92947 93356 93757 94078 94316 94483
## 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09
## 1 94640 94752 94875 95006 95147 95314 95492
## 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16
## 1 95666 95834 95963 96108 96220 96336 96475
## 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23
## 1 96590 96753 96914 97025 97148 97237 97340
## 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30
## 1 97478 97619 97825 98062 98285 98497 98727
## 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06
## 1 98939 99115 99280 99425 99582 99712 99863
## 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13
## 1 100041 100228 100403 100557 100708 100856 101009
## 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20
## 1 101177 101340 101500 101641 101772 101900 102015
## 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27
## 1 102141 102254 102375 102513 102625 102736 102840
## 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04
## 1 102955 103079 103198 103317 103466 103575 103683
## 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11
## 1 103781 103902 104035 104156 104262 104387 104516
## 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18
## 1 104648 104787 104915 105033 105159 105297 105424
## 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25
## 1 105547 105705 105883 106060 106230 106397 106540
## 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01
## 1 106707 106877 107030 107209 107376 107555 107736
## 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08
## 1 107925 108122 108329 108530 108754 108962 109201
## 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15
## 1 109422 109654 109881 110095 110319 110547 110767
## 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22
## 1 111009 111284 111613 111955 112318 112676 113027
## 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29
## 1 113381 113742 114107 114475 114832 115183 115541
## 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06
## 1 115911 116303 116724 117156 117583 118014 118432
## 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13
## 1 118847 119281 119702 120147 120611 121089 121575
## 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20
## 1 122086 122609 123153 123701 124280 124891 125555
## 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27
## 1 126273 127061 127972 128993 130126 131315 132541
## 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03
## 1 133900 135233 136644 138062 139471 140878 142187
## 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10
## 1 143464 144583 145590 146809 147810 148799 149792
## 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17
## 1 150753 151723 152719 153741 154620 155507 156397
## 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24
## 1 157275 158174 158963 159715 160463 161143 161817
## 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31
## 1 162486 163129 163761 164282 164871 165418 165951
## 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07
## 1 166492 167013 167525 168057 168597 169106 169640
## 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14
## 1 170207 170780 171390 171993 172602 173202 173813
## 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21
## 1 174426 175059 175677 176333 176943 177543 178151
## 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28
## 1 178774 179407 180051 180640 181241 181829 182424
## 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07
## 1 183010 183591 184168 184755 185334 185922 186503
## 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14
## 1 187094 187716 188361 189000 189639 190280 190924
## 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21
## 1 191555 192195 192840 193482 194127 194771 195418
## 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28
## 1 196061 196709 197350 198011 198681 199364 200050
## 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04
## 1 200739 201432 202131 202843 203546 204256 204965
## 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11
## 1 205732 206510 207293 208082 208876 209677 210489
## 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18
## 1 211307 212130 212961 213798 214639 215484 216334
## 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25
## 1 217186 218041 218902 219774 220658 221570 222523
## 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02
## 1 223514 224517 225528 226531 227552 228584 229635
## 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09
## 1 230713 231803 232905 234015 235140 236272 237410
## 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16
## 1 238560 239740 240927 242120 243317 244520 245721
## 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23
## 1 246909 248078 249238 250391 251539 252690 253835
## 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30
## 1 254984 256124 257275 258407 259540 260659 261666
## 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06
## 1 262650 263606 264557 265489 266350 267171 267972
## 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13
## 1 268754 269527 270292 271047 271780 272491 273182
## 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20
## 1 273795 274404 275010 275601 276190 276756 277288
## 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27
## 1 277797 278295 278761 279184 279596 280005 280394
## 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04
## 1 280770 281031 281282 281524 281722 281903 282082
## 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11
## 1 282257 282421 282582 282737 282864 282985 283102
## 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18
## 1 283212 283320 283409 283490 283567 283636 283636
## 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25
## 1 283762 283813 283862 283906 283947 283985 284024
## 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01
## 1 284059 284090 284128 284170 284215 284262 284311
## 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08
## 1 284362 284415 284472 284523 284580 284641 284706
## 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15
## 1 284789 284875 284966 285061 285158 285257 285358
## 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22
## 1 285465 285577 285700 285831 285995 286168 286352
## 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29
## 1 286541 286735 286938 287159 287393 287644 287899
## 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05
## 1 288162 288441 288732 289035 289353 289684 290027
## 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12
## 1 290395 290773 291172 291585 292018 292476 292957
## 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19
## 1 293448 293951 294482 295051 295639 296276 296929
## 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26
## 1 297608 298296 298988 299710 300278 300945 301625
## 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03
## 1 302327 303045 303783 304524 305269 306030 306798
## 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10
## 1 307569 308347 309135 309934 310745 311576 312413
## 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17
## 1 313259 314116 314977 315842 316711 317585 318456
## 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24
## 1 319339 320207 321084 321967 322852 323733 324619
## 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31
## 1 325508 326379 327286 328209 329136 330084 331017
## 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07
## 1 331968 332889 333840 334751 335673 336582 337485
## 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14
## 1 338414 339335 340269 341188 342097 343026 343026
## 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21
## 1 344907 345848 346808 347719 348611 349513 350397
## 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28
## 1 351267 352123 353024 353923 354836 355767 356718
## 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05
## 1 357629 358578 359516 360435 361368 362260 363162
## 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12
## 1 364033 364922 365831 366634 367456 368335 369198
## 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19
## 1 369198 370819 371698 372599 373509 374411 375330
## 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26
## 1 376233 377081 377960 378843 379654 380520 381343
## 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02
## 1 382194 383003 383857 384728 385575 386358 387159
## 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09
## 1 387882 388651 389454 390294 391115 391945 392857
## 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16
## 1 393808 394740 395688 396699 397778 398879 400076
## 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23
## 1 401308 402611 403990 405393 406926 408495 410098
## 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30
## 1 411749 413558 415468 417453 419460 421478 423688
## 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06
## 1 425911 428202 430480 432761 435052 437350 439651
## 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13
## 1 441923 444117 446308 448497 450676 452821 452821
## 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20
## 1 457081 459198 461299 463370 465423 467448 469457
## 2022-02-21 2022-02-22 NA NA
## 1 471460 473449 475341 475341
##
##
## [[1]][[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24 2020-01-25 2020-01-26
## 1 EGYPT EGYPT 0 0 0 0 0
## 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02
## 1 0 0 0 0 0 0 0
## 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09
## 1 0 0 0 0 0 0 0
## 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16
## 1 0 0 0 0 0 0 0
## 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23
## 1 0 0 0 0 0 0 0
## 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01
## 1 0 0 0 0 0 0 0
## 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08
## 1 0 0 0 0 0 0 1
## 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15
## 1 1 1 1 1 2 2 2
## 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22
## 1 2 4 6 6 8 10 14
## 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29
## 1 19 20 21 24 30 36 40
## 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05
## 1 41 46 52 58 66 71 78
## 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12
## 1 85 94 103 118 135 146 159
## 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19
## 1 164 178 183 196 205 224 239
## 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26
## 1 250 264 276 287 294 307 317
## 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03
## 1 337 359 380 392 406 415 429
## 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10
## 1 436 452 469 482 503 514 525
## 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17
## 1 533 544 556 571 592 612 630
## 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24
## 1 645 659 680 696 707 735 764
## 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31
## 1 783 797 816 845 879 913 959
## 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07
## 1 1005 1052 1088 1126 1166 1198 1237
## 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14
## 1 1271 1306 1342 1377 1422 1484 1575
## 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21
## 1 1672 1766 1850 1938 2017 2106 2193
## 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28
## 1 2278 2365 2450 2533 2620 2708 2789
## 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05
## 1 2872 2953 3034 3120 3201 3280 3343
## 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12
## 1 3422 3489 3564 3617 3702 3769 3858
## 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19
## 1 3935 4008 4067 4120 4188 4251 4302
## 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26
## 1 4352 4399 4440 4480 4518 4558 4606
## 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02
## 1 4652 4691 4728 4774 4805 4834 4865
## 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09
## 1 4888 4912 4930 4951 4971 4992 5009
## 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16
## 1 5035 5059 5085 5107 5124 5141 5160
## 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23
## 1 5173 5184 5197 5212 5231 5243 5262
## 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30
## 1 5280 5298 5317 5342 5362 5376 5399
## 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06
## 1 5421 5440 5461 5479 5495 5511 5530
## 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13
## 1 5541 5560 5577 5590 5607 5627 5648
## 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20
## 1 5661 5679 5696 5715 5733 5750 5770
## 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27
## 1 5787 5806 5822 5835 5853 5869 5883
## 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04
## 1 5901 5914 5930 5946 5956 5970 5981
## 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11
## 1 5990 6001 6010 6017 6029 6040 6052
## 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18
## 1 6062 6071 6077 6088 6099 6109 6120
## 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25
## 1 6130 6142 6155 6166 6176 6187 6199
## 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01
## 1 6211 6222 6234 6247 6258 6266 6278
## 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08
## 1 6291 6305 6318 6329 6343 6355 6368
## 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15
## 1 6380 6394 6405 6417 6429 6442 6453
## 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22
## 1 6465 6481 6495 6508 6521 6535 6548
## 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29
## 1 6560 6573 6585 6596 6608 6621 6636
## 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06
## 1 6650 6666 6694 6713 6732 6750 6771
## 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13
## 1 6790 6813 6832 6854 6877 6898 6920
## 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20
## 1 6943 6966 6990 7015 7041 7069 7098
## 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27
## 1 7130 7167 7209 7260 7309 7352 7405
## 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03
## 1 7466 7520 7576 7631 7687 7741 7805
## 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10
## 1 7863 7918 7975 8029 8085 8142 8197
## 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17
## 1 8249 8304 8362 8421 8473 8527 8583
## 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24
## 1 8638 8696 8747 8801 8853 8902 8959
## 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31
## 1 9012 9067 9115 9169 9217 9263 9316
## 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07
## 1 9360 9407 9460 9512 9560 9604 9651
## 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14
## 1 9699 9751 9804 9857 9899 9935 9994
## 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21
## 1 10050 10101 10150 10201 10250 10298 10353
## 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28
## 1 10404 10443 10495 10541 10590 10639 10688
## 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07
## 1 10736 10778 10822 10871 10916 10954 10995
## 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14
## 1 11038 11082 11128 11169 11214 11256 11300
## 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21
## 1 11340 11384 11431 11472 11512 11557 11598
## 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28
## 1 11637 11680 11720 11768 11804 11845 11882
## 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04
## 1 11914 11956 11995 12041 12084 12123 12163
## 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11
## 1 12210 12253 12290 12323 12362 12405 12445
## 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18
## 1 12487 12526 12570 12611 12653 12694 12738
## 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25
## 1 12778 12820 12866 12914 12959 12998 13049
## 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02
## 1 13107 13168 13219 13278 13339 13402 13469
## 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09
## 1 13531 13591 13655 13714 13779 13845 13904
## 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16
## 1 13972 14033 14091 14150 14206 14269 14327
## 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23
## 1 14388 14441 14498 14559 14611 14670 14721
## 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30
## 1 14766 14807 14850 14904 14950 15001 15047
## 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06
## 1 15096 15136 15178 15222 15268 15309 15352
## 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13
## 1 15399 15437 15471 15510 15547 15582 15623
## 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20
## 1 15654 15691 15723 15760 15791 15829 15859
## 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27
## 1 15898 15935 15967 16002 16031 16062 16092
## 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04
## 1 16125 16148 16169 16194 16215 16242 16264
## 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11
## 1 16284 16306 16332 16351 16368 16383 16396
## 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18
## 1 16403 16412 16418 16425 16431 16439 16439
## 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25
## 1 16452 16457 16465 16470 16477 16481 16487
## 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01
## 1 16494 16498 16507 16514 16518 16524 16528
## 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08
## 1 16535 16540 16550 16557 16562 16566 16575
## 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15
## 1 16582 16588 16597 16604 16609 16615 16619
## 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22
## 1 16625 16630 16638 16647 16654 16663 16671
## 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29
## 1 16676 16683 16691 16701 16706 16714 16721
## 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05
## 1 16727 16736 16743 16755 16766 16776 16789
## 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12
## 1 16801 16811 16824 16836 16847 16860 16871
## 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19
## 1 16885 16895 16908 16921 16935 16951 16970
## 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26
## 1 16992 17016 17043 17074 17110 17149 17187
## 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03
## 1 17224 17263 17294 17331 17367 17399 17436
## 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10
## 1 17469 17508 17545 17584 17619 17658 17695
## 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17
## 1 17726 17765 17806 17846 17884 17926 17970
## 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24
## 1 18015 18058 18105 18151 18195 18242 18285
## 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31
## 1 18333 18375 18428 18483 18535 18592 18651
## 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07
## 1 18711 18769 18832 18889 18949 19011 19076
## 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14
## 1 19130 19186 19249 19309 19366 19435 19435
## 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21
## 1 19567 19636 19707 19780 19811 19872 19933
## 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28
## 1 19991 20052 20109 20172 20237 20305 20347
## 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05
## 1 20412 20474 20537 20594 20643 20682 20727
## 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12
## 1 20770 20821 20877 20919 20966 21015 21060
## 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19
## 1 21060 21155 21203 21234 21277 21315 21361
## 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26
## 1 21410 21457 21500 21510 21546 21571 21608
## 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02
## 1 21639 21667 21695 21727 21752 21768 21797
## 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09
## 1 21817 21836 21863 21882 21909 21938 21964
## 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16
## 1 21995 22014 22042 22063 22097 22123 22148
## 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23
## 1 22179 22205 22238 22260 22289 22330 22368
## 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30
## 1 22396 22431 22460 22496 22522 22566 22604
## 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06
## 1 22635 22683 22735 22780 22819 22877 22936
## 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13
## 1 22993 23053 23110 23172 23233 23292 23292
## 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20
## 1 23409 23465 23519 23580 23632 23694 23752
## 2022-02-21 2022-02-22 NA NA
## 1 23806 23857 23889 23889
##
##
## [[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24 2020-01-25 2020-01-26
## 1 EGYPT EGYPT 0 0 0 0 0
## 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02
## 1 0 0 0 0 0 0 0
## 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09
## 1 0 0 0 0 0 0 0
## 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16
## 1 0 0 0 0 0 0 0
## 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23
## 1 0 0 0 0 0 0 0
## 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01
## 1 0 0 0 0 1 1 1
## 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08
## 1 1 1 1 1 1 1 1
## 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15
## 1 1 1 27 27 27 27 21
## 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22
## 1 27 32 32 32 39 41 56
## 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29
## 1 56 80 95 102 116 121 132
## 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05
## 1 150 157 179 201 216 241 247
## 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12
## 1 259 276 305 348 384 426 589
## 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19
## 1 589 589 589 596 646 701 732
## 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26
## 1 821 870 935 1004 1075 1114 1176
## 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03
## 1 1236 1304 1335 1381 1460 1522 1562
## 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10
## 1 1632 1730 1815 1887 1945 2002 2075
## 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17
## 1 2172 2326 2486 2626 2799 2950 3172
## 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24
## 1 3440 3742 3994 4217 4374 4628 4807
## 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31
## 1 4900 5027 5205 5359 5511 5693 6037
## 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07
## 1 6447 6827 7350 7756 8158 8538 8961
## 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14
## 1 9375 9786 10289 10691 11108 11529 11931
## 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21
## 1 12329 12730 13141 13528 13928 14327 14736
## 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28
## 1 15133 15535 15935 16338 16737 17140 17539
## 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05
## 1 17951 18460 18881 19288 19690 20103 20726
## 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12
## 1 21238 21718 22241 22753 23274 23876 24419
## 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19
## 1 24975 25544 26135 26691 27302 27868 28380
## 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26
## 1 28924 29473 30075 31066 31970 32903 33831
## 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02
## 1 34838 35959 37025 38236 39638 41137 42455
## 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09
## 1 44066 45569 47182 48898 50553 51672 52678
## 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16
## 1 53779 54888 55901 56890 57858 58835 59743
## 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23
## 1 60651 61562 62553 63462 64318 65118 65927
## 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30
## 1 66817 67717 68713 69612 70419 71302 72120
## 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06
## 1 72929 73828 74626 75415 76305 77208 78108
## 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13
## 1 79008 79886 80689 81597 82473 83261 84161
## 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20
## 1 84969 85745 86549 87158 87958 88666 89532
## 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27
## 1 90332 91143 91843 92644 93531 94374 95080
## 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04
## 1 95586 96094 96494 96855 97143 97274 97355
## 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11
## 1 97398 97449 97492 97524 97592 97643 97688
## 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18
## 1 97743 97841 97920 98011 98089 98157 98247
## 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25
## 1 98314 98413 98516 98624 98713 98813 98903
## 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01
## 1 98981 99084 99174 99273 99353 99452 99555
## 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08
## 1 99652 99765 99874 100006 100106 100239 100342
## 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15
## 1 100439 100540 100662 100760 100847 100946 101046
## 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22
## 1 101179 101288 101421 101564 101685 101783 101881
## 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29
## 1 101981 102103 102201 102268 102390 102490 102596
## 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06
## 1 102718 102816 102949 103082 103191 103324 103501
## 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13
## 1 103703 103913 104074 104281 104499 104710 104875
## 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20
## 1 105132 105450 105719 105919 106157 106481 106817
## 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27
## 1 107162 107563 107961 108474 108985 109462 110015
## 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03
## 1 110436 111040 111451 112105 112826 113480 113898
## 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10
## 1 114601 115414 115975 116775 117529 118294 118900
## 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17
## 1 119212 119635 120312 121072 121792 122291 122993
## 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24
## 1 123491 124094 124605 125171 125603 126176 126497
## 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31
## 1 127001 127433 127963 128440 128800 129293 129636
## 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07
## 1 130107 130514 130912 131211 131632 132054 132375
## 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14
## 1 132698 133098 133331 133707 134215 134638 134960
## 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21
## 1 135349 135670 136081 136490 136889 137294 137837
## 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28
## 1 138183 138683 139072 139494 139927 140460 140892
## 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07
## 1 141347 141655 142155 142610 143143 143575 144019
## 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14
## 1 144485 144917 145418 145923 146434 146803 147234
## 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21
## 1 147767 148089 148424 148823 149256 149489 149934
## 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28
## 1 150424 150924 151444 151765 152198 152642 153175
## 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04
## 1 153630 154194 154694 155016 155448 155886 156219
## 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11
## 1 156574 157006 157450 157889 158454 159054 159499
## 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18
## 1 159999 160431 161031 161470 162170 162714 163479
## 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25
## 1 163812 164368 164803 165348 166024 166457 167024
## 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02
## 1 167900 168665 169308 170008 170773 171542 172342
## 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09
## 1 172774 173341 174217 175117 175928 176363 176763
## 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16
## 1 177440 178241 178805 179261 179817 180577 181478
## 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23
## 1 182024 182693 183696 184373 185243 186223 186678
## 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30
## 1 187446 187691 188567 189476 190254 191475 191475
## 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06
## 1 192112 192823 193491 194291 195072 195871 196604
## 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13
## 1 197281 197832 198632 199285 199840 200273 201038
## 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20
## 1 201739 202650 203193 203802 204701 205157 205613
## 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27
## 1 206053 206852 207411 208192 208957 209395 210052
## 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04
## 1 210482 210805 211384 212059 212725 213628 214087
## 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11
## 1 214852 215419 216217 216982 217324 217756 218412
## 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18
## 1 219291 219525 220530 221516 222315 223213 223213
## 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25
## 1 224299 225068 225869 226535 227068 227490 227612
## 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01
## 1 227970 228624 228836 229167 229712 230368 230699
## 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08
## 1 231259 232060 232179 0 0 0 0
## 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15
## 1 0 0 0 0 0 0 0
## 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22
## 1 0 0 0 0 0 0 0
## 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29
## 1 0 0 0 0 0 0 0
## 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05
## 1 0 0 0 0 0 0 0
## 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12
## 1 0 0 0 0 0 0 0
## 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19
## 1 0 0 0 0 0 0 0
## 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26
## 1 0 0 0 0 0 0 0
## 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03
## 1 0 0 0 0 0 0 0
## 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10
## 1 0 0 0 0 0 0 0
## 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17
## 1 0 0 0 0 0 0 0
## 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24
## 1 0 0 0 0 0 0 0
## 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31
## 1 0 0 0 0 0 0 0
## 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07
## 1 0 0 0 0 0 0 0
## 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14
## 1 0 0 0 0 0 0 0
## 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21
## 1 0 0 0 0 0 0 0
## 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28
## 1 0 0 0 0 0 0 0
## 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05
## 1 0 0 0 0 0 0 0
## 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12
## 1 0 0 0 0 0 0 0
## 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19
## 1 0 0 0 0 0 0 0
## 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26
## 1 0 0 0 0 0 0 0
## 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02
## 1 0 0 0 0 0 0 0
## 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09
## 1 0 0 0 0 0 0 0
## 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16
## 1 0 0 0 0 0 0 0
## 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23
## 1 0 0 0 0 0 0 0
## 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30
## 1 0 0 0 0 0 0 0
## 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06
## 1 0 0 0 0 0 0 0
## 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13
## 1 0 0 0 0 0 0 0
## 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20
## 1 0 0 0 0 0 0 0
## 2022-02-21 2022-02-22 NA NA
## 1 0 0 0 0
# read the time series data for all the cases
all.data <- covid19.data('ts-ALL')
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:28:35 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:28:37 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2022-02-25 06:28:39 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 269
## --------------------------------------------------------------------------------
# run on all the cases
tots.per.location(all.data,"Saudi Arabia")
## Processing confirmed cases
## SAUDI ARABIA -- 741864
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -96790 -43262 -777 40508 95179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29277.735 3920.346 7.468 2.23e-13 ***
## x.var 858.096 8.879 96.643 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54130 on 762 degrees of freedom
## Multiple R-squared: 0.9246, Adjusted R-squared: 0.9245
## F-statistic: 9340 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.3258 -1.0123 0.4311 1.8407 2.7443
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.9364532 0.1842118 43.08 <2e-16 ***
## x.var 0.0097343 0.0004172 23.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.543 on 762 degrees of freedom
## Multiple R-squared: 0.4167, Adjusted R-squared: 0.4159
## F-statistic: 544.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -514.83 -130.47 61.66 127.43 230.74
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.166e+01 1.616e-04 72151 <2e-16 ***
## x.var 2.548e-03 3.001e-07 8490 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 117323596 on 763 degrees of freedom
## Residual deviance: 38501692 on 762 degrees of freedom
## AIC: 38511933
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## Processing death cases

## SAUDI ARABIA -- 8990
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1720.6 -803.4 260.6 653.3 1391.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 178.8590 65.6926 2.723 0.00662 **
## x.var 13.7850 0.1488 92.651 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 907 on 762 degrees of freedom
## Multiple R-squared: 0.9185, Adjusted R-squared: 0.9184
## F-statistic: 8584 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8430 -0.8891 0.3191 1.4740 2.0395
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3069326 0.1307682 32.94 <2e-16 ***
## x.var 0.0086457 0.0002962 29.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.805 on 762 degrees of freedom
## Multiple R-squared: 0.5279, Adjusted R-squared: 0.5273
## F-statistic: 852.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -62.137 -26.057 6.603 19.457 31.179
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.398e+00 1.335e-03 5542 <2e-16 ***
## x.var 2.703e-03 2.456e-06 1100 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2049545 on 763 degrees of freedom
## Residual deviance: 711054 on 762 degrees of freedom
## AIC: 718163
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## Processing recovered cases

## SAUDI ARABIA -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -196409 -187714 1971 166751 318505
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 196422.66 13243.15 14.832 <2e-16 ***
## x.var -13.47 29.99 -0.449 0.654
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 182800 on 762 degrees of freedom
## Multiple R-squared: 0.0002644, Adjusted R-squared: -0.001048
## F-statistic: 0.2015 on 1 and 762 DF, p-value: 0.6536
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.335 -5.141 2.473 4.809 6.889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.3438506 0.4006160 28.32 <2e-16 ***
## x.var -0.0090845 0.0009073 -10.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.531 on 762 degrees of freedom
## Multiple R-squared: 0.1163, Adjusted R-squared: 0.1151
## F-statistic: 100.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -626.83 -612.33 4.47 339.63 604.80
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.219e+01 1.645e-04 74089.9 <2e-16 ***
## x.var -7.040e-05 3.751e-07 -187.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 177193250 on 763 degrees of freedom
## Residual deviance: 177158022 on 762 degrees of freedom
## AIC: 177164977
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------

## [[1]]
## [[1]][[1]]
## [[1]][[1]][[1]]
## list()
##
## [[1]][[1]][[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24 2020-01-25
## 1 SAUDI ARABIA SAUDI ARABIA 0 0 0 0
## 2020-01-26 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01
## 1 0 0 0 0 0 0 0
## 2020-02-02 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08
## 1 0 0 0 0 0 0 0
## 2020-02-09 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15
## 1 0 0 0 0 0 0 0
## 2020-02-16 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22
## 1 0 0 0 0 0 0 0
## 2020-02-23 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29
## 1 0 0 0 0 0 0 0
## 2020-03-01 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07
## 1 0 1 1 1 5 5 5
## 2020-03-08 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14
## 1 11 15 20 21 45 86 103
## 2020-03-15 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21
## 1 103 118 171 171 274 344 392
## 2020-03-22 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28
## 1 511 562 767 900 1012 1104 1203
## 2020-03-29 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04
## 1 1299 1453 1563 1720 1885 2039 2179
## 2020-04-05 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11
## 1 2402 2605 2795 2932 3287 3651 4033
## 2020-04-12 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18
## 1 4462 4934 5369 5862 6380 7142 8274
## 2020-04-19 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25
## 1 9362 10484 11631 12772 13930 15102 16299
## 2020-04-26 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02
## 1 17522 18811 20077 21402 22753 24097 25459
## 2020-05-03 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09
## 1 27011 28656 30251 31938 33731 35432 37136
## 2020-05-10 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16
## 1 39048 41014 42925 44830 46869 49176 52016
## 2020-05-17 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23
## 1 54752 57345 59854 62545 65077 67719 70161
## 2020-05-24 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30
## 1 72560 74795 76726 78541 80185 81766 83384
## 2020-05-31 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06
## 1 85261 87142 89011 91182 93157 95748 98869
## 2020-06-07 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13
## 1 101914 105283 108571 112288 116021 119942 123308
## 2020-06-14 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20
## 1 127541 132048 136315 141234 145991 150292 154233
## 2020-06-21 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27
## 1 157612 161005 164144 167267 170639 174577 178504
## 2020-06-28 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04
## 1 182493 186436 190823 194225 197608 201801 205929
## 2020-07-05 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11
## 1 209509 213716 217108 220144 223327 226486 229480
## 2020-07-12 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18
## 1 232259 235111 237803 240474 243238 245851 248416
## 2020-07-19 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25
## 1 250920 253349 255825 258156 260394 262772 264973
## 2020-07-26 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01
## 1 266941 268934 270831 272590 274219 275905 277478
## 2020-08-02 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08
## 1 278835 280093 281456 282824 284226 285793 287262
## 2020-08-09 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15
## 1 288690 289947 291468 293037 294519 295902 297315
## 2020-08-16 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22
## 1 298542 299914 301323 302686 303973 305186 306370
## 2020-08-23 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29
## 1 307479 308654 309768 310836 311855 312924 313911
## 2020-08-30 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05
## 1 314821 315772 316670 317486 318319 319141 319932
## 2020-09-06 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12
## 1 320688 321456 322237 323012 323720 324407 325050
## 2020-09-13 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19
## 1 325651 326258 326930 327551 328144 328720 329271
## 2020-09-20 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26
## 1 329754 330246 330798 331359 331857 332329 332790
## 2020-09-27 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03
## 1 333193 333648 334187 334605 335097 335578 335997
## 2020-10-04 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10
## 1 336387 336766 337243 337711 338132 338539 338944
## 2020-10-11 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17
## 1 339267 339615 340089 340590 341062 341495 341854
## 2020-10-18 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24
## 1 342202 342583 342968 343373 343774 344157 344552
## 2020-10-25 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31
## 1 344875 345232 345631 346047 346482 346880 347282
## 2020-11-01 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07
## 1 347656 348037 348510 348936 349386 349822 350229
## 2020-11-08 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14
## 1 350592 350984 351455 351849 352160 352601 352950
## 2020-11-15 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21
## 1 353255 353556 353918 354208 354527 354813 355034
## 2020-11-22 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28
## 1 355258 355489 355741 356067 356389 356691 356911
## 2020-11-29 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05
## 1 357128 357360 357623 357872 358102 358336 358526
## 2020-12-06 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12
## 1 358713 358922 359115 359274 359415 359583 359749
## 2020-12-13 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19
## 1 359888 360013 360155 360335 360516 360690 360848
## 2020-12-20 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26
## 1 361010 361178 361359 361536 361725 361903 362066
## 2020-12-27 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02
## 1 362220 362339 362488 362601 362741 362878 362979
## 2021-01-03 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09
## 1 363061 363155 363259 363377 363485 363582 363692
## 2021-01-10 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16
## 1 363809 363949 364096 364271 364440 364613 364753
## 2021-01-17 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23
## 1 364929 365099 365325 365563 365775 365988 366185
## 2021-01-24 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30
## 1 366371 366584 366807 367023 367276 367543 367813
## 2021-01-31 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06
## 1 368074 368329 368639 368945 369248 369575 369961
## 2021-02-07 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13
## 1 370278 370634 370987 371356 371720 372073 372410
## 2021-02-14 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20
## 1 372732 373046 373368 373702 374029 374366 374691
## 2021-02-21 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27
## 1 375006 375333 375668 376021 376377 376723 377061
## 2021-02-28 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06
## 1 377383 377700 378002 378333 378708 379092 379474
## 2021-03-07 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13
## 1 379831 380182 380572 380958 381348 381708 382059
## 2021-03-14 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20
## 1 382407 382752 383106 383499 383880 384271 384653
## 2021-03-21 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27
## 1 385020 385424 385834 386300 386782 387292 387794
## 2021-03-28 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03
## 1 388325 388866 389422 390007 390597 391325 392009
## 2021-04-04 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10
## 1 392682 393377 394169 394952 395854 396758 397636
## 2021-04-11 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17
## 1 398435 399277 400228 401157 402142 403106 404054
## 2021-04-18 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24
## 1 404970 405940 407010 408038 409093 410191 411263
## 2021-04-25 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01
## 1 412216 413174 414219 415281 416307 417363 418411
## 2021-05-02 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08
## 1 419348 420301 421300 422316 423406 424445 425442
## 2021-05-09 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15
## 1 426384 427370 428369 429389 430505 431432 432269
## 2021-05-16 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22
## 1 433094 433980 435027 436239 437569 438705 439847
## 2021-05-23 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29
## 1 440914 442071 443460 444780 445963 447178 448284
## 2021-05-30 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05
## 1 449191 450436 451687 452956 454217 455418 456562
## 2021-06-06 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12
## 1 457546 458707 459968 461242 461242 463703 464780
## 2021-06-13 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19
## 1 465797 466906 468175 469414 470723 471959 473112
## 2021-06-20 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26
## 1 474191 475403 476882 478135 479390 480702 482003
## 2021-06-27 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03
## 1 483221 484539 486106 487592 489126 490464 491612
## 2021-07-04 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10
## 1 492785 494032 495309 496516 497773 498906 500083
## 2021-07-11 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17
## 1 501195 502439 503734 504960 506125 507423 508521
## 2021-07-18 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24
## 1 509576 510869 512142 513284 514446 515693 516949
## 2021-07-25 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31
## 1 518143 519395 520774 522108 522108 522108 525730
## 2021-08-01 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07
## 1 526814 526814 526814 526814 526814 531935 531935
## 2021-08-08 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14
## 1 531935 531935 531935 531935 531935 537374 537374
## 2021-08-15 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21
## 1 537374 539129 539129 539129 540244 540244 541201
## 2021-08-22 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28
## 1 541201 541994 541994 541994 541994 543318 543318
## 2021-08-29 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04
## 1 543318 543318 543318 543318 543318 543318 543318
## 2021-09-05 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11
## 1 545243 545243 545505 545505 545727 545829 545829
## 2021-09-12 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18
## 1 545829 545829 545829 545829 546336 546411 546411
## 2021-09-19 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25
## 1 546411 546612 546681 546735 546735 546735 546882
## 2021-09-26 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02
## 1 546926 546985 547035 547035 547134 547134 547134
## 2021-10-03 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09
## 1 547134 547134 547357 547402 547449 547497 547532
## 2021-10-10 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16
## 1 547591 547649 547704 547761 547797 547845 547890
## 2021-10-17 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23
## 1 547931 547969 548018 548065 548111 548162 548205
## 2021-10-24 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30
## 1 548252 548303 548368 548423 548474 548530 548571
## 2021-10-31 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06
## 1 548617 548666 548711 548760 548805 548848 548890
## 2021-11-07 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13
## 1 548930 548973 549022 549060 549103 549148 549192
## 2021-11-14 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20
## 1 549222 549260 549297 549339 549377 549412 549443
## 2021-11-21 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27
## 1 549479 549518 549556 549590 549618 549642 549671
## 2021-11-28 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04
## 1 549695 549720 549752 549786 549810 549848 549877
## 2021-12-05 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11
## 1 549912 549955 549997 550043 550088 550136 550189
## 2021-12-12 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18
## 1 550240 550304 550369 550457 550542 550622 550738
## 2021-12-19 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25
## 1 550842 550988 551210 551462 551749 552081 552406
## 2021-12-26 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01
## 1 552795 553319 553921 554665 555417 556236 557082
## 2022-01-02 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08
## 1 558106 559852 562437 565482 568650 572225 575293
## 2022-01-09 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15
## 1 578753 583531 588183 593545 599044 604672 609953
## 2022-01-16 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22
## 1 615430 620935 626808 632736 638327 643211 647819
## 2022-01-23 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29
## 1 652354 657192 661733 666259 670997 675471 679384
## 2022-01-30 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05
## 1 683053 687264 691125 695217 699069 702624 705637
## 2022-02-06 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12
## 1 708897 712644 715974 719136 722002 724525 726251
## 2022-02-13 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19
## 1 728387 730614 732596 734389 735958 737334 738331
## 2022-02-20 2022-02-21 2022-02-22 NA NA
## 1 739344 740396 741237 741864 741864
##
##
## [[1]][[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24 2020-01-25
## 1 SAUDI ARABIA SAUDI ARABIA 0 0 0 0
## 2020-01-26 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01
## 1 0 0 0 0 0 0 0
## 2020-02-02 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08
## 1 0 0 0 0 0 0 0
## 2020-02-09 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15
## 1 0 0 0 0 0 0 0
## 2020-02-16 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22
## 1 0 0 0 0 0 0 0
## 2020-02-23 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29
## 1 0 0 0 0 0 0 0
## 2020-03-01 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07
## 1 0 0 0 0 0 0 0
## 2020-03-08 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14
## 1 0 0 0 0 0 0 0
## 2020-03-15 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21
## 1 0 0 0 0 0 0 0
## 2020-03-22 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28
## 1 0 0 1 2 3 3 4
## 2020-03-29 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04
## 1 8 8 10 16 21 25 29
## 2020-04-05 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11
## 1 34 38 41 41 44 47 52
## 2020-04-12 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18
## 1 59 65 73 79 83 87 92
## 2020-04-19 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25
## 1 97 103 109 114 121 127 136
## 2020-04-26 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02
## 1 139 144 152 157 162 169 176
## 2020-05-03 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09
## 1 184 191 200 209 219 229 239
## 2020-05-10 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16
## 1 246 255 264 273 283 292 302
## 2020-05-17 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23
## 1 312 320 329 339 351 364 379
## 2020-05-24 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30
## 1 390 399 411 425 441 458 480
## 2020-05-31 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06
## 1 503 525 549 579 611 642 676
## 2020-06-07 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13
## 1 712 746 783 819 857 893 932
## 2020-06-14 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20
## 1 972 1011 1052 1091 1139 1184 1230
## 2020-06-21 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27
## 1 1267 1307 1346 1387 1428 1474 1511
## 2020-06-28 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04
## 1 1551 1599 1649 1698 1752 1802 1858
## 2020-07-05 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11
## 1 1916 1968 2017 2059 2100 2151 2181
## 2020-07-12 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18
## 1 2223 2243 2283 2325 2370 2407 2447
## 2020-07-19 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25
## 1 2486 2523 2557 2601 2635 2672 2703
## 2020-07-26 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01
## 1 2733 2760 2789 2816 2842 2866 2887
## 2020-08-02 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08
## 1 2917 2949 2984 3020 3055 3093 3130
## 2020-08-09 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15
## 1 3167 3199 3233 3269 3303 3338 3369
## 2020-08-16 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22
## 1 3408 3436 3470 3506 3548 3580 3619
## 2020-08-23 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29
## 1 3649 3691 3722 3755 3785 3813 3840
## 2020-08-30 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05
## 1 3870 3897 3929 3956 3982 4015 4049
## 2020-09-06 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12
## 1 4081 4107 4137 4165 4189 4213 4240
## 2020-09-13 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19
## 1 4268 4305 4338 4369 4399 4430 4458
## 2020-09-20 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26
## 1 4485 4512 4542 4569 4599 4625 4655
## 2020-09-27 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03
## 1 4683 4712 4739 4768 4794 4823 4850
## 2020-10-04 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10
## 1 4875 4898 4923 4947 4972 4996 5018
## 2020-10-11 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17
## 1 5043 5068 5087 5108 5127 5144 5165
## 2020-10-18 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24
## 1 5185 5201 5217 5235 5250 5264 5281
## 2020-10-25 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31
## 1 5296 5313 5329 5348 5363 5383 5402
## 2020-11-01 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07
## 1 5420 5437 5456 5471 5489 5506 5525
## 2020-11-08 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14
## 1 5540 5559 5576 5590 5605 5625 5641
## 2020-11-15 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21
## 1 5657 5676 5692 5710 5729 5745 5761
## 2020-11-22 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28
## 1 5780 5796 5811 5825 5840 5857 5870
## 2020-11-29 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05
## 1 5884 5896 5907 5919 5930 5940 5954
## 2020-12-06 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12
## 1 5965 5977 5989 6002 6012 6023 6036
## 2020-12-13 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19
## 1 6048 6059 6069 6080 6091 6101 6112
## 2020-12-20 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26
## 1 6122 6131 6139 6148 6159 6168 6176
## 2020-12-27 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02
## 1 6185 6196 6204 6214 6223 6230 6239
## 2021-01-03 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09
## 1 6246 6256 6265 6272 6278 6282 6286
## 2021-01-10 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16
## 1 6291 6295 6300 6304 6310 6313 6318
## 2021-01-17 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23
## 1 6323 6329 6335 6338 6342 6346 6350
## 2021-01-24 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30
## 1 6352 6355 6359 6363 6366 6368 6372
## 2021-01-31 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06
## 1 6375 6379 6383 6386 6389 6393 6397
## 2021-02-07 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13
## 1 6402 6406 6410 6415 6420 6424 6429
## 2021-02-14 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20
## 1 6433 6438 6441 6445 6450 6454 6457
## 2021-02-21 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27
## 1 6461 6466 6470 6475 6480 6483 6488
## 2021-02-28 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06
## 1 6494 6500 6505 6510 6514 6519 6524
## 2021-03-07 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13
## 1 6528 6534 6539 6545 6551 6556 6563
## 2021-03-14 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20
## 1 6567 6573 6578 6585 6591 6596 6602
## 2021-03-21 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27
## 1 6609 6613 6618 6624 6630 6637 6643
## 2021-03-28 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03
## 1 6650 6656 6663 6669 6676 6684 6690
## 2021-04-04 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10
## 1 6697 6704 6711 6719 6728 6737 6747
## 2021-04-11 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17
## 1 6754 6765 6773 6781 6791 6801 6810
## 2021-04-18 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24
## 1 6823 6834 6846 6858 6869 6878 6887
## 2021-04-25 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01
## 1 6900 6913 6922 6935 6946 6957 6968
## 2021-05-02 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08
## 1 6979 6992 7006 7018 7032 7045 7059
## 2021-05-09 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15
## 1 7072 7085 7098 7111 7122 7134 7147
## 2021-05-16 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22
## 1 7162 7174 7188 7201 7214 7224 7237
## 2021-05-23 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29
## 1 7249 7264 7278 7295 7309 7320 7334
## 2021-05-30 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05
## 1 7347 7362 7377 7393 7408 7424 7440
## 2021-06-06 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12
## 1 7456 7471 7488 7503 7503 7537 7553
## 2021-06-13 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19
## 1 7572 7590 7606 7621 7635 7650 7663
## 2021-06-20 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26
## 1 7677 7691 7703 7716 7730 7743 7760
## 2021-06-27 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03
## 1 7775 7789 7804 7819 7832 7848 7863
## 2021-07-04 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10
## 1 7876 7891 7907 7921 7933 7947 7963
## 2021-07-11 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17
## 1 7976 7992 8006 8020 8035 8048 8063
## 2021-07-18 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24
## 1 8075 8089 8103 8115 8130 8141 8155
## 2021-07-25 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31
## 1 8167 8179 8189 8200 8200 8200 8237
## 2021-08-01 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07
## 1 8249 8249 8249 8249 8249 8311 8311
## 2021-08-08 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14
## 1 8311 8311 8311 8311 8311 8388 8388
## 2021-08-15 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21
## 1 8388 8419 8419 8419 8439 8439 8457
## 2021-08-22 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28
## 1 8457 8481 8481 8481 8481 8512 8512
## 2021-08-29 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04
## 1 8512 8512 8512 8512 8512 8512 8512
## 2021-09-05 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11
## 1 8579 8579 8591 8591 8604 8610 8610
## 2021-09-12 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18
## 1 8610 8610 8610 8610 8645 8651 8651
## 2021-09-19 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25
## 1 8651 8667 8672 8679 8679 8679 8694
## 2021-09-26 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02
## 1 8699 8704 8709 8709 8716 8716 8716
## 2021-10-03 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09
## 1 8716 8716 8730 8732 8736 8739 8743
## 2021-10-10 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16
## 1 8745 8748 8751 8753 8755 8758 8760
## 2021-10-17 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23
## 1 8763 8765 8767 8770 8773 8774 8776
## 2021-10-24 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30
## 1 8778 8780 8782 8785 8788 8790 8793
## 2021-10-31 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06
## 1 8794 8796 8798 8799 8800 8802 8803
## 2021-11-07 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13
## 1 8804 8805 8806 8807 8809 8810 8811
## 2021-11-14 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20
## 1 8813 8816 8818 8820 8821 8822 8823
## 2021-11-21 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27
## 1 8824 8826 8827 8828 8829 8830 8832
## 2021-11-28 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04
## 1 8833 8834 8836 8837 8839 8840 8842
## 2021-12-05 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11
## 1 8844 8845 8847 8849 8850 8851 8852
## 2021-12-12 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18
## 1 8853 8855 8856 8857 8858 8860 8861
## 2021-12-19 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25
## 1 8862 8864 8865 8867 8868 8869 8870
## 2021-12-26 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01
## 1 8871 8872 8873 8874 8875 8877 8878
## 2022-01-02 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08
## 1 8879 8881 8883 8886 8888 8890 8892
## 2022-01-09 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15
## 1 8893 8895 8897 8899 8901 8903 8905
## 2022-01-16 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22
## 1 8906 8908 8910 8912 8914 8916 8918
## 2022-01-23 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29
## 1 8920 8922 8924 8927 8929 8931 8933
## 2022-01-30 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05
## 1 8936 8940 8941 8943 8947 8950 8953
## 2022-02-06 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12
## 1 8954 8957 8959 8962 8965 8969 8971
## 2022-02-13 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19
## 1 8973 8974 8975 8977 8978 8981 8982
## 2022-02-20 2022-02-21 2022-02-22 NA NA
## 1 8984 8986 8987 8990 8990
##
##
## [[2]]
## geo.loc Long 2020-01-22 2020-01-23 2020-01-24 2020-01-25
## 1 SAUDI ARABIA SAUDI ARABIA 0 0 0 0
## 2020-01-26 2020-01-27 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01
## 1 0 0 0 0 0 0 0
## 2020-02-02 2020-02-03 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08
## 1 0 0 0 0 0 0 0
## 2020-02-09 2020-02-10 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15
## 1 0 0 0 0 0 0 0
## 2020-02-16 2020-02-17 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22
## 1 0 0 0 0 0 0 0
## 2020-02-23 2020-02-24 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29
## 1 0 0 0 0 0 0 0
## 2020-03-01 2020-03-02 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07
## 1 0 0 0 0 0 0 0
## 2020-03-08 2020-03-09 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14
## 1 0 0 1 1 1 1 1
## 2020-03-15 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21
## 1 1 2 6 6 6 8 16
## 2020-03-22 2020-03-23 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28
## 1 16 16 28 29 33 35 37
## 2020-03-29 2020-03-30 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04
## 1 66 115 165 264 328 351 420
## 2020-04-05 2020-04-06 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11
## 1 488 551 615 631 666 685 720
## 2020-04-12 2020-04-13 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18
## 1 761 805 889 931 990 1049 1329
## 2020-04-19 2020-04-20 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25
## 1 1398 1490 1640 1812 1925 2049 2215
## 2020-04-26 2020-04-27 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02
## 1 2357 2531 2784 2953 3163 3555 3765
## 2020-05-03 2020-05-04 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09
## 1 4134 4476 5431 6783 7798 9120 10144
## 2020-05-10 2020-05-11 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16
## 1 11457 12737 15257 17622 19051 21869 23666
## 2020-05-17 2020-05-18 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23
## 1 25722 28748 31634 33478 36040 39003 41236
## 2020-05-24 2020-05-25 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30
## 1 43520 45668 48450 51022 54553 57013 58883
## 2020-05-31 2020-06-01 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06
## 1 62442 64306 65790 68159 68965 70616 71791
## 2020-06-07 2020-06-08 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13
## 1 72817 74524 76339 77954 80019 81029 82548
## 2020-06-14 2020-06-15 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20
## 1 84720 87890 89540 91662 93915 95764 98917
## 2020-06-21 2020-06-22 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27
## 1 101130 105175 109885 112797 117882 120471 122128
## 2020-06-28 2020-06-29 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04
## 1 124755 127118 130766 132760 137669 140614 143256
## 2020-07-05 2020-07-06 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11
## 1 145236 149634 154839 158050 161096 163026 165396
## 2020-07-12 2020-07-13 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18
## 1 167138 169842 177560 183048 187622 191161 194218
## 2020-07-19 2020-07-20 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25
## 1 197735 203259 207259 210398 213490 215731 217782
## 2020-07-26 2020-07-27 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01
## 1 220323 222936 225624 228569 231198 235658 237548
## 2020-08-02 2020-08-03 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08
## 1 240081 242055 243713 245314 247089 248948 250440
## 2020-08-09 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15
## 1 252039 253478 255118 257269 260393 262959 264487
## 2020-08-16 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22
## 1 266953 268385 272911 274091 275476 277067 278441
## 2020-08-23 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29
## 1 280143 282888 283932 284945 286255 287403 288441
## 2020-08-30 2020-08-31 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05
## 1 289667 290796 291514 292510 293964 295063 295842
## 2020-09-06 2020-09-07 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12
## 1 296737 297623 298246 298966 299998 300933 301836
## 2020-09-13 2020-09-14 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19
## 1 302870 303930 305022 306004 307207 308352 309430
## 2020-09-20 2020-09-21 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26
## 1 310439 311499 312684 313786 314793 315636 316405
## 2020-09-27 2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03
## 1 317005 317846 318542 319154 319746 320348 320974
## 2020-10-04 2020-10-05 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10
## 1 321485 322055 322612 323208 323769 324282 324737
## 2020-10-11 2020-10-12 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17
## 1 325330 325839 326339 326820 327327 327795 328165
## 2020-10-18 2020-10-19 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24
## 1 328538 328895 329270 329715 330181 330578 330995
## 2020-10-25 2020-10-26 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31
## 1 331330 331691 332117 332550 333005 333409 333842
## 2020-11-01 2020-11-02 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07
## 1 334236 334672 335153 335594 336068 336533 336966
## 2020-11-08 2020-11-09 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14
## 1 337386 337788 338281 338702 339114 339568 339947
## 2020-11-15 2020-11-16 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21
## 1 340304 340668 341104 341515 341956 342404 342882
## 2020-11-22 2020-11-23 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28
## 1 343371 343816 344311 344787 345215 345622 346023
## 2020-11-29 2020-11-30 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05
## 1 346409 346802 347176 347513 347881 348238 348562
## 2020-12-06 2020-12-07 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12
## 1 348879 349168 349414 349624 349872 350108 350347
## 2020-12-13 2020-12-14 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19
## 1 350549 350792 350993 351192 351365 351573 351722
## 2020-12-20 2020-12-21 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26
## 1 351878 352089 352249 352418 352608 352815 353004
## 2020-12-27 2020-12-28 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02
## 1 353179 353353 353512 353682 353853 354081 354263
## 2021-01-03 2021-01-04 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09
## 1 354443 354609 354755 354899 355037 355208 355382
## 2021-01-10 2021-01-11 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16
## 1 355548 355706 355857 356013 356201 356382 356541
## 2021-01-17 2021-01-18 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23
## 1 356687 356848 357004 357177 357337 357525 357728
## 2021-01-24 2021-01-25 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30
## 1 357939 358137 358340 358545 358753 359006 359299
## 2021-01-31 2021-02-01 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06
## 1 359573 359839 360110 360400 360697 360954 361237
## 2021-02-07 2021-02-08 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13
## 1 361515 361813 362062 362368 362642 362947 363303
## 2021-02-14 2021-02-15 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20
## 1 363585 363926 364297 364646 365017 365363 365745
## 2021-02-21 2021-02-22 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27
## 1 366094 366412 366735 367015 367323 367691 368011
## 2021-02-28 2021-03-01 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06
## 1 368305 368640 368926 369277 369613 369922 370300
## 2021-03-07 2021-03-08 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13
## 1 370614 371032 371338 371583 371850 372217 372456
## 2021-03-14 2021-03-15 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20
## 1 372703 372926 373130 373361 373601 373864 374135
## 2021-03-21 2021-03-22 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27
## 1 374412 374799 375165 375471 375831 376203 376558
## 2021-03-28 2021-03-29 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03
## 1 376947 377304 377714 378083 378469 378873 379312
## 2021-04-04 2021-04-05 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10
## 1 379816 380305 380772 381189 381658 382198 382773
## 2021-04-11 2021-04-12 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17
## 1 383321 384027 384635 385441 386102 387020 387795
## 2021-04-18 2021-04-19 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24
## 1 388702 389598 390538 391362 392448 393671 394529
## 2021-04-25 2021-04-26 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01
## 1 395557 396604 397587 398454 399509 400580 401544
## 2021-05-02 2021-05-03 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08
## 1 402664 403702 404707 405607 406589 407650 408676
## 2021-05-09 2021-05-10 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15
## 1 409740 410816 412102 413010 414139 415747 416759
## 2021-05-16 2021-05-17 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22
## 1 417787 418914 419761 420671 421726 422706 423795
## 2021-05-23 2021-05-24 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29
## 1 424690 425677 426589 427462 428502 429663 430937
## 2021-05-30 2021-05-31 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05
## 1 432138 433413 434439 435520 436884 438206 439459
## 2021-06-06 2021-06-07 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12
## 1 440644 441860 442782 443810 443810 446054 446960
## 2021-06-13 2021-06-14 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19
## 1 448093 449241 450255 451187 452209 453259 454404
## 2021-06-20 2021-06-21 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26
## 1 455618 457128 458048 459091 460338 461628 463004
## 2021-06-27 2021-06-28 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03
## 1 464256 465546 466578 467633 469120 470328 471550
## 2021-07-04 2021-07-05 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10
## 1 472939 474368 475448 476643 478127 479709 481225
## 2021-07-11 2021-07-12 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17
## 1 482414 483937 484883 486011 486918 488883 489553
## 2021-07-18 2021-07-19 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24
## 1 490696 492149 493240 494264 495650 496810 497965
## 2021-07-25 2021-07-26 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31
## 1 499129 500428 501449 502528 502528 502528 506089
## 2021-08-01 2021-08-02 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07
## 1 507374 507374 507374 507374 0 0 0
## 2021-08-08 2021-08-09 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14
## 1 0 0 0 0 0 0 0
## 2021-08-15 2021-08-16 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21
## 1 0 0 0 0 0 0 0
## 2021-08-22 2021-08-23 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28
## 1 0 0 0 0 0 0 0
## 2021-08-29 2021-08-30 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04
## 1 0 0 0 0 0 0 0
## 2021-09-05 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11
## 1 0 0 0 0 0 0 0
## 2021-09-12 2021-09-13 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18
## 1 0 0 0 0 0 0 0
## 2021-09-19 2021-09-20 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25
## 1 0 0 0 0 0 0 0
## 2021-09-26 2021-09-27 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02
## 1 0 0 0 0 0 0 0
## 2021-10-03 2021-10-04 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09
## 1 0 0 0 0 0 0 0
## 2021-10-10 2021-10-11 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16
## 1 0 0 0 0 0 0 0
## 2021-10-17 2021-10-18 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23
## 1 0 0 0 0 0 0 0
## 2021-10-24 2021-10-25 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30
## 1 0 0 0 0 0 0 0
## 2021-10-31 2021-11-01 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06
## 1 0 0 0 0 0 0 0
## 2021-11-07 2021-11-08 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13
## 1 0 0 0 0 0 0 0
## 2021-11-14 2021-11-15 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20
## 1 0 0 0 0 0 0 0
## 2021-11-21 2021-11-22 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27
## 1 0 0 0 0 0 0 0
## 2021-11-28 2021-11-29 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04
## 1 0 0 0 0 0 0 0
## 2021-12-05 2021-12-06 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11
## 1 0 0 0 0 0 0 0
## 2021-12-12 2021-12-13 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18
## 1 0 0 0 0 0 0 0
## 2021-12-19 2021-12-20 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25
## 1 0 0 0 0 0 0 0
## 2021-12-26 2021-12-27 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01
## 1 0 0 0 0 0 0 0
## 2022-01-02 2022-01-03 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08
## 1 0 0 0 0 0 0 0
## 2022-01-09 2022-01-10 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15
## 1 0 0 0 0 0 0 0
## 2022-01-16 2022-01-17 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22
## 1 0 0 0 0 0 0 0
## 2022-01-23 2022-01-24 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29
## 1 0 0 0 0 0 0 0
## 2022-01-30 2022-01-31 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05
## 1 0 0 0 0 0 0 0
## 2022-02-06 2022-02-07 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12
## 1 0 0 0 0 0 0 0
## 2022-02-13 2022-02-14 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19
## 1 0 0 0 0 0 0 0
## 2022-02-20 2022-02-21 2022-02-22 NA NA
## 1 0 0 0 0 0
# total for death cases for "ALL" the regions
tots.per.location(covid19.TS.deaths)
## AFGHANISTAN -- 7574
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1697.77 -628.48 84.86 628.06 1527.37
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1314.0427 62.4951 -21.03 <2e-16 ***
## x.var 11.9096 0.1415 84.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 862.9 on 762 degrees of freedom
## Multiple R-squared: 0.9028, Adjusted R-squared: 0.9027
## F-statistic: 7080 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9643 -0.6932 0.1986 1.1297 2.0028
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3947336 0.1078933 31.46 <2e-16 ***
## x.var 0.0093379 0.0002444 38.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.49 on 762 degrees of freedom
## Multiple R-squared: 0.6571, Adjusted R-squared: 0.6567
## F-statistic: 1460 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -34.695 -15.625 2.273 8.268 30.594
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.032e+00 2.136e-03 2824 <2e-16 ***
## x.var 4.286e-03 3.634e-06 1179 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1991983 on 763 degrees of freedom
## Residual deviance: 241270 on 762 degrees of freedom
## AIC: 247883
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ALBANIA -- 3453
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -453.16 -153.48 -40.21 199.83 566.23
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -571.6261 19.3842 -29.49 <2e-16 ***
## x.var 5.3935 0.0439 122.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 267.6 on 762 degrees of freedom
## Multiple R-squared: 0.9519, Adjusted R-squared: 0.9519
## F-statistic: 1.509e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0059 -0.6286 0.1344 1.0198 1.3052
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5444760 0.0820792 31.00 <2e-16 ***
## x.var 0.0094175 0.0001859 50.66 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.133 on 762 degrees of freedom
## Multiple R-squared: 0.7711, Adjusted R-squared: 0.7708
## F-statistic: 2566 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -22.797 -19.175 -5.548 10.769 25.160
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.307e+00 3.110e-03 1706.1 <2e-16 ***
## x.var 4.195e-03 5.312e-06 789.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 967726 on 763 degrees of freedom
## Residual deviance: 189378 on 762 degrees of freedom
## AIC: 195383
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ALGERIA -- 6816
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -639.83 -107.65 10.88 194.76 593.34
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -599.24489 22.88188 -26.19 <2e-16 ***
## x.var 9.42030 0.05182 181.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 315.9 on 762 degrees of freedom
## Multiple R-squared: 0.9775, Adjusted R-squared: 0.9774
## F-statistic: 3.304e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6645 -0.4977 0.3003 1.1205 1.3611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2845375 0.1072485 39.95 <2e-16 ***
## x.var 0.0075997 0.0002429 31.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.481 on 762 degrees of freedom
## Multiple R-squared: 0.5623, Adjusted R-squared: 0.5617
## F-statistic: 978.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -37.713 -9.587 2.227 8.004 16.370
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.392e+00 1.994e-03 3206.3 <2e-16 ***
## x.var 3.490e-03 3.516e-06 992.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1318085 on 763 degrees of freedom
## Residual deviance: 161752 on 762 degrees of freedom
## AIC: 168560
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ANDORRA -- 151
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.953 -11.420 1.304 10.005 21.534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.231451 0.888216 16.02 <2e-16 ***
## x.var 0.195364 0.002012 97.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.26 on 762 degrees of freedom
## Multiple R-squared: 0.9252, Adjusted R-squared: 0.9251
## F-statistic: 9431 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6952 -0.3753 0.3780 0.5471 1.0103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.4319161 0.0657256 37.00 <2e-16 ***
## x.var 0.0043886 0.0001489 29.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9075 on 762 degrees of freedom
## Multiple R-squared: 0.5329, Adjusted R-squared: 0.5322
## F-statistic: 869.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.6316 -1.4674 0.4654 1.3989 3.0908
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.479e+00 9.937e-03 350.1 <2e-16 ***
## x.var 2.307e-03 1.873e-05 123.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 23233.9 on 763 degrees of freedom
## Residual deviance: 6896.2 on 762 degrees of freedom
## AIC: 11324
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ANGOLA -- 1899
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -300.99 -158.68 -77.87 199.25 405.43
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -408.22645 14.31011 -28.53 <2e-16 ***
## x.var 2.80048 0.03241 86.41 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 197.6 on 762 degrees of freedom
## Multiple R-squared: 0.9074, Adjusted R-squared: 0.9073
## F-statistic: 7466 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9421 -0.9446 0.0412 0.9584 1.5101
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2588902 0.0722923 17.41 <2e-16 ***
## x.var 0.0101976 0.0001637 62.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9981 on 762 degrees of freedom
## Multiple R-squared: 0.8358, Adjusted R-squared: 0.8356
## F-statistic: 3879 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -16.260 -10.314 1.723 4.589 8.288
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.894e+00 5.376e-03 724.2 <2e-16 ***
## x.var 5.244e-03 8.826e-06 594.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 529284 on 763 degrees of freedom
## Residual deviance: 42489 on 762 degrees of freedom
## AIC: 47691
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ANTARCTICA -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: algorithm did not converge
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.730e+01 3.728e+04 -0.001 0.999
## x.var 3.508e-16 8.443e+01 0.000 1.000
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 0.0000e+00 on 763 degrees of freedom
## Residual deviance: 2.1221e-09 on 762 degrees of freedom
## AIC: 4
##
## Number of Fisher Scoring iterations: 25
##
## --------------------------------------------------------------------------------
## ANTIGUA AND BARBUDA -- 135
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.684 -17.525 -6.288 19.125 37.389
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -30.112576 1.460960 -20.61 <2e-16 ***
## x.var 0.168740 0.003309 51.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.17 on 762 degrees of freedom
## Multiple R-squared: 0.7734, Adjusted R-squared: 0.7731
## F-statistic: 2601 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.63707 -0.26312 -0.01099 0.26456 0.81598
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.731e-02 2.564e-02 -0.675 0.5
## x.var 6.833e-03 5.806e-05 117.681 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.354 on 762 degrees of freedom
## Multiple R-squared: 0.9478, Adjusted R-squared: 0.9478
## F-statistic: 1.385e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.3776 -1.5671 -0.4391 1.0007 2.7706
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0210750 0.0287942 0.732 0.464
## x.var 0.0067558 0.0000453 149.134 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 37287.4 on 763 degrees of freedom
## Residual deviance: 1684.6 on 762 degrees of freedom
## AIC: 4863.7
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## ARGENTINA -- 125775
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13734 -7133 -2896 8346 23059
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -23263.469 696.306 -33.41 <2e-16 ***
## x.var 204.572 1.577 129.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9614 on 762 degrees of freedom
## Multiple R-squared: 0.9567, Adjusted R-squared: 0.9566
## F-statistic: 1.683e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9709 -1.0271 0.4056 1.4736 2.3531
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3853533 0.1354468 32.38 <2e-16 ***
## x.var 0.0127304 0.0003068 41.50 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.87 on 762 degrees of freedom
## Multiple R-squared: 0.6933, Adjusted R-squared: 0.6928
## F-statistic: 1722 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -156.09 -122.72 11.28 65.98 102.35
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.821e+00 5.238e-04 16840 <2e-16 ***
## x.var 4.360e-03 8.884e-07 4907 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 37020606 on 763 degrees of freedom
## Residual deviance: 6505382 on 762 degrees of freedom
## AIC: 6513770
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ARMENIA -- 8378
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -793.1 -368.7 -119.4 325.7 1279.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.291e+03 3.911e+01 -33.02 <2e-16 ***
## x.var 1.167e+01 8.859e-02 131.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 540 on 762 degrees of freedom
## Multiple R-squared: 0.9579, Adjusted R-squared: 0.9579
## F-statistic: 1.735e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7051 -0.7858 0.2892 1.2833 1.6410
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0709140 0.1043362 29.43 <2e-16 ***
## x.var 0.0099093 0.0002363 41.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.441 on 762 degrees of freedom
## Multiple R-squared: 0.6977, Adjusted R-squared: 0.6973
## F-statistic: 1758 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -32.689 -14.581 -4.414 14.756 22.822
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.006e+00 2.161e-03 2779 <2e-16 ***
## x.var 4.293e-03 3.676e-06 1168 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1955228 on 763 degrees of freedom
## Residual deviance: 237482 on 762 degrees of freedom
## AIC: 244010
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## AUSTRALIA -- 5062
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -692.23 -294.76 -11.83 167.78 2752.15
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -341.30717 38.50835 -8.863 <2e-16 ***
## x.var 3.47010 0.08722 39.787 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 531.7 on 762 degrees of freedom
## Multiple R-squared: 0.6751, Adjusted R-squared: 0.6746
## F-statistic: 1583 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5512 -0.5542 0.1678 0.7414 1.7223
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2676639 0.0842500 38.78 <2e-16 ***
## x.var 0.0072700 0.0001908 38.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.163 on 762 degrees of freedom
## Multiple R-squared: 0.6558, Adjusted R-squared: 0.6553
## F-statistic: 1452 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -18.422 -11.509 -5.334 8.825 30.587
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.976e+00 3.749e-03 1327.4 <2e-16 ***
## x.var 4.045e-03 6.443e-06 627.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 606447 on 763 degrees of freedom
## Residual deviance: 121163 on 762 degrees of freedom
## AIC: 127112
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## AUSTRIA -- 14661
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3086.75 -869.63 -20.32 1267.22 2183.48
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2205.9728 102.5846 -21.5 <2e-16 ***
## x.var 22.4901 0.2323 96.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1416 on 762 degrees of freedom
## Multiple R-squared: 0.9248, Adjusted R-squared: 0.9247
## F-statistic: 9370 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4958 -0.6837 0.4273 1.0644 1.4756
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0272418 0.1068133 37.70 <2e-16 ***
## x.var 0.0093714 0.0002419 38.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.475 on 762 degrees of freedom
## Multiple R-squared: 0.6632, Adjusted R-squared: 0.6628
## F-statistic: 1501 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -48.26 -35.20 -18.23 29.37 48.73
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.849e+00 1.471e-03 4656 <2e-16 ***
## x.var 4.040e-03 2.528e-06 1598 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4043301 on 763 degrees of freedom
## Residual deviance: 901555 on 762 degrees of freedom
## AIC: 908683
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## AZERBAIJAN -- 9307
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1285.08 -453.97 -50.67 505.12 1701.70
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1714.8221 48.8045 -35.14 <2e-16 ***
## x.var 13.1220 0.1105 118.71 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 673.8 on 762 degrees of freedom
## Multiple R-squared: 0.9487, Adjusted R-squared: 0.9486
## F-statistic: 1.409e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2322 -0.7863 0.3101 1.0453 1.5320
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.6913653 0.0919845 29.26 <2e-16 ***
## x.var 0.0106042 0.0002083 50.90 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.27 on 762 degrees of freedom
## Multiple R-squared: 0.7727, Adjusted R-squared: 0.7724
## F-statistic: 2591 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -29.289 -21.122 -6.347 15.505 26.718
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.770e+00 2.262e-03 2551 <2e-16 ***
## x.var 4.781e-03 3.774e-06 1267 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2402965 on 763 degrees of freedom
## Residual deviance: 287984 on 762 degrees of freedom
## AIC: 294442
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BAHAMAS -- 770
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -151.12 -79.95 -12.66 90.99 151.30
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -147.9738 6.8443 -21.62 <2e-16 ***
## x.var 1.0243 0.0155 66.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 94.5 on 762 degrees of freedom
## Multiple R-squared: 0.8514, Adjusted R-squared: 0.8512
## F-statistic: 4367 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.91710 -0.29640 -0.08418 0.52224 1.31470
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3432815 0.0558566 24.05 <2e-16 ***
## x.var 0.0081974 0.0001265 64.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7712 on 762 degrees of freedom
## Multiple R-squared: 0.8464, Adjusted R-squared: 0.8462
## F-statistic: 4199 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.3042 -4.6952 -0.7996 3.0613 7.1135
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.920e+00 8.812e-03 331.3 <2e-16 ***
## x.var 5.200e-03 1.449e-05 358.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 190955 on 763 degrees of freedom
## Residual deviance: 14115 on 762 degrees of freedom
## AIC: 18802
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BAHRAIN -- 1444
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -268.69 -125.62 -27.69 137.00 355.88
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -285.67652 12.75233 -22.40 <2e-16 ***
## x.var 2.43961 0.02888 84.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 176.1 on 762 degrees of freedom
## Multiple R-squared: 0.9035, Adjusted R-squared: 0.9034
## F-statistic: 7135 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5708 -0.7571 0.3428 0.7694 1.2539
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1016379 0.0741460 28.34 <2e-16 ***
## x.var 0.0086886 0.0001679 51.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.024 on 762 degrees of freedom
## Multiple R-squared: 0.7784, Adjusted R-squared: 0.7781
## F-statistic: 2677 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -18.5182 -10.7238 -0.7184 2.6495 18.5159
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.336e+00 4.878e-03 888.9 <2e-16 ***
## x.var 4.437e-03 8.247e-06 538.0 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 434516 on 763 degrees of freedom
## Residual deviance: 65153 on 762 degrees of freedom
## AIC: 70594
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BANGLADESH -- 28995
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5108.2 -2521.4 46.8 2436.8 5467.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5512.5483 223.6043 -24.65 <2e-16 ***
## x.var 45.1952 0.5064 89.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3087 on 762 degrees of freedom
## Multiple R-squared: 0.9127, Adjusted R-squared: 0.9126
## F-statistic: 7964 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6096 -0.7626 0.2087 1.3598 1.9944
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0164899 0.1232393 32.59 <2e-16 ***
## x.var 0.0105919 0.0002791 37.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.702 on 762 degrees of freedom
## Multiple R-squared: 0.654, Adjusted R-squared: 0.6535
## F-statistic: 1440 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -68.028 -31.860 2.619 15.833 50.300
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.171e+00 1.162e-03 6170 <2e-16 ***
## x.var 4.554e-03 1.956e-06 2328 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7761691 on 763 degrees of freedom
## Residual deviance: 767445 on 762 degrees of freedom
## AIC: 774909
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BARBADOS -- 311
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -74.71 -41.46 -13.63 36.69 135.01
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -58.670219 3.839082 -15.28 <2e-16 ***
## x.var 0.307946 0.008695 35.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 53.01 on 762 degrees of freedom
## Multiple R-squared: 0.6221, Adjusted R-squared: 0.6216
## F-statistic: 1254 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9071 -0.4112 0.0794 0.3354 1.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.967e-01 3.326e-02 11.93 <2e-16 ***
## x.var 6.896e-03 7.532e-05 91.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4592 on 762 degrees of freedom
## Multiple R-squared: 0.9167, Adjusted R-squared: 0.9166
## F-statistic: 8383 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.2904 -1.6038 0.1049 1.7728 3.7712
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.0049683 0.0245534 0.202 0.84
## x.var 0.0076415 0.0000379 201.631 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 74267.1 on 763 degrees of freedom
## Residual deviance: 3410.5 on 762 degrees of freedom
## AIC: 6961.1
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## BELARUS -- 6407
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -483.4 -360.5 -144.6 288.5 995.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -997.20561 30.81214 -32.36 <2e-16 ***
## x.var 8.38823 0.06979 120.20 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 425.4 on 762 degrees of freedom
## Multiple R-squared: 0.9499, Adjusted R-squared: 0.9498
## F-statistic: 1.445e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.761 -0.648 0.380 1.051 1.445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.130655 0.099336 31.52 <2e-16 ***
## x.var 0.009135 0.000225 40.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.372 on 762 degrees of freedom
## Multiple R-squared: 0.6839, Adjusted R-squared: 0.6835
## F-statistic: 1649 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -26.3490 -8.5422 0.8757 7.2989 10.6116
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.541e+00 2.655e-03 2087.2 <2e-16 ***
## x.var 4.479e-03 4.481e-06 999.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1377080 on 763 degrees of freedom
## Residual deviance: 96947 on 762 degrees of freedom
## AIC: 103287
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BELGIUM -- 30076
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4658.6 -2414.0 -81.8 2286.9 3776.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2252.4836 183.1537 12.30 <2e-16 ***
## x.var 40.1284 0.4148 96.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2529 on 762 degrees of freedom
## Multiple R-squared: 0.9247, Adjusted R-squared: 0.9246
## F-statistic: 9358 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.4737 -0.7328 0.5618 1.2489 2.1365
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.1074986 0.1468416 41.59 <2e-16 ***
## x.var 0.0074740 0.0003326 22.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.027 on 762 degrees of freedom
## Multiple R-squared: 0.3986, Adjusted R-squared: 0.3978
## F-statistic: 505 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -117.823 -22.135 1.881 30.064 46.019
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.719e+00 7.152e-04 12191 <2e-16 ***
## x.var 2.405e-03 1.340e-06 1795 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4971854 on 763 degrees of freedom
## Residual deviance: 1481260 on 762 degrees of freedom
## AIC: 1489427
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BELIZE -- 648
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -94.811 -53.019 5.029 54.409 112.960
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.139e+02 4.123e+00 -27.62 <2e-16 ***
## x.var 9.228e-01 9.339e-03 98.81 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56.93 on 762 degrees of freedom
## Multiple R-squared: 0.9276, Adjusted R-squared: 0.9275
## F-statistic: 9764 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3824 -0.7574 -0.2590 0.7646 1.7185
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4769980 0.0670620 7.113 2.62e-12 ***
## x.var 0.0096608 0.0001519 63.606 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9259 on 762 degrees of freedom
## Multiple R-squared: 0.8415, Adjusted R-squared: 0.8413
## F-statistic: 4046 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -10.705 -7.869 -1.463 3.518 11.401
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.253e+00 8.194e-03 397.0 <2e-16 ***
## x.var 4.589e-03 1.377e-05 333.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 180145 on 763 degrees of freedom
## Residual deviance: 36393 on 762 degrees of freedom
## AIC: 40802
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BENIN -- 163
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.8727 -7.8211 0.1373 7.3686 24.4138
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -22.757581 0.809447 -28.11 <2e-16 ***
## x.var 0.255014 0.001833 139.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.18 on 762 degrees of freedom
## Multiple R-squared: 0.9621, Adjusted R-squared: 0.9621
## F-statistic: 1.935e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6174 -0.6103 0.0776 0.5468 1.2550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1269024 0.0549011 20.53 <2e-16 ***
## x.var 0.0065393 0.0001243 52.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.758 on 762 degrees of freedom
## Multiple R-squared: 0.784, Adjusted R-squared: 0.7837
## F-statistic: 2766 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.6736 -2.6653 0.4608 1.6570 3.3124
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.487e+00 1.331e-02 186.8 <2e-16 ***
## x.var 3.881e-03 2.305e-05 168.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 40300.8 on 763 degrees of freedom
## Residual deviance: 5903.2 on 762 degrees of freedom
## AIC: 9912
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BHUTAN -- 6
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.01833 -0.47251 -0.04552 0.44030 2.76031
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.660e-01 4.400e-02 -21.95 <2e-16 ***
## x.var 5.527e-03 9.966e-05 55.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6076 on 762 degrees of freedom
## Multiple R-squared: 0.8014, Adjusted R-squared: 0.8011
## F-statistic: 3075 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.50119 -0.15171 0.02918 0.15567 0.40787
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.912e-01 1.559e-02 -25.09 <2e-16 ***
## x.var 2.535e-03 3.531e-05 71.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2153 on 762 degrees of freedom
## Multiple R-squared: 0.8712, Adjusted R-squared: 0.871
## F-statistic: 5154 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8919 -0.5262 -0.3088 0.3023 0.9784
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.2426863 0.1532583 -21.16 <2e-16 ***
## x.var 0.0065341 0.0002424 26.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1340.80 on 763 degrees of freedom
## Residual deviance: 202.82 on 762 degrees of freedom
## AIC: 1253.5
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BOLIVIA -- 21406
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2221.83 -1002.57 26.23 996.04 1926.52
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1959.1015 83.7278 -23.4 <2e-16 ***
## x.var 32.5792 0.1896 171.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1156 on 762 degrees of freedom
## Multiple R-squared: 0.9748, Adjusted R-squared: 0.9748
## F-statistic: 2.952e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.651 -1.127 0.344 1.467 2.491
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.9435575 0.1348353 29.25 <2e-16 ***
## x.var 0.0105508 0.0003054 34.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 762 degrees of freedom
## Multiple R-squared: 0.6104, Adjusted R-squared: 0.6099
## F-statistic: 1194 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -74.067 -41.201 9.406 27.591 38.131
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.669e+00 1.060e-03 7237 <2e-16 ***
## x.var 3.443e-03 1.873e-06 1838 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5183900 on 763 degrees of freedom
## Residual deviance: 1232779 on 762 degrees of freedom
## AIC: 1240157
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BOSNIA AND HERZEGOVINA -- 15380
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2210.5 -835.8 5.7 826.9 2857.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2879.8281 83.0402 -34.68 <2e-16 ***
## x.var 22.1976 0.1881 118.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1147 on 762 degrees of freedom
## Multiple R-squared: 0.9481, Adjusted R-squared: 0.9481
## F-statistic: 1.393e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6324 -0.7562 0.5139 0.9802 1.5566
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9821239 0.0965664 30.88 <2e-16 ***
## x.var 0.0110215 0.0002187 50.39 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.333 on 762 degrees of freedom
## Multiple R-squared: 0.7692, Adjusted R-squared: 0.7689
## F-statistic: 2539 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -39.99 -33.86 -11.54 21.31 45.34
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.314e+00 1.730e-03 3650 <2e-16 ***
## x.var 4.755e-03 2.889e-06 1646 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4180242 on 763 degrees of freedom
## Residual deviance: 618603 on 762 degrees of freedom
## AIC: 625397
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BOTSWANA -- 2614
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -668.13 -443.20 31.47 386.16 745.85
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -749.96241 31.54433 -23.77 <2e-16 ***
## x.var 4.11352 0.07144 57.58 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 435.5 on 762 degrees of freedom
## Multiple R-squared: 0.8131, Adjusted R-squared: 0.8129
## F-statistic: 3315 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.59191 -0.45021 0.00616 0.59380 1.20700
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5186435 0.0499943 -10.37 <2e-16 ***
## x.var 0.0130623 0.0001132 115.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6903 on 762 degrees of freedom
## Multiple R-squared: 0.9458, Adjusted R-squared: 0.9458
## F-statistic: 1.331e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -29.372 -12.237 -7.949 6.298 24.814
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.037e+00 6.082e-03 499.3 <2e-16 ***
## x.var 7.011e-03 9.513e-06 737.0 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1008580 on 763 degrees of freedom
## Residual deviance: 117268 on 762 degrees of freedom
## AIC: 121892
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BRAZIL -- 646714
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -71077 -37894 -10148 41092 96015
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -97057.669 3356.629 -28.91 <2e-16 ***
## x.var 1042.985 7.602 137.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 46340 on 762 degrees of freedom
## Multiple R-squared: 0.9611, Adjusted R-squared: 0.961
## F-statistic: 1.882e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.232 -1.031 0.672 1.769 2.567
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5731480 0.1776565 37.00 <2e-16 ***
## x.var 0.0119768 0.0004024 29.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.453 on 762 degrees of freedom
## Multiple R-squared: 0.5376, Adjusted R-squared: 0.537
## F-statistic: 886 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -347.52 -177.23 28.72 84.77 226.59
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.075e+01 2.115e-04 50855 <2e-16 ***
## x.var 3.948e-03 3.650e-07 10816 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 167986154 on 763 degrees of freedom
## Residual deviance: 25184526 on 762 degrees of freedom
## AIC: 25194353
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

## BRUNEI -- 112
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.451 -21.070 -0.759 17.366 47.396
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -24.07768 1.77483 -13.57 <2e-16 ***
## x.var 0.11623 0.00402 28.91 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.5 on 762 degrees of freedom
## Multiple R-squared: 0.5232, Adjusted R-squared: 0.5225
## F-statistic: 836 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5610 -0.5719 0.1010 0.5712 1.1976
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1803060 0.0545437 -3.306 0.000992 ***
## x.var 0.0053832 0.0001235 43.577 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7531 on 762 degrees of freedom
## Multiple R-squared: 0.7136, Adjusted R-squared: 0.7133
## F-statistic: 1899 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.7283 -1.6323 0.1875 1.6463 5.0655
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.274e+00 5.189e-02 -43.82 <2e-16 ***
## x.var 9.513e-03 7.768e-05 122.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 35279.1 on 763 degrees of freedom
## Residual deviance: 4475.4 on 762 degrees of freedom
## AIC: 7054.9
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BULGARIA -- 35298
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5383.5 -2136.7 -576.8 2338.6 6987.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7035.5021 222.3968 -31.64 <2e-16 ***
## x.var 48.1298 0.5037 95.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3071 on 762 degrees of freedom
## Multiple R-squared: 0.923, Adjusted R-squared: 0.9229
## F-statistic: 9130 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5176 -0.8182 0.4642 0.8962 1.7795
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9129666 0.0959318 30.36 <2e-16 ***
## x.var 0.0123388 0.0002173 56.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.325 on 762 degrees of freedom
## Multiple R-squared: 0.8089, Adjusted R-squared: 0.8086
## F-statistic: 3225 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -53.87 -47.89 -12.10 31.95 62.88
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.728e+00 1.300e-03 5174 <2e-16 ***
## x.var 5.258e-03 2.134e-06 2464 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 9613745 on 763 degrees of freedom
## Residual deviance: 1229611 on 762 degrees of freedom
## AIC: 1236753
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BURKINA FASO -- 375
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53.271 -24.011 -5.167 18.756 91.039
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -30.029664 2.312931 -12.98 <2e-16 ***
## x.var 0.419213 0.005238 80.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.93 on 762 degrees of freedom
## Multiple R-squared: 0.8937, Adjusted R-squared: 0.8935
## F-statistic: 6404 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5899 -0.3434 0.2427 0.4880 1.0595
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2880584 0.0598468 38.23 <2e-16 ***
## x.var 0.0053902 0.0001355 39.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8263 on 762 degrees of freedom
## Multiple R-squared: 0.6748, Adjusted R-squared: 0.6744
## F-statistic: 1581 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.7253 -1.0445 0.0885 1.5058 3.6925
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.194e+00 9.717e-03 328.7 <2e-16 ***
## x.var 3.603e-03 1.704e-05 211.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 58502.6 on 763 degrees of freedom
## Residual deviance: 5559.7 on 762 degrees of freedom
## AIC: 10179
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## BURMA -- 19349
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6911.6 -2450.9 -34.1 3429.3 5267.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5296.5867 262.6224 -20.17 <2e-16 ***
## x.var 29.4748 0.5948 49.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3626 on 762 degrees of freedom
## Multiple R-squared: 0.7632, Adjusted R-squared: 0.7629
## F-statistic: 2456 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0676 -1.0425 -0.2151 0.9326 2.3079
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6339165 0.0929594 6.819 1.86e-11 ***
## x.var 0.0147960 0.0002105 70.277 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.283 on 762 degrees of freedom
## Multiple R-squared: 0.8663, Adjusted R-squared: 0.8662
## F-statistic: 4939 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -72.61 -28.86 -18.30 14.59 57.59
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.128e+00 2.208e-03 2323 <2e-16 ***
## x.var 6.835e-03 3.467e-06 1972 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6958325 on 763 degrees of freedom
## Residual deviance: 686551 on 762 degrees of freedom
## AIC: 692616
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BURUNDI -- 38
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.383 -8.893 1.369 7.361 15.254
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.034941 0.629775 -17.52 <2e-16 ***
## x.var 0.060431 0.001426 42.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.695 on 762 degrees of freedom
## Multiple R-squared: 0.702, Adjusted R-squared: 0.7016
## F-statistic: 1795 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.74475 -0.36579 -0.03615 0.32228 0.93857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.446e-01 2.997e-02 -14.83 <2e-16 ***
## x.var 5.670e-03 6.789e-05 83.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4138 on 762 degrees of freedom
## Multiple R-squared: 0.9015, Adjusted R-squared: 0.9014
## F-statistic: 6976 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.6291 -1.0370 -0.7531 0.1548 4.8507
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.1976811 0.0503440 -23.79 <2e-16 ***
## x.var 0.0070307 0.0000787 89.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 14967.8 on 763 degrees of freedom
## Residual deviance: 1847.2 on 762 degrees of freedom
## AIC: 4243.8
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CABO VERDE -- 401
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37.585 -23.299 -3.611 22.102 67.929
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -68.54478 1.86308 -36.79 <2e-16 ***
## x.var 0.61596 0.00422 145.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.72 on 762 degrees of freedom
## Multiple R-squared: 0.9655, Adjusted R-squared: 0.9654
## F-statistic: 2.131e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6246 -0.7645 0.2267 0.6904 1.2195
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1292263 0.0587900 19.21 <2e-16 ***
## x.var 0.0079897 0.0001332 60.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8117 on 762 degrees of freedom
## Multiple R-squared: 0.8253, Adjusted R-squared: 0.8251
## F-statistic: 3601 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.5228 -5.2106 0.6763 2.5357 5.9400
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.055e+00 9.435e-03 323.8 <2e-16 ***
## x.var 4.306e-03 1.604e-05 268.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 106340 on 763 degrees of freedom
## Residual deviance: 15425 on 762 degrees of freedom
## AIC: 19879
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CAMBODIA -- 3023
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1058.23 -596.51 75.95 625.09 900.40
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -904.7690 47.2880 -19.13 <2e-16 ***
## x.var 4.3737 0.1071 40.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 652.9 on 762 degrees of freedom
## Multiple R-squared: 0.6864, Adjusted R-squared: 0.686
## F-statistic: 1668 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4776 -1.0442 0.3753 1.2535 2.4780
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.492456 0.111260 -22.40 <2e-16 ***
## x.var 0.014420 0.000252 57.23 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.536 on 762 degrees of freedom
## Multiple R-squared: 0.8112, Adjusted R-squared: 0.811
## F-statistic: 3275 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -36.976 -13.422 -6.673 -2.904 24.052
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.3843883 0.0084116 164.6 <2e-16 ***
## x.var 0.0094692 0.0000126 751.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1312331 on 763 degrees of freedom
## Residual deviance: 156401 on 762 degrees of freedom
## AIC: 159351
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## CAMEROON -- 1920
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -365.25 -74.14 55.62 112.00 240.93
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -243.69810 11.04520 -22.06 <2e-16 ***
## x.var 2.76832 0.02502 110.66 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 152.5 on 762 degrees of freedom
## Multiple R-squared: 0.9414, Adjusted R-squared: 0.9413
## F-statistic: 1.225e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4594 -0.4920 0.2902 0.8507 1.6348
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9841918 0.0901172 33.12 <2e-16 ***
## x.var 0.0075422 0.0002041 36.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.244 on 762 degrees of freedom
## Multiple R-squared: 0.6418, Adjusted R-squared: 0.6414
## F-statistic: 1366 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -18.3926 -4.4260 0.1825 4.6682 12.2239
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.888e+00 4.022e-03 1215.3 <2e-16 ***
## x.var 3.860e-03 6.969e-06 553.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 420508 on 763 degrees of freedom
## Residual deviance: 48847 on 762 degrees of freedom
## AIC: 54619
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CANADA -- 36255
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2892.3 -1668.0 -260.4 1823.3 3360.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -477.958 139.066 -3.437 0.00062 ***
## x.var 47.348 0.315 150.327 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1920 on 762 degrees of freedom
## Multiple R-squared: 0.9674, Adjusted R-squared: 0.9673
## F-statistic: 2.26e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.1014 -0.7640 0.5554 1.1958 2.1733
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.7137188 0.1433064 39.87 <2e-16 ***
## x.var 0.0082475 0.0003246 25.41 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.979 on 762 degrees of freedom
## Multiple R-squared: 0.4587, Adjusted R-squared: 0.458
## F-statistic: 645.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -105.677 -23.882 1.412 23.988 50.171
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.473e+00 7.611e-04 11133 <2e-16 ***
## x.var 2.897e-03 1.385e-06 2092 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6265217 on 763 degrees of freedom
## Residual deviance: 1361330 on 762 degrees of freedom
## AIC: 1369423
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CENTRAL AFRICAN REPUBLIC -- 113
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.1518 -10.4045 -0.7386 10.7981 24.3375
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.035445 0.948363 6.364 3.39e-10 ***
## x.var 0.154741 0.002148 72.043 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.09 on 762 degrees of freedom
## Multiple R-squared: 0.872, Adjusted R-squared: 0.8718
## F-statistic: 5190 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0546 -0.8245 0.1704 0.8172 1.6724
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3432942 0.0765312 17.55 <2e-16 ***
## x.var 0.0058306 0.0001733 33.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.057 on 762 degrees of freedom
## Multiple R-squared: 0.5976, Adjusted R-squared: 0.597
## F-statistic: 1132 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.6391 -2.3965 0.7111 2.2508 3.8426
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.067e+00 1.191e-02 257.4 <2e-16 ***
## x.var 2.515e-03 2.217e-05 113.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 23929.7 on 763 degrees of freedom
## Residual deviance: 9890.4 on 762 degrees of freedom
## AIC: 13791
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CHAD -- 190
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.656 -17.710 2.969 14.075 33.586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.370939 1.374721 9.726 <2e-16 ***
## x.var 0.270977 0.003114 87.032 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.98 on 762 degrees of freedom
## Multiple R-squared: 0.9086, Adjusted R-squared: 0.9085
## F-statistic: 7574 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5986 -0.6711 0.3610 0.8705 1.4447
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0536247 0.0813082 25.26 <2e-16 ***
## x.var 0.0056181 0.0001842 30.51 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.123 on 762 degrees of freedom
## Multiple R-squared: 0.5498, Adjusted R-squared: 0.5492
## F-statistic: 930.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -10.050 -2.392 1.183 1.933 4.299
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.685e+00 8.818e-03 417.8 <2e-16 ***
## x.var 2.447e-03 1.648e-05 148.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 36867 on 763 degrees of freedom
## Residual deviance: 12905 on 762 degrees of freedom
## AIC: 17339
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CHILE -- 41571
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3795.5 -1463.5 -149.8 1129.6 3913.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3834.9006 145.4042 -26.37 <2e-16 ***
## x.var 63.6552 0.3293 193.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2008 on 762 degrees of freedom
## Multiple R-squared: 0.98, Adjusted R-squared: 0.98
## F-statistic: 3.736e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.329 -1.017 0.372 1.540 2.475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7038546 0.1447868 32.49 <2e-16 ***
## x.var 0.0104141 0.0003279 31.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.999 on 762 degrees of freedom
## Multiple R-squared: 0.5696, Adjusted R-squared: 0.5691
## F-statistic: 1009 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -102.36 -47.85 22.30 28.00 42.99
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.338e+00 7.584e-04 10994 <2e-16 ***
## x.var 3.445e-03 1.340e-06 2570 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 9699399 on 763 degrees of freedom
## Residual deviance: 1976493 on 762 degrees of freedom
## AIC: 1984426
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CHINA -- 4972
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3631.9 -284.8 142.9 466.5 794.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3645.3537 52.9070 68.90 <2e-16 ***
## x.var 2.2578 0.1198 18.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 730.5 on 762 degrees of freedom
## Multiple R-squared: 0.3178, Adjusted R-squared: 0.3169
## F-statistic: 355 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0660 -0.0867 0.0758 0.2262 0.3980
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.9553928 0.0381925 208.30 <2e-16 ***
## x.var 0.0010162 0.0000865 11.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5273 on 762 degrees of freedom
## Multiple R-squared: 0.1533, Adjusted R-squared: 0.1522
## F-statistic: 138 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -84.757 -4.227 2.425 7.334 12.042
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.216e+00 1.134e-03 7246.3 <2e-16 ***
## x.var 5.020e-04 2.452e-06 204.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 200493 on 763 degrees of freedom
## Residual deviance: 158427 on 762 degrees of freedom
## AIC: 166209
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## GLM using Family Family: Gamma Link function: log :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.95456 -0.07461 0.03087 0.11753 0.20709
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.193e+00 1.422e-02 576.1 <2e-16 ***
## x.var 5.603e-04 3.221e-05 17.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.03854589)
##
## Null deviance: 107.395 on 763 degrees of freedom
## Residual deviance: 96.975 on 762 degrees of freedom
## AIC: 13362
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## COLOMBIA -- 138364
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10468 -8228 -5820 8089 23922
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -24146.346 735.003 -32.85 <2e-16 ***
## x.var 224.761 1.665 135.02 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10150 on 762 degrees of freedom
## Multiple R-squared: 0.9599, Adjusted R-squared: 0.9598
## F-statistic: 1.823e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4253 -1.0728 0.4401 1.6119 2.4399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6772563 0.1477640 31.65 <2e-16 ***
## x.var 0.0124672 0.0003347 37.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.04 on 762 degrees of freedom
## Multiple R-squared: 0.6455, Adjusted R-squared: 0.6451
## F-statistic: 1388 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -161.32 -123.48 14.65 58.23 113.27
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.015e+00 4.851e-04 18585 <2e-16 ***
## x.var 4.224e-03 8.273e-07 5107 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 38987573 on 763 degrees of freedom
## Residual deviance: 6353567 on 762 degrees of freedom
## AIC: 6362080
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## COMOROS -- 160
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -59.819 -20.659 -2.541 22.762 60.930
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -32.424341 2.209240 -14.68 <2e-16 ***
## x.var 0.290186 0.005004 57.99 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.5 on 762 degrees of freedom
## Multiple R-squared: 0.8153, Adjusted R-squared: 0.8151
## F-statistic: 3363 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2596 -0.5756 -0.1735 0.5116 1.5910
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1934276 0.0536500 3.605 0.000332 ***
## x.var 0.0080465 0.0001215 66.221 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7407 on 762 degrees of freedom
## Multiple R-squared: 0.852, Adjusted R-squared: 0.8518
## F-statistic: 4385 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.163 -5.037 -3.828 3.188 9.909
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.295e+00 1.378e-02 166.6 <2e-16 ***
## x.var 4.316e-03 2.341e-05 184.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 64000 on 763 degrees of freedom
## Residual deviance: 21085 on 762 degrees of freedom
## AIC: 24756
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## CONGO (BRAZZAVILLE) -- 377
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -61.890 -30.389 0.134 17.573 78.906
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -43.066292 2.636988 -16.33 <2e-16 ***
## x.var 0.473612 0.005972 79.30 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 36.41 on 762 degrees of freedom
## Multiple R-squared: 0.8919, Adjusted R-squared: 0.8918
## F-statistic: 6288 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.26086 -0.43501 0.05458 0.65674 1.45829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8056734 0.0621722 29.04 <2e-16 ***
## x.var 0.0064111 0.0001408 45.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8584 on 762 degrees of freedom
## Multiple R-squared: 0.7312, Adjusted R-squared: 0.7309
## F-statistic: 2073 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.5967 -2.4749 0.3628 2.1045 7.1058
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.085e+00 9.837e-03 313.6 <2e-16 ***
## x.var 3.910e-03 1.701e-05 229.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 72398.3 on 763 degrees of freedom
## Residual deviance: 8092.7 on 762 degrees of freedom
## AIC: 12612
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CONGO (KINSHASA) -- 1335
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -140.703 -34.229 -3.924 51.707 136.231
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -138.16066 4.53647 -30.46 <2e-16 ***
## x.var 1.92925 0.01027 187.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 62.63 on 762 degrees of freedom
## Multiple R-squared: 0.9788, Adjusted R-squared: 0.9788
## F-statistic: 3.526e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1918 -0.5536 0.2398 0.8826 1.2315
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7540231 0.0820584 33.56 <2e-16 ***
## x.var 0.0074203 0.0001859 39.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.133 on 762 degrees of freedom
## Multiple R-squared: 0.6766, Adjusted R-squared: 0.6762
## F-statistic: 1594 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -16.6642 -7.2545 -0.4905 5.8207 10.6211
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.721e+00 4.529e-03 1042.3 <2e-16 ***
## x.var 3.602e-03 7.944e-06 453.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 292367 on 763 degrees of freedom
## Residual deviance: 48737 on 762 degrees of freedom
## AIC: 54304
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## COSTA RICA -- 7969
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -802.54 -478.27 -98.19 421.08 1558.24
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.570e+03 4.265e+01 -36.82 <2e-16 ***
## x.var 1.199e+01 9.659e-02 124.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 588.8 on 762 degrees of freedom
## Multiple R-squared: 0.9529, Adjusted R-squared: 0.9528
## F-statistic: 1.541e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.58597 -1.12164 -0.00579 1.31844 1.97898
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9129848 0.0975333 19.61 <2e-16 ***
## x.var 0.0118068 0.0002209 53.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.347 on 762 degrees of freedom
## Multiple R-squared: 0.7894, Adjusted R-squared: 0.7892
## F-statistic: 2857 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -33.452 -25.825 4.774 12.152 19.235
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.674e+00 2.370e-03 2394 <2e-16 ***
## x.var 4.788e-03 3.954e-06 1211 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2219893 on 763 degrees of freedom
## Residual deviance: 284739 on 762 degrees of freedom
## AIC: 290938
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## COTE D'IVOIRE -- 791
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -132.59 -88.85 15.71 86.80 141.53
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -135.77902 6.38167 -21.28 <2e-16 ***
## x.var 1.07093 0.01445 74.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 88.11 on 762 degrees of freedom
## Multiple R-squared: 0.8781, Adjusted R-squared: 0.878
## F-statistic: 5490 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4397 -0.2910 0.1755 0.5914 1.2718
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9448917 0.0653961 29.74 <2e-16 ***
## x.var 0.0073853 0.0001481 49.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9029 on 762 degrees of freedom
## Multiple R-squared: 0.7654, Adjusted R-squared: 0.7651
## F-statistic: 2486 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.7846 -2.7241 0.2216 2.2152 5.6184
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.340e+00 7.747e-03 431.1 <2e-16 ***
## x.var 4.676e-03 1.298e-05 360.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 180304 on 763 degrees of freedom
## Residual deviance: 10846 on 762 degrees of freedom
## AIC: 15765
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## CROATIA -- 14942
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2408.19 -879.77 77.53 794.68 2670.61
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2690.4682 88.3579 -30.45 <2e-16 ***
## x.var 19.8620 0.2001 99.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1220 on 762 degrees of freedom
## Multiple R-squared: 0.9282, Adjusted R-squared: 0.9281
## F-statistic: 9851 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1587 -0.8317 0.2422 0.8719 1.8009
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5013925 0.0899435 27.81 <2e-16 ***
## x.var 0.0115308 0.0002037 56.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.242 on 762 degrees of freedom
## Multiple R-squared: 0.8079, Adjusted R-squared: 0.8076
## F-statistic: 3204 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -39.53 -32.84 -14.93 26.25 40.60
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.087e+00 1.891e-03 3219 <2e-16 ***
## x.var 4.917e-03 3.139e-06 1566 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3951401 on 763 degrees of freedom
## Residual deviance: 675067 on 762 degrees of freedom
## AIC: 681644
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CUBA -- 8494
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2718.84 -1820.67 89.25 1762.84 2762.64
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2443.8718 133.1772 -18.35 <2e-16 ***
## x.var 12.2437 0.3016 40.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1839 on 762 degrees of freedom
## Multiple R-squared: 0.6838, Adjusted R-squared: 0.6834
## F-statistic: 1648 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.21575 -0.32312 -0.09827 0.51643 1.55048
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.603389 0.057826 27.73 <2e-16 ***
## x.var 0.010935 0.000131 83.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7984 on 762 degrees of freedom
## Multiple R-squared: 0.9015, Adjusted R-squared: 0.9013
## F-statistic: 6971 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -54.558 -15.027 -6.973 1.119 45.204
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.066e+00 4.437e-03 691.1 <2e-16 ***
## x.var 8.534e-03 6.740e-06 1266.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3300360 on 763 degrees of freedom
## Residual deviance: 268859 on 762 degrees of freedom
## AIC: 274575
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CYPRUS -- 833
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -131.82 -49.53 -10.89 45.69 172.29
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -157.66103 5.18690 -30.40 <2e-16 ***
## x.var 1.07116 0.01175 91.18 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 71.61 on 762 degrees of freedom
## Multiple R-squared: 0.916, Adjusted R-squared: 0.9159
## F-statistic: 8314 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7963 -0.3464 0.1015 0.5494 0.9100
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2722122 0.0479332 26.54 <2e-16 ***
## x.var 0.0083183 0.0001086 76.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6618 on 762 degrees of freedom
## Multiple R-squared: 0.8851, Adjusted R-squared: 0.885
## F-statistic: 5871 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.476 -5.716 -3.267 4.419 7.160
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.898e+00 8.777e-03 330.2 <2e-16 ***
## x.var 5.293e-03 1.439e-05 367.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 207374 on 763 degrees of freedom
## Residual deviance: 19782 on 762 degrees of freedom
## AIC: 24465
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CZECHIA -- 38403
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8275.8 -2747.9 -744.5 3541.1 7456.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7303.7951 311.5465 -23.44 <2e-16 ***
## x.var 62.6861 0.7056 88.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4301 on 762 degrees of freedom
## Multiple R-squared: 0.912, Adjusted R-squared: 0.9118
## F-statistic: 7892 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0845 -0.8793 0.3181 1.1589 1.8353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3503982 0.1119003 29.94 <2e-16 ***
## x.var 0.0122356 0.0002534 48.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.545 on 762 degrees of freedom
## Multiple R-squared: 0.7536, Adjusted R-squared: 0.7533
## F-statistic: 2331 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -90.28 -70.23 -33.78 45.01 100.64
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.592e+00 9.595e-04 7913 <2e-16 ***
## x.var 4.423e-03 1.623e-06 2725 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 12678186 on 763 degrees of freedom
## Residual deviance: 3211959 on 762 degrees of freedom
## AIC: 3219390
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## DENMARK -- 4463
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -526.33 -250.01 0.81 200.85 820.31
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -248.12216 22.02860 -11.26 <2e-16 ***
## x.var 5.09269 0.04989 102.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 304.1 on 762 degrees of freedom
## Multiple R-squared: 0.9319, Adjusted R-squared: 0.9318
## F-statistic: 1.042e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3845 -0.5817 0.5191 0.8888 1.4843
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0211175 0.1003161 40.08 <2e-16 ***
## x.var 0.0069888 0.0002272 30.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.385 on 762 degrees of freedom
## Multiple R-squared: 0.5539, Adjusted R-squared: 0.5533
## F-statistic: 946.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -29.796 -8.017 -3.657 6.491 23.329
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.924e+00 2.584e-03 2292.3 <2e-16 ***
## x.var 3.300e-03 4.602e-06 717.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 728870 on 763 degrees of freedom
## Residual deviance: 134553 on 762 degrees of freedom
## AIC: 140977
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## DIAMOND PRINCESS -- 13
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.8759 -0.7297 0.4320 1.5619 2.7554
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.6915901 0.1815327 53.39 <2e-16 ***
## x.var 0.0063567 0.0004111 15.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.506 on 762 degrees of freedom
## Multiple R-squared: 0.2388, Adjusted R-squared: 0.2378
## F-statistic: 239 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.13701 -0.10685 0.07559 0.26316 0.44252
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.107e+00 3.443e-02 61.20 <2e-16 ***
## x.var 1.026e-03 7.799e-05 13.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4754 on 762 degrees of freedom
## Multiple R-squared: 0.1852, Adjusted R-squared: 0.1841
## F-statistic: 173.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.4720 -0.2050 0.1424 0.4699 0.8051
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.2872909 0.0219191 104.35 <2e-16 ***
## x.var 0.0005258 0.0000473 11.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 909.21 on 763 degrees of freedom
## Residual deviance: 785.18 on 762 degrees of freedom
## AIC: 4001.6
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------

## DJIBOUTI -- 189
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.039 -10.079 2.935 12.241 29.404
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15.701602 1.274579 -12.32 <2e-16 ***
## x.var 0.288441 0.002887 99.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.6 on 762 degrees of freedom
## Multiple R-squared: 0.9291, Adjusted R-squared: 0.929
## F-statistic: 9984 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0774 -0.5537 0.1240 0.5894 1.4424
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5961824 0.0655190 24.36 <2e-16 ***
## x.var 0.0060913 0.0001484 41.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9046 on 762 degrees of freedom
## Multiple R-squared: 0.6886, Adjusted R-squared: 0.6882
## F-statistic: 1685 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.2350 -2.2091 0.2449 2.1953 4.7660
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.998e+00 1.106e-02 271.2 <2e-16 ***
## x.var 3.370e-03 1.962e-05 171.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 43099.6 on 763 degrees of freedom
## Residual deviance: 8790.7 on 762 degrees of freedom
## AIC: 13035
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## DOMINICA -- 57
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.4491 -10.0228 -0.4595 8.3442 29.0689
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.998844 0.846088 -14.18 <2e-16 ***
## x.var 0.052678 0.001916 27.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.68 on 762 degrees of freedom
## Multiple R-squared: 0.4979, Adjusted R-squared: 0.4973
## F-statistic: 755.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.78214 -0.86107 0.03507 0.87637 1.44561
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0994714 0.0718881 -15.29 <2e-16 ***
## x.var 0.0049855 0.0001628 30.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9925 on 762 degrees of freedom
## Multiple R-squared: 0.5517, Adjusted R-squared: 0.5511
## F-statistic: 937.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.8686 -1.1533 -0.3302 -0.0859 3.7124
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.7811707 0.1312931 -51.65 <2e-16 ***
## x.var 0.0147858 0.0001875 78.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 19491.0 on 763 degrees of freedom
## Residual deviance: 1748.7 on 762 degrees of freedom
## AIC: 2701.2
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## DOMINICAN REPUBLIC -- 4360
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -713.65 -334.68 47.02 325.75 450.44
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.16644 24.31594 0.377 0.706
## x.var 6.62890 0.05507 120.368 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 335.7 on 762 degrees of freedom
## Multiple R-squared: 0.95, Adjusted R-squared: 0.95
## F-statistic: 1.449e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6152 -0.6642 0.4723 1.0843 1.6291
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.207146 0.113462 37.08 <2e-16 ***
## x.var 0.007419 0.000257 28.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.567 on 762 degrees of freedom
## Multiple R-squared: 0.5224, Adjusted R-squared: 0.5218
## F-statistic: 833.5 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -41.169 -16.407 3.818 13.359 17.392
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.588e+00 1.978e-03 3331.6 <2e-16 ***
## x.var 2.797e-03 3.619e-06 772.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 920640 on 763 degrees of freedom
## Residual deviance: 256142 on 762 degrees of freedom
## AIC: 262828
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ECUADOR -- 35172
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3588.5 -1701.8 -345.3 1435.6 5505.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3574.641 159.379 -22.43 <2e-16 ***
## x.var 53.433 0.361 148.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2201 on 762 degrees of freedom
## Multiple R-squared: 0.9664, Adjusted R-squared: 0.9663
## F-statistic: 2.191e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6290 -0.7095 0.3241 1.5350 1.9948
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1491258 0.1361228 37.83 <2e-16 ***
## x.var 0.0092281 0.0003083 29.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.879 on 762 degrees of freedom
## Multiple R-squared: 0.5404, Adjusted R-squared: 0.5398
## F-statistic: 896 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -89.379 -27.609 7.337 24.630 52.356
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.093e+00 8.465e-04 9560 <2e-16 ***
## x.var 3.535e-03 1.490e-06 2373 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7875975 on 763 degrees of freedom
## Residual deviance: 1240904 on 762 degrees of freedom
## AIC: 1248845
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## EGYPT -- 23889
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1617.33 -659.42 12.67 579.52 2325.69
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2358.8457 58.5805 -40.27 <2e-16 ***
## x.var 33.1528 0.1327 249.88 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 808.8 on 762 degrees of freedom
## Multiple R-squared: 0.9879, Adjusted R-squared: 0.9879
## F-statistic: 6.244e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1119 -0.8092 0.4447 1.1462 2.0326
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.690584 0.124532 37.67 <2e-16 ***
## x.var 0.009160 0.000282 32.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.719 on 762 degrees of freedom
## Multiple R-squared: 0.5806, Adjusted R-squared: 0.58
## F-statistic: 1055 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -68.511 -25.348 8.246 17.654 31.614
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.570e+00 1.091e-03 6940 <2e-16 ***
## x.var 3.596e-03 1.914e-06 1879 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4952882 on 763 degrees of freedom
## Residual deviance: 773248 on 762 degrees of freedom
## AIC: 780827
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## EL SALVADOR -- 4054
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -229.37 -143.26 -49.15 76.90 581.85
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -587.86920 13.27698 -44.28 <2e-16 ***
## x.var 6.02133 0.03007 200.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 183.3 on 762 degrees of freedom
## Multiple R-squared: 0.9814, Adjusted R-squared: 0.9813
## F-statistic: 4.01e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2686 -0.9019 0.1378 1.2214 1.8319
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.6037965 0.1004084 25.93 <2e-16 ***
## x.var 0.0096349 0.0002274 42.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.386 on 762 degrees of freedom
## Multiple R-squared: 0.702, Adjusted R-squared: 0.7016
## F-statistic: 1795 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -26.009 -15.685 3.312 7.092 14.869
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.537e+00 2.837e-03 1951.8 <2e-16 ***
## x.var 4.031e-03 4.879e-06 826.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 983971 on 763 degrees of freedom
## Residual deviance: 144368 on 762 degrees of freedom
## AIC: 150447
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## EQUATORIAL GUINEA -- 182
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.453 -7.374 -2.316 7.116 37.627
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.914745 0.960574 -1.993 0.0466 *
## x.var 0.246292 0.002176 113.208 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.26 on 762 degrees of freedom
## Multiple R-squared: 0.9439, Adjusted R-squared: 0.9438
## F-statistic: 1.282e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1771 -0.5601 0.1040 0.8018 1.6498
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6328945 0.0723434 22.57 <2e-16 ***
## x.var 0.0059798 0.0001638 36.50 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9988 on 762 degrees of freedom
## Multiple R-squared: 0.6361, Adjusted R-squared: 0.6356
## F-statistic: 1332 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.1090 -1.7021 0.2707 1.5275 5.2364
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.231e+00 1.049e-02 308.0 <2e-16 ***
## x.var 2.876e-03 1.911e-05 150.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 35471 on 763 degrees of freedom
## Residual deviance: 10132 on 762 degrees of freedom
## AIC: 14352
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ERITREA -- 103
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.946 -12.199 -3.388 9.182 43.418
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -21.291972 1.069369 -19.91 <2e-16 ***
## x.var 0.107402 0.002422 44.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.76 on 762 degrees of freedom
## Multiple R-squared: 0.7207, Adjusted R-squared: 0.7204
## F-statistic: 1966 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4388 -0.1279 0.0898 0.3016 1.0767
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0842041 0.0383709 -28.26 <2e-16 ***
## x.var 0.0075313 0.0000869 86.66 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5298 on 762 degrees of freedom
## Multiple R-squared: 0.9079, Adjusted R-squared: 0.9078
## F-statistic: 7510 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6329 -1.2816 -0.6451 0.3797 2.4823
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.566e+00 4.638e-02 -33.76 <2e-16 ***
## x.var 8.384e-03 7.063e-05 118.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 27540.4 on 763 degrees of freedom
## Residual deviance: 1251.6 on 762 degrees of freedom
## AIC: 3390.9
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ESTONIA -- 2188
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -410.58 -164.85 26.56 185.85 439.28
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -442.34082 16.09725 -27.48 <2e-16 ***
## x.var 3.06130 0.03646 83.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 222.3 on 762 degrees of freedom
## Multiple R-squared: 0.9025, Adjusted R-squared: 0.9023
## F-statistic: 7051 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5282 -0.4564 0.1566 0.7385 1.1690
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9615700 0.0663085 29.58 <2e-16 ***
## x.var 0.0089938 0.0001502 59.89 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9155 on 762 degrees of freedom
## Multiple R-squared: 0.8248, Adjusted R-squared: 0.8245
## F-statistic: 3586 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -14.586 -10.352 -4.546 3.883 19.427
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.014e+00 5.099e-03 787.2 <2e-16 ***
## x.var 5.201e-03 8.382e-06 620.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 604234 on 763 degrees of freedom
## Residual deviance: 75637 on 762 degrees of freedom
## AIC: 81049
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ESWATINI -- 1390
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -286.13 -105.67 21.49 89.14 296.36
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -298.52562 10.03208 -29.76 <2e-16 ***
## x.var 2.16267 0.02272 95.18 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 138.5 on 762 degrees of freedom
## Multiple R-squared: 0.9224, Adjusted R-squared: 0.9223
## F-statistic: 9060 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.81344 -0.99598 0.00191 0.91068 1.52747
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9347213 0.0714655 13.08 <2e-16 ***
## x.var 0.0103379 0.0001619 63.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9867 on 762 degrees of freedom
## Multiple R-squared: 0.8426, Adjusted R-squared: 0.8424
## F-statistic: 4079 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -15.644 -10.039 -4.340 5.331 15.622
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.814e+00 5.821e-03 655.2 <2e-16 ***
## x.var 4.994e-03 9.638e-06 518.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 421151 on 763 degrees of freedom
## Residual deviance: 59819 on 762 degrees of freedom
## AIC: 64779
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ETHIOPIA -- 7446
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -737.1 -407.0 -183.7 490.6 1349.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.360e+03 3.716e+01 -36.61 <2e-16 ***
## x.var 1.100e+01 8.417e-02 130.68 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 513.1 on 762 degrees of freedom
## Multiple R-squared: 0.9573, Adjusted R-squared: 0.9572
## F-statistic: 1.708e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9748 -1.2892 0.2569 1.2045 2.1107
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1337189 0.1058905 20.15 <2e-16 ***
## x.var 0.0113664 0.0002398 47.39 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.462 on 762 degrees of freedom
## Multiple R-squared: 0.7467, Adjusted R-squared: 0.7464
## F-statistic: 2246 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -32.156 -24.440 3.256 9.794 21.291
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.726e+00 2.377e-03 2409 <2e-16 ***
## x.var 4.596e-03 3.994e-06 1151 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1950214 on 763 degrees of freedom
## Residual deviance: 234695 on 762 degrees of freedom
## AIC: 240906
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## FIJI -- 826
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -313.96 -155.05 22.09 173.86 250.74
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -223.11640 12.82035 -17.40 <2e-16 ***
## x.var 1.05237 0.02904 36.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 177 on 762 degrees of freedom
## Multiple R-squared: 0.6329, Adjusted R-squared: 0.6324
## F-statistic: 1314 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2734 -0.8439 0.1971 0.9565 1.6031
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.6137506 0.0824194 -19.58 <2e-16 ***
## x.var 0.0106079 0.0001867 56.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.138 on 762 degrees of freedom
## Multiple R-squared: 0.8091, Adjusted R-squared: 0.8088
## F-statistic: 3229 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -16.788 -6.738 -2.357 -1.254 15.794
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.290e-01 1.901e-02 -33.08 <2e-16 ***
## x.var 1.031e-02 2.818e-05 365.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 336502 on 763 degrees of freedom
## Residual deviance: 43872 on 762 degrees of freedom
## AIC: 46691
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## FINLAND -- 2351
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -194.61 -116.63 -28.14 76.33 699.11
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -152.14374 11.26791 -13.50 <2e-16 ***
## x.var 2.36130 0.02552 92.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 155.6 on 762 degrees of freedom
## Multiple R-squared: 0.9183, Adjusted R-squared: 0.9182
## F-statistic: 8561 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8396 -0.5118 0.3802 0.6546 1.4285
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5551556 0.0859255 41.38 <2e-16 ***
## x.var 0.0063220 0.0001946 32.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.186 on 762 degrees of freedom
## Multiple R-squared: 0.5807, Adjusted R-squared: 0.5801
## F-statistic: 1055 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -18.6423 -2.8663 -0.1487 4.0417 7.4494
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.000e+00 3.993e-03 1252.2 <2e-16 ***
## x.var 3.501e-03 7.038e-06 497.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 323623 on 763 degrees of freedom
## Residual deviance: 32943 on 762 degrees of freedom
## AIC: 38825
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## FRANCE -- 138502
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16688.0 -8060.6 -241.3 7422.6 17019.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3057.772 671.829 -4.551 6.2e-06 ***
## x.var 195.665 1.522 128.592 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9276 on 762 degrees of freedom
## Multiple R-squared: 0.9559, Adjusted R-squared: 0.9559
## F-statistic: 1.654e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3814 -0.6759 0.6579 1.1356 2.1109
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.1863956 0.1496037 48.04 <2e-16 ***
## x.var 0.0081257 0.0003388 23.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.066 on 762 degrees of freedom
## Multiple R-squared: 0.4301, Adjusted R-squared: 0.4294
## F-statistic: 575.1 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -208.348 -43.780 -3.989 55.766 103.266
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.851e+00 3.797e-04 25941 <2e-16 ***
## x.var 2.948e-03 6.890e-07 4279 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 25953651 on 763 degrees of freedom
## Residual deviance: 5357864 on 762 degrees of freedom
## AIC: 5367085
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GABON -- 303
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.080 -21.334 -5.194 18.870 45.870
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -43.205681 1.878272 -23.00 <2e-16 ***
## x.var 0.408781 0.004254 96.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.93 on 762 degrees of freedom
## Multiple R-squared: 0.9238, Adjusted R-squared: 0.9237
## F-statistic: 9234 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9098 -0.3476 0.2142 0.4952 1.2269
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5301123 0.0561623 27.24 <2e-16 ***
## x.var 0.0065456 0.0001272 51.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7754 on 762 degrees of freedom
## Multiple R-squared: 0.7765, Adjusted R-squared: 0.7763
## F-statistic: 2648 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.2569 -1.3308 0.2676 1.6112 3.1166
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.731e+00 1.128e-02 242.1 <2e-16 ***
## x.var 4.189e-03 1.927e-05 217.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 64346.5 on 763 degrees of freedom
## Residual deviance: 5426.1 on 762 degrees of freedom
## AIC: 9780.6
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GAMBIA -- 365
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -57.205 -23.244 1.102 25.559 55.641
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -53.299761 2.168712 -24.58 <2e-16 ***
## x.var 0.548246 0.004912 111.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29.94 on 762 degrees of freedom
## Multiple R-squared: 0.9424, Adjusted R-squared: 0.9423
## F-statistic: 1.246e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.45972 -0.95201 -0.08487 0.79767 1.84751
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9221502 0.0716999 12.86 <2e-16 ***
## x.var 0.0082048 0.0001624 50.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9899 on 762 degrees of freedom
## Multiple R-squared: 0.7701, Adjusted R-squared: 0.7698
## F-statistic: 2553 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.6927 -6.8790 0.7016 2.8268 5.6616
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.147e+00 9.386e-03 335.3 <2e-16 ***
## x.var 4.024e-03 1.615e-05 249.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 94424 on 763 degrees of freedom
## Residual deviance: 18104 on 762 degrees of freedom
## AIC: 22442
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GEORGIA -- 15981
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1991 -1616 -773 1458 4139
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3358.1370 130.8714 -25.66 <2e-16 ***
## x.var 19.8951 0.2964 67.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1807 on 762 degrees of freedom
## Multiple R-squared: 0.8553, Adjusted R-squared: 0.8551
## F-statistic: 4505 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8673 -0.9181 -0.1976 0.8935 2.1707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8486867 0.0828137 10.25 <2e-16 ***
## x.var 0.0139530 0.0001876 74.39 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.143 on 762 degrees of freedom
## Multiple R-squared: 0.879, Adjusted R-squared: 0.8788
## F-statistic: 5534 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -37.723 -24.603 -1.826 11.547 28.707
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.175e+00 2.413e-03 2145 <2e-16 ***
## x.var 6.207e-03 3.849e-06 1612 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4296983 on 763 degrees of freedom
## Residual deviance: 353978 on 762 degrees of freedom
## AIC: 359964
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GERMANY -- 122160
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24656.3 -6634.9 -262.9 10324.9 18211.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -18397.52 847.56 -21.71 <2e-16 ***
## x.var 185.88 1.92 96.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11700 on 762 degrees of freedom
## Multiple R-squared: 0.9248, Adjusted R-squared: 0.9247
## F-statistic: 9376 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.2708 -0.7608 0.6714 1.2331 2.0394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.7977487 0.1400486 41.40 <2e-16 ***
## x.var 0.0100648 0.0003172 31.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.934 on 762 degrees of freedom
## Multiple R-squared: 0.5692, Adjusted R-squared: 0.5686
## F-statistic: 1007 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -137.88 -84.13 -47.08 68.36 140.63
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.948e+00 5.136e-04 17423 <2e-16 ***
## x.var 4.057e-03 8.822e-07 4598 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 32256554 on 763 degrees of freedom
## Residual deviance: 6196759 on 762 degrees of freedom
## AIC: 6205450
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GHANA -- 1442
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -195.140 -42.613 6.651 55.051 197.310
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -199.34782 5.81302 -34.29 <2e-16 ***
## x.var 2.03736 0.01317 154.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 80.26 on 762 degrees of freedom
## Multiple R-squared: 0.9692, Adjusted R-squared: 0.9691
## F-statistic: 2.395e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8726 -0.6618 0.1648 0.7850 1.4726
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.4009015 0.0784199 30.62 <2e-16 ***
## x.var 0.0079947 0.0001776 45.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.083 on 762 degrees of freedom
## Multiple R-squared: 0.7267, Adjusted R-squared: 0.7263
## F-statistic: 2026 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -14.7460 -6.4656 0.7906 3.8605 10.7462
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.451e+00 4.882e-03 911.7 <2e-16 ***
## x.var 4.035e-03 8.394e-06 480.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 324734 on 763 degrees of freedom
## Residual deviance: 40401 on 762 degrees of freedom
## AIC: 45863
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GREECE -- 25538
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3901.0 -1607.3 -439.8 1291.0 5287.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4949.2924 159.6991 -30.99 <2e-16 ***
## x.var 32.9837 0.3617 91.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2205 on 762 degrees of freedom
## Multiple R-squared: 0.9161, Adjusted R-squared: 0.9159
## F-statistic: 8316 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5194 -0.6147 0.2166 0.8327 1.5693
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9571236 0.0869008 34.03 <2e-16 ***
## x.var 0.0114757 0.0001968 58.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.2 on 762 degrees of freedom
## Multiple R-squared: 0.8169, Adjusted R-squared: 0.8167
## F-statistic: 3400 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -45.06 -35.23 -16.35 26.49 49.22
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.252e+00 1.614e-03 3875 <2e-16 ***
## x.var 5.396e-03 2.636e-06 2047 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6666014 on 763 degrees of freedom
## Residual deviance: 800401 on 762 degrees of freedom
## AIC: 807328
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GRENADA -- 214
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -91.392 -47.804 -1.408 44.972 90.380
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -56.58275 3.99589 -14.16 <2e-16 ***
## x.var 0.25379 0.00905 28.04 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.17 on 762 degrees of freedom
## Multiple R-squared: 0.5079, Adjusted R-squared: 0.5072
## F-statistic: 786.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1996 -0.9695 -0.1233 1.1858 2.0293
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.4831355 0.0879201 -16.87 <2e-16 ***
## x.var 0.0074546 0.0001991 37.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.214 on 762 degrees of freedom
## Multiple R-squared: 0.6478, Adjusted R-squared: 0.6473
## F-statistic: 1401 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -10.1352 -2.7428 -1.0004 -0.3484 11.6045
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.913e+00 5.108e-02 -76.6 <2e-16 ***
## x.var 1.296e-02 7.385e-05 175.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 93149 on 763 degrees of freedom
## Residual deviance: 13144 on 762 degrees of freedom
## AIC: 14829
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## GUATEMALA -- 16861
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1479.7 -921.4 -251.7 825.5 2723.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2748.2543 78.8118 -34.87 <2e-16 ***
## x.var 24.8881 0.1785 139.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1088 on 762 degrees of freedom
## Multiple R-squared: 0.9623, Adjusted R-squared: 0.9622
## F-statistic: 1.944e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8262 -1.1042 0.1545 1.4412 2.2661
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2309526 0.1223312 26.41 <2e-16 ***
## x.var 0.0110227 0.0002771 39.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.689 on 762 degrees of freedom
## Multiple R-squared: 0.675, Adjusted R-squared: 0.6746
## F-statistic: 1583 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -50.556 -27.326 9.387 13.495 20.988
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.768e+00 1.478e-03 4578 <2e-16 ***
## x.var 4.288e-03 2.515e-06 1705 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4135072 on 763 degrees of freedom
## Residual deviance: 475111 on 762 degrees of freedom
## AIC: 482094
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GUINEA -- 440
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -80.176 -59.290 8.288 43.336 80.720
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -80.41503 3.69124 -21.79 <2e-16 ***
## x.var 0.61628 0.00836 73.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 50.96 on 762 degrees of freedom
## Multiple R-squared: 0.877, Adjusted R-squared: 0.8769
## F-statistic: 5434 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0657 -0.2833 0.1224 0.6280 1.0475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4597829 0.0575463 25.37 <2e-16 ***
## x.var 0.0072137 0.0001303 55.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7945 on 762 degrees of freedom
## Multiple R-squared: 0.8008, Adjusted R-squared: 0.8005
## F-statistic: 3063 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.7182 -1.5563 -0.0623 1.5369 5.9288
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.7153776 0.0104265 260.4 <2e-16 ***
## x.var 0.0047753 0.0000174 274.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 106559.2 on 763 degrees of freedom
## Residual deviance: 7322.8 on 762 degrees of freedom
## AIC: 11790
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## GUINEA-BISSAU -- 166
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28.514 -13.440 3.072 12.376 23.077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -20.805401 1.049627 -19.82 <2e-16 ***
## x.var 0.220553 0.002377 92.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.49 on 762 degrees of freedom
## Multiple R-squared: 0.9187, Adjusted R-squared: 0.9186
## F-statistic: 8607 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.73538 -0.39773 -0.00138 0.59861 1.11093
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1472019 0.0548245 20.93 <2e-16 ***
## x.var 0.0061913 0.0001242 49.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7569 on 762 degrees of freedom
## Multiple R-squared: 0.7654, Adjusted R-squared: 0.7651
## F-statistic: 2486 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.3275 -1.4395 0.2591 1.3976 2.6844
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.275e+00 1.462e-02 155.7 <2e-16 ***
## x.var 3.971e-03 2.521e-05 157.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 34390.3 on 763 degrees of freedom
## Residual deviance: 4040.1 on 762 degrees of freedom
## AIC: 7939.2
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GUYANA -- 1215
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -204.63 -111.73 -50.84 139.56 258.74
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -256.46245 10.25212 -25.02 <2e-16 ***
## x.var 1.58941 0.02322 68.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 141.5 on 762 degrees of freedom
## Multiple R-squared: 0.8601, Adjusted R-squared: 0.8599
## F-statistic: 4686 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7356 -0.2495 0.0722 0.3514 1.0316
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.290292 0.046808 27.57 <2e-16 ***
## x.var 0.008906 0.000106 84.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6463 on 762 degrees of freedom
## Multiple R-squared: 0.9026, Adjusted R-squared: 0.9024
## F-statistic: 7058 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -9.6953 -5.2606 0.4658 2.7641 4.5423
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.8975030 0.0080088 361.8 <2e-16 ***
## x.var 0.0058519 0.0000129 453.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 313882 on 763 degrees of freedom
## Residual deviance: 12689 on 762 degrees of freedom
## AIC: 17570
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------

## HAITI -- 820
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -165.67 -42.14 24.14 52.86 153.01
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -98.42037 5.28017 -18.64 <2e-16 ***
## x.var 1.10703 0.01196 92.57 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 72.9 on 762 degrees of freedom
## Multiple R-squared: 0.9183, Adjusted R-squared: 0.9182
## F-statistic: 8569 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.67635 -0.55142 0.02282 0.87388 1.62578
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1114915 0.0809568 26.08 <2e-16 ***
## x.var 0.0074324 0.0001834 40.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.118 on 762 degrees of freedom
## Multiple R-squared: 0.6832, Adjusted R-squared: 0.6828
## F-statistic: 1643 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -11.867 -3.725 0.416 3.373 6.967
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.960e+00 6.382e-03 620.5 <2e-16 ***
## x.var 3.875e-03 1.105e-05 350.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 171805 on 763 degrees of freedom
## Residual deviance: 22677 on 762 degrees of freedom
## AIC: 27721
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## HOLY SEE -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: algorithm did not converge
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.730e+01 3.728e+04 -0.001 0.999
## x.var 3.508e-16 8.443e+01 0.000 1.000
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 0.0000e+00 on 763 degrees of freedom
## Residual deviance: 2.1221e-09 on 762 degrees of freedom
## AIC: 4
##
## Number of Fisher Scoring iterations: 25
##
## --------------------------------------------------------------------------------
## HONDURAS -- 10684
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1009.9 -430.9 -145.7 540.3 1757.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1774.3545 50.8897 -34.87 <2e-16 ***
## x.var 16.8818 0.1153 146.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 702.6 on 762 degrees of freedom
## Multiple R-squared: 0.9657, Adjusted R-squared: 0.9657
## F-statistic: 2.145e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1062 -0.7513 0.3416 1.1289 1.8731
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4719937 0.1114641 31.15 <2e-16 ***
## x.var 0.0099091 0.0002525 39.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.539 on 762 degrees of freedom
## Multiple R-squared: 0.6691, Adjusted R-squared: 0.6687
## F-statistic: 1541 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -41.394 -26.533 8.392 12.234 17.394
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.461e+00 1.751e-03 3690 <2e-16 ***
## x.var 4.177e-03 2.993e-06 1396 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2774872 on 763 degrees of freedom
## Residual deviance: 347582 on 762 degrees of freedom
## AIC: 354417
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## HUNGARY -- 43562
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7959.4 -3061.9 167.3 3139.2 8707.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8772.2037 311.7702 -28.14 <2e-16 ***
## x.var 65.0760 0.7061 92.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4305 on 762 degrees of freedom
## Multiple R-squared: 0.9177, Adjusted R-squared: 0.9176
## F-statistic: 8494 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1031 -0.8667 0.4419 1.1738 1.5690
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4691948 0.1060784 32.70 <2e-16 ***
## x.var 0.0119607 0.0002403 49.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.465 on 762 degrees of freedom
## Multiple R-squared: 0.7648, Adjusted R-squared: 0.7645
## F-statistic: 2478 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -76.85 -59.03 -32.14 34.56 99.61
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.287e+00 1.041e-03 7003 <2e-16 ***
## x.var 4.897e-03 1.729e-06 2833 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 13152021 on 763 degrees of freedom
## Residual deviance: 2452072 on 762 degrees of freedom
## AIC: 2459524
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ICELAND -- 60
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.458 -3.566 -1.130 2.759 16.508
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2799126 0.3177527 4.028 6.19e-05 ***
## x.var 0.0566340 0.0007197 78.695 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.387 on 762 degrees of freedom
## Multiple R-squared: 0.8904, Adjusted R-squared: 0.8903
## F-statistic: 6193 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.65466 -0.27530 0.08677 0.41338 0.72417
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.433e+00 4.046e-02 35.41 <2e-16 ***
## x.var 3.758e-03 9.164e-05 41.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5586 on 762 degrees of freedom
## Multiple R-squared: 0.6882, Adjusted R-squared: 0.6878
## F-statistic: 1682 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.0804 -0.9650 -0.2441 0.7682 2.5380
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.964e+00 2.038e-02 96.35 <2e-16 ***
## x.var 2.630e-03 3.767e-05 69.81 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7277.5 on 763 degrees of freedom
## Residual deviance: 1917.8 on 762 degrees of freedom
## AIC: 5381.6
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## INDIA -- 512924
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -97719 -24524 -8406 37328 92287
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -93096.420 3345.825 -27.82 <2e-16 ***
## x.var 809.125 7.578 106.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 46190 on 762 degrees of freedom
## Multiple R-squared: 0.9374, Adjusted R-squared: 0.9373
## F-statistic: 1.14e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.3301 -1.0963 0.5624 1.8145 2.5478
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.6971175 0.1638667 34.77 <2e-16 ***
## x.var 0.0129171 0.0003711 34.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.262 on 762 degrees of freedom
## Multiple R-squared: 0.6139, Adjusted R-squared: 0.6133
## F-statistic: 1211 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -290.946 -194.878 -6.452 94.423 249.698
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.017e+01 2.651e-04 38374 <2e-16 ***
## x.var 4.390e-03 4.491e-07 9775 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 141533035 on 763 degrees of freedom
## Residual deviance: 20128618 on 762 degrees of freedom
## AIC: 20138059
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## INDONESIA -- 147025
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -30041 -21746 -604 19130 36443
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36677.347 1538.699 -23.84 <2e-16 ***
## x.var 234.755 3.485 67.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21240 on 762 degrees of freedom
## Multiple R-squared: 0.8562, Adjusted R-squared: 0.856
## F-statistic: 4538 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3085 -0.5297 0.4296 1.1872 1.5489
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7236277 0.1215796 38.85 <2e-16 ***
## x.var 0.0119368 0.0002754 43.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.679 on 762 degrees of freedom
## Multiple R-squared: 0.7115, Adjusted R-squared: 0.7111
## F-statistic: 1879 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -187.58 -70.77 -12.46 23.22 149.75
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.046e+00 6.329e-04 12713 <2e-16 ***
## x.var 5.634e-03 1.026e-06 5490 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 46964485 on 763 degrees of freedom
## Residual deviance: 3768202 on 762 degrees of freedom
## AIC: 3776615
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## IRAN -- 135726
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9456 -5289 -1951 5252 17367
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17572.256 482.884 -36.39 <2e-16 ***
## x.var 205.080 1.094 187.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6667 on 762 degrees of freedom
## Multiple R-squared: 0.9788, Adjusted R-squared: 0.9788
## F-statistic: 3.516e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.0473 -0.4467 0.4516 1.1133 1.3050
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.8085880 0.1247940 54.56 <2e-16 ***
## x.var 0.0085241 0.0002826 30.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.723 on 762 degrees of freedom
## Multiple R-squared: 0.5441, Adjusted R-squared: 0.5435
## F-statistic: 909.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -151.47 -71.08 11.57 43.22 85.26
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.222e+00 4.630e-04 19920 <2e-16 ***
## x.var 3.821e-03 8.037e-07 4754 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 30898055 on 763 degrees of freedom
## Residual deviance: 3612101 on 762 degrees of freedom
## AIC: 3621149
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## IRAQ -- 24917
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2993.8 -722.3 -89.4 835.8 2350.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1898.0728 93.6429 -20.27 <2e-16 ***
## x.var 37.6680 0.2121 177.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1293 on 762 degrees of freedom
## Multiple R-squared: 0.9764, Adjusted R-squared: 0.9764
## F-statistic: 3.154e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9286 -0.9702 0.1053 1.4874 2.1625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5167816 0.1259273 35.87 <2e-16 ***
## x.var 0.0098057 0.0002852 34.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.739 on 762 degrees of freedom
## Multiple R-squared: 0.608, Adjusted R-squared: 0.6075
## F-statistic: 1182 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -83.24 -41.23 10.05 25.58 47.67
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.909e+00 9.552e-04 8281 <2e-16 ***
## x.var 3.320e-03 1.699e-06 1954 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5867985 on 763 degrees of freedom
## Residual deviance: 1447782 on 762 degrees of freedom
## AIC: 1455426
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## IRELAND -- 6460
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -779.5 -329.3 -128.2 400.5 892.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -35.975 34.000 -1.058 0.29
## x.var 8.827 0.077 114.623 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 469.4 on 762 degrees of freedom
## Multiple R-squared: 0.9452, Adjusted R-squared: 0.9451
## F-statistic: 1.314e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9802 -0.6255 0.5654 0.9378 1.8783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6311657 0.1185735 39.06 <2e-16 ***
## x.var 0.0071225 0.0002686 26.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.637 on 762 degrees of freedom
## Multiple R-squared: 0.48, Adjusted R-squared: 0.4793
## F-statistic: 703.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -46.558 -7.742 -0.771 7.840 25.071
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.837e+00 1.737e-03 3936.8 <2e-16 ***
## x.var 2.844e-03 3.170e-06 897.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1157908 on 763 degrees of freedom
## Residual deviance: 259388 on 762 degrees of freedom
## AIC: 266321
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ISRAEL -- 10075
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1024.35 -444.21 -82.69 425.83 1279.78
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1200.5820 47.0234 -25.53 <2e-16 ***
## x.var 14.2114 0.1065 133.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 649.2 on 762 degrees of freedom
## Multiple R-squared: 0.959, Adjusted R-squared: 0.9589
## F-statistic: 1.781e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2194 -0.6923 0.6228 1.1232 1.5327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6784370 0.1072444 34.3 <2e-16 ***
## x.var 0.0093276 0.0002429 38.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.481 on 762 degrees of freedom
## Multiple R-squared: 0.6593, Adjusted R-squared: 0.6589
## F-statistic: 1475 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -42.263 -29.944 -1.424 12.793 38.876
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.568e+00 1.750e-03 3752 <2e-16 ***
## x.var 3.801e-03 3.042e-06 1250 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2378897 on 763 degrees of freedom
## Residual deviance: 496725 on 762 degrees of freedom
## AIC: 503559
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ITALY -- 153764
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21290.4 -10189.7 -390.7 8438.7 21881.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1760.932 854.281 -2.061 0.0396 *
## x.var 216.863 1.935 112.084 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11790 on 762 degrees of freedom
## Multiple R-squared: 0.9428, Adjusted R-squared: 0.9427
## F-statistic: 1.256e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.9134 -0.5457 0.6626 0.9713 1.8253
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.6915413 0.1429046 53.82 <2e-16 ***
## x.var 0.0073963 0.0003237 22.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.973 on 762 degrees of freedom
## Multiple R-squared: 0.4066, Adjusted R-squared: 0.4059
## F-statistic: 522.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -222.179 -54.550 -7.003 63.656 116.275
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.001e+01 3.539e-04 28285 <2e-16 ***
## x.var 2.879e-03 6.446e-07 4467 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 28231156 on 763 degrees of freedom
## Residual deviance: 5897957 on 762 degrees of freedom
## AIC: 5907347
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## JAMAICA -- 2798
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -469.7 -289.6 -109.0 383.6 641.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -645.64869 24.97881 -25.85 <2e-16 ***
## x.var 3.80196 0.05657 67.20 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 344.9 on 762 degrees of freedom
## Multiple R-squared: 0.8556, Adjusted R-squared: 0.8554
## F-statistic: 4516 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6205 -0.5195 -0.0316 0.6691 1.2612
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0035833 0.0545377 18.40 <2e-16 ***
## x.var 0.0108236 0.0001235 87.63 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.753 on 762 degrees of freedom
## Multiple R-squared: 0.9097, Adjusted R-squared: 0.9096
## F-statistic: 7678 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -18.4068 -9.1493 0.3927 4.8699 8.8476
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.483e+00 5.572e-03 625.1 <2e-16 ***
## x.var 6.260e-03 8.876e-06 705.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 803067 on 763 degrees of freedom
## Residual deviance: 44710 on 762 degrees of freedom
## AIC: 49921
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## JAPAN -- 22585
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3786.2 -1265.8 165.9 1578.5 4117.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4149.0814 142.2649 -29.16 <2e-16 ***
## x.var 32.1250 0.3222 99.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1964 on 762 degrees of freedom
## Multiple R-squared: 0.9288, Adjusted R-squared: 0.9287
## F-statistic: 9941 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5104 -0.5032 0.5180 0.7845 1.2924
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3061638 0.0894495 48.14 <2e-16 ***
## x.var 0.0092841 0.0002026 45.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.235 on 762 degrees of freedom
## Multiple R-squared: 0.7338, Adjusted R-squared: 0.7334
## F-statistic: 2100 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -54.08 -26.17 -18.11 25.56 49.53
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.695e+00 1.433e-03 4671 <2e-16 ***
## x.var 4.739e-03 2.395e-06 1979 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5872524 on 763 degrees of freedom
## Residual deviance: 732235 on 762 degrees of freedom
## AIC: 739598
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## JORDAN -- 13751
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2638.93 -895.69 52.03 962.75 2882.91
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2904.5943 94.1398 -30.85 <2e-16 ***
## x.var 21.6862 0.2132 101.71 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1300 on 762 degrees of freedom
## Multiple R-squared: 0.9314, Adjusted R-squared: 0.9313
## F-statistic: 1.035e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2902 -1.2198 -0.2829 1.4319 2.4712
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0486023 0.1016408 10.32 <2e-16 ***
## x.var 0.0140976 0.0002302 61.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.403 on 762 degrees of freedom
## Multiple R-squared: 0.8311, Adjusted R-squared: 0.8309
## F-statistic: 3750 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -54.37 -39.66 -16.25 21.14 52.45
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.206e+00 1.793e-03 3461 <2e-16 ***
## x.var 4.872e-03 2.982e-06 1634 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4504766 on 763 degrees of freedom
## Residual deviance: 954061 on 762 degrees of freedom
## AIC: 960255
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## KAZAKHSTAN -- 18882
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4120.7 -2193.7 -148.4 2285.4 4251.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4279.0896 169.1895 -25.29 <2e-16 ***
## x.var 28.0915 0.3832 73.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2336 on 762 degrees of freedom
## Multiple R-squared: 0.8758, Adjusted R-squared: 0.8757
## F-statistic: 5374 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4765 -0.7525 0.0444 1.0282 2.2481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7134582 0.1033858 26.25 <2e-16 ***
## x.var 0.0117392 0.0002342 50.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.427 on 762 degrees of freedom
## Multiple R-squared: 0.7674, Adjusted R-squared: 0.7671
## F-statistic: 2513 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -54.642 -29.553 1.292 11.095 34.174
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.032e+00 1.777e-03 3394 <2e-16 ***
## x.var 5.481e-03 2.895e-06 1893 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5435878 on 763 degrees of freedom
## Residual deviance: 378051 on 762 degrees of freedom
## AIC: 384838
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## KENYA -- 5638
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -739.5 -332.7 -59.6 336.0 1097.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1106.7801 32.0128 -34.57 <2e-16 ***
## x.var 8.9793 0.0725 123.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 442 on 762 degrees of freedom
## Multiple R-squared: 0.9527, Adjusted R-squared: 0.9526
## F-statistic: 1.534e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2479 -0.8223 0.3138 1.0776 1.5250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5968486 0.0941545 27.58 <2e-16 ***
## x.var 0.0101720 0.0002132 47.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.3 on 762 degrees of freedom
## Multiple R-squared: 0.7491, Adjusted R-squared: 0.7488
## F-statistic: 2275 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -31.952 -20.077 0.667 11.677 15.823
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.531e+00 2.625e-03 2107 <2e-16 ***
## x.var 4.586e-03 4.412e-06 1039 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1582983 on 763 degrees of freedom
## Residual deviance: 185178 on 762 degrees of freedom
## AIC: 191418
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## KIRIBATI -- 11
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5075 -0.3122 -0.1168 0.0785 10.4802
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2595191 0.0760757 -3.411 0.000681 ***
## x.var 0.0010241 0.0001723 5.944 4.24e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.05 on 762 degrees of freedom
## Multiple R-squared: 0.04431, Adjusted R-squared: 0.04305
## F-statistic: 35.33 on 1 and 762 DF, p-value: 4.24e-09
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.14131 -0.08695 -0.03260 0.02175 2.34018
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.211e-02 1.943e-02 -3.711 0.000222 ***
## x.var 2.849e-04 4.401e-05 6.474 1.71e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2683 on 762 degrees of freedom
## Multiple R-squared: 0.05214, Adjusted R-squared: 0.05089
## F-statistic: 41.91 on 1 and 762 DF, p-value: 1.708e-10
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: fitted rates numerically 0 occurred
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.722 0.000 0.000 0.000 1.884
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -144.70045 14.61712 -9.899 <2e-16 ***
## x.var 0.19316 0.01925 10.034 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 831.310 on 763 degrees of freedom
## Residual deviance: 24.766 on 762 degrees of freedom
## AIC: 81.774
##
## Number of Fisher Scoring iterations: 12
##
## --------------------------------------------------------------------------------
## KOREA, SOUTH -- 7689
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -875.2 -602.8 -284.4 433.3 3299.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1009.4490 63.2283 -15.96 <2e-16 ***
## x.var 7.0668 0.1432 49.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 873 on 762 degrees of freedom
## Multiple R-squared: 0.7617, Adjusted R-squared: 0.7614
## F-statistic: 2435 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0835 -0.3075 0.2433 0.5416 0.9514
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8775548 0.0685307 56.58 <2e-16 ***
## x.var 0.0071013 0.0001552 45.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9462 on 762 degrees of freedom
## Multiple R-squared: 0.7331, Adjusted R-squared: 0.7328
## F-statistic: 2093 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -17.563 -5.731 -2.118 7.297 15.882
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.889e+00 3.320e-03 1472.8 <2e-16 ***
## x.var 5.146e-03 5.468e-06 941.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1274297 on 763 degrees of freedom
## Residual deviance: 64450 on 762 degrees of freedom
## AIC: 70839
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## KOSOVO -- 3105
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -310.84 -160.86 23.51 146.24 461.45
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -466.50177 14.03174 -33.25 <2e-16 ***
## x.var 5.05305 0.03178 159.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 193.7 on 762 degrees of freedom
## Multiple R-squared: 0.9707, Adjusted R-squared: 0.9707
## F-statistic: 2.528e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.02554 -0.78960 0.03076 1.19071 1.69508
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.4386603 0.0941931 25.89 <2e-16 ***
## x.var 0.0096210 0.0002133 45.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.3 on 762 degrees of freedom
## Multiple R-squared: 0.7275, Adjusted R-squared: 0.7271
## F-statistic: 2034 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -24.5810 -20.2561 0.2171 11.5813 18.3294
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.434e+00 3.029e-03 1794.0 <2e-16 ***
## x.var 3.935e-03 5.231e-06 752.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 860926 on 763 degrees of freedom
## Residual deviance: 171088 on 762 degrees of freedom
## AIC: 177046
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## KUWAIT -- 2533
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -285.20 -103.72 -25.81 91.41 373.66
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -320.50235 12.26787 -26.12 <2e-16 ***
## x.var 4.10079 0.02778 147.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 169.4 on 762 degrees of freedom
## Multiple R-squared: 0.9662, Adjusted R-squared: 0.9662
## F-statistic: 2.178e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4966 -0.7802 0.3739 1.1988 1.6240
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8708550 0.1030209 27.87 <2e-16 ***
## x.var 0.0085715 0.0002333 36.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.422 on 762 degrees of freedom
## Multiple R-squared: 0.6391, Adjusted R-squared: 0.6386
## F-statistic: 1350 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -24.223 -9.497 1.863 6.257 13.479
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.401e+00 3.181e-03 1697.6 <2e-16 ***
## x.var 3.701e-03 5.554e-06 666.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 630565 on 763 degrees of freedom
## Residual deviance: 100186 on 762 degrees of freedom
## AIC: 106150
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## KYRGYZSTAN -- 2948
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -447.75 -132.20 -3.02 112.53 792.87
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -185.53275 16.55001 -11.21 <2e-16 ***
## x.var 4.29738 0.03748 114.65 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 228.5 on 762 degrees of freedom
## Multiple R-squared: 0.9452, Adjusted R-squared: 0.9451
## F-statistic: 1.314e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2690 -1.0454 0.0304 1.2074 2.8483
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5992336 0.1114581 23.32 <2e-16 ***
## x.var 0.0093018 0.0002524 36.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.539 on 762 degrees of freedom
## Multiple R-squared: 0.6405, Adjusted R-squared: 0.6401
## F-statistic: 1358 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -29.578 -14.477 3.612 8.786 28.340
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.805e+00 2.766e-03 2098.5 <2e-16 ***
## x.var 3.235e-03 4.942e-06 654.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 688511 on 763 degrees of freedom
## Residual deviance: 196016 on 762 degrees of freedom
## AIC: 201988
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LAOS -- 616
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -128.11 -84.89 -20.88 47.21 415.51
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -90.54537 8.35177 -10.84 <2e-16 ***
## x.var 0.38094 0.01892 20.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 115.3 on 762 degrees of freedom
## Multiple R-squared: 0.3474, Adjusted R-squared: 0.3465
## F-statistic: 405.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0647 -0.9761 -0.1867 0.9718 2.1730
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.6346229 0.0848714 -19.26 <2e-16 ***
## x.var 0.0078210 0.0001922 40.69 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.172 on 762 degrees of freedom
## Multiple R-squared: 0.6848, Adjusted R-squared: 0.6844
## F-statistic: 1655 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -10.1809 -1.0773 -0.2149 -0.0320 5.3026
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.7652206 0.0760658 -128.4 <2e-16 ***
## x.var 0.0216917 0.0001057 205.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 154833.9 on 763 degrees of freedom
## Residual deviance: 2460.9 on 762 degrees of freedom
## AIC: 4010.2
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LATVIA -- 5145
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -883.96 -407.64 -35.89 416.11 1071.32
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.078e+03 3.814e+01 -28.27 <2e-16 ***
## x.var 6.896e+00 8.637e-02 79.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 526.5 on 762 degrees of freedom
## Multiple R-squared: 0.8932, Adjusted R-squared: 0.8931
## F-statistic: 6374 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.01287 -0.65687 0.03708 0.67436 1.57155
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1735891 0.0686535 17.09 <2e-16 ***
## x.var 0.0116567 0.0001555 74.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9479 on 762 degrees of freedom
## Multiple R-squared: 0.8806, Adjusted R-squared: 0.8804
## F-statistic: 5620 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -23.663 -16.153 -7.535 9.879 23.421
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.515e+00 3.696e-03 1221.5 <2e-16 ***
## x.var 5.639e-03 5.992e-06 941.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1464625 on 763 degrees of freedom
## Residual deviance: 194885 on 762 degrees of freedom
## AIC: 200453
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LEBANON -- 10027
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2079.53 -845.25 -9.49 1014.39 2168.81
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2185.340 87.859 -24.87 <2e-16 ***
## x.var 16.529 0.199 83.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1213 on 762 degrees of freedom
## Multiple R-squared: 0.9006, Adjusted R-squared: 0.9004
## F-statistic: 6900 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.66778 -0.66363 -0.01589 1.05111 1.56554
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0974195 0.0820737 25.55 <2e-16 ***
## x.var 0.0118825 0.0001859 63.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.133 on 762 degrees of freedom
## Multiple R-squared: 0.8428, Adjusted R-squared: 0.8426
## F-statistic: 4086 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -47.77 -32.25 -20.83 21.22 52.10
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.970e+00 2.033e-03 2936 <2e-16 ***
## x.var 4.823e-03 3.387e-06 1424 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3465799 on 763 degrees of freedom
## Residual deviance: 782015 on 762 degrees of freedom
## AIC: 788401
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------

## LESOTHO -- 696
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -155.55 -64.88 -13.87 72.75 161.58
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -162.64920 6.02348 -27.00 <2e-16 ***
## x.var 1.06704 0.01364 78.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 83.16 on 762 degrees of freedom
## Multiple R-squared: 0.8892, Adjusted R-squared: 0.8891
## F-statistic: 6118 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8446 -0.7086 0.0037 0.7942 1.4850
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0972387 0.0639811 1.52 0.129
## x.var 0.0103395 0.0001449 71.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8834 on 762 degrees of freedom
## Multiple R-squared: 0.8698, Adjusted R-squared: 0.8696
## F-statistic: 5091 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -11.403 -6.102 -3.441 2.993 11.418
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.758e+00 9.125e-03 302.3 <2e-16 ***
## x.var 5.485e-03 1.486e-05 369.0 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 219765 on 763 degrees of freedom
## Residual deviance: 27537 on 762 degrees of freedom
## AIC: 31722
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LIBERIA -- 290
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -85.904 -31.987 9.953 29.422 68.770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36.823753 2.879028 -12.79 <2e-16 ***
## x.var 0.414965 0.006521 63.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 39.75 on 762 degrees of freedom
## Multiple R-squared: 0.8416, Adjusted R-squared: 0.8414
## F-statistic: 4050 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.29394 -0.35519 0.04773 0.67864 1.33691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8459429 0.0635097 29.07 <2e-16 ***
## x.var 0.0060541 0.0001438 42.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8769 on 762 degrees of freedom
## Multiple R-squared: 0.6992, Adjusted R-squared: 0.6988
## F-statistic: 1771 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.2443 -2.9523 -0.4546 2.8544 5.1798
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.981e+00 1.042e-02 286.1 <2e-16 ***
## x.var 3.872e-03 1.804e-05 214.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 65454.5 on 763 degrees of freedom
## Residual deviance: 9590.5 on 762 degrees of freedom
## AIC: 14032
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LIBYA -- 6222
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -584.69 -421.01 -85.95 425.88 1224.63
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.234e+03 3.296e+01 -37.43 <2e-16 ***
## x.var 9.165e+00 7.465e-02 122.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 455.1 on 762 degrees of freedom
## Multiple R-squared: 0.9519, Adjusted R-squared: 0.9518
## F-statistic: 1.507e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.34108 -1.32919 0.01945 1.28877 1.85501
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4858960 0.0959052 15.49 <2e-16 ***
## x.var 0.0120448 0.0002172 55.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.324 on 762 degrees of freedom
## Multiple R-squared: 0.8014, Adjusted R-squared: 0.8011
## F-statistic: 3075 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -27.8914 -21.8888 0.0592 9.2914 21.6681
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.331e+00 2.770e-03 1925 <2e-16 ***
## x.var 4.892e-03 4.603e-06 1063 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1726887 on 763 degrees of freedom
## Residual deviance: 221273 on 762 degrees of freedom
## AIC: 227181
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LIECHTENSTEIN -- 76
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.239 -6.753 -1.990 8.406 20.482
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.862341 0.779915 -15.21 <2e-16 ***
## x.var 0.120928 0.001766 68.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.77 on 762 degrees of freedom
## Multiple R-squared: 0.8602, Adjusted R-squared: 0.86
## F-statistic: 4687 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2560 -0.5880 -0.1456 0.5828 1.4843
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0302370 0.0528706 -0.572 0.568
## x.var 0.0070192 0.0001197 58.618 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.73 on 762 degrees of freedom
## Multiple R-squared: 0.8185, Adjusted R-squared: 0.8183
## F-statistic: 3436 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.914 -3.439 -1.948 2.212 5.504
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.623e+00 2.006e-02 80.91 <2e-16 ***
## x.var 4.040e-03 3.448e-05 117.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 25356.8 on 763 degrees of freedom
## Residual deviance: 8463.3 on 762 degrees of freedom
## AIC: 11643
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## LITHUANIA -- 8316
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1517.8 -527.9 115.2 504.0 1649.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1661.2932 54.7230 -30.36 <2e-16 ***
## x.var 11.5738 0.1239 93.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 755.5 on 762 degrees of freedom
## Multiple R-squared: 0.9196, Adjusted R-squared: 0.9195
## F-statistic: 8720 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.57658 -0.65437 0.04963 0.74896 1.76929
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8614314 0.0791793 23.51 <2e-16 ***
## x.var 0.0115347 0.0001793 64.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.093 on 762 degrees of freedom
## Multiple R-squared: 0.8445, Adjusted R-squared: 0.8443
## F-statistic: 4137 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -33.313 -23.614 -9.594 15.494 32.791
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.366e+00 2.606e-03 2059 <2e-16 ***
## x.var 5.169e-03 4.289e-06 1205 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2382297 on 763 degrees of freedom
## Residual deviance: 393723 on 762 degrees of freedom
## AIC: 399804
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LUXEMBOURG -- 988
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -194.085 -81.603 7.381 80.327 185.972
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -92.39000 7.21569 -12.80 <2e-16 ***
## x.var 1.53768 0.01634 94.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 99.62 on 762 degrees of freedom
## Multiple R-squared: 0.9207, Adjusted R-squared: 0.9206
## F-statistic: 8853 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2342 -0.4808 0.3445 0.7835 1.0118
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8814794 0.0768501 37.49 <2e-16 ***
## x.var 0.0067835 0.0001741 38.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.061 on 762 degrees of freedom
## Multiple R-squared: 0.6659, Adjusted R-squared: 0.6655
## F-statistic: 1519 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -15.550 -7.357 -4.055 7.095 12.987
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.616e+00 4.877e-03 946.5 <2e-16 ***
## x.var 3.443e-03 8.621e-06 399.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 242061 on 763 degrees of freedom
## Residual deviance: 55606 on 762 degrees of freedom
## AIC: 61097
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MS ZAANDAM -- 2
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.40824 -0.15762 0.09174 0.34110 0.59046
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.317e+00 3.625e-02 36.33 <2e-16 ***
## x.var 1.307e-03 8.209e-05 15.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5004 on 762 degrees of freedom
## Multiple R-squared: 0.2497, Adjusted R-squared: 0.2487
## F-statistic: 253.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.77355 -0.08658 0.05039 0.18737 0.32434
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.233e-01 1.991e-02 36.33 <2e-16 ***
## x.var 7.181e-04 4.509e-05 15.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2749 on 762 degrees of freedom
## Multiple R-squared: 0.2497, Adjusted R-squared: 0.2487
## F-statistic: 253.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.69173 -0.11436 0.08146 0.26857 0.44753
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.3077364 0.0578081 5.323 1.02e-07 ***
## x.var 0.0007232 0.0001226 5.897 3.69e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 266.76 on 763 degrees of freedom
## Residual deviance: 231.72 on 762 degrees of freedom
## AIC: 2049.6
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MADAGASCAR -- 1350
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -248.46 -67.08 -4.85 99.20 215.72
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -217.56475 8.30959 -26.18 <2e-16 ***
## x.var 1.84140 0.01882 97.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 114.7 on 762 degrees of freedom
## Multiple R-squared: 0.9263, Adjusted R-squared: 0.9262
## F-statistic: 9573 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.3999 -1.1387 0.3092 0.7955 1.8556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2805442 0.0859675 14.90 <2e-16 ***
## x.var 0.0096493 0.0001947 49.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.187 on 762 degrees of freedom
## Multiple R-squared: 0.7632, Adjusted R-squared: 0.7629
## F-statistic: 2456 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -13.7880 -8.6008 -0.9422 3.6548 13.2384
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.037e+00 5.645e-03 715.2 <2e-16 ***
## x.var 4.462e-03 9.534e-06 467.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 329617 on 763 degrees of freedom
## Residual deviance: 49515 on 762 degrees of freedom
## AIC: 54499
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALAWI -- 2610
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -620.03 -214.47 -6.78 215.78 590.10
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -594.128 21.194 -28.03 <2e-16 ***
## x.var 4.026 0.048 83.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 292.6 on 762 degrees of freedom
## Multiple R-squared: 0.9023, Adjusted R-squared: 0.9021
## F-statistic: 7034 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0326 -0.9954 0.1396 0.9102 1.6204
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.20668 0.07507 16.07 <2e-16 ***
## x.var 0.01087 0.00017 63.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.036 on 762 degrees of freedom
## Multiple R-squared: 0.8428, Adjusted R-squared: 0.8426
## F-statistic: 4086 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -21.869 -12.613 -5.327 7.992 17.541
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.212e+00 4.539e-03 928.0 <2e-16 ***
## x.var 5.307e-03 7.437e-06 713.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 806784 on 763 degrees of freedom
## Residual deviance: 100270 on 762 degrees of freedom
## AIC: 105616
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALAYSIA -- 32488
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10429.1 -6582.7 -15.8 7259.9 9269.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9122.01 494.41 -18.45 <2e-16 ***
## x.var 44.60 1.12 39.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6826 on 762 degrees of freedom
## Multiple R-squared: 0.6755, Adjusted R-squared: 0.6751
## F-statistic: 1586 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.61685 -0.20417 0.05539 0.41570 1.48053
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9324493 0.0603688 32.01 <2e-16 ***
## x.var 0.0124436 0.0001367 91.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8335 on 762 degrees of freedom
## Multiple R-squared: 0.9158, Adjusted R-squared: 0.9156
## F-statistic: 8283 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -104.909 -22.690 -12.924 -2.986 87.709
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.936e+00 2.524e-03 1559 <2e-16 ***
## x.var 9.140e-03 3.799e-06 2406 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 12433207 on 763 degrees of freedom
## Residual deviance: 899466 on 762 degrees of freedom
## AIC: 905882
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALDIVES -- 293
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -69.87 -26.59 10.99 24.64 60.34
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -60.780280 2.486906 -24.44 <2e-16 ***
## x.var 0.435418 0.005632 77.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34.34 on 762 degrees of freedom
## Multiple R-squared: 0.8869, Adjusted R-squared: 0.8868
## F-statistic: 5976 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5286 -0.4853 0.1697 0.5307 0.9245
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.771865 0.046791 16.50 <2e-16 ***
## x.var 0.007721 0.000106 72.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.646 on 762 degrees of freedom
## Multiple R-squared: 0.8745, Adjusted R-squared: 0.8743
## F-statistic: 5308 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.3358 -2.9690 -0.7998 0.5541 7.2261
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.177e+00 1.310e-02 166.2 <2e-16 ***
## x.var 5.042e-03 2.165e-05 232.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 81982.3 on 763 degrees of freedom
## Residual deviance: 8663.9 on 762 degrees of freedom
## AIC: 12718
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALI -- 722
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -101.816 -22.818 3.132 21.338 85.299
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -74.048953 3.013908 -24.57 <2e-16 ***
## x.var 1.041233 0.006826 152.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 41.61 on 762 degrees of freedom
## Multiple R-squared: 0.9683, Adjusted R-squared: 0.9682
## F-statistic: 2.327e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8497 -0.5823 0.4520 0.7316 1.2712
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3840847 0.0759758 31.38 <2e-16 ***
## x.var 0.0069491 0.0001721 40.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.049 on 762 degrees of freedom
## Multiple R-squared: 0.6816, Adjusted R-squared: 0.6811
## F-statistic: 1631 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -12.4511 -3.9167 -0.8495 4.6365 8.5470
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.1095947 0.0061543 667.8 <2e-16 ***
## x.var 0.0035952 0.0000108 332.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 156319 on 763 degrees of freedom
## Residual deviance: 25065 on 762 degrees of freedom
## AIC: 30196
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALTA -- 601
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -103.097 -45.598 5.956 44.125 101.968
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -95.084542 4.167397 -22.82 <2e-16 ***
## x.var 0.891173 0.009439 94.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 57.54 on 762 degrees of freedom
## Multiple R-squared: 0.9213, Adjusted R-squared: 0.9212
## F-statistic: 8915 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.64876 -0.61393 -0.07771 0.78032 1.37167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9645282 0.0630188 15.30 <2e-16 ***
## x.var 0.0088862 0.0001427 62.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8701 on 762 degrees of freedom
## Multiple R-squared: 0.8357, Adjusted R-squared: 0.8355
## F-statistic: 3876 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -10.232 -8.412 -4.047 5.883 11.602
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.4955358 0.0076769 455.3 <2e-16 ***
## x.var 0.0042093 0.0000131 321.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 172221 on 763 degrees of freedom
## Residual deviance: 43228 on 762 degrees of freedom
## AIC: 47808
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MARSHALL ISLANDS -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: algorithm did not converge
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.730e+01 3.728e+04 -0.001 0.999
## x.var 3.508e-16 8.443e+01 0.000 1.000
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 0.0000e+00 on 763 degrees of freedom
## Residual deviance: 2.1221e-09 on 762 degrees of freedom
## AIC: 4
##
## Number of Fisher Scoring iterations: 25
##
## --------------------------------------------------------------------------------
## MAURITANIA -- 977
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -123.63 -43.74 15.68 39.44 127.57
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.289e+02 4.319e+00 -29.85 <2e-16 ***
## x.var 1.361e+00 9.782e-03 139.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 59.63 on 762 degrees of freedom
## Multiple R-squared: 0.9621, Adjusted R-squared: 0.9621
## F-statistic: 1.935e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.41420 -0.86495 0.09777 0.99599 1.72509
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8522826 0.0846605 21.88 <2e-16 ***
## x.var 0.0082635 0.0001917 43.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.169 on 762 degrees of freedom
## Multiple R-squared: 0.7091, Adjusted R-squared: 0.7087
## F-statistic: 1857 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -13.2435 -4.6203 0.2882 2.7945 9.0166
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.090e+00 5.896e-03 693.7 <2e-16 ***
## x.var 3.978e-03 1.016e-05 391.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 217298 on 763 degrees of freedom
## Residual deviance: 29732 on 762 degrees of freedom
## AIC: 34818
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MAURITIUS -- 786
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -226.90 -144.59 -31.91 94.90 447.04
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -154.60764 13.22221 -11.69 <2e-16 ***
## x.var 0.69811 0.02995 23.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 182.6 on 762 degrees of freedom
## Multiple R-squared: 0.4163, Adjusted R-squared: 0.4155
## F-statistic: 543.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2271 -0.7756 -0.1162 0.8117 1.4690
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4892138 0.0614681 7.959 6.29e-15 ***
## x.var 0.0066939 0.0001392 48.083 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8487 on 762 degrees of freedom
## Multiple R-squared: 0.7521, Adjusted R-squared: 0.7518
## F-statistic: 2312 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -9.9689 -3.0315 0.5713 5.1560 12.4969
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.578e+00 2.949e-02 -87.4 <2e-16 ***
## x.var 1.250e-02 4.279e-05 292.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 238358 on 763 degrees of freedom
## Residual deviance: 22381 on 762 degrees of freedom
## AIC: 25964
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MEXICO -- 316941
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24209 -12557 -1954 10743 34739
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -35231.006 1085.291 -32.46 <2e-16 ***
## x.var 491.778 2.458 200.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14980 on 762 degrees of freedom
## Multiple R-squared: 0.9813, Adjusted R-squared: 0.9813
## F-statistic: 4.003e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.6022 -1.1550 0.5873 1.8408 2.5550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.9228986 0.1731431 34.21 <2e-16 ***
## x.var 0.0119171 0.0003921 30.39 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.391 on 762 degrees of freedom
## Multiple R-squared: 0.5479, Adjusted R-squared: 0.5473
## F-statistic: 923.5 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -271.39 -145.56 17.57 81.37 170.93
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.026e+01 2.837e-04 36169 <2e-16 ***
## x.var 3.603e-03 4.976e-07 7240 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 77566800 on 763 degrees of freedom
## Residual deviance: 15458090 on 762 degrees of freedom
## AIC: 15467399
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MICRONESIA -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: algorithm did not converge
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.730e+01 3.728e+04 -0.001 0.999
## x.var 3.508e-16 8.443e+01 0.000 1.000
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 0.0000e+00 on 763 degrees of freedom
## Residual deviance: 2.1221e-09 on 762 degrees of freedom
## AIC: 4
##
## Number of Fisher Scoring iterations: 25
##
## --------------------------------------------------------------------------------
## MOLDOVA -- 11157
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -860.6 -574.2 -167.5 493.6 1685.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1700.5513 50.2410 -33.85 <2e-16 ***
## x.var 15.0707 0.1138 132.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 693.7 on 762 degrees of freedom
## Multiple R-squared: 0.9584, Adjusted R-squared: 0.9583
## F-statistic: 1.754e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9799 -0.7897 0.5284 1.2227 1.3666
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4366847 0.1053134 32.63 <2e-16 ***
## x.var 0.0097001 0.0002385 40.67 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.454 on 762 degrees of freedom
## Multiple R-squared: 0.6846, Adjusted R-squared: 0.6842
## F-statistic: 1654 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -36.596 -16.109 -5.935 14.086 30.356
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.227e+00 1.922e-03 3241 <2e-16 ***
## x.var 4.340e-03 3.262e-06 1331 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2525341 on 763 degrees of freedom
## Residual deviance: 285886 on 762 degrees of freedom
## AIC: 292644
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MONACO -- 51
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.458 -2.937 1.283 4.720 8.198
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.8133848 0.4191702 -18.64 <2e-16 ***
## x.var 0.0689540 0.0009494 72.63 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.787 on 762 degrees of freedom
## Multiple R-squared: 0.8738, Adjusted R-squared: 0.8736
## F-statistic: 5275 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.95018 -0.42133 -0.00811 0.50234 0.80417
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3337034 0.0377060 8.85 <2e-16 ***
## x.var 0.0053021 0.0000854 62.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5206 on 762 degrees of freedom
## Multiple R-squared: 0.8349, Adjusted R-squared: 0.8347
## F-statistic: 3855 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.7709 -2.1737 -0.5294 1.0539 3.3542
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.327e-01 2.848e-02 29.24 <2e-16 ***
## x.var 4.351e-03 4.831e-05 90.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 12977 on 763 degrees of freedom
## Residual deviance: 2710 on 762 degrees of freedom
## AIC: 5710.8
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MONGOLIA -- 2163
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -664.50 -362.62 -46.12 400.57 653.83
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -594.65046 30.41860 -19.55 <2e-16 ***
## x.var 2.86700 0.06889 41.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 420 on 762 degrees of freedom
## Multiple R-squared: 0.6944, Adjusted R-squared: 0.694
## F-statistic: 1732 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4436 -1.1626 0.2933 1.0461 2.2258
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.2395263 0.0918957 -24.37 <2e-16 ***
## x.var 0.0136932 0.0002081 65.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.269 on 762 degrees of freedom
## Multiple R-squared: 0.8503, Adjusted R-squared: 0.8501
## F-statistic: 4329 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -26.621 -9.658 -4.371 1.895 14.725
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.053e-01 1.050e-02 86.24 <2e-16 ***
## x.var 9.551e-03 1.571e-05 607.99 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 834343 on 763 degrees of freedom
## Residual deviance: 72670 on 762 degrees of freedom
## AIC: 75711
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## MONTENEGRO -- 2670
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -328.64 -165.92 14.05 132.47 510.19
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -514.1473 14.0838 -36.51 <2e-16 ***
## x.var 3.9572 0.0319 124.06 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 194.5 on 762 degrees of freedom
## Multiple R-squared: 0.9528, Adjusted R-squared: 0.9528
## F-statistic: 1.539e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.13551 -0.78177 0.00641 1.02083 1.44889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4936070 0.0755616 19.77 <2e-16 ***
## x.var 0.0105230 0.0001711 61.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.043 on 762 degrees of freedom
## Multiple R-squared: 0.8323, Adjusted R-squared: 0.832
## F-statistic: 3781 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -18.485 -14.804 -3.040 7.905 18.276
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.586e+00 4.102e-03 1118 <2e-16 ***
## x.var 4.760e-03 6.849e-06 695 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 749509 on 763 degrees of freedom
## Residual deviance: 113991 on 762 degrees of freedom
## AIC: 119485
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MOROCCO -- 15938
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2031.56 -969.33 30.94 1035.38 2429.66
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2454.3783 83.5673 -29.37 <2e-16 ***
## x.var 24.7154 0.1893 130.58 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1154 on 762 degrees of freedom
## Multiple R-squared: 0.9572, Adjusted R-squared: 0.9572
## F-statistic: 1.705e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1040 -0.6680 0.2613 1.1656 1.8265
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6076648 0.1070642 33.70 <2e-16 ***
## x.var 0.0103394 0.0002425 42.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.478 on 762 degrees of freedom
## Multiple R-squared: 0.7047, Adjusted R-squared: 0.7043
## F-statistic: 1818 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -50.750 -44.606 -0.163 19.431 47.851
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.926e+00 1.410e-03 4910 <2e-16 ***
## x.var 4.063e-03 2.422e-06 1677 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4365655 on 763 degrees of freedom
## Residual deviance: 895943 on 762 degrees of freedom
## AIC: 903034
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MOZAMBIQUE -- 2191
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -467.22 -251.73 -14.14 235.09 555.40
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -558.81178 20.69941 -27.00 <2e-16 ***
## x.var 3.41321 0.04688 72.81 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 285.8 on 762 degrees of freedom
## Multiple R-squared: 0.8743, Adjusted R-squared: 0.8741
## F-statistic: 5301 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7479 -0.7453 0.1986 0.7863 1.3792
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2641319 0.0633749 4.168 3.43e-05 ***
## x.var 0.0119660 0.0001435 83.366 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.875 on 762 degrees of freedom
## Multiple R-squared: 0.9012, Adjusted R-squared: 0.9011
## F-statistic: 6950 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -22.604 -11.085 -7.633 6.911 18.091
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.586e+00 5.573e-03 643.4 <2e-16 ***
## x.var 5.959e-03 8.951e-06 665.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 740430 on 763 degrees of freedom
## Residual deviance: 84530 on 762 degrees of freedom
## AIC: 89393
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NAMIBIA -- 4002
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1120.5 -745.5 135.0 613.5 1104.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1110.6379 51.1446 -21.72 <2e-16 ***
## x.var 6.1169 0.1158 52.81 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 706.1 on 762 degrees of freedom
## Multiple R-squared: 0.7854, Adjusted R-squared: 0.7851
## F-statistic: 2789 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1723 -0.8226 0.2540 0.8118 1.6047
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0804571 0.0714984 -1.125 0.261
## x.var 0.0132517 0.0001619 81.834 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9872 on 762 degrees of freedom
## Multiple R-squared: 0.8978, Adjusted R-squared: 0.8977
## F-statistic: 6697 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -33.888 -10.486 -6.578 -4.354 34.041
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.469e+00 4.946e-03 701.4 <2e-16 ***
## x.var 6.959e-03 7.745e-06 898.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1470198 on 763 degrees of freedom
## Residual deviance: 151707 on 762 degrees of freedom
## AIC: 156606
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

## NEPAL -- 11930
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2966.7 -1619.2 164.7 1614.1 3147.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3167.9105 123.7992 -25.59 <2e-16 ***
## x.var 20.1848 0.2804 71.99 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1709 on 762 degrees of freedom
## Multiple R-squared: 0.8718, Adjusted R-squared: 0.8716
## F-statistic: 5182 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6978 -1.2556 0.2197 1.1144 1.8843
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1088711 0.0970698 11.42 <2e-16 ***
## x.var 0.0138164 0.0002198 62.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.34 on 762 degrees of freedom
## Multiple R-squared: 0.8383, Adjusted R-squared: 0.8381
## F-statistic: 3949 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -61.127 -28.784 -7.749 4.262 50.031
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.572e+00 2.170e-03 2568 <2e-16 ***
## x.var 5.663e-03 3.516e-06 1611 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4319428 on 763 degrees of freedom
## Residual deviance: 590398 on 762 degrees of freedom
## AIC: 596474
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NETHERLANDS -- 22095
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2284.3 -1362.7 -411.4 1364.0 2835.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 582.8779 113.3968 5.14 3.49e-07 ***
## x.var 30.6397 0.2568 119.30 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1566 on 762 degrees of freedom
## Multiple R-squared: 0.9492, Adjusted R-squared: 0.9491
## F-statistic: 1.423e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.2151 -0.6465 0.5899 1.0054 1.9185
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.8980562 0.1345046 43.85 <2e-16 ***
## x.var 0.0072048 0.0003046 23.65 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.857 on 762 degrees of freedom
## Multiple R-squared: 0.4233, Adjusted R-squared: 0.4226
## F-statistic: 559.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -92.521 -18.539 0.381 19.235 42.052
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.235e+00 8.833e-04 9323 <2e-16 ***
## x.var 2.657e-03 1.630e-06 1630 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3839049 on 763 degrees of freedom
## Residual deviance: 911851 on 762 degrees of freedom
## AIC: 919787
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NEW ZEALAND -- 56
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.5169 -6.9246 0.2551 5.7937 12.9879
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.38427 0.48585 15.20 <2e-16 ***
## x.var 0.04676 0.00110 42.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.708 on 762 degrees of freedom
## Multiple R-squared: 0.7032, Adjusted R-squared: 0.7028
## F-statistic: 1805 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.98387 -0.25860 0.03533 0.58305 0.98543
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.769230 0.053867 32.84 <2e-16 ***
## x.var 0.003204 0.000122 26.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7437 on 762 degrees of freedom
## Multiple R-squared: 0.475, Adjusted R-squared: 0.4743
## F-statistic: 689.5 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.030 -1.114 0.405 1.189 1.917
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.409e+00 1.776e-02 135.62 <2e-16 ***
## x.var 1.915e-03 3.437e-05 55.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6025.0 on 763 degrees of freedom
## Residual deviance: 2754.5 on 762 degrees of freedom
## AIC: 6299
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NICARAGUA -- 224
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -56.623 -25.223 0.906 26.942 46.963
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.048414 2.191623 12.80 <2e-16 ***
## x.var 0.302474 0.004964 60.94 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.26 on 762 degrees of freedom
## Multiple R-squared: 0.8297, Adjusted R-squared: 0.8295
## F-statistic: 3713 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5771 -0.7341 0.1472 0.9983 1.4979
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2073212 0.0831661 26.54 <2e-16 ***
## x.var 0.0056891 0.0001884 30.20 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.148 on 762 degrees of freedom
## Multiple R-squared: 0.5449, Adjusted R-squared: 0.5443
## F-statistic: 912.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -11.2852 -3.0301 0.6547 3.4845 5.1629
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.011e+00 7.715e-03 519.9 <2e-16 ***
## x.var 2.202e-03 1.464e-05 150.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 44549 on 763 degrees of freedom
## Residual deviance: 20362 on 762 degrees of freedom
## AIC: 24978
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NIGER -- 306
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.423 -15.251 1.868 17.450 32.482
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.574914 1.424870 -8.123 1.82e-15 ***
## x.var 0.389769 0.003227 120.779 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.67 on 762 degrees of freedom
## Multiple R-squared: 0.9504, Adjusted R-squared: 0.9503
## F-statistic: 1.459e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6356 -0.4768 0.3034 0.6346 1.1807
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2885843 0.0672381 34.04 <2e-16 ***
## x.var 0.0055087 0.0001523 36.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9283 on 762 degrees of freedom
## Multiple R-squared: 0.632, Adjusted R-squared: 0.6315
## F-statistic: 1309 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -9.0633 -1.7891 -0.4627 1.7231 5.0975
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.521e+00 8.835e-03 398.5 <2e-16 ***
## x.var 3.087e-03 1.591e-05 194.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 52525.9 on 763 degrees of freedom
## Residual deviance: 9719.5 on 762 degrees of freedom
## AIC: 14360
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NIGERIA -- 3142
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -243.339 -110.241 0.085 101.334 274.759
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -158.5610 9.6673 -16.4 <2e-16 ***
## x.var 4.5500 0.0219 207.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 133.5 on 762 degrees of freedom
## Multiple R-squared: 0.9827, Adjusted R-squared: 0.9826
## F-statistic: 4.318e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9148 -0.7445 0.3211 1.1010 1.8403
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4275825 0.1097043 31.24 <2e-16 ***
## x.var 0.0079870 0.0002485 32.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.515 on 762 degrees of freedom
## Multiple R-squared: 0.5756, Adjusted R-squared: 0.575
## F-statistic: 1033 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -30.367 -8.868 1.945 7.784 15.356
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.935e+00 2.624e-03 2262 <2e-16 ***
## x.var 3.142e-03 4.711e-06 667 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 644200 on 763 degrees of freedom
## Residual deviance: 136412 on 762 degrees of freedom
## AIC: 142653
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NORTH MACEDONIA -- 8958
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1117.11 -445.92 52.67 337.87 1576.42
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1589.4253 42.7845 -37.15 <2e-16 ***
## x.var 13.0056 0.0969 134.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 590.7 on 762 degrees of freedom
## Multiple R-squared: 0.9594, Adjusted R-squared: 0.9594
## F-statistic: 1.801e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6698 -0.6762 0.4497 1.0298 1.3333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.070247 0.095382 32.19 <2e-16 ***
## x.var 0.009992 0.000216 46.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.317 on 762 degrees of freedom
## Multiple R-squared: 0.7374, Adjusted R-squared: 0.737
## F-statistic: 2139 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -31.302 -21.418 -6.615 15.290 30.278
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.921e+00 2.169e-03 2730 <2e-16 ***
## x.var 4.559e-03 3.650e-06 1249 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2305644 on 763 degrees of freedom
## Residual deviance: 290753 on 762 degrees of freedom
## AIC: 297312
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NORWAY -- 1598
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -139.49 -79.76 -0.56 43.57 360.35
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -88.6392 7.2393 -12.24 <2e-16 ***
## x.var 1.7360 0.0164 105.88 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 99.95 on 762 degrees of freedom
## Multiple R-squared: 0.9364, Adjusted R-squared: 0.9363
## F-statistic: 1.121e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7247 -0.5227 0.3940 0.6417 1.3481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4074176 0.0842228 40.46 <2e-16 ***
## x.var 0.0061008 0.0001908 31.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.163 on 762 degrees of freedom
## Multiple R-squared: 0.5731, Adjusted R-squared: 0.5725
## F-statistic: 1023 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -17.2184 -2.4471 -0.0899 3.0583 6.7713
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.826e+00 4.458e-03 1082.4 <2e-16 ***
## x.var 3.328e-03 7.927e-06 419.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 231577 on 763 degrees of freedom
## Residual deviance: 27411 on 762 degrees of freedom
## AIC: 33106
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## OMAN -- 4238
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -631.66 -225.62 -82.99 278.87 755.11
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -720.41433 26.72243 -26.96 <2e-16 ***
## x.var 6.92483 0.06052 114.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 368.9 on 762 degrees of freedom
## Multiple R-squared: 0.945, Adjusted R-squared: 0.9449
## F-statistic: 1.309e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.261 -0.967 0.249 1.187 1.773
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5799144 0.1014767 25.42 <2e-16 ***
## x.var 0.0098774 0.0002298 42.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 762 degrees of freedom
## Multiple R-squared: 0.7079, Adjusted R-squared: 0.7076
## F-statistic: 1847 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -28.524 -19.234 2.231 9.250 20.703
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.586e+00 2.721e-03 2052.9 <2e-16 ***
## x.var 4.155e-03 4.654e-06 892.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1172769 on 763 degrees of freedom
## Residual deviance: 181540 on 762 degrees of freedom
## AIC: 187670
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PAKISTAN -- 30114
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2998.2 -1737.6 97.5 1387.7 3930.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3977.1235 125.5860 -31.67 <2e-16 ***
## x.var 47.0970 0.2844 165.58 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1734 on 762 degrees of freedom
## Multiple R-squared: 0.973, Adjusted R-squared: 0.9729
## F-statistic: 2.742e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2112 -0.8217 0.4991 1.2490 2.2168
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6635184 0.1319362 35.35 <2e-16 ***
## x.var 0.0097793 0.0002988 32.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.822 on 762 degrees of freedom
## Multiple R-squared: 0.5843, Adjusted R-squared: 0.5838
## F-statistic: 1071 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -76.872 -33.893 7.542 18.672 40.928
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.766e+00 9.614e-04 8078 <2e-16 ***
## x.var 3.801e-03 1.671e-06 2275 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7273668 on 763 degrees of freedom
## Residual deviance: 1036929 on 762 degrees of freedom
## AIC: 1044653
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PALAU -- 6
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2675 -0.1650 -0.0624 0.0402 5.7266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.363e-01 4.103e-02 -3.322 0.000937 ***
## x.var 5.377e-04 9.294e-05 5.786 1.05e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5665 on 762 degrees of freedom
## Multiple R-squared: 0.04208, Adjusted R-squared: 0.04083
## F-statistic: 33.48 on 1 and 762 DF, p-value: 1.053e-08
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.10040 -0.06192 -0.02344 0.01504 1.84329
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.110e-02 1.470e-02 -3.477 0.000536 ***
## x.var 2.017e-04 3.329e-05 6.060 2.14e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2029 on 762 degrees of freedom
## Multiple R-squared: 0.04598, Adjusted R-squared: 0.04473
## F-statistic: 36.72 on 1 and 762 DF, p-value: 2.138e-09
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: fitted rates numerically 0 occurred
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.275 0.000 0.000 0.000 1.614
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -151.92037 21.09201 -7.203 5.90e-13 ***
## x.var 0.20182 0.02777 7.268 3.65e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 444.99 on 763 degrees of freedom
## Residual deviance: 17.12 on 762 degrees of freedom
## AIC: 61.812
##
## Number of Fisher Scoring iterations: 13
##
## --------------------------------------------------------------------------------
## PANAMA -- 8047
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1080.6 -468.4 -220.0 452.9 1331.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -577.7960 48.3061 -11.96 <2e-16 ***
## x.var 12.6087 0.1094 115.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 666.9 on 762 degrees of freedom
## Multiple R-squared: 0.9457, Adjusted R-squared: 0.9457
## F-statistic: 1.328e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4473 -0.7781 0.4683 1.2547 1.6515
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0197099 0.1137660 35.33 <2e-16 ***
## x.var 0.0087254 0.0002577 33.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.571 on 762 degrees of freedom
## Multiple R-squared: 0.6008, Adjusted R-squared: 0.6003
## F-statistic: 1147 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -47.929 -28.682 1.908 15.805 35.216
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.857e+00 1.628e-03 4212 <2e-16 ***
## x.var 3.266e-03 2.904e-06 1125 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1973076 on 763 degrees of freedom
## Residual deviance: 515562 on 762 degrees of freedom
## AIC: 522494
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PAPUA NEW GUINEA -- 636
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -145.27 -85.50 -33.75 82.89 216.74
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -149.59653 7.76794 -19.26 <2e-16 ***
## x.var 0.75088 0.01759 42.68 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 107.2 on 762 degrees of freedom
## Multiple R-squared: 0.7051, Adjusted R-squared: 0.7047
## F-statistic: 1822 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.08640 -0.34953 0.02214 0.34306 0.87852
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.793e-01 3.416e-02 -25.74 <2e-16 ***
## x.var 1.040e-02 7.736e-05 134.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4716 on 762 degrees of freedom
## Multiple R-squared: 0.9595, Adjusted R-squared: 0.9595
## F-statistic: 1.808e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.989 -3.035 -1.902 1.199 7.004
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.038e-01 1.781e-02 17.06 <2e-16 ***
## x.var 8.492e-03 2.707e-05 313.66 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 194681 on 763 degrees of freedom
## Residual deviance: 9357 on 762 degrees of freedom
## AIC: 12759
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PARAGUAY -- 18281
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4120.1 -2209.3 282.7 2236.2 4641.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4670.874 181.925 -25.68 <2e-16 ***
## x.var 29.347 0.412 71.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2512 on 762 degrees of freedom
## Multiple R-squared: 0.8694, Adjusted R-squared: 0.8692
## F-statistic: 5073 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.3995 -0.9721 0.1248 0.9469 1.8094
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6147212 0.0883785 18.27 <2e-16 ***
## x.var 0.0135313 0.0002002 67.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.22 on 762 degrees of freedom
## Multiple R-squared: 0.8571, Adjusted R-squared: 0.8569
## F-statistic: 4570 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -68.122 -32.942 -9.917 9.907 61.427
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.881e+00 1.831e-03 3211 <2e-16 ***
## x.var 5.756e-03 2.958e-06 1946 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6329803 on 763 degrees of freedom
## Residual deviance: 839061 on 762 degrees of freedom
## AIC: 845537
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PERU -- 209927
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -33272 -11312 -676 9632 30256
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10308.085 1128.469 -9.135 <2e-16 ***
## x.var 331.816 2.556 129.827 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15580 on 762 degrees of freedom
## Multiple R-squared: 0.9567, Adjusted R-squared: 0.9567
## F-statistic: 1.686e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9764 -1.0214 0.6335 1.7042 2.4374
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5233910 0.1684117 38.73 <2e-16 ***
## x.var 0.0102964 0.0003814 26.99 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.325 on 762 degrees of freedom
## Multiple R-squared: 0.4888, Adjusted R-squared: 0.4882
## F-statistic: 728.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -262.64 -108.17 33.67 73.36 134.77
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.026e+01 3.040e-04 33741 <2e-16 ***
## x.var 3.102e-03 5.469e-07 5671 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 48341429 on 763 degrees of freedom
## Residual deviance: 11745002 on 762 degrees of freedom
## AIC: 11754319
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PHILIPPINES -- 55977
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8982 -4728 -1572 5320 11223
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.130e+04 4.170e+02 -27.10 <2e-16 ***
## x.var 7.663e+01 9.444e-01 81.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5757 on 762 degrees of freedom
## Multiple R-squared: 0.8963, Adjusted R-squared: 0.8961
## F-statistic: 6584 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6443 -0.5579 0.4068 0.9648 1.4873
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5304085 0.1036756 43.7 <2e-16 ***
## x.var 0.0103564 0.0002348 44.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.431 on 762 degrees of freedom
## Multiple R-squared: 0.7185, Adjusted R-squared: 0.7182
## F-statistic: 1945 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -69.481 -36.630 9.411 17.847 25.954
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.161e+00 1.040e-03 6888 <2e-16 ***
## x.var 5.303e-03 1.703e-06 3113 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 14101202 on 763 degrees of freedom
## Residual deviance: 662186 on 762 degrees of freedom
## AIC: 670040
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## POLAND -- 110517
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19960.9 -6905.9 -272.3 7236.0 20601.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -20763.381 720.241 -28.83 <2e-16 ***
## x.var 161.926 1.631 99.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9944 on 762 degrees of freedom
## Multiple R-squared: 0.9282, Adjusted R-squared: 0.9281
## F-statistic: 9854 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8178 -0.9589 0.6246 1.1542 1.8062
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1971949 0.1207879 34.75 <2e-16 ***
## x.var 0.0124127 0.0002736 45.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.668 on 762 degrees of freedom
## Multiple R-squared: 0.7299, Adjusted R-squared: 0.7295
## F-statistic: 2059 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -117.69 -98.17 -58.47 70.09 142.87
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.331e+00 6.351e-04 13117 <2e-16 ***
## x.var 4.714e-03 1.062e-06 4438 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 32014727 on 763 degrees of freedom
## Residual deviance: 6218405 on 762 degrees of freedom
## AIC: 6226552
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PORTUGAL -- 20922
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4330.1 -2171.6 -176.8 1793.4 5449.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2767.3926 192.5626 -14.37 <2e-16 ***
## x.var 33.7782 0.4361 77.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2659 on 762 degrees of freedom
## Multiple R-squared: 0.8873, Adjusted R-squared: 0.8871
## F-statistic: 5999 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0497 -0.6944 0.6631 1.1123 1.4940
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5367438 0.1199588 37.82 <2e-16 ***
## x.var 0.0093272 0.0002717 34.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.656 on 762 degrees of freedom
## Multiple R-squared: 0.6073, Adjusted R-squared: 0.6068
## F-statistic: 1179 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -65.54 -40.93 -28.46 26.68 81.90
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.465e+00 1.124e-03 6639 <2e-16 ***
## x.var 3.760e-03 1.957e-06 1921 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5957684 on 763 degrees of freedom
## Residual deviance: 1527030 on 762 degrees of freedom
## AIC: 1534528
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## QATAR -- 664
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -104.447 -44.079 0.054 34.002 114.530
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -57.959244 4.114076 -14.09 <2e-16 ***
## x.var 1.024371 0.009318 109.94 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56.8 on 762 degrees of freedom
## Multiple R-squared: 0.9407, Adjusted R-squared: 0.9406
## F-statistic: 1.209e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7984 -0.6360 0.2870 0.8154 1.4782
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3300165 0.0801767 29.06 <2e-16 ***
## x.var 0.0070968 0.0001816 39.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.107 on 762 degrees of freedom
## Multiple R-squared: 0.6672, Adjusted R-squared: 0.6667
## F-statistic: 1527 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -13.2116 -6.0497 0.5164 3.6284 8.8244
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.245e+00 5.907e-03 718.6 <2e-16 ***
## x.var 3.397e-03 1.047e-05 324.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 154908 on 763 degrees of freedom
## Residual deviance: 32176 on 762 degrees of freedom
## AIC: 37308
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ROMANIA -- 62958
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6423 -3573 -1628 4670 11445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.153e+04 3.670e+02 -31.42 <2e-16 ***
## x.var 8.755e+01 8.313e-01 105.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5068 on 762 degrees of freedom
## Multiple R-squared: 0.9357, Adjusted R-squared: 0.9356
## F-statistic: 1.109e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0776 -0.7656 0.6775 1.2767 1.4941
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.4187048 0.1234302 35.80 <2e-16 ***
## x.var 0.0109823 0.0002796 39.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.704 on 762 degrees of freedom
## Multiple R-squared: 0.6695, Adjusted R-squared: 0.669
## F-statistic: 1543 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -74.76 -48.96 -12.66 40.37 57.02
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.647e+00 8.811e-04 8679 <2e-16 ***
## x.var 4.810e-03 1.469e-06 3275 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 15616779 on 763 degrees of freedom
## Residual deviance: 1435005 on 762 degrees of freedom
## AIC: 1442887
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## RUSSIA -- 340872
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34452 -29143 -11439 25722 69897
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -65886.321 2398.878 -27.46 <2e-16 ***
## x.var 440.918 5.433 81.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33120 on 762 degrees of freedom
## Multiple R-squared: 0.8963, Adjusted R-squared: 0.8962
## F-statistic: 6586 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6828 -0.9773 0.5313 1.6045 2.1653
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9509915 0.1482201 33.40 <2e-16 ***
## x.var 0.0128384 0.0003357 38.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 762 degrees of freedom
## Multiple R-squared: 0.6575, Adjusted R-squared: 0.657
## F-statistic: 1463 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -143.797 -65.628 -6.041 40.152 87.854
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.861e+00 4.394e-04 20167 <2e-16 ***
## x.var 5.373e-03 7.183e-07 7481 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 82286549 on 763 degrees of freedom
## Residual deviance: 4139152 on 762 degrees of freedom
## AIC: 4147985
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## RWANDA -- 1457
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -358.38 -238.50 7.15 211.44 391.06
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -393.25290 16.79626 -23.41 <2e-16 ***
## x.var 2.19540 0.03804 57.71 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 231.9 on 762 degrees of freedom
## Multiple R-squared: 0.8138, Adjusted R-squared: 0.8136
## F-statistic: 3331 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4376 -0.4657 0.1392 0.4512 1.0950
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1151793 0.0470768 -2.447 0.0146 *
## x.var 0.0115676 0.0001066 108.491 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.65 on 762 degrees of freedom
## Multiple R-squared: 0.9392, Adjusted R-squared: 0.9391
## F-statistic: 1.177e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -19.326 -6.724 -5.423 3.233 13.775
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.557e+00 8.040e-03 318 <2e-16 ***
## x.var 6.798e-03 1.264e-05 538 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 506718 on 763 degrees of freedom
## Residual deviance: 41394 on 762 degrees of freedom
## AIC: 45834
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAINT KITTS AND NEVIS -- 42
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.7585 -6.9289 -0.6022 5.6997 22.0357
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.324069 0.550306 -15.13 <2e-16 ***
## x.var 0.037271 0.001246 29.90 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.598 on 762 degrees of freedom
## Multiple R-squared: 0.5399, Adjusted R-squared: 0.5393
## F-statistic: 894.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.49471 -0.57307 -0.03637 0.77783 1.11202
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0320927 0.0556816 -18.54 <2e-16 ***
## x.var 0.0049352 0.0001261 39.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7688 on 762 degrees of freedom
## Multiple R-squared: 0.6677, Adjusted R-squared: 0.6673
## F-statistic: 1531 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3250 -0.9182 -0.3401 -0.1069 2.9055
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.9213495 0.1348833 -43.90 <2e-16 ***
## x.var 0.0130858 0.0001948 67.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 12699.80 on 763 degrees of freedom
## Residual deviance: 890.92 on 762 degrees of freedom
## AIC: 1984.9
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAINT LUCIA -- 357
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -68.51 -50.30 -14.08 53.43 114.47
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -83.280623 3.992128 -20.86 <2e-16 ***
## x.var 0.427949 0.009042 47.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.12 on 762 degrees of freedom
## Multiple R-squared: 0.7462, Adjusted R-squared: 0.7459
## F-statistic: 2240 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.70562 -0.45422 0.07126 0.50064 1.25567
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.2658127 0.0496759 -25.48 <2e-16 ***
## x.var 0.0101414 0.0001125 90.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6859 on 762 degrees of freedom
## Multiple R-squared: 0.9143, Adjusted R-squared: 0.9141
## F-statistic: 8125 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.374 -3.232 -1.741 1.476 4.603
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.566e-02 2.202e-02 3.436 0.000591 ***
## x.var 8.012e-03 3.375e-05 237.396 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 108336.8 on 763 degrees of freedom
## Residual deviance: 6669.3 on 762 degrees of freedom
## AIC: 9514.9
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAINT VINCENT AND THE GRENADINES -- 106
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28.632 -14.759 -4.312 14.888 48.532
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -21.824628 1.365155 -15.99 <2e-16 ***
## x.var 0.103922 0.003092 33.61 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.85 on 762 degrees of freedom
## Multiple R-squared: 0.5972, Adjusted R-squared: 0.5967
## F-statistic: 1130 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4464 -0.4261 0.1630 0.4222 1.1256
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.133e+00 4.346e-02 -26.06 <2e-16 ***
## x.var 7.184e-03 9.844e-05 72.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6001 on 762 degrees of freedom
## Multiple R-squared: 0.8748, Adjusted R-squared: 0.8747
## F-statistic: 5326 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.2078 -1.3076 -0.6231 0.5451 3.4793
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.700e+00 5.803e-02 -46.52 <2e-16 ***
## x.var 9.962e-03 8.638e-05 115.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 29980.7 on 763 degrees of freedom
## Residual deviance: 1663.8 on 762 degrees of freedom
## AIC: 3618.5
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAMOA -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: algorithm did not converge

## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.730e+01 3.728e+04 -0.001 0.999
## x.var 3.508e-16 8.443e+01 0.000 1.000
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 0.0000e+00 on 763 degrees of freedom
## Residual deviance: 2.1221e-09 on 762 degrees of freedom
## AIC: 4
##
## Number of Fisher Scoring iterations: 25
##
## --------------------------------------------------------------------------------
## SAN MARINO -- 112
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.7687 -6.7378 -0.3888 7.5407 15.4764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.521141 0.643073 22.58 <2e-16 ***
## x.var 0.130157 0.001456 89.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.879 on 762 degrees of freedom
## Multiple R-squared: 0.9129, Adjusted R-squared: 0.9128
## F-statistic: 7986 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6849 -0.2488 0.2335 0.3629 0.8450
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5510795 0.0546859 46.65 <2e-16 ***
## x.var 0.0035216 0.0001239 28.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.755 on 762 degrees of freedom
## Multiple R-squared: 0.5148, Adjusted R-squared: 0.5141
## F-statistic: 808.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.4776 -0.9146 0.2940 1.2927 2.5080
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.251e+00 1.140e-02 285.03 <2e-16 ***
## x.var 2.110e-03 2.178e-05 96.89 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 13929.6 on 763 degrees of freedom
## Residual deviance: 3935.9 on 762 degrees of freedom
## AIC: 8235.5
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## SAO TOME AND PRINCIPE -- 72
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.4928 -3.5316 0.6575 3.6412 11.0251
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.2318452 0.3621621 -17.21 <2e-16 ***
## x.var 0.0887490 0.0008202 108.20 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5 on 762 degrees of freedom
## Multiple R-squared: 0.9389, Adjusted R-squared: 0.9388
## F-statistic: 1.171e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.47088 -0.31001 0.09021 0.42717 0.96403
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9707178 0.0443524 21.89 <2e-16 ***
## x.var 0.0050016 0.0001005 49.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6124 on 762 degrees of freedom
## Multiple R-squared: 0.7649, Adjusted R-squared: 0.7646
## F-statistic: 2479 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.8738 -0.6783 0.1137 0.9488 1.9677
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.657e+00 2.101e-02 78.86 <2e-16 ***
## x.var 3.582e-03 3.689e-05 97.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 12963.9 on 763 degrees of freedom
## Residual deviance: 1812.5 on 762 degrees of freedom
## AIC: 5214.2
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAUDI ARABIA -- 8990
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1720.6 -803.4 260.6 653.3 1391.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 178.8590 65.6926 2.723 0.00662 **
## x.var 13.7850 0.1488 92.651 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 907 on 762 degrees of freedom
## Multiple R-squared: 0.9185, Adjusted R-squared: 0.9184
## F-statistic: 8584 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8430 -0.8891 0.3191 1.4740 2.0395
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3069326 0.1307682 32.94 <2e-16 ***
## x.var 0.0086457 0.0002962 29.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.805 on 762 degrees of freedom
## Multiple R-squared: 0.5279, Adjusted R-squared: 0.5273
## F-statistic: 852.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -62.137 -26.057 6.603 19.457 31.179
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.398e+00 1.335e-03 5542 <2e-16 ***
## x.var 2.703e-03 2.456e-06 1100 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2049545 on 763 degrees of freedom
## Residual deviance: 711054 on 762 degrees of freedom
## AIC: 718163
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SENEGAL -- 1960
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -326.34 -96.57 -25.54 109.12 365.39
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -368.55426 11.99563 -30.72 <2e-16 ***
## x.var 3.16836 0.02717 116.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 165.6 on 762 degrees of freedom
## Multiple R-squared: 0.9469, Adjusted R-squared: 0.9469
## F-statistic: 1.36e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7974 -0.7500 0.2846 0.8892 1.4868
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1603924 0.0838479 25.77 <2e-16 ***
## x.var 0.0090998 0.0001899 47.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.158 on 762 degrees of freedom
## Multiple R-squared: 0.7508, Adjusted R-squared: 0.7505
## F-statistic: 2296 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -19.2757 -10.7544 -0.8061 6.2164 12.9171
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.611e+00 4.264e-03 1081.3 <2e-16 ***
## x.var 4.419e-03 7.214e-06 612.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 546516 on 763 degrees of freedom
## Residual deviance: 68465 on 762 degrees of freedom
## AIC: 74044
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SERBIA -- 15010
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2074.9 -850.3 -296.7 972.1 3002.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2655.1269 89.5227 -29.66 <2e-16 ***
## x.var 19.1914 0.2028 94.65 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1236 on 762 degrees of freedom
## Multiple R-squared: 0.9216, Adjusted R-squared: 0.9215
## F-statistic: 8959 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8512 -0.6464 0.5876 0.9375 1.3080
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2601710 0.0957561 34.05 <2e-16 ***
## x.var 0.0101896 0.0002169 46.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.322 on 762 degrees of freedom
## Multiple R-squared: 0.7434, Adjusted R-squared: 0.7431
## F-statistic: 2207 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -33.118 -21.755 -6.339 16.813 32.811
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.990e+00 1.958e-03 3060 <2e-16 ***
## x.var 5.004e-03 3.241e-06 1544 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3547087 on 763 degrees of freedom
## Residual deviance: 335609 on 762 degrees of freedom
## AIC: 342375
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SEYCHELLES -- 160
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -36.856 -25.686 3.374 20.839 40.999
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -41.214948 1.763096 -23.38 <2e-16 ***
## x.var 0.215615 0.003993 54.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.34 on 762 degrees of freedom
## Multiple R-squared: 0.7928, Adjusted R-squared: 0.7925
## F-statistic: 2916 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8220 -0.4313 0.1721 0.5515 1.3224
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.3314897 0.0536694 -24.81 <2e-16 ***
## x.var 0.0090359 0.0001216 74.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.741 on 762 degrees of freedom
## Multiple R-squared: 0.8788, Adjusted R-squared: 0.8787
## F-statistic: 5526 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.6407 -2.8451 -1.5386 0.6637 5.1728
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.893e-01 2.959e-02 -13.16 <2e-16 ***
## x.var 7.696e-03 4.562e-05 168.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 55659.3 on 763 degrees of freedom
## Residual deviance: 5807.3 on 762 degrees of freedom
## AIC: 8178.1
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SIERRA LEONE -- 125
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28.800 -11.333 1.277 11.651 22.486
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.589637 1.000011 13.59 <2e-16 ***
## x.var 0.165327 0.002265 73.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.81 on 762 degrees of freedom
## Multiple R-squared: 0.8749, Adjusted R-squared: 0.8747
## F-statistic: 5328 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.42356 -0.50394 0.07657 0.82641 1.36166
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9662311 0.0750264 26.21 <2e-16 ***
## x.var 0.0049710 0.0001699 29.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.036 on 762 degrees of freedom
## Multiple R-squared: 0.529, Adjusted R-squared: 0.5284
## F-statistic: 855.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.4080 -1.3127 0.5919 1.7892 3.2658
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.3576297 0.0106248 316.0 <2e-16 ***
## x.var 0.0022563 0.0000201 112.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 22195.7 on 763 degrees of freedom
## Residual deviance: 8661.7 on 762 degrees of freedom
## AIC: 12846
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SINGAPORE -- 963
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -277.36 -165.98 -20.41 113.30 493.32
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -174.21499 14.46004 -12.05 <2e-16 ***
## x.var 0.84279 0.03275 25.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 199.6 on 762 degrees of freedom
## Multiple R-squared: 0.465, Adjusted R-squared: 0.4643
## F-statistic: 662.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5782 -0.8333 0.1138 0.7917 1.1992
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1969146 0.0608709 19.66 <2e-16 ***
## x.var 0.0064620 0.0001379 46.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8404 on 762 degrees of freedom
## Multiple R-squared: 0.7425, Adjusted R-squared: 0.7421
## F-statistic: 2197 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -14.006 -3.450 1.062 5.779 10.749
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.466e-01 1.911e-02 -12.9 <2e-16 ***
## x.var 9.447e-03 2.863e-05 329.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 254365 on 763 degrees of freedom
## Residual deviance: 31946 on 762 degrees of freedom
## AIC: 36028
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SLOVAKIA -- 18314
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3923.4 -1340.8 268.1 1557.4 4004.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4032.5793 152.2125 -26.49 <2e-16 ***
## x.var 27.9234 0.3447 81.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2102 on 762 degrees of freedom
## Multiple R-squared: 0.8959, Adjusted R-squared: 0.8958
## F-statistic: 6561 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.18667 -0.97376 -0.05713 1.10621 1.98824
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1995580 0.0900352 13.32 <2e-16 ***
## x.var 0.0141016 0.0002039 69.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.243 on 762 degrees of freedom
## Multiple R-squared: 0.8626, Adjusted R-squared: 0.8624
## F-statistic: 4782 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -59.02 -42.48 -28.33 23.89 70.05
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.226e+00 1.687e-03 3690 <2e-16 ***
## x.var 5.198e-03 2.774e-06 1874 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6189242 on 763 degrees of freedom
## Residual deviance: 1369659 on 762 degrees of freedom
## AIC: 1375970
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## SLOVENIA -- 6246
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1417.73 -386.13 -67.62 595.07 1002.63
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -993.0089 48.1544 -20.62 <2e-16 ***
## x.var 9.5099 0.1091 87.20 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 664.9 on 762 degrees of freedom
## Multiple R-squared: 0.9089, Adjusted R-squared: 0.9088
## F-statistic: 7603 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2064 -0.7141 0.1613 0.8430 1.7469
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.681349 0.089650 29.91 <2e-16 ***
## x.var 0.010098 0.000203 49.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.238 on 762 degrees of freedom
## Multiple R-squared: 0.7645, Adjusted R-squared: 0.7642
## F-statistic: 2473 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -35.03 -27.85 -12.45 20.01 38.23
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.897e+00 2.326e-03 2536 <2e-16 ***
## x.var 4.163e-03 3.977e-06 1047 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1868695 on 763 degrees of freedom
## Residual deviance: 505251 on 762 degrees of freedom
## AIC: 511556
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SOLOMON ISLANDS -- 87
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.984 -3.640 -1.271 1.048 80.643
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.130897 0.688215 -4.549 6.26e-06 ***
## x.var 0.012418 0.001559 7.967 5.92e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.502 on 762 degrees of freedom
## Multiple R-squared: 0.07689, Adjusted R-squared: 0.07568
## F-statistic: 63.47 on 1 and 762 DF, p-value: 5.918e-15
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4806 -0.2908 -0.1011 0.0887 3.9669
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2495927 0.0467442 -5.340 1.23e-07 ***
## x.var 0.0009948 0.0001059 9.396 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6454 on 762 degrees of freedom
## Multiple R-squared: 0.1038, Adjusted R-squared: 0.1027
## F-statistic: 88.29 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: fitted rates numerically 0 occurred
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.1121 -0.0001 0.0000 0.0000 3.2205
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -80.774328 2.409813 -33.52 <2e-16 ***
## x.var 0.112109 0.003189 35.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 8729.63 on 763 degrees of freedom
## Residual deviance: 194.93 on 762 degrees of freedom
## AIC: 352.26
##
## Number of Fisher Scoring iterations: 10
##
## --------------------------------------------------------------------------------
## SOMALIA -- 1348
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -371.35 -104.07 34.73 126.06 304.79
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -306.90242 12.21884 -25.12 <2e-16 ***
## x.var 2.10974 0.02767 76.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 168.7 on 762 degrees of freedom
## Multiple R-squared: 0.8841, Adjusted R-squared: 0.8839
## F-statistic: 5812 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4863 -0.3631 0.1464 0.6819 1.4264
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8242553 0.0695030 26.25 <2e-16 ***
## x.var 0.0085978 0.0001574 54.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9596 on 762 degrees of freedom
## Multiple R-squared: 0.7965, Adjusted R-squared: 0.7963
## F-statistic: 2983 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -16.166 -6.942 -1.892 4.787 13.301
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.618e+00 6.182e-03 585.2 <2e-16 ***
## x.var 5.234e-03 1.015e-05 515.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 404644 on 763 degrees of freedom
## Residual deviance: 38494 on 762 degrees of freedom
## AIC: 43660
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SOUTH AFRICA -- 98978
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10801 -4255 -1200 4175 16222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.638e+04 4.375e+02 -37.44 <2e-16 ***
## x.var 1.540e+02 9.908e-01 155.41 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6040 on 762 degrees of freedom
## Multiple R-squared: 0.9694, Adjusted R-squared: 0.9694
## F-statistic: 2.415e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0784 -1.2005 0.3449 1.6919 2.5271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2636132 0.1470728 28.99 <2e-16 ***
## x.var 0.0125350 0.0003331 37.63 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.031 on 762 degrees of freedom
## Multiple R-squared: 0.6502, Adjusted R-squared: 0.6497
## F-statistic: 1416 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -127.898 -94.395 1.293 47.481 99.083
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.653e+00 5.831e-04 14838 <2e-16 ***
## x.var 4.202e-03 9.955e-07 4221 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 26506477 on 763 degrees of freedom
## Residual deviance: 4251190 on 762 degrees of freedom
## AIC: 4259396
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SOUTH SUDAN -- 137
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.2675 -8.1835 0.0801 6.4786 24.0704
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.380912 0.771850 -5.676 1.96e-08 ***
## x.var 0.212891 0.001748 121.782 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.66 on 762 degrees of freedom
## Multiple R-squared: 0.9511, Adjusted R-squared: 0.9511
## F-statistic: 1.483e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0795 -0.6896 0.2173 0.7449 1.3392
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3818544 0.0704083 19.63 <2e-16 ***
## x.var 0.0061194 0.0001595 38.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9721 on 762 degrees of freedom
## Multiple R-squared: 0.659, Adjusted R-squared: 0.6586
## F-statistic: 1473 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.4775 -2.5835 0.7832 1.5780 4.2019
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.989e+00 1.166e-02 256.3 <2e-16 ***
## x.var 2.996e-03 2.111e-05 141.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 31520.8 on 763 degrees of freedom
## Residual deviance: 8779.6 on 762 degrees of freedom
## AIC: 12813
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SPAIN -- 98936
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11612.5 -6312.3 -21.4 5330.6 13198.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4642.122 503.635 9.217 <2e-16 ***
## x.var 132.953 1.141 116.558 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6954 on 762 degrees of freedom
## Multiple R-squared: 0.9469, Adjusted R-squared: 0.9468
## F-statistic: 1.359e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.5520 -0.6232 0.6442 1.1901 2.1217
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.2438671 0.1547874 46.80 <2e-16 ***
## x.var 0.0075163 0.0003506 21.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.137 on 762 degrees of freedom
## Multiple R-squared: 0.3763, Adjusted R-squared: 0.3755
## F-statistic: 459.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -200.828 -27.041 5.451 35.071 86.428
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.799e+00 4.098e-04 23909 <2e-16 ***
## x.var 2.542e-03 7.615e-07 3339 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 16102850 on 763 degrees of freedom
## Residual deviance: 3914951 on 762 degrees of freedom
## AIC: 3924013
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SRI LANKA -- 16086
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5072.4 -3228.7 88.4 3621.8 4443.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4465.7064 236.1083 -18.91 <2e-16 ***
## x.var 21.7780 0.5348 40.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3260 on 762 degrees of freedom
## Multiple R-squared: 0.6852, Adjusted R-squared: 0.6848
## F-statistic: 1659 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.2808 -0.4252 0.1421 0.4253 0.9685
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.870e-03 4.069e-02 -0.169 0.866
## x.var 1.433e-02 9.216e-05 155.497 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5618 on 762 degrees of freedom
## Multiple R-squared: 0.9694, Adjusted R-squared: 0.9694
## F-statistic: 2.418e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -72.427 -18.923 -12.881 -5.489 63.993
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.169e+00 3.647e-03 869 <2e-16 ***
## x.var 9.212e-03 5.482e-06 1680 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6169213 on 763 degrees of freedom
## Residual deviance: 509929 on 762 degrees of freedom
## AIC: 515379
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SUDAN -- 3895
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -391.86 -115.03 -10.35 93.29 347.69
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -324.65961 11.11241 -29.22 <2e-16 ***
## x.var 5.33854 0.02517 212.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 153.4 on 762 degrees of freedom
## Multiple R-squared: 0.9833, Adjusted R-squared: 0.9833
## F-statistic: 4.499e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.641 -0.897 0.410 1.188 1.812
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2047214 0.1070999 29.92 <2e-16 ***
## x.var 0.0085534 0.0002426 35.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.479 on 762 degrees of freedom
## Multiple R-squared: 0.62, Adjusted R-squared: 0.6195
## F-statistic: 1243 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -29.9824 -11.1450 0.9656 9.8227 15.5728
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.853e+00 2.624e-03 2231.0 <2e-16 ***
## x.var 3.452e-03 4.636e-06 744.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 799635 on 763 degrees of freedom
## Residual deviance: 150668 on 762 degrees of freedom
## AIC: 156915
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SUMMER OLYMPICS 2020 -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: algorithm did not converge
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.730e+01 3.728e+04 -0.001 0.999
## x.var 3.508e-16 8.443e+01 0.000 1.000
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 0.0000e+00 on 763 degrees of freedom
## Residual deviance: 2.1221e-09 on 762 degrees of freedom
## AIC: 4
##
## Number of Fisher Scoring iterations: 25
##
## --------------------------------------------------------------------------------
## SURINAME -- 1314
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -327.74 -156.48 -18.55 194.18 304.57
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -306.35555 13.63401 -22.47 <2e-16 ***
## x.var 1.78770 0.03088 57.89 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 188.2 on 762 degrees of freedom
## Multiple R-squared: 0.8148, Adjusted R-squared: 0.8145
## F-statistic: 3352 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.45014 -0.76446 0.02823 0.57989 1.49964
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7337803 0.0568134 12.92 <2e-16 ***
## x.var 0.0099494 0.0001287 77.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7844 on 762 degrees of freedom
## Multiple R-squared: 0.887, Adjusted R-squared: 0.8868
## F-statistic: 5979 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -12.8758 -5.5178 -0.6982 3.3245 7.3306
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.6706476 0.0082440 324 <2e-16 ***
## x.var 0.0063423 0.0000131 484 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 378961 on 763 degrees of freedom
## Residual deviance: 18878 on 762 degrees of freedom
## AIC: 23579
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SWEDEN -- 17064
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2318.8 -1320.2 -177.9 1012.6 2695.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 659.7339 109.7474 6.011 2.85e-09 ***
## x.var 23.6082 0.2486 94.979 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1515 on 762 degrees of freedom
## Multiple R-squared: 0.9221, Adjusted R-squared: 0.922
## F-statistic: 9021 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9162 -0.6668 0.5736 1.0684 1.8765
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.561802 0.133771 41.58 <2e-16 ***
## x.var 0.007384 0.000303 24.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.847 on 762 degrees of freedom
## Multiple R-squared: 0.438, Adjusted R-squared: 0.4373
## F-statistic: 593.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -83.529 -20.088 2.037 18.116 41.496
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.029e+00 9.870e-04 8135 <2e-16 ***
## x.var 2.591e-03 1.828e-06 1417 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3071064 on 763 degrees of freedom
## Residual deviance: 867807 on 762 degrees of freedom
## AIC: 875532
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SWITZERLAND -- 13062
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2704.2 -1219.9 -149.6 1034.8 2828.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -727.2872 107.7751 -6.748 2.96e-11 ***
## x.var 19.9069 0.2441 81.554 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1488 on 762 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8971
## F-statistic: 6651 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3984 -0.5992 0.5363 1.0704 1.5916
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.0614475 0.1168046 43.33 <2e-16 ***
## x.var 0.0076589 0.0002645 28.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.613 on 762 degrees of freedom
## Multiple R-squared: 0.5238, Adjusted R-squared: 0.5232
## F-statistic: 838.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -61.34 -27.45 -13.36 24.45 51.70
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.396e+00 1.260e-03 5868 <2e-16 ***
## x.var 3.160e-03 2.261e-06 1398 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3041838 on 763 degrees of freedom
## Residual deviance: 808363 on 762 degrees of freedom
## AIC: 815793
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SYRIA -- 3059
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -403.61 -202.51 -2.96 182.49 643.13
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -647.79541 18.04830 -35.89 <2e-16 ***
## x.var 4.66256 0.04088 114.06 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 249.2 on 762 degrees of freedom
## Multiple R-squared: 0.9447, Adjusted R-squared: 0.9446
## F-statistic: 1.301e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.98508 -0.97244 0.03244 1.08386 1.47257
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2351341 0.0778094 15.87 <2e-16 ***
## x.var 0.0111933 0.0001762 63.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.074 on 762 degrees of freedom
## Multiple R-squared: 0.8411, Adjusted R-squared: 0.8409
## F-statistic: 4034 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -21.995 -15.391 -3.763 9.224 17.761
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.562e+00 3.987e-03 1144.4 <2e-16 ***
## x.var 5.022e-03 6.594e-06 761.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 901825 on 763 degrees of freedom
## Residual deviance: 119299 on 762 degrees of freedom
## AIC: 124776
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## TAIWAN* -- 852
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -416.47 -170.78 51.97 177.45 272.62
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -274.06796 14.95243 -18.33 <2e-16 ***
## x.var 1.45172 0.03387 42.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 206.4 on 762 degrees of freedom
## Multiple R-squared: 0.7069, Adjusted R-squared: 0.7065
## F-statistic: 1838 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9786 -0.7482 0.1526 0.8233 1.5506
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0069469 0.0717229 -0.097 0.923
## x.var 0.0094408 0.0001624 58.118 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9903 on 762 degrees of freedom
## Multiple R-squared: 0.8159, Adjusted R-squared: 0.8157
## F-statistic: 3378 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -20.771 -9.705 -3.622 -1.380 21.997
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.656e+00 1.106e-02 149.8 <2e-16 ***
## x.var 7.497e-03 1.712e-05 437.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 417138 on 763 degrees of freedom
## Residual deviance: 87461 on 762 degrees of freedom
## AIC: 91513
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## TAJIKISTAN -- 125
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -32.573 -11.527 3.417 11.510 18.883
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.043580 1.034791 14.54 <2e-16 ***
## x.var 0.171860 0.002344 73.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.29 on 762 degrees of freedom
## Multiple R-squared: 0.8759, Adjusted R-squared: 0.8757
## F-statistic: 5377 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.43639 -0.57584 0.08088 0.98040 1.30549
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9087445 0.0782850 24.38 <2e-16 ***
## x.var 0.0051730 0.0001773 29.18 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.081 on 762 degrees of freedom
## Multiple R-squared: 0.5277, Adjusted R-squared: 0.527
## F-statistic: 851.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.7666 -1.3955 0.8182 1.9638 3.1308
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.421e+00 1.033e-02 331.4 <2e-16 ***
## x.var 2.228e-03 1.957e-05 113.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 23532.7 on 763 degrees of freedom
## Residual deviance: 9631.3 on 762 degrees of freedom
## AIC: 13815
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

## TANZANIA -- 798
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -321.83 -177.95 -5.07 146.81 346.64
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -188.27911 14.68992 -12.82 <2e-16 ***
## x.var 0.90632 0.03327 27.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 202.8 on 762 degrees of freedom
## Multiple R-squared: 0.4934, Adjusted R-squared: 0.4927
## F-statistic: 742.1 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.65571 -0.94484 0.03968 0.89413 1.50718
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8380260 0.0696108 12.04 <2e-16 ***
## x.var 0.0069059 0.0001577 43.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9611 on 762 degrees of freedom
## Multiple R-squared: 0.7157, Adjusted R-squared: 0.7154
## F-statistic: 1919 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -17.195 -5.347 -0.457 4.911 21.328
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.809e-01 1.879e-02 -14.95 <2e-16 ***
## x.var 9.600e-03 2.809e-05 341.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 289001 on 763 degrees of freedom
## Residual deviance: 47463 on 762 degrees of freedom
## AIC: 51375
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## THAILAND -- 22768
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7483.0 -4693.0 240.4 4854.5 6862.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6320.281 360.302 -17.54 <2e-16 ***
## x.var 29.868 0.816 36.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4975 on 762 degrees of freedom
## Multiple R-squared: 0.6374, Adjusted R-squared: 0.637
## F-statistic: 1340 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.96224 -0.91395 0.06557 0.84001 1.85900
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9252960 0.0737945 12.54 <2e-16 ***
## x.var 0.0124931 0.0001671 74.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.019 on 762 degrees of freedom
## Multiple R-squared: 0.88, Adjusted R-squared: 0.8798
## F-statistic: 5587 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -92.615 -29.606 -8.861 -0.079 74.051
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.768e+00 3.538e-03 782.4 <2e-16 ***
## x.var 1.024e-02 5.249e-06 1950.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 9147560 on 763 degrees of freedom
## Residual deviance: 876819 on 762 degrees of freedom
## AIC: 882495
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## TIMOR-LESTE -- 125
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -43.161 -30.832 0.445 27.608 45.322
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -37.195368 2.091485 -17.78 <2e-16 ***
## x.var 0.177967 0.004737 37.57 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.88 on 762 degrees of freedom
## Multiple R-squared: 0.6494, Adjusted R-squared: 0.649
## F-statistic: 1412 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0939 -0.7542 0.2555 0.7464 1.5158
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.5239872 0.0688002 -22.15 <2e-16 ***
## x.var 0.0082225 0.0001558 52.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9499 on 762 degrees of freedom
## Multiple R-squared: 0.7851, Adjusted R-squared: 0.7849
## F-statistic: 2785 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7.5934 -2.5502 -1.1118 -0.4834 7.2474
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.046e+00 4.345e-02 -47.09 <2e-16 ***
## x.var 9.797e-03 6.482e-05 151.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 54495.1 on 763 degrees of freedom
## Residual deviance: 6482.6 on 762 degrees of freedom
## AIC: 8304.2
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## TOGO -- 272
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -32.843 -16.689 -8.186 19.387 44.984
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -45.375543 1.536044 -29.54 <2e-16 ***
## x.var 0.391547 0.003479 112.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.21 on 762 degrees of freedom
## Multiple R-squared: 0.9433, Adjusted R-squared: 0.9432
## F-statistic: 1.267e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7989 -0.2791 0.2154 0.4390 0.8392
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3631255 0.0471477 28.91 <2e-16 ***
## x.var 0.0067044 0.0001068 62.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.651 on 762 degrees of freedom
## Multiple R-squared: 0.838, Adjusted R-squared: 0.8378
## F-statistic: 3942 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.7740 -2.4243 0.5441 1.5806 2.7731
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.527e+00 1.210e-02 208.8 <2e-16 ***
## x.var 4.409e-03 2.049e-05 215.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 63976.4 on 763 degrees of freedom
## Residual deviance: 5012.1 on 762 degrees of freedom
## AIC: 9282.1
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## TONGA -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: algorithm did not converge
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.730e+01 3.728e+04 -0.001 0.999
## x.var 3.508e-16 8.443e+01 0.000 1.000
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 0.0000e+00 on 763 degrees of freedom
## Residual deviance: 2.1221e-09 on 762 degrees of freedom
## AIC: 4
##
## Number of Fisher Scoring iterations: 25
##
## --------------------------------------------------------------------------------
## TRINIDAD AND TOBAGO -- 3596
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -841.82 -391.76 -94.14 353.98 1457.20
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -749.94208 39.99140 -18.75 <2e-16 ***
## x.var 3.78107 0.09057 41.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 552.1 on 762 degrees of freedom
## Multiple R-squared: 0.6958, Adjusted R-squared: 0.6954
## F-statistic: 1743 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3630 -0.3593 -0.0099 0.3826 1.0131
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6888948 0.0388112 17.75 <2e-16 ***
## x.var 0.0106996 0.0000879 121.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5359 on 762 degrees of freedom
## Multiple R-squared: 0.9511, Adjusted R-squared: 0.951
## F-statistic: 1.482e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -13.311 -4.583 -1.889 1.887 10.441
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.988e+00 7.828e-03 254.0 <2e-16 ***
## x.var 8.394e-03 1.192e-05 704.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 948963 on 763 degrees of freedom
## Residual deviance: 22726 on 762 degrees of freedom
## AIC: 27653
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## TUNISIA -- 27592
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4557.5 -3079.5 -57.2 2883.7 6837.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6881.94 234.01 -29.41 <2e-16 ***
## x.var 44.10 0.53 83.20 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3231 on 762 degrees of freedom
## Multiple R-squared: 0.9008, Adjusted R-squared: 0.9007
## F-statistic: 6922 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7712 -0.7279 0.1404 0.9522 1.8462
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.998494 0.089188 22.41 <2e-16 ***
## x.var 0.013555 0.000202 67.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.231 on 762 degrees of freedom
## Multiple R-squared: 0.8553, Adjusted R-squared: 0.8551
## F-statistic: 4503 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -81.36 -45.23 -13.35 28.14 55.74
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.379e+00 1.458e-03 4374 <2e-16 ***
## x.var 5.628e-03 2.365e-06 2379 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 9347331 on 763 degrees of freedom
## Residual deviance: 1241173 on 762 degrees of freedom
## AIC: 1247958
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## TURKEY -- 93258
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10590.6 -6192.4 -713.6 6281.7 15860.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15987.502 497.529 -32.13 <2e-16 ***
## x.var 127.132 1.127 112.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6869 on 762 degrees of freedom
## Multiple R-squared: 0.9435, Adjusted R-squared: 0.9434
## F-statistic: 1.273e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7639 -0.6754 0.6150 1.1803 1.9255
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1966866 0.1347039 38.58 <2e-16 ***
## x.var 0.0103123 0.0003051 33.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.86 on 762 degrees of freedom
## Multiple R-squared: 0.5999, Adjusted R-squared: 0.5994
## F-statistic: 1143 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -94.44 -32.96 -16.57 33.65 68.79
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.136e+00 7.070e-04 11507 <2e-16 ***
## x.var 4.649e-03 1.186e-06 3921 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 21573379 on 763 degrees of freedom
## Residual deviance: 1553232 on 762 degrees of freedom
## AIC: 1561521
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## US -- 941889
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -64109 -24754 -7691 23566 72685
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -69959.371 2593.198 -26.98 <2e-16 ***
## x.var 1274.722 5.873 217.04 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35800 on 762 degrees of freedom
## Multiple R-squared: 0.9841, Adjusted R-squared: 0.9841
## F-statistic: 4.711e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.3681 -0.8521 0.7126 1.5829 2.3029
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.9893215 0.1762365 45.33 <2e-16 ***
## x.var 0.0099673 0.0003992 24.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.433 on 762 degrees of freedom
## Multiple R-squared: 0.45, Adjusted R-squared: 0.4493
## F-statistic: 623.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -459.5 -112.4 -9.6 106.2 271.6
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.139e+01 1.665e-04 68380 <2e-16 ***
## x.var 3.376e-03 2.954e-07 11428 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 180344842 on 763 degrees of freedom
## Residual deviance: 28493599 on 762 degrees of freedom
## AIC: 28503952
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## UGANDA -- 3585
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1345.9 -591.6 173.4 604.4 1002.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1008.101 50.314 -20.04 <2e-16 ***
## x.var 5.438 0.114 47.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 694.7 on 762 degrees of freedom
## Multiple R-squared: 0.7493, Adjusted R-squared: 0.7489
## F-statistic: 2277 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.13788 -0.73034 0.04715 0.83650 1.47326
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3017555 0.0703922 -4.287 2.05e-05 ***
## x.var 0.0132589 0.0001594 83.165 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9719 on 762 degrees of freedom
## Multiple R-squared: 0.9008, Adjusted R-squared: 0.9006
## F-statistic: 6916 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -32.814 -11.453 -7.422 -1.654 32.831
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.162e+00 5.481e-03 576.9 <2e-16 ***
## x.var 7.231e-03 8.532e-06 847.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1367367 on 763 degrees of freedom
## Residual deviance: 163032 on 762 degrees of freedom
## AIC: 167739
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## UKRAINE -- 112173
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12597 -9700 -2992 8417 22368
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -22516.836 776.740 -28.99 <2e-16 ***
## x.var 149.294 1.759 84.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10720 on 762 degrees of freedom
## Multiple R-squared: 0.9043, Adjusted R-squared: 0.9042
## F-statistic: 7202 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5377 -0.9395 0.7202 1.1579 1.6338
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8913630 0.1169453 33.27 <2e-16 ***
## x.var 0.0126730 0.0002649 47.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.615 on 762 degrees of freedom
## Multiple R-squared: 0.7503, Adjusted R-squared: 0.7499
## F-statistic: 2289 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -90.45 -70.60 -21.09 39.91 97.67
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.742e+00 7.626e-04 10153 <2e-16 ***
## x.var 5.424e-03 1.245e-06 4358 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 29282080 on 763 degrees of freedom
## Residual deviance: 2621748 on 762 degrees of freedom
## AIC: 2629733
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## UNITED ARAB EMIRATES -- 2298
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -300.7 -165.7 33.5 162.2 288.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -291.75151 12.36628 -23.59 <2e-16 ***
## x.var 3.64965 0.02801 130.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 170.7 on 762 degrees of freedom
## Multiple R-squared: 0.9571, Adjusted R-squared: 0.957
## F-statistic: 1.698e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6049 -0.6012 0.5042 0.8253 1.4077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1519276 0.0923262 34.14 <2e-16 ***
## x.var 0.0078107 0.0002091 37.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.275 on 762 degrees of freedom
## Multiple R-squared: 0.6468, Adjusted R-squared: 0.6463
## F-statistic: 1395 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -21.895 -6.372 -2.111 7.679 15.402
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.263e+00 3.395e-03 1550.4 <2e-16 ***
## x.var 3.728e-03 5.919e-06 629.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 563982 on 763 degrees of freedom
## Residual deviance: 88814 on 762 degrees of freedom
## AIC: 94801
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## UNITED KINGDOM -- 161549
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18483 -11037 -3216 7373 31045
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -554.604 976.150 -0.568 0.57
## x.var 229.840 2.211 103.960 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13480 on 762 degrees of freedom
## Multiple R-squared: 0.9341, Adjusted R-squared: 0.9341
## F-statistic: 1.081e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.4954 -0.7770 0.7106 1.2456 2.3126
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.1157324 0.1636787 43.47 <2e-16 ***
## x.var 0.0086281 0.0003707 23.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.26 on 762 degrees of freedom
## Multiple R-squared: 0.4155, Adjusted R-squared: 0.4147
## F-statistic: 541.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -238.059 -47.082 -5.982 43.491 153.225
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.011e+01 3.389e-04 29823 <2e-16 ***
## x.var 2.829e-03 6.191e-07 4570 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 30735665 on 763 degrees of freedom
## Residual deviance: 7448572 on 762 degrees of freedom
## AIC: 7457855
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## URUGUAY -- 6919
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2097.8 -1031.5 164.1 1021.7 1919.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1931.1440 86.7931 -22.25 <2e-16 ***
## x.var 11.3189 0.1966 57.58 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1198 on 762 degrees of freedom
## Multiple R-squared: 0.8131, Adjusted R-squared: 0.8129
## F-statistic: 3316 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7385 -0.4779 0.1706 0.5150 1.2413
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9114722 0.0575030 15.85 <2e-16 ***
## x.var 0.0125301 0.0001302 96.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7939 on 762 degrees of freedom
## Multiple R-squared: 0.9239, Adjusted R-squared: 0.9238
## F-statistic: 9257 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -47.07 -22.73 -16.53 7.81 51.07
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.545e+00 3.253e-03 1397 <2e-16 ***
## x.var 6.302e-03 5.176e-06 1217 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2794746 on 763 degrees of freedom
## Residual deviance: 525752 on 762 degrees of freedom
## AIC: 531386
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## UZBEKISTAN -- 1624
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -223.58 -102.62 24.62 107.55 191.78
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -193.96670 8.52982 -22.74 <2e-16 ***
## x.var 2.19152 0.01932 113.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 117.8 on 762 degrees of freedom
## Multiple R-squared: 0.9441, Adjusted R-squared: 0.944
## F-statistic: 1.287e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6729 -0.7163 -0.1628 1.0310 1.8550
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.107567 0.086985 24.23 <2e-16 ***
## x.var 0.008698 0.000197 44.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.201 on 762 degrees of freedom
## Multiple R-squared: 0.719, Adjusted R-squared: 0.7186
## F-statistic: 1949 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -16.3825 -8.1049 -0.2261 4.4272 13.1373
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.648e+00 4.529e-03 1026.3 <2e-16 ***
## x.var 3.868e-03 7.845e-06 493.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 360298 on 763 degrees of freedom
## Residual deviance: 65533 on 762 degrees of freedom
## AIC: 70962
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## VANUATU -- 1
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5416 -0.1808 0.0265 0.2070 0.4565
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.191e-01 1.875e-02 -17.02 <2e-16 ***
## x.var 1.892e-03 4.246e-05 44.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2588 on 762 degrees of freedom
## Multiple R-squared: 0.7226, Adjusted R-squared: 0.7222
## F-statistic: 1985 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37541 -0.12529 0.01837 0.14347 0.31643
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.212e-01 1.299e-02 -17.02 <2e-16 ***
## x.var 1.311e-03 2.943e-05 44.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1794 on 762 degrees of freedom
## Multiple R-squared: 0.7226, Adjusted R-squared: 0.7222
## F-statistic: 1985 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.75312 -0.46663 -0.28051 0.07022 1.03862
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.0819512 0.2472494 -16.51 <2e-16 ***
## x.var 0.0062016 0.0003945 15.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 559.43 on 763 degrees of freedom
## Residual deviance: 184.76 on 762 degrees of freedom
## AIC: 806.76
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## VENEZUELA -- 5624
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -888.7 -430.2 -46.5 467.9 1214.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.222e+03 3.967e+01 -30.82 <2e-16 ***
## x.var 8.472e+00 8.985e-02 94.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 547.7 on 762 degrees of freedom
## Multiple R-squared: 0.9211, Adjusted R-squared: 0.921
## F-statistic: 8891 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7507 -0.7812 0.1909 0.9388 1.6597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0469133 0.0844805 24.23 <2e-16 ***
## x.var 0.0108279 0.0001913 56.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.166 on 762 degrees of freedom
## Multiple R-squared: 0.8078, Adjusted R-squared: 0.8075
## F-statistic: 3203 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -29.561 -18.201 2.697 6.832 15.133
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.036e+00 3.061e-03 1645 <2e-16 ***
## x.var 5.194e-03 5.034e-06 1032 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1598523 on 763 degrees of freedom
## Residual deviance: 137215 on 762 degrees of freedom
## AIC: 143223
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## VIETNAM -- 39773
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12876.0 -6614.8 177.8 5324.1 17947.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8949.370 568.610 -15.74 <2e-16 ***
## x.var 40.282 1.288 31.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7851 on 762 degrees of freedom
## Multiple R-squared: 0.5622, Adjusted R-squared: 0.5616
## F-statistic: 978.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4326 -1.0090 0.3033 1.0576 1.7514
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.5373721 0.0916261 -16.78 <2e-16 ***
## x.var 0.0157182 0.0002075 75.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.265 on 762 degrees of freedom
## Multiple R-squared: 0.8828, Adjusted R-squared: 0.8826
## F-statistic: 5737 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -96.841 -30.873 -7.753 -3.605 85.283
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.328e+00 3.962e-03 335.3 <2e-16 ***
## x.var 1.271e-02 5.739e-06 2215.0 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 13712238 on 763 degrees of freedom
## Residual deviance: 1139772 on 762 degrees of freedom
## AIC: 1144239
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## WEST BANK AND GAZA -- 5439
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -834.33 -261.30 28.94 320.53 1098.35
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.107e+03 3.256e+01 -33.99 <2e-16 ***
## x.var 8.376e+00 7.374e-02 113.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 449.5 on 762 degrees of freedom
## Multiple R-squared: 0.9442, Adjusted R-squared: 0.9442
## F-statistic: 1.29e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0447 -1.3765 0.1484 1.3074 1.7717
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2607081 0.0930028 13.56 <2e-16 ***
## x.var 0.0122493 0.0002106 58.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.284 on 762 degrees of freedom
## Multiple R-squared: 0.8161, Adjusted R-squared: 0.8159
## F-statistic: 3382 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -29.395 -22.496 -8.733 14.526 29.001
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.292e+00 2.855e-03 1853 <2e-16 ***
## x.var 4.821e-03 4.757e-06 1013 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1641845 on 763 degrees of freedom
## Residual deviance: 282424 on 762 degrees of freedom
## AIC: 288225
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## WINTER OLYMPICS 2022 -- 0
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0 0 NaN NaN
## x.var 0 0 NaN NaN
##
## Residual standard error: 0 on 762 degrees of freedom
## Multiple R-squared: NaN, Adjusted R-squared: NaN
## F-statistic: NaN on 1 and 762 DF, p-value: NA
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: algorithm did not converge
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06 -1.667e-06
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.730e+01 3.728e+04 -0.001 0.999
## x.var 3.508e-16 8.443e+01 0.000 1.000
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 0.0000e+00 on 763 degrees of freedom
## Residual deviance: 2.1221e-09 on 762 degrees of freedom
## AIC: 4
##
## Number of Fisher Scoring iterations: 25
##
## --------------------------------------------------------------------------------
## YEMEN -- 2130
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -353.56 -75.82 34.08 102.26 234.48
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -237.49093 9.92382 -23.93 <2e-16 ***
## x.var 3.01464 0.02248 134.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 137 on 762 degrees of freedom
## Multiple R-squared: 0.9594, Adjusted R-squared: 0.9593
## F-statistic: 1.799e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2600 -0.8833 0.3198 1.1178 2.1330
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3814988 0.1072465 22.21 <2e-16 ***
## x.var 0.0088733 0.0002429 36.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.481 on 762 degrees of freedom
## Multiple R-squared: 0.6365, Adjusted R-squared: 0.6361
## F-statistic: 1335 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -21.607 -7.163 1.516 6.189 10.476
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.086e+00 3.719e-03 1367.5 <2e-16 ***
## x.var 3.710e-03 6.490e-06 571.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 464879 on 763 degrees of freedom
## Residual deviance: 74077 on 762 degrees of freedom
## AIC: 79711
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ZAMBIA -- 3947
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -913.96 -544.48 48.04 481.84 977.30
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -983.68044 40.64285 -24.2 <2e-16 ***
## x.var 6.37948 0.09205 69.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 561.1 on 762 degrees of freedom
## Multiple R-squared: 0.8631, Adjusted R-squared: 0.8629
## F-statistic: 4803 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2722 -0.9091 0.2215 0.8762 1.7748
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4799361 0.0792280 18.68 <2e-16 ***
## x.var 0.0111583 0.0001794 62.18 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.094 on 762 degrees of freedom
## Multiple R-squared: 0.8354, Adjusted R-squared: 0.8352
## F-statistic: 3867 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -31.288 -14.825 -3.764 4.905 28.748
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.498e+00 3.781e-03 1189.8 <2e-16 ***
## x.var 5.553e-03 6.145e-06 903.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1303439 on 763 degrees of freedom
## Residual deviance: 142921 on 762 degrees of freedom
## AIC: 148572
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ZIMBABWE -- 5388
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1190.89 -684.43 -22.09 665.57 1343.82
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1351.9781 54.0820 -25.00 <2e-16 ***
## x.var 8.1597 0.1225 66.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 746.7 on 762 degrees of freedom
## Multiple R-squared: 0.8535, Adjusted R-squared: 0.8533
## F-statistic: 4438 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8229 -0.9616 0.1311 0.8756 1.5314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0848824 0.0721901 15.03 <2e-16 ***
## x.var 0.0120994 0.0001635 74.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9967 on 762 degrees of freedom
## Multiple R-squared: 0.8779, Adjusted R-squared: 0.8777
## F-statistic: 5476 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -33.522 -14.624 -8.700 8.338 28.213
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.392e+00 3.666e-03 1198 <2e-16 ***
## x.var 6.053e-03 5.872e-06 1031 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1754770 on 763 degrees of freedom
## Residual deviance: 168087 on 762 degrees of freedom
## AIC: 173721
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# or just
tots.per.location(covid19.data("ts-confirmed"))
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:29:27 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## AFGHANISTAN -- 172901
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -35929 -11019 2252 12537 30136
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -22010.619 1262.462 -17.43 <2e-16 ***
## x.var 252.088 2.859 88.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17430 on 762 degrees of freedom
## Multiple R-squared: 0.9107, Adjusted R-squared: 0.9106
## F-statistic: 7773 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5585 -0.7744 0.2035 1.4144 2.5343
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.2298417 0.1470755 42.36 <2e-16 ***
## x.var 0.0099587 0.0003331 29.90 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.031 on 762 degrees of freedom
## Multiple R-squared: 0.5398, Adjusted R-squared: 0.5392
## F-statistic: 893.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -174.59 -54.30 12.52 48.31 127.23
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.408e+00 4.202e-04 22387 <2e-16 ***
## x.var 3.848e-03 7.286e-07 5281 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 39285703 on 763 degrees of freedom
## Residual deviance: 5535177 on 762 degrees of freedom
## AIC: 5544191
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ALBANIA -- 270734
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -33333 -16802 -845 13174 46722
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -47078.030 1488.666 -31.62 <2e-16 ***
## x.var 356.411 3.372 105.71 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20550 on 762 degrees of freedom
## Multiple R-squared: 0.9362, Adjusted R-squared: 0.9361
## F-statistic: 1.117e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5765 -0.8233 0.4144 1.3843 1.7345
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9912363 0.1275738 39.12 <2e-16 ***
## x.var 0.0124535 0.0002889 43.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.761 on 762 degrees of freedom
## Multiple R-squared: 0.7091, Adjusted R-squared: 0.7087
## F-statistic: 1858 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -155.09 -130.81 -49.36 60.42 193.75
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.043e+00 4.376e-04 20667 <2e-16 ***
## x.var 4.820e-03 7.291e-07 6611 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 67661090 on 763 degrees of freedom
## Residual deviance: 9826126 on 762 degrees of freedom
## AIC: 9834899
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ALGERIA -- 264488
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17925 -8758 -2300 6918 30913
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -31271.316 829.266 -37.71 <2e-16 ***
## x.var 358.561 1.878 190.91 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11450 on 762 degrees of freedom
## Multiple R-squared: 0.9795, Adjusted R-squared: 0.9795
## F-statistic: 3.645e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.8005 -0.7878 0.4623 1.4575 1.9804
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.4524349 0.1454576 44.36 <2e-16 ***
## x.var 0.0102370 0.0003294 31.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.008 on 762 degrees of freedom
## Multiple R-squared: 0.5589, Adjusted R-squared: 0.5583
## F-statistic: 965.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -205.89 -102.63 22.98 62.02 124.00
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.762e+00 3.522e-04 27714 <2e-16 ***
## x.var 3.847e-03 6.108e-07 6298 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 56004111 on 763 degrees of freedom
## Residual deviance: 8016972 on 762 degrees of freedom
## AIC: 8026235
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ANDORRA -- 37901
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4676.6 -2084.8 -472.0 357.7 13585.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4583.1776 254.6489 -18.00 <2e-16 ***
## x.var 37.8262 0.5767 65.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3516 on 762 degrees of freedom
## Multiple R-squared: 0.8495, Adjusted R-squared: 0.8493
## F-statistic: 4301 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8398 -0.7519 0.5258 1.0234 1.4134
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.4643945 0.1086797 41.08 <2e-16 ***
## x.var 0.0093850 0.0002461 38.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.501 on 762 degrees of freedom
## Multiple R-squared: 0.6561, Adjusted R-squared: 0.6556
## F-statistic: 1454 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -52.96 -35.63 -13.27 28.28 46.02
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.007e+00 1.265e-03 5540 <2e-16 ***
## x.var 4.534e-03 2.130e-06 2128 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6698923 on 763 degrees of freedom
## Residual deviance: 866535 on 762 degrees of freedom
## AIC: 874015
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ANGOLA -- 98698
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12148 -6617 -4204 4273 26953
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -18688.169 713.564 -26.19 <2e-16 ***
## x.var 121.668 1.616 75.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9852 on 762 degrees of freedom
## Multiple R-squared: 0.8815, Adjusted R-squared: 0.8813
## F-statistic: 5668 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9094 -1.1338 0.1151 1.4817 2.3350
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1167430 0.1184242 26.32 <2e-16 ***
## x.var 0.0136659 0.0002682 50.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.635 on 762 degrees of freedom
## Multiple R-squared: 0.7731, Adjusted R-squared: 0.7728
## F-statistic: 2596 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -81.60 -60.72 -0.45 30.38 50.44
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.463e+00 8.619e-04 8658 <2e-16 ***
## x.var 5.530e-03 1.402e-06 3944 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 23791121 on 763 degrees of freedom
## Residual deviance: 1730852 on 762 degrees of freedom
## AIC: 1738524
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ANTARCTICA -- 11
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3189 -1.9123 -0.5057 0.9009 7.6737
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.7839062 0.2010301 -8.874 <2e-16 ***
## x.var 0.0073740 0.0004553 16.196 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.776 on 762 degrees of freedom
## Multiple R-squared: 0.2561, Adjusted R-squared: 0.2551
## F-statistic: 262.3 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7497 -0.4320 -0.1142 0.2035 1.7335
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4029855 0.0454128 -8.874 <2e-16 ***
## x.var 0.0016658 0.0001029 16.196 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.627 on 762 degrees of freedom
## Multiple R-squared: 0.2561, Adjusted R-squared: 0.2551
## F-statistic: 262.3 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.5400 -0.2325 -0.0171 -0.0012 3.5332
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.815e+01 7.200e-01 -25.20 <2e-16 ***
## x.var 2.778e-02 9.871e-04 28.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3741.3 on 763 degrees of freedom
## Residual deviance: 486.0 on 762 degrees of freedom
## AIC: 796.07
##
## Number of Fisher Scoring iterations: 7
##
## --------------------------------------------------------------------------------
## ANTIGUA AND BARBUDA -- 7429
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1334.2 -825.2 -183.6 686.5 3361.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1354.4085 73.1428 -18.52 <2e-16 ***
## x.var 7.1178 0.1657 42.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1010 on 762 degrees of freedom
## Multiple R-squared: 0.7078, Adjusted R-squared: 0.7075
## F-statistic: 1846 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.16148 -0.29109 0.06123 0.51805 0.96147
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.6299796 0.0509645 31.98 <2e-16 ***
## x.var 0.0104217 0.0001154 90.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7037 on 762 degrees of freedom
## Multiple R-squared: 0.9145, Adjusted R-squared: 0.9144
## F-statistic: 8152 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -15.725 -7.439 -4.292 2.125 17.892
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.159e+00 5.091e-03 620.6 <2e-16 ***
## x.var 7.621e-03 7.862e-06 969.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1688408 on 763 degrees of freedom
## Residual deviance: 53600 on 762 degrees of freedom
## AIC: 59193
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## ARGENTINA -- 8868188
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -847161 -509710 -235619 377460 2176098
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1446153.9 50363.8 -28.71 <2e-16 ***
## x.var 10652.6 114.1 93.39 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 695400 on 762 degrees of freedom
## Multiple R-squared: 0.9196, Adjusted R-squared: 0.9195
## F-statistic: 8721 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6308 -1.2029 0.5732 1.9120 2.7200
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.0136028 0.1794884 39.08 <2e-16 ***
## x.var 0.0150547 0.0004065 37.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.478 on 762 degrees of freedom
## Multiple R-squared: 0.6428, Adjusted R-squared: 0.6424
## F-statistic: 1371 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -870.25 -704.64 -52.13 311.06 715.04
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.237e+01 8.179e-05 151172 <2e-16 ***
## x.var 4.926e-03 1.358e-07 36281 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1984924540 on 763 degrees of freedom
## Residual deviance: 225146934 on 762 degrees of freedom
## AIC: 225158023
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ARMENIA -- 417456
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -38074 -15567 2431 13968 52128
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -49458.147 1485.292 -33.3 <2e-16 ***
## x.var 542.914 3.364 161.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20510 on 762 degrees of freedom
## Multiple R-squared: 0.9716, Adjusted R-squared: 0.9715
## F-statistic: 2.605e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.7334 -0.9308 0.5001 1.7019 2.1371
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.2938911 0.1555810 40.45 <2e-16 ***
## x.var 0.0112701 0.0003524 31.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.148 on 762 degrees of freedom
## Multiple R-squared: 0.5731, Adjusted R-squared: 0.5725
## F-statistic: 1023 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -247.70 -112.43 -32.63 120.59 186.12
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.013e+01 2.907e-04 34830 <2e-16 ***
## x.var 3.913e-03 5.026e-07 7786 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 88282514 on 763 degrees of freedom
## Residual deviance: 14519333 on 762 degrees of freedom
## AIC: 14528765
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## AUSTRALIA -- 3124101
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -409084 -333041 -102057 120709 2431611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -298595.98 37467.16 -7.97 5.81e-15 ***
## x.var 1297.23 84.86 15.29 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 517300 on 762 degrees of freedom
## Multiple R-squared: 0.2347, Adjusted R-squared: 0.2337
## F-statistic: 233.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5884 -0.6530 0.1357 1.1694 1.6120
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5517823 0.1033927 63.37 <2e-16 ***
## x.var 0.0091557 0.0002342 39.10 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.428 on 762 degrees of freedom
## Multiple R-squared: 0.6674, Adjusted R-squared: 0.6669
## F-statistic: 1529 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -753.5 -113.6 177.9 290.9 703.9
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.496e+00 9.155e-04 2726 <2e-16 ***
## x.var 1.596e-02 1.299e-06 12282 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 530196794 on 763 degrees of freedom
## Residual deviance: 77076471 on 762 degrees of freedom
## AIC: 77085551
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## AUSTRIA -- 2550371
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -236800 -140556 -52978 90448 1270624
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -311079.89 16730.67 -18.59 <2e-16 ***
## x.var 2082.23 37.89 54.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 231000 on 762 degrees of freedom
## Multiple R-squared: 0.7985, Adjusted R-squared: 0.7982
## F-statistic: 3020 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3394 -0.8748 0.6740 1.2305 1.8707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9332985 0.1425123 48.65 <2e-16 ***
## x.var 0.0119444 0.0003228 37.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.968 on 762 degrees of freedom
## Multiple R-squared: 0.6425, Adjusted R-squared: 0.642
## F-statistic: 1369 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -300.2 -251.5 -145.2 231.5 358.4
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.041e+01 2.021e-04 51520 <2e-16 ***
## x.var 5.372e-03 3.305e-07 16256 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 411469286 on 763 degrees of freedom
## Residual deviance: 42483288 on 762 degrees of freedom
## AIC: 42493420
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## AZERBAIJAN -- 779783
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -93103 -38499 -7034 42442 162674
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.293e+05 4.021e+03 -32.16 <2e-16 ***
## x.var 9.770e+02 9.107e+00 107.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55520 on 762 degrees of freedom
## Multiple R-squared: 0.9379, Adjusted R-squared: 0.9378
## F-statistic: 1.151e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.4355 -0.9161 0.5390 1.5009 2.0555
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.9429752 0.1458518 40.75 <2e-16 ***
## x.var 0.0126286 0.0003303 38.23 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.014 on 762 degrees of freedom
## Multiple R-squared: 0.6573, Adjusted R-squared: 0.6568
## F-statistic: 1462 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -248.17 -158.82 -42.72 115.25 248.74
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.005e+01 2.647e-04 37955 <2e-16 ***
## x.var 4.827e-03 4.409e-07 10948 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 178849316 on 763 degrees of freedom
## Residual deviance: 20115850 on 762 degrees of freedom
## AIC: 20125416
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BAHAMAS -- 33081
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3536.6 -1902.5 -321.2 1172.4 7727.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5382.827 201.799 -26.67 <2e-16 ***
## x.var 40.787 0.457 89.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2786 on 762 degrees of freedom
## Multiple R-squared: 0.9127, Adjusted R-squared: 0.9126
## F-statistic: 7964 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8941 -0.7687 -0.0557 1.2049 2.2704
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2668113 0.1102138 29.64 <2e-16 ***
## x.var 0.0116166 0.0002496 46.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.522 on 762 degrees of freedom
## Multiple R-squared: 0.7397, Adjusted R-squared: 0.7394
## F-statistic: 2166 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -59.939 -44.301 2.865 14.370 44.477
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.878e+00 1.293e-03 5321 <2e-16 ***
## x.var 4.817e-03 2.154e-06 2236 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7412200 on 763 degrees of freedom
## Residual deviance: 797351 on 762 degrees of freedom
## AIC: 804546
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BAHRAIN -- 501643
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -41123 -23271 -5319 18003 152115
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -54869.947 2321.821 -23.63 <2e-16 ***
## x.var 529.316 5.259 100.66 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32060 on 762 degrees of freedom
## Multiple R-squared: 0.9301, Adjusted R-squared: 0.93
## F-statistic: 1.013e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.0586 -0.8843 0.5332 1.3266 1.9292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.7176967 0.1391071 48.29 <2e-16 ***
## x.var 0.0103319 0.0003151 32.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.921 on 762 degrees of freedom
## Multiple R-squared: 0.5853, Adjusted R-squared: 0.5847
## F-statistic: 1075 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -222.39 -128.34 17.08 55.18 201.78
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.928e+00 3.107e-04 31953 <2e-16 ***
## x.var 4.148e-03 5.316e-07 7802 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 86945031 on 763 degrees of freedom
## Residual deviance: 11294833 on 762 degrees of freedom
## AIC: 11304331
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BANGLADESH -- 1938135
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -262020 -109531 3950 115208 281514
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -284142.11 10656.67 -26.66 <2e-16 ***
## x.var 2628.33 24.14 108.90 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 147100 on 762 degrees of freedom
## Multiple R-squared: 0.9396, Adjusted R-squared: 0.9395
## F-statistic: 1.186e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.5238 -1.1456 0.4509 2.0200 2.9758
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9291048 0.1887258 36.72 <2e-16 ***
## x.var 0.0129276 0.0004274 30.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.606 on 762 degrees of freedom
## Multiple R-squared: 0.5455, Adjusted R-squared: 0.5449
## F-statistic: 914.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -511.75 -271.10 40.38 151.90 322.81
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.146e+01 1.423e-04 80564 <2e-16 ***
## x.var 4.239e-03 2.425e-07 17476 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 429355931 on 763 degrees of freedom
## Residual deviance: 46643225 on 762 degrees of freedom
## AIC: 46653618
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BARBADOS -- 54344
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10163 -5433 -1772 4786 32183
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8467.855 594.010 -14.26 <2e-16 ***
## x.var 40.090 1.345 29.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8201 on 762 degrees of freedom
## Multiple R-squared: 0.5382, Adjusted R-squared: 0.5376
## F-statistic: 888 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.71706 -0.33902 0.02289 0.57799 1.23788
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0503208 0.0618643 33.14 <2e-16 ***
## x.var 0.0121225 0.0001401 86.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8541 on 762 degrees of freedom
## Multiple R-squared: 0.9076, Adjusted R-squared: 0.9075
## F-statistic: 7486 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -45.191 -8.862 -2.730 9.860 40.827
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.110e+00 3.029e-03 1027 <2e-16 ***
## x.var 1.017e-02 4.498e-06 2261 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 11331887 on 763 degrees of freedom
## Residual deviance: 274054 on 762 degrees of freedom
## AIC: 280467
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## BELARUS -- 896319
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -83909 -32093 -18873 35055 193817
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.270e+05 3.884e+03 -32.71 <2e-16 ***
## x.var 1.086e+03 8.796e+00 123.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 53620 on 762 degrees of freedom
## Multiple R-squared: 0.9524, Adjusted R-squared: 0.9523
## F-statistic: 1.524e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.2136 -0.9234 0.6421 1.4482 2.4482
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.7896764 0.1628862 41.68 <2e-16 ***
## x.var 0.0114586 0.0003689 31.06 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.249 on 762 degrees of freedom
## Multiple R-squared: 0.5587, Adjusted R-squared: 0.5581
## F-statistic: 964.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -301.94 -87.33 -30.43 93.99 173.93
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.044e+01 2.311e-04 45156 <2e-16 ***
## x.var 4.435e-03 3.908e-07 11348 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 179378654 on 763 degrees of freedom
## Residual deviance: 15057119 on 762 degrees of freedom
## AIC: 15066991
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BELGIUM -- 3529041
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -371724 -204334 -97931 112160 1450649
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -449312.65 24342.00 -18.46 <2e-16 ***
## x.var 3308.51 55.13 60.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 336100 on 762 degrees of freedom
## Multiple R-squared: 0.8254, Adjusted R-squared: 0.8251
## F-statistic: 3601 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.9660 -0.9465 0.8014 1.3650 1.9820
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.8180091 0.1558071 50.18 <2e-16 ***
## x.var 0.0113834 0.0003529 32.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.151 on 762 degrees of freedom
## Multiple R-squared: 0.5773, Adjusted R-squared: 0.5767
## F-statistic: 1041 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -427.6 -299.6 -166.9 279.8 370.0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.119e+01 1.468e-04 76252 <2e-16 ***
## x.var 4.927e-03 2.437e-07 20221 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 607334617 on 763 degrees of freedom
## Residual deviance: 60645527 on 762 degrees of freedom
## AIC: 60656196
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BELIZE -- 56450
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7715 -3444 -1051 2047 23547
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8368.043 442.032 -18.93 <2e-16 ***
## x.var 54.020 1.001 53.96 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6103 on 762 degrees of freedom
## Multiple R-squared: 0.7926, Adjusted R-squared: 0.7923
## F-statistic: 2912 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0089 -1.0827 -0.4367 1.5851 2.4688
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1695559 0.1107571 19.59 <2e-16 ***
## x.var 0.0137599 0.0002508 54.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.529 on 762 degrees of freedom
## Multiple R-squared: 0.7979, Adjusted R-squared: 0.7977
## F-statistic: 3009 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -62.63 -41.56 -15.47 18.34 69.88
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.615e+00 1.306e-03 5064 <2e-16 ***
## x.var 5.581e-03 2.121e-06 2631 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 11032609 on 763 degrees of freedom
## Residual deviance: 1166540 on 762 degrees of freedom
## AIC: 1173505
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BENIN -- 26567
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6822.8 -3619.4 124.1 4119.5 6715.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5929.7709 291.2150 -20.36 <2e-16 ***
## x.var 37.7395 0.6596 57.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4021 on 762 degrees of freedom
## Multiple R-squared: 0.8112, Adjusted R-squared: 0.811
## F-statistic: 3274 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0833 -0.5587 0.1679 1.0093 1.9606
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5004496 0.1055660 33.16 <2e-16 ***
## x.var 0.0107928 0.0002391 45.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.458 on 762 degrees of freedom
## Multiple R-squared: 0.7278, Adjusted R-squared: 0.7275
## F-statistic: 2038 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -58.297 -26.463 -0.946 9.687 56.579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.193e+00 1.589e-03 3896 <2e-16 ***
## x.var 5.671e-03 2.574e-06 2203 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7427099 on 763 degrees of freedom
## Residual deviance: 447881 on 762 degrees of freedom
## AIC: 455013
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## BHUTAN -- 10514
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -780.5 -454.5 -179.7 163.1 6936.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -955.2812 63.7125 -14.99 <2e-16 ***
## x.var 5.9329 0.1443 41.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 879.7 on 762 degrees of freedom
## Multiple R-squared: 0.6893, Adjusted R-squared: 0.6889
## F-statistic: 1690 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4450 -0.7951 0.3435 0.7664 1.1879
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0042304 0.0697208 28.75 <2e-16 ***
## x.var 0.0100180 0.0001579 63.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9626 on 762 degrees of freedom
## Multiple R-squared: 0.8408, Adjusted R-squared: 0.8406
## F-statistic: 4025 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -29.061 -11.937 -1.159 5.925 53.888
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.225e+00 4.134e-03 1022.1 <2e-16 ***
## x.var 5.837e-03 6.662e-06 876.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1236102 on 763 degrees of freedom
## Residual deviance: 114070 on 762 degrees of freedom
## AIC: 119838
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## BOLIVIA -- 891851
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -78094 -44131 -10570 14300 224591
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -119736.94 4595.74 -26.05 <2e-16 ***
## x.var 1033.41 10.41 99.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 63450 on 762 degrees of freedom
## Multiple R-squared: 0.9282, Adjusted R-squared: 0.9281
## F-statistic: 9857 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.7015 -1.2557 0.4715 1.6641 2.8065
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.0801810 0.1680889 36.17 <2e-16 ***
## x.var 0.0126802 0.0003807 33.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.321 on 762 degrees of freedom
## Multiple R-squared: 0.5928, Adjusted R-squared: 0.5923
## F-statistic: 1109 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -304.25 -159.29 24.61 97.19 171.06
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.041e+01 2.356e-04 44176 <2e-16 ***
## x.var 4.408e-03 3.987e-07 11057 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 173797756 on 763 degrees of freedom
## Residual deviance: 18188903 on 762 degrees of freedom
## AIC: 18198570
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BOSNIA AND HERZEGOVINA -- 369870
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -42223 -14372 -2968 14974 56842
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -57333.046 1667.535 -34.38 <2e-16 ***
## x.var 491.427 3.777 130.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23020 on 762 degrees of freedom
## Multiple R-squared: 0.9569, Adjusted R-squared: 0.9569
## F-statistic: 1.693e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.1146 -0.9214 0.6418 1.4713 1.9947
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.5933740 0.1398618 39.99 <2e-16 ***
## x.var 0.0121226 0.0003168 38.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.931 on 762 degrees of freedom
## Multiple R-squared: 0.6578, Adjusted R-squared: 0.6573
## F-statistic: 1465 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -199.27 -150.43 -49.77 119.97 205.58
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.649e+00 3.429e-04 28135 <2e-16 ***
## x.var 4.427e-03 5.801e-07 7632 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 88546971 on 763 degrees of freedom
## Residual deviance: 14286405 on 762 degrees of freedom
## AIC: 14295548
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BOTSWANA -- 262652
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -51186 -40042 989 30951 68078
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -62529.511 2705.125 -23.11 <2e-16 ***
## x.var 338.357 6.127 55.23 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 37350 on 762 degrees of freedom
## Multiple R-squared: 0.8001, Adjusted R-squared: 0.7998
## F-statistic: 3050 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4383 -0.9809 0.2020 1.3842 1.9229
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3290224 0.1066904 21.83 <2e-16 ***
## x.var 0.0163135 0.0002416 67.51 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.473 on 762 degrees of freedom
## Multiple R-squared: 0.8568, Adjusted R-squared: 0.8566
## F-statistic: 4558 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -182.41 -76.83 -35.71 17.94 157.29
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.323e+00 6.901e-04 10612 <2e-16 ***
## x.var 7.188e-03 1.075e-06 6686 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 78820503 on 763 degrees of freedom
## Residual deviance: 4198719 on 762 degrees of freedom
## AIC: 4206545
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BRAZIL -- 28493336
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2031572 -1160836 -392192 1259888 3921773
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3961055.2 107180.6 -36.96 <2e-16 ***
## x.var 39282.1 242.7 161.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1480000 on 762 degrees of freedom
## Multiple R-squared: 0.9717, Adjusted R-squared: 0.9717
## F-statistic: 2.619e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.6218 -1.2256 0.7272 2.1084 2.9970
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.1335332 0.2135139 42.78 <2e-16 ***
## x.var 0.0139505 0.0004836 28.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.948 on 762 degrees of freedom
## Multiple R-squared: 0.522, Adjusted R-squared: 0.5214
## F-statistic: 832.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2047.1 -1276.8 153.9 725.5 1287.8
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.428e+01 3.562e-05 400812 <2e-16 ***
## x.var 4.092e-03 6.109e-08 66991 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6516070501 on 763 degrees of freedom
## Residual deviance: 966850129 on 762 degrees of freedom
## AIC: 966862524
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

## BRUNEI -- 44334
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6717 -3662 -265 3256 33190
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4520.6994 335.2899 -13.48 <2e-16 ***
## x.var 20.5034 0.7594 27.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4629 on 762 degrees of freedom
## Multiple R-squared: 0.4889, Adjusted R-squared: 0.4883
## F-statistic: 729 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7317 -0.9562 0.2597 0.9690 1.9341
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2954460 0.0872092 26.32 <2e-16 ***
## x.var 0.0092818 0.0001975 46.99 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.204 on 762 degrees of freedom
## Multiple R-squared: 0.7435, Adjusted R-squared: 0.7431
## F-statistic: 2208 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -57.433 -16.421 1.109 17.362 72.156
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.0007081 0.0052942 189 <2e-16 ***
## x.var 0.0122191 0.0000077 1587 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6785337 on 763 degrees of freedom
## Residual deviance: 518166 on 762 degrees of freedom
## AIC: 523950
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BULGARIA -- 1080571
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -121914 -65707 -26730 47558 326916
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -179937.56 6562.19 -27.42 <2e-16 ***
## x.var 1221.98 14.86 82.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90600 on 762 degrees of freedom
## Multiple R-squared: 0.8987, Adjusted R-squared: 0.8986
## F-statistic: 6760 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.0199 -0.9503 0.6507 1.2999 2.2120
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.3842228 0.1380144 39.01 <2e-16 ***
## x.var 0.0138197 0.0003126 44.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.906 on 762 degrees of freedom
## Multiple R-squared: 0.7195, Adjusted R-squared: 0.7191
## F-statistic: 1955 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -255.90 -232.70 -70.22 157.10 305.97
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.936e+00 2.600e-04 38218 <2e-16 ***
## x.var 5.295e-03 4.261e-07 12429 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 241682079 on 763 degrees of freedom
## Residual deviance: 27605419 on 762 degrees of freedom
## AIC: 27614894
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BURKINA FASO -- 20751
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3550 -1392 -22 1544 2934
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2906.3506 134.5545 -21.60 <2e-16 ***
## x.var 29.7180 0.3047 97.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1858 on 762 degrees of freedom
## Multiple R-squared: 0.9258, Adjusted R-squared: 0.9257
## F-statistic: 9510 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8762 -0.6589 0.6973 0.9628 1.3953
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.4358476 0.1095535 40.49 <2e-16 ***
## x.var 0.0091740 0.0002481 36.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.513 on 762 degrees of freedom
## Multiple R-squared: 0.6421, Adjusted R-squared: 0.6416
## F-statistic: 1367 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -55.38 -33.01 -24.01 23.77 63.74
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.131e+00 1.278e-03 5580 <2e-16 ***
## x.var 4.034e-03 2.197e-06 1836 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5175656 on 763 degrees of freedom
## Residual deviance: 1029049 on 762 degrees of freedom
## AIC: 1036436
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BURMA -- 575508
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -145074 -54886 -14401 73023 132003
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -132827.04 5492.39 -24.18 <2e-16 ***
## x.var 824.21 12.44 66.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 75830 on 762 degrees of freedom
## Multiple R-squared: 0.8521, Adjusted R-squared: 0.8519
## F-statistic: 4390 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2932 -0.9851 -0.0092 1.4037 2.9685
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2078551 0.1356823 23.64 <2e-16 ***
## x.var 0.0166982 0.0003073 54.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.873 on 762 degrees of freedom
## Multiple R-squared: 0.7949, Adjusted R-squared: 0.7946
## F-statistic: 2953 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -286.96 -176.48 -53.31 113.06 197.70
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.155e+00 3.511e-04 26072 <2e-16 ***
## x.var 5.843e-03 5.658e-07 10327 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 174712897 on 763 degrees of freedom
## Residual deviance: 18708068 on 762 degrees of freedom
## AIC: 18716685
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## BURUNDI -- 38027
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7635.2 -5244.8 -605.5 2959.7 16327.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7834.9656 441.3198 -17.75 <2e-16 ***
## x.var 39.1032 0.9995 39.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6093 on 762 degrees of freedom
## Multiple R-squared: 0.6676, Adjusted R-squared: 0.6672
## F-statistic: 1531 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7293 -0.5946 0.1807 0.6494 1.6665
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8353044 0.0739050 24.83 <2e-16 ***
## x.var 0.0129558 0.0001674 77.40 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.02 on 762 degrees of freedom
## Multiple R-squared: 0.8872, Adjusted R-squared: 0.887
## F-statistic: 5991 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -41.814 -12.422 -4.705 2.147 38.857
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.166e+00 2.513e-03 1658 <2e-16 ***
## x.var 8.621e-03 3.812e-06 2262 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 9885760 on 763 degrees of freedom
## Residual deviance: 140221 on 762 degrees of freedom
## AIC: 146684
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## CABO VERDE -- 55870
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5854.4 -3298.0 -834.9 2418.5 10065.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9484.8122 304.9134 -31.11 <2e-16 ***
## x.var 74.6938 0.6906 108.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4210 on 762 degrees of freedom
## Multiple R-squared: 0.9388, Adjusted R-squared: 0.9388
## F-statistic: 1.17e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5285 -1.0379 0.5914 1.4030 1.9176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8450310 0.1254929 30.64 <2e-16 ***
## x.var 0.0117841 0.0002842 41.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.733 on 762 degrees of freedom
## Multiple R-squared: 0.6929, Adjusted R-squared: 0.6925
## F-statistic: 1719 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -75.259 -51.042 -3.188 22.804 69.035
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.581e+00 9.287e-04 8163 <2e-16 ***
## x.var 4.681e-03 1.555e-06 3010 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 13340330 on 763 degrees of freedom
## Residual deviance: 1510340 on 762 degrees of freedom
## AIC: 1518018
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CAMBODIA -- 128133
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44589 -22677 5116 21738 37615
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -37807.723 1805.307 -20.94 <2e-16 ***
## x.var 192.832 4.089 47.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24930 on 762 degrees of freedom
## Multiple R-squared: 0.7448, Adjusted R-squared: 0.7445
## F-statistic: 2224 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1262 -0.8358 0.1504 0.8760 1.6342
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0538166 0.0712519 28.82 <2e-16 ***
## x.var 0.0144776 0.0001614 89.71 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9838 on 762 degrees of freedom
## Multiple R-squared: 0.9135, Adjusted R-squared: 0.9134
## F-statistic: 8049 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -219.57 -92.12 -44.54 17.02 161.09
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.086e+00 1.059e-03 5745 <2e-16 ***
## x.var 8.156e-03 1.620e-06 5036 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 53518853 on 763 degrees of freedom
## Residual deviance: 7163115 on 762 degrees of freedom
## AIC: 7170288
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## CAMEROON -- 119107
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18506 -4145 2175 5810 17913
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -18087.62 640.34 -28.25 <2e-16 ***
## x.var 174.79 1.45 120.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8841 on 762 degrees of freedom
## Multiple R-squared: 0.9502, Adjusted R-squared: 0.9501
## F-statistic: 1.453e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.1079 -0.7301 0.6259 1.2620 2.2322
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.6571502 0.1422994 39.76 <2e-16 ***
## x.var 0.0102435 0.0003223 31.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.965 on 762 degrees of freedom
## Multiple R-squared: 0.57, Adjusted R-squared: 0.5695
## F-statistic: 1010 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -130.605 -51.572 -2.928 17.448 114.702
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.822e+00 5.402e-04 16330 <2e-16 ***
## x.var 4.144e-03 9.245e-07 4483 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 28189677 on 763 degrees of freedom
## Residual deviance: 3227392 on 762 degrees of freedom
## AIC: 3236031
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CANADA -- 3261722
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -316416 -161758 -106863 80450 964708
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -483337.21 19874.53 -24.32 <2e-16 ***
## x.var 3639.20 45.01 80.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 274400 on 762 degrees of freedom
## Multiple R-squared: 0.8956, Adjusted R-squared: 0.8955
## F-statistic: 6536 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.2040 -0.7894 0.7848 1.2502 1.8350
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.1601716 0.1421992 57.39 <2e-16 ***
## x.var 0.0109631 0.0003221 34.04 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.963 on 762 degrees of freedom
## Multiple R-squared: 0.6033, Adjusted R-squared: 0.6028
## F-statistic: 1159 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -465.9 -257.7 -119.0 223.6 452.8
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.135e+01 1.375e-04 82549 <2e-16 ***
## x.var 4.840e-03 2.290e-07 21141 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 652396976 on 763 degrees of freedom
## Residual deviance: 59789918 on 762 degrees of freedom
## AIC: 59800752
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CENTRAL AFRICAN REPUBLIC -- 14187
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2274 -1029 148 1004 2038
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -741.34 83.89 -8.837 <2e-16 ***
## x.var 17.96 0.19 94.537 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1158 on 762 degrees of freedom
## Multiple R-squared: 0.9214, Adjusted R-squared: 0.9213
## F-statistic: 8937 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6205 -0.9424 0.1777 1.4341 2.6541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1342458 0.1340584 30.84 <2e-16 ***
## x.var 0.0091738 0.0003036 30.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.851 on 762 degrees of freedom
## Multiple R-squared: 0.5451, Adjusted R-squared: 0.5445
## F-statistic: 912.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -60.372 -12.849 0.068 16.116 36.300
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.252e+00 1.345e-03 5390 <2e-16 ***
## x.var 3.213e-03 2.407e-06 1335 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2623303 on 763 degrees of freedom
## Residual deviance: 577440 on 762 degrees of freedom
## AIC: 584583
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CHAD -- 7248
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -934.56 -488.16 -28.05 431.57 952.52
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -698.61041 37.91405 -18.43 <2e-16 ***
## x.var 9.89746 0.08587 115.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 523.5 on 762 degrees of freedom
## Multiple R-squared: 0.9458, Adjusted R-squared: 0.9457
## F-statistic: 1.329e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1534 -0.9374 0.5588 1.1453 1.8806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6513661 0.1121758 32.55 <2e-16 ***
## x.var 0.0088080 0.0002541 34.67 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.549 on 762 degrees of freedom
## Multiple R-squared: 0.612, Adjusted R-squared: 0.6115
## F-statistic: 1202 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -38.050 -14.540 -5.134 12.004 30.883
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.367e+00 1.992e-03 3196 <2e-16 ***
## x.var 3.588e-03 3.497e-06 1026 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1548279 on 763 degrees of freedom
## Residual deviance: 303021 on 762 degrees of freedom
## AIC: 309682
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CHILE -- 2921131
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -201554 -104324 -14761 68847 799068
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -273579.17 10629.31 -25.74 <2e-16 ***
## x.var 3135.66 24.07 130.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 146800 on 762 degrees of freedom
## Multiple R-squared: 0.957, Adjusted R-squared: 0.957
## F-statistic: 1.697e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.3821 -0.9875 0.5703 1.6528 2.6888
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.0175840 0.1790322 44.78 <2e-16 ***
## x.var 0.0113910 0.0004055 28.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 762 degrees of freedom
## Multiple R-squared: 0.5088, Adjusted R-squared: 0.5081
## F-statistic: 789.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -612.61 -250.45 59.15 121.63 371.41
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.193e+01 1.191e-04 100145 <2e-16 ***
## x.var 3.847e-03 2.066e-07 18625 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 486023020 on 763 degrees of freedom
## Residual deviance: 66314246 on 762 degrees of freedom
## AIC: 66325047
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CHINA -- 137160
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -69834 -2274 2070 4191 15639
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 70314.983 730.637 96.24 <2e-16 ***
## x.var 67.024 1.655 40.50 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10090 on 762 degrees of freedom
## Multiple R-squared: 0.6828, Adjusted R-squared: 0.6824
## F-statistic: 1641 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7207 -0.0510 0.0780 0.1457 0.2244
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.103e+01 3.042e-02 362.5 <2e-16 ***
## x.var 1.027e-03 6.890e-05 14.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.42 on 762 degrees of freedom
## Multiple R-squared: 0.2256, Adjusted R-squared: 0.2246
## F-statistic: 222 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -372.33 -6.35 9.63 15.35 36.96
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.119e+01 2.510e-04 44591 <2e-16 ***
## x.var 7.019e-04 5.334e-07 1316 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3485227 on 763 degrees of freedom
## Residual deviance: 1741244 on 762 degrees of freedom
## AIC: 1751377
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## GLM using Family Family: Gamma Link function: log :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.78582 -0.02500 0.03309 0.05629 0.09503
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.118e+01 1.021e-02 1095.09 <2e-16 ***
## x.var 7.342e-04 2.312e-05 31.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.01986225)
##
## Null deviance: 78.139 on 763 degrees of freedom
## Residual deviance: 59.061 on 762 degrees of freedom
## AIC: 17679
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## COLOMBIA -- 6054307
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -497934 -370456 -147661 319084 1077183
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.086e+06 3.133e+04 -34.68 <2e-16 ***
## x.var 9.174e+03 7.095e+01 129.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 432500 on 762 degrees of freedom
## Multiple R-squared: 0.9564, Adjusted R-squared: 0.9563
## F-statistic: 1.672e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.905 -1.200 0.585 1.976 2.832
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.2674866 0.1878024 38.70 <2e-16 ***
## x.var 0.0145010 0.0004253 34.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.593 on 762 degrees of freedom
## Multiple R-squared: 0.604, Adjusted R-squared: 0.6035
## F-statistic: 1162 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -902.36 -707.88 -7.71 376.70 757.73
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.255e+01 8.008e-05 156670 <2e-16 ***
## x.var 4.468e-03 1.352e-07 33039 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1636003237 on 763 degrees of freedom
## Residual deviance: 238865354 on 762 degrees of freedom
## AIC: 238876469
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## COMOROS -- 8024
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1388.98 -708.17 -20.63 602.83 1897.31
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1247.7243 59.9010 -20.83 <2e-16 ***
## x.var 9.8003 0.1357 72.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 827 on 762 degrees of freedom
## Multiple R-squared: 0.8726, Adjusted R-squared: 0.8724
## F-statistic: 5218 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2419 -1.1614 0.5605 1.2514 1.7909
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1493963 0.1054963 20.37 <2e-16 ***
## x.var 0.0110357 0.0002389 46.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.457 on 762 degrees of freedom
## Multiple R-squared: 0.7368, Adjusted R-squared: 0.7365
## F-statistic: 2133 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -28.515 -17.843 -11.663 9.593 39.821
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.5434224 0.0025685 2158 <2e-16 ***
## x.var 0.0046898 0.0000043 1091 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1878878 on 763 degrees of freedom
## Residual deviance: 324289 on 762 degrees of freedom
## AIC: 330378
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CONGO (BRAZZAVILLE) -- 23925
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2149.8 -805.8 -529.8 584.8 3820.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2914.7184 95.9712 -30.37 <2e-16 ***
## x.var 30.8643 0.2174 142.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1325 on 762 degrees of freedom
## Multiple R-squared: 0.9636, Adjusted R-squared: 0.9635
## F-statistic: 2.016e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7302 -0.8178 0.3513 1.2521 2.0589
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.213279 0.122323 34.44 <2e-16 ***
## x.var 0.009752 0.000277 35.20 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.689 on 762 degrees of freedom
## Multiple R-squared: 0.6192, Adjusted R-squared: 0.6187
## F-statistic: 1239 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -59.099 -17.949 3.227 19.187 26.384
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.215e+00 1.236e-03 5836 <2e-16 ***
## x.var 3.973e-03 2.132e-06 1864 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4837812 on 763 degrees of freedom
## Residual deviance: 588837 on 762 degrees of freedom
## AIC: 596212
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CONGO (KINSHASA) -- 85876
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9864.0 -5717.5 -370.5 3195.1 16971.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13363.52 498.92 -26.79 <2e-16 ***
## x.var 110.42 1.13 97.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6888 on 762 degrees of freedom
## Multiple R-squared: 0.9261, Adjusted R-squared: 0.926
## F-statistic: 9549 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5403 -0.7978 0.2808 1.1668 2.1681
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.03027 0.13246 37.97 <2e-16 ***
## x.var 0.01041 0.00030 34.69 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.829 on 762 degrees of freedom
## Multiple R-squared: 0.6123, Adjusted R-squared: 0.6118
## F-statistic: 1204 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -91.124 -31.092 5.747 23.453 47.669
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.081e+00 7.398e-04 10923 <2e-16 ***
## x.var 4.530e-03 1.246e-06 3635 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 18335904 on 763 degrees of freedom
## Residual deviance: 1321152 on 762 degrees of freedom
## AIC: 1329352
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## COSTA RICA -- 797030
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -86380 -40164 -16374 39317 173200
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.351e+05 4.122e+03 -32.78 <2e-16 ***
## x.var 9.934e+02 9.336e+00 106.40 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56920 on 762 degrees of freedom
## Multiple R-squared: 0.9369, Adjusted R-squared: 0.9369
## F-statistic: 1.132e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.0453 -0.8448 0.1866 1.6284 2.3758
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4510216 0.1446253 37.69 <2e-16 ***
## x.var 0.0135054 0.0003276 41.23 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.997 on 762 degrees of freedom
## Multiple R-squared: 0.6905, Adjusted R-squared: 0.6901
## F-statistic: 1700 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -273.21 -198.51 35.46 107.50 146.03
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.987e+00 2.683e-04 37226 <2e-16 ***
## x.var 4.933e-03 4.452e-07 11082 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 183172962 on 763 degrees of freedom
## Residual deviance: 18851713 on 762 degrees of freedom
## AIC: 18861150
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## COTE D'IVOIRE -- 81410
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7198.6 -2622.9 -171.7 2353.5 8455.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8068.1294 270.3811 -29.84 <2e-16 ***
## x.var 108.9165 0.6124 177.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3733 on 762 degrees of freedom
## Multiple R-squared: 0.9765, Adjusted R-squared: 0.9764
## F-statistic: 3.163e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9869 -0.8427 0.5462 1.2583 2.3106
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.5038391 0.1439086 38.24 <2e-16 ***
## x.var 0.0098593 0.0003259 30.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.987 on 762 degrees of freedom
## Multiple R-squared: 0.5456, Adjusted R-squared: 0.545
## F-statistic: 915 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -123.25 -44.51 12.54 32.39 76.49
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.727e+00 6.081e-04 14350 <2e-16 ***
## x.var 3.639e-03 1.065e-06 3417 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 16360180 on 763 degrees of freedom
## Residual deviance: 2482748 on 762 degrees of freedom
## AIC: 2491149
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CROATIA -- 1047108
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -111267 -69955 -24581 44402 372913
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -164657.17 7261.89 -22.67 <2e-16 ***
## x.var 1097.97 16.45 66.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 100300 on 762 degrees of freedom
## Multiple R-squared: 0.854, Adjusted R-squared: 0.8538
## F-statistic: 4457 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9002 -0.9760 0.5057 1.0496 2.2560
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4437161 0.1282545 42.45 <2e-16 ***
## x.var 0.0134254 0.0002905 46.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.771 on 762 degrees of freedom
## Multiple R-squared: 0.7371, Adjusted R-squared: 0.7367
## F-statistic: 2136 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -258.5 -209.9 -84.7 157.3 266.9
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.760e+00 2.795e-04 34920 <2e-16 ***
## x.var 5.393e-03 4.566e-07 11810 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 221487807 on 763 degrees of freedom
## Residual deviance: 26323877 on 762 degrees of freedom
## AIC: 26333303
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CUBA -- 1066927
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -301403 -215945 9152 214408 295136
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -296619.7 15055.5 -19.70 <2e-16 ***
## x.var 1484.2 34.1 43.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 207900 on 762 degrees of freedom
## Multiple R-squared: 0.7132, Adjusted R-squared: 0.7128
## F-statistic: 1894 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7173 -0.0580 0.3465 0.6590 1.8743
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.9466677 0.1036862 38.06 <2e-16 ***
## x.var 0.0154136 0.0002348 65.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.432 on 762 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8495
## F-statistic: 4308 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -569.80 -134.84 -90.59 -71.22 472.51
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.844e+00 4.046e-04 19386 <2e-16 ***
## x.var 8.563e-03 6.143e-07 13939 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 398979771 on 763 degrees of freedom
## Residual deviance: 30705108 on 762 degrees of freedom
## AIC: 30713943
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CYPRUS -- 313406
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -30807 -24053 -10010 12195 143971
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -50624.77 2402.01 -21.08 <2e-16 ***
## x.var 288.04 5.44 52.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33160 on 762 degrees of freedom
## Multiple R-squared: 0.7863, Adjusted R-squared: 0.786
## F-statistic: 2803 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7010 -0.6282 0.3933 0.9892 1.5134
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0744849 0.1042750 39.07 <2e-16 ***
## x.var 0.0130525 0.0002362 55.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.44 on 762 degrees of freedom
## Multiple R-squared: 0.8003, Adjusted R-squared: 0.8001
## F-statistic: 3055 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -123.46 -73.34 -44.59 50.73 112.56
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.579e+00 6.778e-04 11181 <2e-16 ***
## x.var 6.591e-03 1.071e-06 6156 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 63596411 on 763 degrees of freedom
## Residual deviance: 3907934 on 762 degrees of freedom
## AIC: 3916179
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## CZECHIA -- 3538222
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -439018 -229201 -20364 196334 948722
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -528279.25 20472.80 -25.80 <2e-16 ***
## x.var 4080.86 46.37 88.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 282700 on 762 degrees of freedom
## Multiple R-squared: 0.9104, Adjusted R-squared: 0.9103
## F-statistic: 7746 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.0500 -1.0444 0.5713 1.3975 2.3353
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.4997028 0.1527256 42.56 <2e-16 ***
## x.var 0.0141110 0.0003459 40.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.109 on 762 degrees of freedom
## Multiple R-squared: 0.6859, Adjusted R-squared: 0.6855
## F-statistic: 1664 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -646.0 -505.3 -237.6 282.8 722.0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.153e+01 1.274e-04 90547 <2e-16 ***
## x.var 4.747e-03 2.128e-07 22307 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 808764626 on 763 degrees of freedom
## Residual deviance: 154864173 on 762 degrees of freedom
## AIC: 154874598
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## DENMARK -- 2710998
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -273150 -164198 -83376 75773 1886010
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -259092.08 23271.82 -11.13 <2e-16 ***
## x.var 1418.95 52.71 26.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 321300 on 762 degrees of freedom
## Multiple R-squared: 0.4875, Adjusted R-squared: 0.4868
## F-statistic: 724.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.8167 -0.6585 0.7187 1.1561 1.5914
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.395091 0.133344 47.96 <2e-16 ***
## x.var 0.011711 0.000302 38.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.841 on 762 degrees of freedom
## Multiple R-squared: 0.6637, Adjusted R-squared: 0.6632
## F-statistic: 1504 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -411.90 -120.86 -55.98 120.09 864.30
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.867e+00 3.285e-04 26992 <2e-16 ***
## x.var 7.030e-03 5.136e-07 13689 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 344745066 on 763 degrees of freedom
## Residual deviance: 36688082 on 762 degrees of freedom
## AIC: 36697730
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## DIAMOND PRINCESS -- 712
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -623.96 -15.35 17.64 51.34 80.80
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 621.12824 8.18219 75.912 <2e-16 ***
## x.var 0.17668 0.01853 9.534 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 113 on 762 degrees of freedom
## Multiple R-squared: 0.1066, Adjusted R-squared: 0.1054
## F-statistic: 90.89 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9582 -0.1046 0.1287 0.3608 0.5768
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.9385055 0.0666233 89.136 < 2e-16 ***
## x.var 0.0012295 0.0001509 8.148 1.51e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9198 on 762 degrees of freedom
## Multiple R-squared: 0.08015, Adjusted R-squared: 0.07894
## F-statistic: 66.39 on 1 and 762 DF, p-value: 1.512e-15
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -35.380 -0.570 0.708 1.993 3.099
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.435e+00 2.830e-03 2274.02 <2e-16 ***
## x.var 2.567e-04 6.257e-06 41.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 28981 on 763 degrees of freedom
## Residual deviance: 27296 on 762 degrees of freedom
## AIC: 33570
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------

## DJIBOUTI -- 15543
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2183.40 -741.74 -17.41 765.67 1751.91
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -253.2447 74.3826 -3.405 0.000697 ***
## x.var 20.8245 0.1685 123.612 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1027 on 762 degrees of freedom
## Multiple R-squared: 0.9525, Adjusted R-squared: 0.9524
## F-statistic: 1.528e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4017 -0.7134 0.4440 1.2533 2.2921
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9473965 0.1359074 36.40 <2e-16 ***
## x.var 0.0081127 0.0003078 26.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.876 on 762 degrees of freedom
## Multiple R-squared: 0.4769, Adjusted R-squared: 0.4762
## F-statistic: 694.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -70.238 -17.184 2.225 18.379 32.634
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.636e+00 1.154e-03 6619 <2e-16 ***
## x.var 2.916e-03 2.097e-06 1391 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2781929 on 763 degrees of freedom
## Residual deviance: 612101 on 762 degrees of freedom
## AIC: 619553
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## DOMINICA -- 10991
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2889.5 -1500.8 -114.4 1230.1 6072.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1999.6058 134.9342 -14.82 <2e-16 ***
## x.var 9.0551 0.3056 29.63 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1863 on 762 degrees of freedom
## Multiple R-squared: 0.5353, Adjusted R-squared: 0.5347
## F-statistic: 877.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4877 -0.4108 0.1004 0.4699 1.2952
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6555495 0.0484490 13.53 <2e-16 ***
## x.var 0.0110306 0.0001097 100.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6689 on 762 degrees of freedom
## Multiple R-squared: 0.9299, Adjusted R-squared: 0.9298
## F-statistic: 1.011e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -34.134 -5.252 0.637 3.639 26.629
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.157e-01 8.042e-03 14.39 <2e-16 ***
## x.var 1.232e-02 1.169e-05 1053.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2890419 on 763 degrees of freedom
## Residual deviance: 111034 on 762 degrees of freedom
## AIC: 116044
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## DOMINICAN REPUBLIC -- 572596
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31198 -17935 -5396 7008 89447
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -60946.260 1844.701 -33.04 <2e-16 ***
## x.var 717.826 4.178 171.81 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25470 on 762 degrees of freedom
## Multiple R-squared: 0.9748, Adjusted R-squared: 0.9748
## F-statistic: 2.952e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.2088 -0.9486 0.5866 1.5797 2.3086
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.7817426 0.1637346 41.42 <2e-16 ***
## x.var 0.0109490 0.0003708 29.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.261 on 762 degrees of freedom
## Multiple R-squared: 0.5336, Adjusted R-squared: 0.533
## F-statistic: 871.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -297.74 -130.83 23.68 102.98 170.33
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.048e+01 2.467e-04 42500 <2e-16 ***
## x.var 3.808e-03 4.285e-07 8887 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 111522603 on 763 degrees of freedom
## Residual deviance: 16299723 on 762 degrees of freedom
## AIC: 16309436
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ECUADOR -- 820541
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -58856 -26882 -11866 24493 163711
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -83495.506 2849.643 -29.3 <2e-16 ***
## x.var 970.696 6.454 150.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 39340 on 762 degrees of freedom
## Multiple R-squared: 0.9674, Adjusted R-squared: 0.9674
## F-statistic: 2.262e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.7460 -0.8621 0.6635 1.7003 2.0142
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.3374765 0.1645344 44.59 <2e-16 ***
## x.var 0.0104743 0.0003726 28.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.272 on 762 degrees of freedom
## Multiple R-squared: 0.509, Adjusted R-squared: 0.5084
## F-statistic: 790 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -342.45 -144.27 7.47 106.50 190.59
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.077e+01 2.131e-04 50559 <2e-16 ***
## x.var 3.827e-03 3.698e-07 10348 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 148718449 on 763 degrees of freedom
## Residual deviance: 19403238 on 762 degrees of freedom
## AIC: 19413240
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## EGYPT -- 475341
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29380 -13550 -3333 11883 67994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -41302.596 1292.543 -31.95 <2e-16 ***
## x.var 587.238 2.927 200.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17850 on 762 degrees of freedom
## Multiple R-squared: 0.9814, Adjusted R-squared: 0.9814
## F-statistic: 4.024e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3213 -0.9065 0.4730 1.3987 2.4846
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.0892644 0.1566383 45.26 <2e-16 ***
## x.var 0.0100880 0.0003548 28.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.163 on 762 degrees of freedom
## Multiple R-squared: 0.5148, Adjusted R-squared: 0.5142
## F-statistic: 808.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -287.37 -85.11 29.19 85.02 122.62
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.045e+01 2.584e-04 40449 <2e-16 ***
## x.var 3.584e-03 4.537e-07 7900 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 86357718 on 763 degrees of freedom
## Residual deviance: 12540366 on 762 degrees of freedom
## AIC: 12550086
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## EL SALVADOR -- 147786
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7065 -3748 -1496 2351 18664
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.801e+04 3.954e+02 -45.57 <2e-16 ***
## x.var 1.949e+02 8.954e-01 217.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5459 on 762 degrees of freedom
## Multiple R-squared: 0.9842, Adjusted R-squared: 0.9841
## F-statistic: 4.737e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7628 -1.0380 0.4101 1.6454 2.5318
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.103895 0.152329 33.51 <2e-16 ***
## x.var 0.011560 0.000345 33.51 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.103 on 762 degrees of freedom
## Multiple R-squared: 0.5957, Adjusted R-squared: 0.5952
## F-statistic: 1123 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -151.65 -76.71 18.61 45.20 78.55
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.085e+00 4.880e-04 18618 <2e-16 ***
## x.var 3.937e-03 8.426e-07 4672 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 31190141 on 763 degrees of freedom
## Residual deviance: 4572432 on 762 degrees of freedom
## AIC: 4581010
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## EQUATORIAL GUINEA -- 15874
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1740.1 -822.8 -187.4 811.9 2027.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1162.7563 69.1090 -16.82 <2e-16 ***
## x.var 20.6066 0.1565 131.65 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 954.2 on 762 degrees of freedom
## Multiple R-squared: 0.9579, Adjusted R-squared: 0.9578
## F-statistic: 1.733e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8897 -0.7928 0.3104 1.3523 2.3618
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.4209742 0.1270048 34.81 <2e-16 ***
## x.var 0.0088444 0.0002876 30.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.754 on 762 degrees of freedom
## Multiple R-squared: 0.5537, Adjusted R-squared: 0.5531
## F-statistic: 945.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -59.136 -13.415 5.393 10.370 36.783
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.248e+00 1.316e-03 5506 <2e-16 ***
## x.var 3.395e-03 2.333e-06 1456 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2969737 on 763 degrees of freedom
## Residual deviance: 502106 on 762 degrees of freedom
## AIC: 509375
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ERITREA -- 9694
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1777.03 -693.23 48.99 762.50 2044.41
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2058.1490 68.6954 -29.96 <2e-16 ***
## x.var 13.7400 0.1556 88.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 948.5 on 762 degrees of freedom
## Multiple R-squared: 0.911, Adjusted R-squared: 0.9109
## F-statistic: 7799 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1086 -0.5995 0.4873 0.8423 1.1719
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.4697824 0.0805174 30.67 <2e-16 ***
## x.var 0.0108267 0.0001824 59.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.112 on 762 degrees of freedom
## Multiple R-squared: 0.8222, Adjusted R-squared: 0.822
## F-statistic: 3525 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -33.20 -19.93 -15.47 16.40 35.19
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.383e+00 2.495e-03 2157 <2e-16 ***
## x.var 5.386e-03 4.078e-06 1321 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2740337 on 763 degrees of freedom
## Residual deviance: 300327 on 762 degrees of freedom
## AIC: 306673
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ESTONIA -- 474550
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -48204 -30903 -7813 15638 228043
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -69652.956 3188.430 -21.85 <2e-16 ***
## x.var 413.821 7.221 57.30 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 44020 on 762 degrees of freedom
## Multiple R-squared: 0.8117, Adjusted R-squared: 0.8114
## F-statistic: 3284 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2051 -0.6221 0.3348 1.0957 1.4632
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7526763 0.1084971 43.80 <2e-16 ***
## x.var 0.0125684 0.0002457 51.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.498 on 762 degrees of freedom
## Multiple R-squared: 0.7744, Adjusted R-squared: 0.7741
## F-statistic: 2616 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -139.44 -98.64 -63.92 38.21 201.45
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.227e+00 5.268e-04 15616 <2e-16 ***
## x.var 6.182e-03 8.409e-07 7352 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 89931801 on 763 degrees of freedom
## Residual deviance: 8158183 on 762 degrees of freedom
## AIC: 8166825
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ESWATINI -- 69050
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14297 -6636 -547 5166 17229
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13898.010 602.009 -23.09 <2e-16 ***
## x.var 89.037 1.363 65.30 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8312 on 762 degrees of freedom
## Multiple R-squared: 0.8484, Adjusted R-squared: 0.8482
## F-statistic: 4264 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2326 -1.0119 0.2131 1.3286 2.1316
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5964890 0.1171195 30.71 <2e-16 ***
## x.var 0.0122328 0.0002653 46.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.617 on 762 degrees of freedom
## Multiple R-squared: 0.7362, Adjusted R-squared: 0.7359
## F-statistic: 2127 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -65.209 -36.919 -4.876 15.608 57.391
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.081e+00 1.027e-03 6897 <2e-16 ***
## x.var 5.628e-03 1.665e-06 3381 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 17345187 on 763 degrees of freedom
## Residual deviance: 975169 on 762 degrees of freedom
## AIC: 982797
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ETHIOPIA -- 468495
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37235 -20482 -6463 16391 77303
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -77973.919 1992.842 -39.13 <2e-16 ***
## x.var 670.726 4.514 148.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27510 on 762 degrees of freedom
## Multiple R-squared: 0.9666, Adjusted R-squared: 0.9666
## F-statistic: 2.208e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6482 -1.4573 0.4148 1.7081 2.8617
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9380826 0.1589267 31.07 <2e-16 ***
## x.var 0.0139245 0.0003599 38.69 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.194 on 762 degrees of freedom
## Multiple R-squared: 0.6626, Adjusted R-squared: 0.6622
## F-statistic: 1497 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -261.44 -188.60 26.05 79.87 206.95
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.967e+00 2.929e-04 34023 <2e-16 ***
## x.var 4.417e-03 4.957e-07 8912 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 118155921 on 763 degrees of freedom
## Residual deviance: 16986282 on 762 degrees of freedom
## AIC: 16995435
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## FIJI -- 63687
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24639 -12195 2625 12938 17746
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17831.322 995.182 -17.92 <2e-16 ***
## x.var 85.599 2.254 37.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13740 on 762 degrees of freedom
## Multiple R-squared: 0.6543, Adjusted R-squared: 0.6539
## F-statistic: 1442 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.51282 -0.90600 0.07585 0.99296 2.01095
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.219779 0.090938 -2.417 0.0159 *
## x.var 0.015447 0.000206 75.000 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.256 on 762 degrees of freedom
## Multiple R-squared: 0.8807, Adjusted R-squared: 0.8805
## F-statistic: 5625 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -151.42 -66.36 -29.33 -13.65 160.94
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.206e+00 1.955e-03 2152 <2e-16 ***
## x.var 9.688e-03 2.920e-06 3318 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 27116844 on 763 degrees of freedom
## Residual deviance: 4178236 on 762 degrees of freedom
## AIC: 4183871
##
## Number of Fisher Scoring iterations: 7
##
## --------------------------------------------------------------------------------
## FINLAND -- 629727
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -60886 -42528 -33221 25329 372030
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -77908.63 5466.73 -14.25 <2e-16 ***
## x.var 439.27 12.38 35.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 75480 on 762 degrees of freedom
## Multiple R-squared: 0.6229, Adjusted R-squared: 0.6224
## F-statistic: 1259 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.0864 -0.5779 0.5933 0.8280 1.5763
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.0137940 0.1091900 55.08 <2e-16 ***
## x.var 0.0103775 0.0002473 41.96 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.508 on 762 degrees of freedom
## Multiple R-squared: 0.698, Adjusted R-squared: 0.6976
## F-statistic: 1761 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -154.37 -45.76 -14.36 48.23 234.49
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.933e+00 5.579e-04 14219 <2e-16 ***
## x.var 6.688e-03 8.792e-07 7606 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 96489478 on 763 degrees of freedom
## Residual deviance: 4488011 on 762 degrees of freedom
## AIC: 4497021
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## FRANCE -- 22638153
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2151810 -1264474 -825252 351712 11235751
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2789796.7 171787.1 -16.24 <2e-16 ***
## x.var 18576.2 389.1 47.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2372000 on 762 degrees of freedom
## Multiple R-squared: 0.7495, Adjusted R-squared: 0.7491
## F-statistic: 2280 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.2054 -0.8610 0.8136 1.2580 1.8025
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.1816360 0.1463939 62.72 <2e-16 ***
## x.var 0.0118604 0.0003316 35.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.021 on 762 degrees of freedom
## Multiple R-squared: 0.6268, Adjusted R-squared: 0.6263
## F-statistic: 1280 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1178.1 -747.6 -299.4 547.4 1105.0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.258e+01 6.805e-05 184893 <2e-16 ***
## x.var 5.401e-03 1.112e-07 48588 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3680731441 on 763 degrees of freedom
## Residual deviance: 374962529 on 762 degrees of freedom
## AIC: 374974410
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GABON -- 47520
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6207 -2468 325 1712 7713
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6157.7211 239.2263 -25.74 <2e-16 ***
## x.var 61.3635 0.5418 113.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3303 on 762 degrees of freedom
## Multiple R-squared: 0.9439, Adjusted R-squared: 0.9439
## F-statistic: 1.283e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1905 -0.8651 0.4664 1.3369 2.3107
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6623944 0.1361481 34.24 <2e-16 ***
## x.var 0.0101565 0.0003084 32.94 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.88 on 762 degrees of freedom
## Multiple R-squared: 0.5874, Adjusted R-squared: 0.5869
## F-statistic: 1085 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -80.705 -17.979 -0.391 20.306 47.142
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.821e+00 8.992e-04 8697 <2e-16 ***
## x.var 4.083e-03 1.543e-06 2646 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 9624099 on 763 degrees of freedom
## Residual deviance: 972807 on 762 degrees of freedom
## AIC: 980645
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GAMBIA -- 11924
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1389.4 -609.1 -76.9 661.4 1596.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1613.9043 55.1397 -29.27 <2e-16 ***
## x.var 17.1094 0.1249 137.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 761.3 on 762 degrees of freedom
## Multiple R-squared: 0.961, Adjusted R-squared: 0.9609
## F-statistic: 1.877e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3606 -1.1269 -0.0597 1.2909 2.7532
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7410439 0.1168124 23.46 <2e-16 ***
## x.var 0.0112647 0.0002646 42.58 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.613 on 762 degrees of freedom
## Multiple R-squared: 0.7041, Adjusted R-squared: 0.7037
## F-statistic: 1813 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -50.039 -33.817 5.562 16.614 31.229
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.627e+00 1.660e-03 3993 <2e-16 ***
## x.var 3.971e-03 2.862e-06 1387 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2924430 on 763 degrees of freedom
## Residual deviance: 570053 on 762 degrees of freedom
## AIC: 576735
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GEORGIA -- 1575999
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -169631 -114045 -47156 89846 695588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -245201.39 10958.26 -22.38 <2e-16 ***
## x.var 1473.31 24.82 59.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 151300 on 762 degrees of freedom
## Multiple R-squared: 0.8222, Adjusted R-squared: 0.822
## F-statistic: 3524 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7875 -0.8871 0.0395 1.1233 2.7527
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2344114 0.1227871 34.49 <2e-16 ***
## x.var 0.0158030 0.0002781 56.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.695 on 762 degrees of freedom
## Multiple R-squared: 0.8091, Adjusted R-squared: 0.8088
## F-statistic: 3229 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -318.30 -210.76 -27.21 83.52 294.07
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.563e+00 2.746e-04 34829 <2e-16 ***
## x.var 6.088e-03 4.394e-07 13856 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 315123031 on 763 degrees of freedom
## Residual deviance: 27343004 on 762 degrees of freedom
## AIC: 27352197
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GERMANY -- 14252200
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1186979 -792951 -388747 491176 7210021
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1711698.5 92047.2 -18.60 <2e-16 ***
## x.var 11458.0 208.5 54.96 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1271000 on 762 degrees of freedom
## Multiple R-squared: 0.7986, Adjusted R-squared: 0.7983
## F-statistic: 3021 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.1728 -0.8095 0.7012 1.2045 1.7909
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.1172956 0.1410667 64.63 <2e-16 ***
## x.var 0.0110957 0.0003195 34.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.948 on 762 degrees of freedom
## Multiple R-squared: 0.6128, Adjusted R-squared: 0.6123
## F-statistic: 1206 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -678.3 -484.4 -309.3 445.0 901.0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.212e+01 8.617e-05 140653 <2e-16 ***
## x.var 5.372e-03 1.409e-07 38132 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2211325557 on 763 degrees of freedom
## Residual deviance: 180981873 on 762 degrees of freedom
## AIC: 180993477
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GHANA -- 159124
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9593.6 -5547.2 -13.9 4795.1 12512.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -12732.608 420.783 -30.26 <2e-16 ***
## x.var 219.688 0.953 230.52 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5810 on 762 degrees of freedom
## Multiple R-squared: 0.9859, Adjusted R-squared: 0.9858
## F-statistic: 5.314e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5442 -0.9633 0.4580 1.5661 2.5365
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.0064771 0.1586866 37.85 <2e-16 ***
## x.var 0.0103406 0.0003594 28.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.191 on 762 degrees of freedom
## Multiple R-squared: 0.5207, Adjusted R-squared: 0.5201
## F-statistic: 827.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -189.90 -66.97 20.55 50.63 101.08
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.599e+00 4.052e-04 23692 <2e-16 ***
## x.var 3.415e-03 7.172e-07 4761 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 32363988 on 763 degrees of freedom
## Residual deviance: 5918913 on 762 degrees of freedom
## AIC: 5927835
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GREECE -- 2353577
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -232357 -188834 -134065 103464 1248589
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -356344.58 20636.91 -17.27 <2e-16 ***
## x.var 1912.74 46.74 40.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 284900 on 762 degrees of freedom
## Multiple R-squared: 0.6873, Adjusted R-squared: 0.6869
## F-statistic: 1675 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9219 -0.7239 0.5162 0.9891 1.7791
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4351169 0.1170872 46.42 <2e-16 ***
## x.var 0.0139075 0.0002652 52.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.617 on 762 degrees of freedom
## Multiple R-squared: 0.7831, Adjusted R-squared: 0.7828
## F-statistic: 2750 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -254.53 -158.32 -82.53 103.79 209.86
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.977e+00 2.955e-04 30383 <2e-16 ***
## x.var 7.300e-03 4.592e-07 15897 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 442129628 on 763 degrees of freedom
## Residual deviance: 15686493 on 762 degrees of freedom
## AIC: 15696052
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GRENADA -- 13565
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3517.3 -1779.5 0.1 1282.2 7911.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2337.9148 170.6097 -13.70 <2e-16 ***
## x.var 10.4737 0.3864 27.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2356 on 762 degrees of freedom
## Multiple R-squared: 0.4909, Adjusted R-squared: 0.4902
## F-statistic: 734.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7108 -0.6314 0.1411 0.6643 1.3127
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6659527 0.0597234 11.15 <2e-16 ***
## x.var 0.0109056 0.0001353 80.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8246 on 762 degrees of freedom
## Multiple R-squared: 0.8951, Adjusted R-squared: 0.8949
## F-statistic: 6500 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -41.323 -7.296 0.011 4.962 48.608
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.543e-01 8.016e-03 -31.72 <2e-16 ***
## x.var 1.305e-02 1.158e-05 1126.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3530221 on 763 degrees of freedom
## Residual deviance: 217028 on 762 degrees of freedom
## AIC: 222008
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GUATEMALA -- 766475
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -104133 -70799 -4044 68950 143281
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -139345.37 5273.85 -26.42 <2e-16 ***
## x.var 998.09 11.94 83.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 72810 on 762 degrees of freedom
## Multiple R-squared: 0.9016, Adjusted R-squared: 0.9015
## F-statistic: 6982 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.2188 -1.0827 0.2742 1.7598 2.7422
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.5213949 0.1618951 34.10 <2e-16 ***
## x.var 0.0134121 0.0003667 36.58 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.235 on 762 degrees of freedom
## Multiple R-squared: 0.6371, Adjusted R-squared: 0.6367
## F-statistic: 1338 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -247.85 -159.10 28.84 66.43 150.59
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.913e+00 2.736e-04 36230 <2e-16 ***
## x.var 5.043e-03 4.523e-07 11149 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 180349470 on 763 degrees of freedom
## Residual deviance: 12266791 on 762 degrees of freedom
## AIC: 12276239
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GUINEA -- 36393
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2334.16 -679.74 59.31 728.41 2686.29
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2737.5407 79.2346 -34.55 <2e-16 ***
## x.var 51.2499 0.1795 285.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1094 on 762 degrees of freedom
## Multiple R-squared: 0.9907, Adjusted R-squared: 0.9907
## F-statistic: 8.156e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6173 -0.8255 0.5113 1.5101 1.9859
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1459090 0.1419452 36.25 <2e-16 ***
## x.var 0.0092435 0.0003215 28.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.96 on 762 degrees of freedom
## Multiple R-squared: 0.5204, Adjusted R-squared: 0.5197
## F-statistic: 826.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -94.32 -30.07 14.33 22.91 37.79
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.188e+00 8.267e-04 9905 <2e-16 ***
## x.var 3.357e-03 1.468e-06 2287 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7260111 on 763 degrees of freedom
## Residual deviance: 1185040 on 762 degrees of freedom
## AIC: 1192981
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GUINEA-BISSAU -- 7972
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -899.31 -349.96 44.98 389.59 914.50
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -417.51385 32.78727 -12.73 <2e-16 ***
## x.var 9.78406 0.07426 131.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 452.7 on 762 degrees of freedom
## Multiple R-squared: 0.958, Adjusted R-squared: 0.9579
## F-statistic: 1.736e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6062 -0.7646 0.2288 1.2771 2.0493
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0941080 0.1227009 33.37 <2e-16 ***
## x.var 0.0081285 0.0002779 29.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.694 on 762 degrees of freedom
## Multiple R-squared: 0.5289, Adjusted R-squared: 0.5283
## F-statistic: 855.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -43.158 -6.280 2.838 9.162 16.044
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.632e+00 1.831e-03 3623 <2e-16 ***
## x.var 3.229e-03 3.272e-06 987 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1340999 on 763 degrees of freedom
## Residual deviance: 221524 on 762 degrees of freedom
## AIC: 228317
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GUYANA -- 62779
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8149 -4924 -2270 2741 21961
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11572.524 500.848 -23.11 <2e-16 ***
## x.var 68.840 1.134 60.69 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6915 on 762 degrees of freedom
## Multiple R-squared: 0.8286, Adjusted R-squared: 0.8283
## F-statistic: 3683 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7532 -0.6881 0.2455 0.9282 1.7493
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1336448 0.0958738 32.69 <2e-16 ***
## x.var 0.0123920 0.0002171 57.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.324 on 762 degrees of freedom
## Multiple R-squared: 0.8104, Adjusted R-squared: 0.8101
## F-statistic: 3257 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -50.330 -39.137 5.787 15.168 31.136
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.441e+00 1.289e-03 4996 <2e-16 ***
## x.var 6.172e-03 2.059e-06 2998 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 14170752 on 763 degrees of freedom
## Residual deviance: 585109 on 762 degrees of freedom
## AIC: 592436
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

## HAITI -- 30299
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3254.0 -1114.5 218.2 940.7 2739.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2314.5112 105.7812 -21.88 <2e-16 ***
## x.var 39.3246 0.2396 164.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1460 on 762 degrees of freedom
## Multiple R-squared: 0.9725, Adjusted R-squared: 0.9725
## F-statistic: 2.694e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0829 -1.0660 0.1706 1.4690 2.5887
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5103959 0.1404760 32.11 <2e-16 ***
## x.var 0.0098705 0.0003182 31.02 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.94 on 762 degrees of freedom
## Multiple R-squared: 0.5581, Adjusted R-squared: 0.5575
## F-statistic: 962.5 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -81.641 -21.634 7.533 19.436 32.767
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.870e+00 9.605e-04 8194 <2e-16 ***
## x.var 3.427e-03 1.699e-06 2017 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5748529 on 763 degrees of freedom
## Residual deviance: 1000221 on 762 degrees of freedom
## AIC: 1007850
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## HOLY SEE -- 29
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.6045 -3.6829 -0.8263 3.5735 10.3189
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.032018 0.355429 19.79 <2e-16 ***
## x.var 0.035737 0.000805 44.39 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.907 on 762 degrees of freedom
## Multiple R-squared: 0.7212, Adjusted R-squared: 0.7208
## F-statistic: 1971 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8651 -0.2732 0.1538 0.4004 0.8064
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.736e+00 4.368e-02 39.76 <2e-16 ***
## x.var 2.924e-03 9.893e-05 29.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6031 on 762 degrees of freedom
## Multiple R-squared: 0.5341, Adjusted R-squared: 0.5334
## F-statistic: 873.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.5847 -0.8970 -0.2034 1.0339 2.5813
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.274e+00 1.930e-02 117.80 <2e-16 ***
## x.var 1.779e-03 3.771e-05 47.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4483.8 on 763 degrees of freedom
## Residual deviance: 2156.8 on 762 degrees of freedom
## AIC: 5625.5
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## HONDURAS -- 409708
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31117 -16879 -9279 16256 65701
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -66332.843 1705.291 -38.9 <2e-16 ***
## x.var 631.747 3.862 163.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23540 on 762 degrees of freedom
## Multiple R-squared: 0.9723, Adjusted R-squared: 0.9723
## F-statistic: 2.676e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.4276 -1.0118 0.4615 1.6581 2.4691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.8237442 0.1601737 36.36 <2e-16 ***
## x.var 0.0123226 0.0003628 33.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.211 on 762 degrees of freedom
## Multiple R-squared: 0.6023, Adjusted R-squared: 0.6017
## F-statistic: 1154 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -255.63 -169.43 38.22 99.58 112.64
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.008e+01 2.861e-04 35247 <2e-16 ***
## x.var 4.175e-03 4.890e-07 8537 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 105372975 on 763 degrees of freedom
## Residual deviance: 14579362 on 762 degrees of freedom
## AIC: 14588728
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## HUNGARY -- 1769164
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -216253 -115127 -29079 98654 501617
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -293705.53 10965.01 -26.79 <2e-16 ***
## x.var 2043.52 24.83 82.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 151400 on 762 degrees of freedom
## Multiple R-squared: 0.8988, Adjusted R-squared: 0.8987
## F-statistic: 6771 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9827 -1.0841 0.4902 1.3887 2.3648
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.3642986 0.1402326 38.25 <2e-16 ***
## x.var 0.0147244 0.0003176 46.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.936 on 762 degrees of freedom
## Multiple R-squared: 0.7383, Adjusted R-squared: 0.7379
## F-statistic: 2149 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -436.4 -319.9 -152.1 191.0 507.2
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.054e+01 1.963e-04 53659 <2e-16 ***
## x.var 5.175e-03 3.231e-07 16019 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 417484818 on 763 degrees of freedom
## Residual deviance: 66034571 on 762 degrees of freedom
## AIC: 66044301
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ICELAND -- 115241
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11432 -8141 -1816 3442 86399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8458.407 964.213 -8.772 <2e-16 ***
## x.var 48.823 2.184 22.357 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13310 on 762 degrees of freedom
## Multiple R-squared: 0.3961, Adjusted R-squared: 0.3953
## F-statistic: 499.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4692 -0.5020 0.2504 0.8904 1.6222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1823115 0.1049400 49.38 <2e-16 ***
## x.var 0.0077532 0.0002377 32.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.449 on 762 degrees of freedom
## Multiple R-squared: 0.5827, Adjusted R-squared: 0.5822
## F-statistic: 1064 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -75.82 -41.11 11.45 30.02 246.24
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.905e+00 1.606e-03 3677 <2e-16 ***
## x.var 6.446e-03 2.546e-06 2532 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 11838331 on 763 degrees of freedom
## Residual deviance: 1885389 on 762 degrees of freedom
## AIC: 1892952
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## INDIA -- 42881179
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7388089 -2500167 -449729 3171563 7767190
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7830249.0 272197.1 -28.77 <2e-16 ***
## x.var 63059.2 616.5 102.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3758000 on 762 degrees of freedom
## Multiple R-squared: 0.9321, Adjusted R-squared: 0.932
## F-statistic: 1.046e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9027 -1.3241 0.8209 2.0331 3.0397
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.7809665 0.1972657 44.51 <2e-16 ***
## x.var 0.0152153 0.0004468 34.06 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.724 on 762 degrees of freedom
## Multiple R-squared: 0.6035, Adjusted R-squared: 0.603
## F-statistic: 1160 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2272.7 -1839.2 -112.1 688.9 2458.1
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.437e+01 3.148e-05 456582 <2e-16 ***
## x.var 4.609e-03 5.286e-08 87182 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1.1533e+10 on 763 degrees of freedom
## Residual deviance: 1.6748e+09 on 762 degrees of freedom
## AIC: 1674793698
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## INDONESIA -- 5350902
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -711761 -554016 -13383 512568 1106051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.113e+06 4.104e+04 -27.13 <2e-16 ***
## x.var 7.330e+03 9.295e+01 78.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 566600 on 762 degrees of freedom
## Multiple R-squared: 0.8909, Adjusted R-squared: 0.8907
## F-statistic: 6219 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.5314 -0.8279 0.6378 1.6327 2.0006
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9611878 0.1639983 42.45 <2e-16 ***
## x.var 0.0142546 0.0003714 38.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.264 on 762 degrees of freedom
## Multiple R-squared: 0.659, Adjusted R-squared: 0.6586
## F-statistic: 1473 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -834.7 -495.8 -133.0 244.1 795.5
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.161e+01 1.097e-04 105847 <2e-16 ***
## x.var 5.464e-03 1.788e-07 30568 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1460316533 on 763 degrees of freedom
## Residual deviance: 143680793 on 762 degrees of freedom
## AIC: 143691610
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## IRAN -- 6998975
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1002951 -697803 -73862 703916 1449488
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1459482 52110 -28.01 <2e-16 ***
## x.var 9994 118 84.68 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 719500 on 762 degrees of freedom
## Multiple R-squared: 0.9039, Adjusted R-squared: 0.9038
## F-statistic: 7171 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.2835 -0.4126 0.5723 1.2550 1.5606
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.9693926 0.1552273 57.78 <2e-16 ***
## x.var 0.0112173 0.0003516 31.91 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.143 on 762 degrees of freedom
## Multiple R-squared: 0.5719, Adjusted R-squared: 0.5714
## F-statistic: 1018 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -892.90 -362.17 -64.56 257.55 586.91
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.207e+01 9.016e-05 133844 <2e-16 ***
## x.var 5.253e-03 1.480e-07 35503 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1853968182 on 763 degrees of freedom
## Residual deviance: 114326374 on 762 degrees of freedom
## AIC: 114337861
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## IRAQ -- 2296665
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -293865 -116164 -59657 147161 432590
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -436110.3 13023.5 -33.49 <2e-16 ***
## x.var 3520.3 29.5 119.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 179800 on 762 degrees of freedom
## Multiple R-squared: 0.9492, Adjusted R-squared: 0.9492
## F-statistic: 1.424e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3136 -1.0075 0.2949 1.7377 2.5521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.871943 0.161155 42.64 <2e-16 ***
## x.var 0.013385 0.000365 36.67 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.225 on 762 degrees of freedom
## Multiple R-squared: 0.6383, Adjusted R-squared: 0.6378
## F-statistic: 1345 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -579.86 -425.44 77.71 202.48 343.67
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.149e+01 1.330e-04 86392 <2e-16 ***
## x.var 4.601e-03 2.234e-07 20592 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 624999739 on 763 degrees of freedom
## Residual deviance: 75418503 on 762 degrees of freedom
## AIC: 75429010
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## IRELAND -- 1284179
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -150866 -108235 -55938 64589 596955
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -188376.89 11706.59 -16.09 <2e-16 ***
## x.var 1146.07 26.51 43.23 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 161600 on 762 degrees of freedom
## Multiple R-squared: 0.7103, Adjusted R-squared: 0.7099
## F-statistic: 1868 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.1005 -0.8147 0.6665 1.1637 2.1499
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.6755337 0.1443409 46.25 <2e-16 ***
## x.var 0.0111830 0.0003269 34.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.993 on 762 degrees of freedom
## Multiple R-squared: 0.6056, Adjusted R-squared: 0.6051
## F-statistic: 1170 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -182.75 -94.39 -31.27 65.10 226.88
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.381e+00 3.058e-04 30676 <2e-16 ***
## x.var 5.990e-03 4.907e-07 12205 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 232302077 on 763 degrees of freedom
## Residual deviance: 11212940 on 762 degrees of freedom
## AIC: 11222644
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## ISRAEL -- 3589326
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -321746 -164544 -88818 20643 1804376
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -393572.7 24901.0 -15.80 <2e-16 ***
## x.var 2851.5 56.4 50.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 343800 on 762 degrees of freedom
## Multiple R-squared: 0.7704, Adjusted R-squared: 0.7701
## F-statistic: 2556 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6272 -0.8681 0.8391 1.5152 2.1387
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.2637973 0.1551170 46.83 <2e-16 ***
## x.var 0.0121133 0.0003513 34.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.142 on 762 degrees of freedom
## Multiple R-squared: 0.6094, Adjusted R-squared: 0.6089
## F-statistic: 1189 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -513.87 -333.12 -61.78 142.78 515.23
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.100e+01 1.603e-04 68612 <2e-16 ***
## x.var 4.994e-03 2.654e-07 18815 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 538490407 on 763 degrees of freedom
## Residual deviance: 62102890 on 762 degrees of freedom
## AIC: 62113328
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ITALY -- 12603758
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1238425 -725559 -239860 210633 5368090
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1526320.1 86485.8 -17.65 <2e-16 ***
## x.var 11468.6 195.9 58.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1194000 on 762 degrees of freedom
## Multiple R-squared: 0.8181, Adjusted R-squared: 0.8179
## F-statistic: 3428 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.5424 -0.7156 0.6415 1.2200 1.7252
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.4465465 0.1509268 62.59 <2e-16 ***
## x.var 0.0106529 0.0003418 31.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.084 on 762 degrees of freedom
## Multiple R-squared: 0.5604, Adjusted R-squared: 0.5598
## F-statistic: 971.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -944.6 -635.5 -352.5 517.7 872.7
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.249e+01 7.759e-05 161030 <2e-16 ***
## x.var 4.848e-03 1.291e-07 37540 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2141088036 on 763 degrees of freedom
## Residual deviance: 271073880 on 762 degrees of freedom
## AIC: 271085597
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## JAMAICA -- 127741
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19606 -9822 -4003 9001 30384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -26109.381 944.465 -27.64 <2e-16 ***
## x.var 163.031 2.139 76.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13040 on 762 degrees of freedom
## Multiple R-squared: 0.884, Adjusted R-squared: 0.8839
## F-statistic: 5809 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5073 -0.7408 0.5011 1.0455 1.7143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8851362 0.1078199 36.03 <2e-16 ***
## x.var 0.0126970 0.0002442 51.99 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.489 on 762 degrees of freedom
## Multiple R-squared: 0.7801, Adjusted R-squared: 0.7798
## F-statistic: 2703 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -88.57 -67.69 -12.10 30.23 96.49
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.565e+00 7.831e-04 9661 <2e-16 ***
## x.var 5.799e-03 1.264e-06 4589 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 33111455 on 763 degrees of freedom
## Residual deviance: 2433764 on 762 degrees of freedom
## AIC: 2441758
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## JAPAN -- 4692406
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -409310 -330217 -63603 185044 2703285
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -591494.3 32100.8 -18.43 <2e-16 ***
## x.var 3377.8 72.7 46.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 443200 on 762 degrees of freedom
## Multiple R-squared: 0.7391, Adjusted R-squared: 0.7387
## F-statistic: 2158 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.4199 -0.4802 0.4994 0.8623 1.1143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.4727567 0.0926803 80.63 <2e-16 ***
## x.var 0.0114508 0.0002099 54.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.28 on 762 degrees of freedom
## Multiple R-squared: 0.7961, Adjusted R-squared: 0.7959
## F-statistic: 2976 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -574.6 -201.2 -103.4 130.3 594.8
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.007e+01 1.967e-04 51190 <2e-16 ***
## x.var 6.553e-03 3.109e-07 21075 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 732563523 on 763 degrees of freedom
## Residual deviance: 35564063 on 762 degrees of freedom
## AIC: 35574524
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## GLM using Family Family: Gamma Link function: log :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.7163 -0.4313 -0.0013 0.3371 0.8172
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.560e+00 3.716e-02 230.3 <2e-16 ***
## x.var 9.575e-03 8.417e-05 113.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.2632921)
##
## Null deviance: 2461.78 on 763 degrees of freedom
## Residual deviance: 571.51 on 762 degrees of freedom
## AIC: 20150
##
## Number of Fisher Scoring iterations: 11
##
## --------------------------------------------------------------------------------
## JORDAN -- 1599422
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -202304 -83838 -11614 78147 456969
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -257053.30 8750.92 -29.37 <2e-16 ***
## x.var 1831.81 19.82 92.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 120800 on 762 degrees of freedom
## Multiple R-squared: 0.9181, Adjusted R-squared: 0.918
## F-statistic: 8542 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0196 -0.9883 0.1215 1.6400 2.8394
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3522516 0.1390049 31.31 <2e-16 ***
## x.var 0.0162762 0.0003148 51.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.919 on 762 degrees of freedom
## Multiple R-squared: 0.7782, Adjusted R-squared: 0.7779
## F-statistic: 2673 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -459.8 -324.9 -153.9 170.7 480.9
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.050e+01 2.029e-04 51777 <2e-16 ***
## x.var 5.065e-03 3.351e-07 15116 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 377996750 on 763 degrees of freedom
## Residual deviance: 68393439 on 762 degrees of freedom
## AIC: 68402846
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## KAZAKHSTAN -- 1388713
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -208596 -152222 13035 122154 312270
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -259164.04 10505.42 -24.67 <2e-16 ***
## x.var 1758.68 23.79 73.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 145000 on 762 degrees of freedom
## Multiple R-squared: 0.8776, Adjusted R-squared: 0.8774
## F-statistic: 5463 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.8983 -0.8580 0.4344 1.5094 2.7660
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.23175 0.16338 38.14 <2e-16 ***
## x.var 0.01307 0.00037 35.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.256 on 762 degrees of freedom
## Multiple R-squared: 0.6208, Adjusted R-squared: 0.6203
## F-statistic: 1247 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -287.21 -187.34 27.09 56.01 232.71
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.030e+01 2.169e-04 47479 <2e-16 ***
## x.var 5.299e-03 3.554e-07 14912 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 326297173 on 763 degrees of freedom
## Residual deviance: 18014080 on 762 degrees of freedom
## AIC: 18023974
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## KENYA -- 322781
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28188 -13681 -5922 13693 54731
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -55198.112 1403.628 -39.33 <2e-16 ***
## x.var 467.274 3.179 146.99 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19380 on 762 degrees of freedom
## Multiple R-squared: 0.9659, Adjusted R-squared: 0.9659
## F-statistic: 2.161e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.8443 -1.0593 0.3851 1.6979 2.4629
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1915296 0.1510266 34.38 <2e-16 ***
## x.var 0.0127996 0.0003421 37.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.085 on 762 degrees of freedom
## Multiple R-squared: 0.6476, Adjusted R-squared: 0.6471
## F-statistic: 1400 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -202.81 -134.45 -18.55 82.05 126.64
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.574e+00 3.543e-04 27022 <2e-16 ***
## x.var 4.461e-03 5.985e-07 7454 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 81305793 on 763 degrees of freedom
## Residual deviance: 10234718 on 762 degrees of freedom
## AIC: 10243737
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## KIRIBATI -- 2867
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -244.20 -149.31 -53.84 43.64 2602.21
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -129.74672 26.95231 -4.814 1.78e-06 ***
## x.var 0.51641 0.06104 8.460 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 372.1 on 762 degrees of freedom
## Multiple R-squared: 0.08586, Adjusted R-squared: 0.08466
## F-statistic: 71.57 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0491 -0.6096 -0.2407 0.2317 5.8069
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8431665 0.0830968 -10.15 <2e-16 ***
## x.var 0.0039260 0.0001882 20.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.147 on 762 degrees of freedom
## Multiple R-squared: 0.3635, Adjusted R-squared: 0.3627
## F-statistic: 435.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: fitted rates numerically 0 occurred
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -23.998 0.000 0.000 1.826 22.876
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.867e+01 2.906e-01 -201.9 <2e-16 ***
## x.var 8.776e-02 3.858e-04 227.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 349000 on 763 degrees of freedom
## Residual deviance: 17064 on 762 degrees of freedom
## AIC: 18009
##
## Number of Fisher Scoring iterations: 8
##
## --------------------------------------------------------------------------------
## KOREA, SOUTH -- 2499188
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -169057 -121155 -61324 75896 1941885
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -186055.43 15361.58 -12.11 <2e-16 ***
## x.var 972.98 34.79 27.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 212100 on 762 degrees of freedom
## Multiple R-squared: 0.5065, Adjusted R-squared: 0.5059
## F-statistic: 782.1 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.7789 -0.2212 0.2200 0.4805 1.1171
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.4543606 0.0805702 92.52 <2e-16 ***
## x.var 0.0088445 0.0001825 48.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.112 on 762 degrees of freedom
## Multiple R-squared: 0.7551, Adjusted R-squared: 0.7548
## F-statistic: 2349 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -161.48 -52.61 12.32 45.68 1148.46
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.021e+00 4.409e-04 18194 <2e-16 ***
## x.var 7.702e-03 6.797e-07 11332 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 235216711 on 763 degrees of freedom
## Residual deviance: 10131516 on 762 degrees of freedom
## AIC: 10141200
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## GLM using Family Family: Gamma Link function: log :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.8081 -0.1308 -0.0355 0.1513 1.0163
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.236e+00 2.234e-02 368.6 <2e-16 ***
## x.var 7.364e-03 5.061e-05 145.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.09516853)
##
## Null deviance: 1990.07 on 763 degrees of freedom
## Residual deviance: 337.29 on 762 degrees of freedom
## AIC: 18156
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## KOSOVO -- 225664
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26073 -11761 -3775 9574 41267
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -37635.136 1144.122 -32.89 <2e-16 ***
## x.var 291.357 2.591 112.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15800 on 762 degrees of freedom
## Multiple R-squared: 0.9432, Adjusted R-squared: 0.9431
## F-statistic: 1.264e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5482 -0.8898 0.5110 1.4712 1.8776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9078976 0.1341302 36.59 <2e-16 ***
## x.var 0.0123127 0.0003038 40.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.852 on 762 degrees of freedom
## Multiple R-squared: 0.6831, Adjusted R-squared: 0.6827
## F-statistic: 1643 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -141.32 -116.86 -38.64 68.55 140.85
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.900e+00 4.760e-04 18698 <2e-16 ***
## x.var 4.739e-03 7.954e-07 5959 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 53361718 on 763 degrees of freedom
## Residual deviance: 6738121 on 762 degrees of freedom
## AIC: 6746781
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## KUWAIT -- 616409
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49647 -21283 -4765 20124 109051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -71212.655 2414.900 -29.49 <2e-16 ***
## x.var 757.292 5.469 138.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33340 on 762 degrees of freedom
## Multiple R-squared: 0.9618, Adjusted R-squared: 0.9617
## F-statistic: 1.917e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3139 -0.9678 0.4746 1.5825 2.1174
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9629834 0.1502228 46.35 <2e-16 ***
## x.var 0.0106330 0.0003402 31.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.074 on 762 degrees of freedom
## Multiple R-squared: 0.5617, Adjusted R-squared: 0.5612
## F-statistic: 976.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -291.98 -126.27 32.86 77.91 169.52
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.042e+01 2.492e-04 41821 <2e-16 ***
## x.var 3.965e-03 4.298e-07 9227 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 119712401 on 763 degrees of freedom
## Residual deviance: 15624543 on 762 degrees of freedom
## AIC: 15634317
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## KYRGYZSTAN -- 200388
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19886.8 -8087.9 -596.6 6374.6 26413.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -26718.608 892.910 -29.92 <2e-16 ***
## x.var 304.940 2.022 150.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12330 on 762 degrees of freedom
## Multiple R-squared: 0.9676, Adjusted R-squared: 0.9675
## F-statistic: 2.274e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.0895 -0.9731 0.2469 1.6507 2.7980
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4284277 0.1561668 34.76 <2e-16 ***
## x.var 0.0118042 0.0003537 33.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.156 on 762 degrees of freedom
## Multiple R-squared: 0.5938, Adjusted R-squared: 0.5932
## F-statistic: 1114 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -193.60 -123.08 25.44 63.48 105.82
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.595e+00 3.826e-04 25080 <2e-16 ***
## x.var 3.853e-03 6.631e-07 5811 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 49657480 on 763 degrees of freedom
## Residual deviance: 8782713 on 762 degrees of freedom
## AIC: 8791614
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LAOS -- 141694
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -33524 -22810 -4932 15088 78938
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -26908.432 2002.453 -13.44 <2e-16 ***
## x.var 117.362 4.535 25.88 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27650 on 762 degrees of freedom
## Multiple R-squared: 0.4677, Adjusted R-squared: 0.467
## F-statistic: 669.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6859 -0.6776 0.2131 0.7920 2.0926
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3830105 0.0810118 -4.728 2.7e-06 ***
## x.var 0.0156842 0.0001835 85.481 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.119 on 762 degrees of freedom
## Multiple R-squared: 0.9056, Adjusted R-squared: 0.9054
## F-statistic: 7307 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -160.942 -25.260 -4.303 2.826 79.498
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.246e-01 2.939e-03 144.5 <2e-16 ***
## x.var 1.549e-02 4.182e-06 3704.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 41285196 on 763 degrees of freedom
## Residual deviance: 860052 on 762 degrees of freedom
## AIC: 865624
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LATVIA -- 612920
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53427 -36207 -19651 21503 335981
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -80181.464 4097.622 -19.57 <2e-16 ***
## x.var 467.436 9.281 50.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56570 on 762 degrees of freedom
## Multiple R-squared: 0.769, Adjusted R-squared: 0.7687
## F-statistic: 2537 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7843 -0.7651 0.3061 1.0855 1.7529
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2385021 0.1086616 39.01 <2e-16 ***
## x.var 0.0136440 0.0002461 55.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.5 on 762 degrees of freedom
## Multiple R-squared: 0.8013, Adjusted R-squared: 0.8011
## F-statistic: 3074 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -159.80 -104.51 -69.07 72.35 182.76
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.231e+00 5.106e-04 16119 <2e-16 ***
## x.var 6.351e-03 8.114e-07 7827 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 103332211 on 763 degrees of freedom
## Residual deviance: 9080802 on 762 degrees of freedom
## AIC: 9089357
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LEBANON -- 1057000
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -121326 -51609 -769 58704 223003
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -174940.86 5876.61 -29.77 <2e-16 ***
## x.var 1320.60 13.31 99.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 81140 on 762 degrees of freedom
## Multiple R-squared: 0.9282, Adjusted R-squared: 0.9281
## F-statistic: 9845 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7347 -0.9220 0.0296 1.5695 2.0236
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.309581 0.131589 40.35 <2e-16 ***
## x.var 0.014171 0.000298 47.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.817 on 762 degrees of freedom
## Multiple R-squared: 0.7479, Adjusted R-squared: 0.7476
## F-statistic: 2261 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -353.2 -277.6 -135.2 156.1 395.3
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.035e+01 2.278e-04 45409 <2e-16 ***
## x.var 4.831e-03 3.794e-07 12731 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 262607509 on 763 degrees of freedom
## Residual deviance: 47918218 on 762 degrees of freedom
## AIC: 47927765
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

## LESOTHO -- 32599
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4872.0 -2958.3 -623.4 1950.3 8431.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6351.0591 256.7595 -24.73 <2e-16 ***
## x.var 40.9035 0.5815 70.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3545 on 762 degrees of freedom
## Multiple R-squared: 0.8665, Adjusted R-squared: 0.8664
## F-statistic: 4948 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.14159 -1.59474 0.00211 1.70853 2.32094
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5213492 0.1238044 12.29 <2e-16 ***
## x.var 0.0144664 0.0002804 51.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.709 on 762 degrees of freedom
## Multiple R-squared: 0.7774, Adjusted R-squared: 0.7771
## F-statistic: 2662 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -50.626 -33.560 -15.026 8.867 66.075
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.326e+00 1.505e-03 4203 <2e-16 ***
## x.var 5.595e-03 2.443e-06 2290 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 8257578 on 763 degrees of freedom
## Residual deviance: 771898 on 762 degrees of freedom
## AIC: 778477
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LIBERIA -- 7360
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1692.5 -480.5 184.0 625.6 1087.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1097.5937 55.1110 -19.92 <2e-16 ***
## x.var 10.0182 0.1248 80.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 760.9 on 762 degrees of freedom
## Multiple R-squared: 0.8942, Adjusted R-squared: 0.8941
## F-statistic: 6442 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0537 -0.5876 0.1976 1.0315 1.8548
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5762780 0.1036431 34.51 <2e-16 ***
## x.var 0.0086812 0.0002347 36.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.431 on 762 degrees of freedom
## Multiple R-squared: 0.6422, Adjusted R-squared: 0.6417
## F-statistic: 1368 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -30.3304 -13.2181 -0.0231 8.2670 27.2589
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.871e+00 2.320e-03 2530 <2e-16 ***
## x.var 4.269e-03 3.950e-06 1081 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1638985 on 763 degrees of freedom
## Residual deviance: 171182 on 762 degrees of freedom
## AIC: 177754
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LIBYA -- 489940
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53389 -31573 -18261 30737 91779
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -90957.63 2763.79 -32.91 <2e-16 ***
## x.var 640.21 6.26 102.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 38160 on 762 degrees of freedom
## Multiple R-squared: 0.9321, Adjusted R-squared: 0.932
## F-statistic: 1.046e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7507 -1.3923 0.1198 1.8188 2.8132
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.7818585 0.1495524 25.29 <2e-16 ***
## x.var 0.0156259 0.0003387 46.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.065 on 762 degrees of freedom
## Multiple R-squared: 0.7364, Adjusted R-squared: 0.736
## F-statistic: 2128 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -220.50 -167.35 11.74 97.51 130.65
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.413e+00 3.470e-04 27124 <2e-16 ***
## x.var 5.121e-03 5.721e-07 8951 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 122639059 on 763 degrees of freedom
## Residual deviance: 13466385 on 762 degrees of freedom
## AIC: 13475131
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LIECHTENSTEIN -- 11467
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1279.4 -737.9 -148.5 315.9 5418.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1368.7743 78.7457 -17.38 <2e-16 ***
## x.var 9.7080 0.1783 54.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1087 on 762 degrees of freedom
## Multiple R-squared: 0.7954, Adjusted R-squared: 0.7952
## F-statistic: 2963 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1953 -0.6476 0.0396 0.7903 1.5988
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7911431 0.0784651 35.57 <2e-16 ***
## x.var 0.0096233 0.0001777 54.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.083 on 762 degrees of freedom
## Multiple R-squared: 0.7937, Adjusted R-squared: 0.7935
## F-statistic: 2932 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -26.91 -20.13 -10.85 14.08 32.07
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.249e+00 2.799e-03 1876 <2e-16 ***
## x.var 5.086e-03 4.619e-06 1101 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1925361 on 763 degrees of freedom
## Residual deviance: 279000 on 762 degrees of freedom
## AIC: 285268
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LITHUANIA -- 879371
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -95696 -52879 -16852 32530 358340
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -132633.82 5539.84 -23.94 <2e-16 ***
## x.var 855.58 12.55 68.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 76490 on 762 degrees of freedom
## Multiple R-squared: 0.8592, Adjusted R-squared: 0.859
## F-statistic: 4650 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1962 -0.8691 0.3108 1.1237 2.3041
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6548866 0.1257457 37.02 <2e-16 ***
## x.var 0.0142441 0.0002848 50.02 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.736 on 762 degrees of freedom
## Multiple R-squared: 0.7665, Adjusted R-squared: 0.7662
## F-statistic: 2502 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -256.49 -178.43 -66.95 118.48 247.40
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.374e+00 3.285e-04 28536 <2e-16 ***
## x.var 5.586e-03 5.334e-07 10471 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 178881181 on 763 degrees of freedom
## Residual deviance: 22519317 on 762 degrees of freedom
## AIC: 22528367
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## LUXEMBOURG -- 180376
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17920 -9897 -909 3695 62850
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -20327.351 1030.142 -19.73 <2e-16 ***
## x.var 180.437 2.333 77.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14220 on 762 degrees of freedom
## Multiple R-squared: 0.887, Adjusted R-squared: 0.8868
## F-statistic: 5981 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.1766 -0.7635 0.7432 1.1198 1.5960
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.8000221 0.1307524 44.36 <2e-16 ***
## x.var 0.0099088 0.0002961 33.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.805 on 762 degrees of freedom
## Multiple R-squared: 0.595, Adjusted R-squared: 0.5945
## F-statistic: 1120 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -122.46 -77.95 -41.34 65.86 106.86
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.713e+00 5.549e-04 15702 <2e-16 ***
## x.var 4.336e-03 9.420e-07 4603 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 31322481 on 763 degrees of freedom
## Residual deviance: 4531381 on 762 degrees of freedom
## AIC: 4540041
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MS ZAANDAM -- 9
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.3454 -0.7021 0.4071 1.5163 2.6255
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.9616113 0.1612947 36.96 <2e-16 ***
## x.var 0.0058150 0.0003653 15.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.227 on 762 degrees of freedom
## Multiple R-squared: 0.2495, Adjusted R-squared: 0.2486
## F-statistic: 253.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6328 -0.1775 0.1025 0.3825 0.6625
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.536e+00 4.094e-02 37.52 <2e-16 ***
## x.var 1.468e-03 9.273e-05 15.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5653 on 762 degrees of freedom
## Multiple R-squared: 0.2475, Adjusted R-squared: 0.2465
## F-statistic: 250.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.5917 -0.2401 0.1700 0.5620 0.9372
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.817e+00 2.721e-02 66.78 <2e-16 ***
## x.var 7.139e-04 5.776e-05 12.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1161.9 on 763 degrees of freedom
## Residual deviance: 1008.0 on 762 degrees of freedom
## AIC: 3835.7
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MADAGASCAR -- 63433
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7599.4 -3618.3 -25.9 3119.7 7290.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6575.3982 291.7519 -22.54 <2e-16 ***
## x.var 82.5236 0.6608 124.89 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4028 on 762 degrees of freedom
## Multiple R-squared: 0.9534, Adjusted R-squared: 0.9534
## F-statistic: 1.56e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2682 -1.0144 0.4594 1.3160 2.6561
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6375152 0.1403160 33.05 <2e-16 ***
## x.var 0.0108746 0.0003178 34.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.937 on 762 degrees of freedom
## Multiple R-squared: 0.6058, Adjusted R-squared: 0.6053
## F-statistic: 1171 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -107.653 -49.070 6.336 38.024 79.382
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.385e+00 7.132e-04 11756 <2e-16 ***
## x.var 3.724e-03 1.244e-06 2994 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 13324854 on 763 degrees of freedom
## Residual deviance: 2591077 on 762 degrees of freedom
## AIC: 2599098
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALAWI -- 85257
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17339.0 -5668.4 -412.3 6231.1 17148.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17267.446 602.631 -28.65 <2e-16 ***
## x.var 119.030 1.365 87.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8320 on 762 degrees of freedom
## Multiple R-squared: 0.9089, Adjusted R-squared: 0.9088
## F-statistic: 7605 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3146 -1.1629 0.3079 1.4464 2.4165
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3729718 0.1288374 26.18 <2e-16 ***
## x.var 0.0132617 0.0002918 45.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.779 on 762 degrees of freedom
## Multiple R-squared: 0.7305, Adjusted R-squared: 0.7302
## F-statistic: 2066 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -90.68 -60.76 -28.63 38.47 97.86
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.660e+00 8.208e-04 9333 <2e-16 ***
## x.var 5.220e-03 1.349e-06 3871 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 23191704 on 763 degrees of freedom
## Residual deviance: 2577148 on 762 degrees of freedom
## AIC: 2584875
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALAYSIA -- 3305157
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -721660 -532014 -16290 552782 946947
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -793535.54 37025.88 -21.43 <2e-16 ***
## x.var 4125.32 83.86 49.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 511200 on 762 degrees of freedom
## Multiple R-squared: 0.7605, Adjusted R-squared: 0.7602
## F-statistic: 2420 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.1485 -0.2113 0.2532 0.7555 1.2675
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.1074254 0.0854172 71.50 <2e-16 ***
## x.var 0.0137006 0.0001935 70.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.179 on 762 degrees of freedom
## Multiple R-squared: 0.8681, Adjusted R-squared: 0.8679
## F-statistic: 5015 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -667.08 -217.88 -151.11 25.81 578.67
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.395e+00 2.174e-04 43218 <2e-16 ***
## x.var 7.803e-03 3.345e-07 23326 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1017731022 on 763 degrees of freedom
## Residual deviance: 54953524 on 762 degrees of freedom
## AIC: 54963594
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALDIVES -- 167496
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25737 -11534 825 7976 60829
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -27496.961 1194.092 -23.03 <2e-16 ***
## x.var 175.607 2.704 64.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16490 on 762 degrees of freedom
## Multiple R-squared: 0.8469, Adjusted R-squared: 0.8467
## F-statistic: 4216 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8913 -0.9773 0.4994 1.3417 1.9518
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3345080 0.1210711 35.80 <2e-16 ***
## x.var 0.0121052 0.0002742 44.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.672 on 762 degrees of freedom
## Multiple R-squared: 0.7189, Adjusted R-squared: 0.7185
## F-statistic: 1949 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -104.843 -50.808 -18.968 5.878 131.910
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.746e+00 7.337e-04 10557 <2e-16 ***
## x.var 5.648e-03 1.189e-06 4750 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 35063469 on 763 degrees of freedom
## Residual deviance: 2687636 on 762 degrees of freedom
## AIC: 2695806
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALI -- 30355
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2653.0 -1740.9 -764.4 922.7 8195.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3865.0644 180.7254 -21.39 <2e-16 ***
## x.var 34.7611 0.4093 84.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2495 on 762 degrees of freedom
## Multiple R-squared: 0.9044, Adjusted R-squared: 0.9043
## F-statistic: 7212 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8830 -0.9175 0.6497 1.2085 1.8687
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.269860 0.123176 34.66 <2e-16 ***
## x.var 0.009732 0.000279 34.88 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.701 on 762 degrees of freedom
## Multiple R-squared: 0.6149, Adjusted R-squared: 0.6144
## F-statistic: 1217 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -56.090 -24.910 -5.669 18.390 48.990
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.090e+00 1.255e-03 5647 <2e-16 ***
## x.var 4.304e-03 2.134e-06 2017 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5721619 on 763 degrees of freedom
## Residual deviance: 592935 on 762 degrees of freedom
## AIC: 600333
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MALTA -- 70908
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7144 -4973 -1606 3136 18114
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11247.39 441.67 -25.47 <2e-16 ***
## x.var 83.87 1.00 83.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6098 on 762 degrees of freedom
## Multiple R-squared: 0.9022, Adjusted R-squared: 0.9021
## F-statistic: 7029 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7822 -0.7332 0.4908 1.0162 1.4475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2855232 0.1070862 40.02 <2e-16 ***
## x.var 0.0110362 0.0002425 45.50 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.479 on 762 degrees of freedom
## Multiple R-squared: 0.731, Adjusted R-squared: 0.7306
## F-statistic: 2071 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -74.02 -60.64 -18.78 31.09 94.34
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.555e+00 9.128e-04 8277 <2e-16 ***
## x.var 4.878e-03 1.518e-06 3214 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 15913404 on 763 degrees of freedom
## Residual deviance: 2170281 on 762 degrees of freedom
## AIC: 2178104
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MARSHALL ISLANDS -- 7
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.75278 -0.86805 -0.04434 0.80931 2.06168
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7210412 0.0735148 -9.808 <2e-16 ***
## x.var 0.0088351 0.0001665 53.063 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.015 on 762 degrees of freedom
## Multiple R-squared: 0.787, Adjusted R-squared: 0.7867
## F-statistic: 2816 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7027 -0.2884 -0.0540 0.2561 0.8397
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.913e-01 2.788e-02 -6.863 1.4e-11 ***
## x.var 3.193e-03 6.314e-05 50.571 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3849 on 762 degrees of freedom
## Multiple R-squared: 0.7704, Adjusted R-squared: 0.7701
## F-statistic: 2557 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6193 -1.1334 -0.3486 0.6083 1.7692
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7804985 0.0694303 -11.24 <2e-16 ***
## x.var 0.0037547 0.0001209 31.06 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1988.09 on 763 degrees of freedom
## Residual deviance: 830.58 on 762 degrees of freedom
## AIC: 2421.4
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MAURITANIA -- 58621
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7484.6 -3371.9 -96.9 1489.9 15082.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8355.1765 358.2060 -23.32 <2e-16 ***
## x.var 69.5558 0.8113 85.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4946 on 762 degrees of freedom
## Multiple R-squared: 0.9061, Adjusted R-squared: 0.9059
## F-statistic: 7351 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4094 -1.3420 0.1476 1.6460 2.7594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.795466 0.140831 26.95 <2e-16 ***
## x.var 0.011806 0.000319 37.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.944 on 762 degrees of freedom
## Multiple R-squared: 0.6426, Adjusted R-squared: 0.6421
## F-statistic: 1370 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -82.028 -23.195 2.786 18.570 49.659
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.634e+00 9.277e-04 8229 <2e-16 ***
## x.var 4.508e-03 1.564e-06 2882 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 11728641 on 763 degrees of freedom
## Residual deviance: 1054327 on 762 degrees of freedom
## AIC: 1061979
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MAURITIUS -- 70862
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20086 -12695 -3095 9701 34578
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -15600.193 1142.292 -13.66 <2e-16 ***
## x.var 70.130 2.587 27.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15770 on 762 degrees of freedom
## Multiple R-squared: 0.4909, Adjusted R-squared: 0.4902
## F-statistic: 734.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2622 -0.6419 0.1077 0.6720 2.2235
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.6360768 0.0851011 30.98 <2e-16 ***
## x.var 0.0111799 0.0001927 58.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.175 on 762 degrees of freedom
## Multiple R-squared: 0.8153, Adjusted R-squared: 0.8151
## F-statistic: 3365 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -123.651 -18.541 -1.148 22.162 105.599
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.822e+00 3.027e-03 601.7 <2e-16 ***
## x.var 1.280e-02 4.382e-06 2920.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 22945602 on 763 degrees of freedom
## Residual deviance: 979636 on 762 degrees of freedom
## AIC: 986220
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MEXICO -- 5455237
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -346811 -195340 -61542 108008 979718
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -727664.93 19986.23 -36.41 <2e-16 ***
## x.var 6810.45 45.27 150.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 275900 on 762 degrees of freedom
## Multiple R-squared: 0.9674, Adjusted R-squared: 0.9674
## F-statistic: 2.264e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.3186 -1.1333 0.5963 1.9472 2.6298
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.8364042 0.1879260 41.70 <2e-16 ***
## x.var 0.0130336 0.0004256 30.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.595 on 762 degrees of freedom
## Multiple R-squared: 0.5517, Adjusted R-squared: 0.5511
## F-statistic: 937.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -814.5 -412.1 29.8 210.0 566.4
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.243e+01 8.788e-05 141497 <2e-16 ***
## x.var 4.212e-03 1.500e-07 28091 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1127265589 on 763 degrees of freedom
## Residual deviance: 140868551 on 762 degrees of freedom
## AIC: 140879684
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MICRONESIA -- 1
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4880 -0.1924 -0.0056 0.1812 0.5101
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.272e-01 1.817e-02 -12.51 <2e-16 ***
## x.var 1.959e-03 4.114e-05 47.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2508 on 762 degrees of freedom
## Multiple R-squared: 0.7485, Adjusted R-squared: 0.7482
## F-statistic: 2268 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.33823 -0.13336 -0.00388 0.12561 0.35356
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.575e-01 1.259e-02 -12.51 <2e-16 ***
## x.var 1.358e-03 2.852e-05 47.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1739 on 762 degrees of freedom
## Multiple R-squared: 0.7485, Adjusted R-squared: 0.7482
## F-statistic: 2268 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.7911 -0.5463 -0.3842 0.3003 0.9713
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.7718504 0.1711520 -16.20 <2e-16 ***
## x.var 0.0044109 0.0002897 15.23 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 518.39 on 763 degrees of freedom
## Residual deviance: 223.19 on 762 degrees of freedom
## AIC: 1025.2
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MOLDOVA -- 497946
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37991 -23026 -3776 15093 88392
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67602.969 2011.071 -33.62 <2e-16 ***
## x.var 624.550 4.555 137.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27770 on 762 degrees of freedom
## Multiple R-squared: 0.9611, Adjusted R-squared: 0.961
## F-statistic: 1.88e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.6733 -0.9486 0.7558 1.6893 1.8213
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.1356060 0.1536230 39.94 <2e-16 ***
## x.var 0.0116889 0.0003479 33.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.121 on 762 degrees of freedom
## Multiple R-squared: 0.597, Adjusted R-squared: 0.5964
## F-statistic: 1129 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -239.5 -141.4 -29.7 113.4 218.4
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.002e+01 2.921e-04 34320 <2e-16 ***
## x.var 4.241e-03 4.978e-07 8520 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 106454273 on 763 degrees of freedom
## Residual deviance: 15460971 on 762 degrees of freedom
## AIC: 15470396
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MONACO -- 9305
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -834.1 -601.9 -310.5 250.6 4137.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1307.3229 70.2691 -18.61 <2e-16 ***
## x.var 8.4751 0.1591 53.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 970.2 on 762 degrees of freedom
## Multiple R-squared: 0.7882, Adjusted R-squared: 0.7879
## F-statistic: 2836 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1402 -0.5578 0.2473 0.7096 1.0733
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7867930 0.0707664 39.38 <2e-16 ***
## x.var 0.0093016 0.0001603 58.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9771 on 762 degrees of freedom
## Multiple R-squared: 0.8155, Adjusted R-squared: 0.8153
## F-statistic: 3368 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -21.631 -13.860 -7.756 8.424 23.910
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.781e+00 3.282e-03 1457 <2e-16 ***
## x.var 5.555e-03 5.334e-06 1042 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1686429 on 763 degrees of freedom
## Residual deviance: 144173 on 762 degrees of freedom
## AIC: 150349
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MONGOLIA -- 903150
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -210875 -158871 -17683 136780 377586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -205415.21 11782.68 -17.43 <2e-16 ***
## x.var 956.78 26.69 35.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 162700 on 762 degrees of freedom
## Multiple R-squared: 0.6278, Adjusted R-squared: 0.6273
## F-statistic: 1285 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.18313 -0.56449 0.08513 0.65640 1.54802
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.3168733 0.0591950 22.25 <2e-16 ***
## x.var 0.0180470 0.0001341 134.61 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8173 on 762 degrees of freedom
## Multiple R-squared: 0.9596, Adjusted R-squared: 0.9596
## F-statistic: 1.812e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -386.40 -119.32 -52.51 -3.66 315.35
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.819e+00 6.695e-04 8693 <2e-16 ***
## x.var 1.083e-02 9.866e-07 10978 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 286865272 on 763 degrees of freedom
## Residual deviance: 13183156 on 762 degrees of freedom
## AIC: 13190749
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MONTENEGRO -- 229430
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23695 -12842 -3558 5674 50191
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -39449.347 1304.714 -30.24 <2e-16 ***
## x.var 286.553 2.955 96.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18010 on 762 degrees of freedom
## Multiple R-squared: 0.925, Adjusted R-squared: 0.9249
## F-statistic: 9404 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9486 -0.9083 0.2449 1.4477 2.0595
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2118091 0.1280660 32.89 <2e-16 ***
## x.var 0.0133961 0.0002901 46.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.768 on 762 degrees of freedom
## Multiple R-squared: 0.7368, Adjusted R-squared: 0.7365
## F-statistic: 2133 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -150.65 -119.08 -37.03 61.64 150.95
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.708e+00 5.045e-04 17260 <2e-16 ***
## x.var 4.983e-03 8.357e-07 5962 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 55069157 on 763 degrees of freedom
## Residual deviance: 7280455 on 762 degrees of freedom
## AIC: 7288893
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MOROCCO -- 1159941
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -151745 -75993 6330 61029 187731
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -189374.33 6086.96 -31.11 <2e-16 ***
## x.var 1643.57 13.79 119.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 84040 on 762 degrees of freedom
## Multiple R-squared: 0.9491, Adjusted R-squared: 0.949
## F-statistic: 1.421e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.8142 -0.9277 0.6519 1.5915 2.3955
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.290571 0.159406 39.46 <2e-16 ***
## x.var 0.013092 0.000361 36.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.201 on 762 degrees of freedom
## Multiple R-squared: 0.6331, Adjusted R-squared: 0.6326
## F-statistic: 1315 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -377.32 -330.46 -26.47 166.46 360.15
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.088e+01 1.862e-04 58439 <2e-16 ***
## x.var 4.394e-03 3.153e-07 13934 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 295766470 on 763 degrees of freedom
## Residual deviance: 48981960 on 762 degrees of freedom
## AIC: 48991922
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## MOZAMBIQUE -- 224983
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -36526 -20551 -3523 17633 52772
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -48332.508 1798.233 -26.88 <2e-16 ***
## x.var 297.781 4.073 73.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24830 on 762 degrees of freedom
## Multiple R-squared: 0.8752, Adjusted R-squared: 0.8751
## F-statistic: 5346 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.313 -1.139 0.251 1.468 1.952
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4383180 0.1219920 28.18 <2e-16 ***
## x.var 0.0145744 0.0002763 52.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.684 on 762 degrees of freedom
## Multiple R-squared: 0.785, Adjusted R-squared: 0.7847
## F-statistic: 2783 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -139.36 -93.05 -41.12 52.55 130.05
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.100e+00 5.897e-04 13736 <2e-16 ***
## x.var 5.895e-03 9.488e-07 6212 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 61909385 on 763 degrees of freedom
## Residual deviance: 5163274 on 762 degrees of freedom
## AIC: 5171454
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NAMIBIA -- 157060
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26974 -19409 2395 16517 36762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -37001.214 1338.422 -27.64 <2e-16 ***
## x.var 238.767 3.031 78.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18480 on 762 degrees of freedom
## Multiple R-squared: 0.8906, Adjusted R-squared: 0.8905
## F-statistic: 6204 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7885 -1.6173 0.4135 1.7232 2.6319
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0071156 0.1289520 23.32 <2e-16 ***
## x.var 0.0150258 0.0002921 51.45 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.78 on 762 degrees of freedom
## Multiple R-squared: 0.7765, Adjusted R-squared: 0.7762
## F-statistic: 2647 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -170.00 -90.28 -24.26 35.91 155.01
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.099e+00 6.216e-04 13030 <2e-16 ***
## x.var 5.583e-03 1.009e-06 5531 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 48530083 on 763 degrees of freedom
## Residual deviance: 4907356 on 762 degrees of freedom
## AIC: 4915350
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

## NEPAL -- 976361
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -182209 -68772 153 68542 193019
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -194478.53 6325.70 -30.74 <2e-16 ***
## x.var 1459.44 14.33 101.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 87340 on 762 degrees of freedom
## Multiple R-squared: 0.9316, Adjusted R-squared: 0.9315
## F-statistic: 1.038e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0971 -1.6978 0.6139 2.1077 2.8581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.8562122 0.1645972 29.50 <2e-16 ***
## x.var 0.0153116 0.0003728 41.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.273 on 762 degrees of freedom
## Multiple R-squared: 0.6889, Adjusted R-squared: 0.6884
## F-statistic: 1687 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -362.20 -270.59 -26.85 159.18 306.62
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.043e+01 2.177e-04 47903 <2e-16 ***
## x.var 4.853e-03 3.623e-07 13394 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 275741989 on 763 degrees of freedom
## Residual deviance: 37577422 on 762 degrees of freedom
## AIC: 37586975
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NETHERLANDS -- 6242767
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -483014 -314104 -201608 157232 2998103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -799572.77 40168.51 -19.91 <2e-16 ***
## x.var 5300.34 90.98 58.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 554600 on 762 degrees of freedom
## Multiple R-squared: 0.8167, Adjusted R-squared: 0.8164
## F-statistic: 3394 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.0207 -0.8969 0.8431 1.3864 1.7744
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.5698983 0.1560968 48.49 <2e-16 ***
## x.var 0.0125218 0.0003535 35.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.155 on 762 degrees of freedom
## Multiple R-squared: 0.6221, Adjusted R-squared: 0.6216
## F-statistic: 1254 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -457.8 -378.3 -213.8 308.5 475.3
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.131e+01 1.280e-04 88359 <2e-16 ***
## x.var 5.425e-03 2.089e-07 25969 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1040050122 on 763 degrees of freedom
## Residual deviance: 93376914 on 762 degrees of freedom
## AIC: 93387697
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NEW ZEALAND -- 45475
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4330 -2606 -369 1712 35047
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2347.6023 272.4692 -8.616 <2e-16 ***
## x.var 16.7216 0.6171 27.097 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3762 on 762 degrees of freedom
## Multiple R-squared: 0.4907, Adjusted R-squared: 0.4901
## F-statistic: 734.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0263 -0.4517 0.0401 0.9716 1.8820
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7708661 0.1073949 44.42 <2e-16 ***
## x.var 0.0069047 0.0002432 28.39 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.483 on 762 degrees of freedom
## Multiple R-squared: 0.514, Adjusted R-squared: 0.5133
## F-statistic: 805.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -45.40 -26.40 4.29 18.82 190.21
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.807e+00 2.124e-03 2733 <2e-16 ***
## x.var 5.067e-03 3.508e-06 1444 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3404677 on 763 degrees of freedom
## Residual deviance: 577536 on 762 degrees of freedom
## AIC: 584533
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## NICARAGUA -- 18004
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3009.4 -1231.2 232.4 1147.8 2691.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2035.4201 116.0746 -17.54 <2e-16 ***
## x.var 24.6438 0.2629 93.74 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1603 on 762 degrees of freedom
## Multiple R-squared: 0.9202, Adjusted R-squared: 0.9201
## F-statistic: 8787 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3707 -1.0520 0.0454 1.6009 2.5031
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.7917850 0.1341014 28.28 <2e-16 ***
## x.var 0.0101560 0.0003037 33.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.851 on 762 degrees of freedom
## Multiple R-squared: 0.5947, Adjusted R-squared: 0.5942
## F-statistic: 1118 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -60.605 -12.411 0.634 16.591 30.845
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.141e+00 1.320e-03 5412 <2e-16 ***
## x.var 3.770e-03 2.296e-06 1642 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3812494 on 763 degrees of freedom
## Residual deviance: 571879 on 762 degrees of freedom
## AIC: 579040
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NIGER -- 8746
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1421.64 -370.70 68.95 515.34 922.66
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -844.80775 43.71574 -19.32 <2e-16 ***
## x.var 11.86049 0.09901 119.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 603.6 on 762 degrees of freedom
## Multiple R-squared: 0.9496, Adjusted R-squared: 0.9495
## F-statistic: 1.435e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6746 -0.6764 0.5499 1.0811 1.6551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.204431 0.113907 36.91 <2e-16 ***
## x.var 0.008106 0.000258 31.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.573 on 762 degrees of freedom
## Multiple R-squared: 0.5644, Adjusted R-squared: 0.5638
## F-statistic: 987.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -41.325 -13.447 -6.446 12.029 32.469
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.5411661 0.0018242 3586 <2e-16 ***
## x.var 0.0035968 0.0000032 1124 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1789592 on 763 degrees of freedom
## Residual deviance: 293898 on 762 degrees of freedom
## AIC: 300778
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NIGERIA -- 254352
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23967 -9119 -2350 5786 31484
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -26650.722 979.319 -27.21 <2e-16 ***
## x.var 374.603 2.218 168.89 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13520 on 762 degrees of freedom
## Multiple R-squared: 0.974, Adjusted R-squared: 0.9739
## F-statistic: 2.852e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5080 -1.1061 0.5539 1.5263 2.4484
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.0980014 0.1607894 37.92 <2e-16 ***
## x.var 0.0110813 0.0003642 30.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.22 on 762 degrees of freedom
## Multiple R-squared: 0.5486, Adjusted R-squared: 0.548
## F-statistic: 925.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -235.200 -92.629 6.373 44.179 185.619
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.995e+00 3.245e-04 30801 <2e-16 ***
## x.var 3.596e-03 5.693e-07 6315 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 58432275 on 763 degrees of freedom
## Residual deviance: 11206508 on 762 degrees of freedom
## AIC: 11215737
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NORTH MACEDONIA -- 295082
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -35185 -9211 -2062 10481 46161
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -46466.194 1331.076 -34.91 <2e-16 ***
## x.var 386.632 3.015 128.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18380 on 762 degrees of freedom
## Multiple R-squared: 0.9557, Adjusted R-squared: 0.9557
## F-statistic: 1.645e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9267 -0.8568 0.5954 1.3599 1.8393
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.5137192 0.1346410 40.95 <2e-16 ***
## x.var 0.0117996 0.0003049 38.69 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.859 on 762 degrees of freedom
## Multiple R-squared: 0.6627, Adjusted R-squared: 0.6623
## F-statistic: 1497 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -170.90 -116.28 -45.95 99.14 179.81
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.349e+00 3.936e-04 23751 <2e-16 ***
## x.var 4.510e-03 6.636e-07 6796 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 69707137 on 763 degrees of freedom
## Residual deviance: 10356961 on 762 degrees of freedom
## AIC: 10365959
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## NORWAY -- 1186422
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -110830 -74920 -45743 42345 804816
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -122916.3 10065.8 -12.21 <2e-16 ***
## x.var 660.4 22.8 28.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 139000 on 762 degrees of freedom
## Multiple R-squared: 0.5241, Adjusted R-squared: 0.5234
## F-statistic: 839.1 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.6044 -0.4803 0.6185 0.9060 1.6964
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.2351356 0.1210882 51.49 <2e-16 ***
## x.var 0.0105497 0.0002742 38.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.672 on 762 degrees of freedom
## Multiple R-squared: 0.6601, Adjusted R-squared: 0.6596
## F-statistic: 1480 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -215.34 -77.38 -4.39 68.51 499.54
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.922e+00 5.018e-04 15787 <2e-16 ***
## x.var 7.287e-03 7.802e-07 9341 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 156574006 on 763 degrees of freedom
## Residual deviance: 9525913 on 762 degrees of freedom
## AIC: 9535102
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## OMAN -- 378922
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -34759 -16267 -578 12753 44778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -36046.045 1472.925 -24.47 <2e-16 ***
## x.var 518.133 3.336 155.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20340 on 762 degrees of freedom
## Multiple R-squared: 0.9694, Adjusted R-squared: 0.9693
## F-statistic: 2.412e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9409 -1.0260 0.3761 1.6205 2.6399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5850288 0.1570868 41.92 <2e-16 ***
## x.var 0.0107850 0.0003558 30.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.169 on 762 degrees of freedom
## Multiple R-squared: 0.5467, Adjusted R-squared: 0.5461
## F-statistic: 918.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -277.67 -139.72 40.32 78.98 156.05
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.034e+01 2.744e-04 37671 <2e-16 ***
## x.var 3.573e-03 4.820e-07 7413 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 79390020 on 763 degrees of freedom
## Residual deviance: 14437312 on 762 degrees of freedom
## AIC: 14446840
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PAKISTAN -- 1505328
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -111661 -54740 5421 47003 172120
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -174253.91 4846.27 -35.96 <2e-16 ***
## x.var 2133.55 10.98 194.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 66910 on 762 degrees of freedom
## Multiple R-squared: 0.9802, Adjusted R-squared: 0.9802
## F-statistic: 3.778e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.1914 -0.8943 0.5834 1.6170 2.7036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.8143105 0.1760270 44.39 <2e-16 ***
## x.var 0.0110914 0.0003987 27.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.43 on 762 degrees of freedom
## Multiple R-squared: 0.5039, Adjusted R-squared: 0.5032
## F-statistic: 774 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -518.54 -234.60 67.57 132.88 243.89
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.161e+01 1.413e-04 82173 <2e-16 ***
## x.var 3.756e-03 2.461e-07 15262 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 323695794 on 763 degrees of freedom
## Residual deviance: 44109006 on 762 degrees of freedom
## AIC: 44119560
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PALAU -- 3667
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -358.4 -229.0 -79.4 72.6 3255.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -200.58857 36.32677 -5.522 4.6e-08 ***
## x.var 0.80111 0.08228 9.737 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 501.6 on 762 degrees of freedom
## Multiple R-squared: 0.1107, Adjusted R-squared: 0.1095
## F-statistic: 94.81 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7359 -0.7922 -0.1139 0.4353 5.5415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.1540681 0.0968672 -11.91 <2e-16 ***
## x.var 0.0050000 0.0002194 22.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.337 on 762 degrees of freedom
## Multiple R-squared: 0.4053, Adjusted R-squared: 0.4046
## F-statistic: 519.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: fitted rates numerically 0 occurred
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -28.1601 -0.0015 0.0000 0.0000 22.4686
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.666e+01 1.912e-01 -244.1 <2e-16 ***
## x.var 7.238e-02 2.546e-04 284.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 503903 on 763 degrees of freedom
## Residual deviance: 16707 on 762 degrees of freedom
## AIC: 17611
##
## Number of Fisher Scoring iterations: 7
##
## --------------------------------------------------------------------------------
## PANAMA -- 752907
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -74930 -33491 -691 27726 137788
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -78597.174 3171.860 -24.78 <2e-16 ***
## x.var 909.017 7.184 126.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 43790 on 762 degrees of freedom
## Multiple R-squared: 0.9546, Adjusted R-squared: 0.9545
## F-statistic: 1.601e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.2997 -0.9857 0.6590 1.6952 2.1874
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.7517507 0.1652111 40.87 <2e-16 ***
## x.var 0.0114164 0.0003742 30.51 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.281 on 762 degrees of freedom
## Multiple R-squared: 0.5499, Adjusted R-squared: 0.5493
## F-statistic: 930.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -330.86 -196.15 -21.73 118.24 278.32
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.070e+01 2.206e-04 48518 <2e-16 ***
## x.var 3.834e-03 3.827e-07 10019 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 148639848 on 763 degrees of freedom
## Residual deviance: 27333444 on 762 degrees of freedom
## AIC: 27343258
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PAPUA NEW GUINEA -- 40621
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10430.6 -3823.7 -896.2 5717.3 9941.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9897.8629 427.0523 -23.18 <2e-16 ***
## x.var 53.1115 0.9672 54.91 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5896 on 762 degrees of freedom
## Multiple R-squared: 0.7983, Adjusted R-squared: 0.798
## F-statistic: 3015 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.88820 -0.92228 0.01439 0.92483 1.79930
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0179864 0.0748707 13.60 <2e-16 ***
## x.var 0.0150037 0.0001696 88.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.034 on 762 degrees of freedom
## Multiple R-squared: 0.9113, Adjusted R-squared: 0.9112
## F-statistic: 7829 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -76.88 -35.95 -25.16 17.17 76.21
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.390e+00 1.774e-03 3038 <2e-16 ***
## x.var 7.305e-03 2.758e-06 2649 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 13000226 on 763 degrees of freedom
## Residual deviance: 1153934 on 762 degrees of freedom
## AIC: 1160376
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PARAGUAY -- 638153
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -78350 -57383 -7893 54535 123400
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.243e+05 4.275e+03 -29.07 <2e-16 ***
## x.var 8.889e+02 9.683e+00 91.80 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 59030 on 762 degrees of freedom
## Multiple R-squared: 0.9171, Adjusted R-squared: 0.917
## F-statistic: 8427 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.3806 -1.0780 0.4501 1.4341 2.2655
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7119922 0.1385290 34.01 <2e-16 ***
## x.var 0.0145339 0.0003137 46.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.913 on 762 degrees of freedom
## Multiple R-squared: 0.738, Adjusted R-squared: 0.7376
## F-statistic: 2146 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -284.71 -218.62 -52.64 96.12 304.67
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.793e+00 2.903e-04 33732 <2e-16 ***
## x.var 5.049e-03 4.798e-07 10524 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 176682977 on 763 degrees of freedom
## Residual deviance: 26827030 on 762 degrees of freedom
## AIC: 26836198
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PERU -- 3503892
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -350034 -100973 -24681 95718 643346
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -285744.8 12762.3 -22.39 <2e-16 ***
## x.var 4124.1 28.9 142.68 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 176200 on 762 degrees of freedom
## Multiple R-squared: 0.9639, Adjusted R-squared: 0.9639
## F-statistic: 2.036e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.5893 -1.2031 0.7038 2.0029 2.6528
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.0636428 0.1957778 41.19 <2e-16 ***
## x.var 0.0119459 0.0004434 26.94 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.703 on 762 degrees of freedom
## Multiple R-squared: 0.4878, Adjusted R-squared: 0.4872
## F-statistic: 725.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -787.06 -336.76 64.14 251.12 420.17
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.241e+01 9.716e-05 127765 <2e-16 ***
## x.var 3.569e-03 1.707e-07 20908 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 628151959 on 763 degrees of freedom
## Residual deviance: 111683940 on 762 degrees of freedom
## AIC: 111694918
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PHILIPPINES -- 3655709
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -613766 -341618 -78280 354535 820344
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -742671.56 29110.73 -25.51 <2e-16 ***
## x.var 4730.90 65.93 71.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 401900 on 762 degrees of freedom
## Multiple R-squared: 0.8711, Adjusted R-squared: 0.8709
## F-statistic: 5149 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.2129 -0.7023 0.5505 1.3291 2.2706
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.1077715 0.1481814 47.97 <2e-16 ***
## x.var 0.0131349 0.0003356 39.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 762 degrees of freedom
## Multiple R-squared: 0.6678, Adjusted R-squared: 0.6674
## F-statistic: 1532 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -486.32 -337.77 21.09 128.46 345.87
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.103e+01 1.418e-04 77773 <2e-16 ***
## x.var 5.665e-03 2.297e-07 24662 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 920511605 on 763 degrees of freedom
## Residual deviance: 46316961 on 762 degrees of freedom
## AIC: 46327613
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## POLAND -- 5602680
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -783520 -314468 -86131 312651 1302199
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -887889.98 31975.01 -27.77 <2e-16 ***
## x.var 6791.06 72.42 93.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 441500 on 762 degrees of freedom
## Multiple R-squared: 0.9203, Adjusted R-squared: 0.9202
## F-statistic: 8794 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.4481 -1.1197 0.9548 1.3524 2.4372
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.8408494 0.1648421 41.50 <2e-16 ***
## x.var 0.0144572 0.0003733 38.72 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.276 on 762 degrees of freedom
## Multiple R-squared: 0.6631, Adjusted R-squared: 0.6626
## F-statistic: 1500 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -776.8 -656.4 -333.3 441.2 925.6
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.202e+01 9.947e-05 120815 <2e-16 ***
## x.var 4.782e-03 1.660e-07 28816 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1340919379 on 763 degrees of freedom
## Residual deviance: 246029771 on 762 degrees of freedom
## AIC: 246040552
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## PORTUGAL -- 3219439
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -295576 -174287 -94099 92243 1551868
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -372613.25 22833.99 -16.32 <2e-16 ***
## x.var 2670.40 51.72 51.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 315300 on 762 degrees of freedom
## Multiple R-squared: 0.7777, Adjusted R-squared: 0.7774
## F-statistic: 2666 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6535 -0.9350 0.9812 1.5139 1.7652
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.1690409 0.1581281 45.34 <2e-16 ***
## x.var 0.0121103 0.0003581 33.81 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.183 on 762 degrees of freedom
## Multiple R-squared: 0.6001, Adjusted R-squared: 0.5996
## F-statistic: 1143 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -478.7 -300.2 -185.5 177.3 563.9
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.090e+01 1.672e-04 65186 <2e-16 ***
## x.var 5.040e-03 2.764e-07 18236 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 521053575 on 763 degrees of freedom
## Residual deviance: 71522056 on 762 degrees of freedom
## AIC: 71532405
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## QATAR -- 355397
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -37877 -16157 46 15596 46086
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5507.634 1506.073 3.657 0.000273 ***
## x.var 397.696 3.411 116.591 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20790 on 762 degrees of freedom
## Multiple R-squared: 0.9469, Adjusted R-squared: 0.9468
## F-statistic: 1.359e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.8581 -0.9479 0.4874 1.5878 2.5111
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.5166879 0.1670742 44.99 <2e-16 ***
## x.var 0.0089854 0.0003784 23.75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.307 on 762 degrees of freedom
## Multiple R-squared: 0.4253, Adjusted R-squared: 0.4245
## F-statistic: 563.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -328.17 -75.62 52.66 84.36 105.42
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.077e+01 2.480e-04 43406 <2e-16 ***
## x.var 2.696e-03 4.566e-07 5905 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 52686712 on 763 degrees of freedom
## Residual deviance: 14162372 on 762 degrees of freedom
## AIC: 14172077
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ROMANIA -- 2697566
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -292106 -146540 -14907 93670 793848
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -388090.56 14223.61 -27.29 <2e-16 ***
## x.var 2999.75 32.21 93.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 196400 on 762 degrees of freedom
## Multiple R-squared: 0.9192, Adjusted R-squared: 0.9191
## F-statistic: 8671 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.3994 -0.9339 0.8979 1.5194 2.0883
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9490183 0.1579782 43.99 <2e-16 ***
## x.var 0.0128671 0.0003578 35.96 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.181 on 762 degrees of freedom
## Multiple R-squared: 0.6292, Adjusted R-squared: 0.6288
## F-statistic: 1293 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -441.9 -374.5 -113.6 250.0 444.5
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.123e+01 1.485e-04 75603 <2e-16 ***
## x.var 4.745e-03 2.481e-07 19123 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 554234315 on 763 degrees of freedom
## Residual deviance: 73746118 on 762 degrees of freedom
## AIC: 73756528
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## RUSSIA -- 15566425
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1020047 -691194 -319458 481961 5334306
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1970438.0 72735.9 -27.09 <2e-16 ***
## x.var 15971.9 164.7 96.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1004000 on 762 degrees of freedom
## Multiple R-squared: 0.925, Adjusted R-squared: 0.9249
## F-statistic: 9400 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.8024 -1.1087 0.6348 1.9191 2.6291
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.6862229 0.1905351 45.59 <2e-16 ***
## x.var 0.0129089 0.0004315 29.91 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.631 on 762 degrees of freedom
## Multiple R-squared: 0.5401, Adjusted R-squared: 0.5395
## F-statistic: 894.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1098.2 -359.1 -140.9 258.0 764.5
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.301e+01 6.227e-05 208961 <2e-16 ***
## x.var 4.588e-03 1.047e-07 43837 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2702711204 on 763 degrees of freedom
## Residual deviance: 215112567 on 762 degrees of freedom
## AIC: 215124356
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## RWANDA -- 129436
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -30557 -20002 2013 16489 31147
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -31323.569 1363.773 -22.97 <2e-16 ***
## x.var 176.957 3.089 57.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18830 on 762 degrees of freedom
## Multiple R-squared: 0.8116, Adjusted R-squared: 0.8113
## F-statistic: 3282 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4281 -0.4434 0.2849 0.9485 1.7073
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.7631802 0.1026966 36.64 <2e-16 ***
## x.var 0.0127863 0.0002326 54.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.418 on 762 degrees of freedom
## Multiple R-squared: 0.7986, Adjusted R-squared: 0.7984
## F-statistic: 3022 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -138.21 -50.47 -26.97 9.50 117.11
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.039e+00 8.759e-04 8036 <2e-16 ***
## x.var 6.666e-03 1.381e-06 4827 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 39189709 on 763 degrees of freedom
## Residual deviance: 2213340 on 762 degrees of freedom
## AIC: 2221262
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAINT KITTS AND NEVIS -- 5524
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1343.08 -817.97 -67.29 539.36 2869.63
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1079.5803 70.6034 -15.29 <2e-16 ***
## x.var 4.9421 0.1599 30.91 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 974.8 on 762 degrees of freedom
## Multiple R-squared: 0.5563, Adjusted R-squared: 0.5557
## F-statistic: 955.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6218 -0.5816 0.1770 0.5596 1.4766
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3492534 0.0551062 6.338 3.99e-10 ***
## x.var 0.0105189 0.0001248 84.281 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7608 on 762 degrees of freedom
## Multiple R-squared: 0.9031, Adjusted R-squared: 0.903
## F-statistic: 7103 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -20.543 -4.614 -1.349 3.091 22.670
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.326e-02 1.021e-02 -4.236 2.27e-05 ***
## x.var 1.168e-02 1.492e-05 782.857 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1525592 on 763 degrees of freedom
## Residual deviance: 51204 on 762 degrees of freedom
## AIC: 55819
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAINT LUCIA -- 22594
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3568.3 -2282.4 -541.1 1558.0 8881.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4432.3789 204.1791 -21.71 <2e-16 ***
## x.var 23.7506 0.4624 51.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2819 on 762 degrees of freedom
## Multiple R-squared: 0.7759, Adjusted R-squared: 0.7756
## F-statistic: 2638 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.61776 -0.70490 0.04092 0.56194 1.77597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9062534 0.0612138 14.80 <2e-16 ***
## x.var 0.0136829 0.0001386 98.69 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8452 on 762 degrees of freedom
## Multiple R-squared: 0.9274, Adjusted R-squared: 0.9273
## F-statistic: 9740 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -33.77 -24.42 -15.54 13.29 38.24
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.571e+00 2.662e-03 1717 <2e-16 ***
## x.var 7.325e-03 4.135e-06 1771 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 5698046 on 763 degrees of freedom
## Residual deviance: 390412 on 762 degrees of freedom
## AIC: 396403
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAINT VINCENT AND THE GRENADINES -- 8301
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1410.0 -850.8 -416.6 875.9 4377.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1667.9996 80.0925 -20.83 <2e-16 ***
## x.var 9.1417 0.1814 50.40 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1106 on 762 degrees of freedom
## Multiple R-squared: 0.7692, Adjusted R-squared: 0.7689
## F-statistic: 2540 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8170 -0.4470 0.0085 0.4799 1.5083
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2100777 0.0556729 21.74 <2e-16 ***
## x.var 0.0116718 0.0001261 92.57 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7687 on 762 degrees of freedom
## Multiple R-squared: 0.9183, Adjusted R-squared: 0.9182
## F-statistic: 8569 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -21.487 -11.677 -9.950 6.806 26.069
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.828e+00 4.087e-03 936.9 <2e-16 ***
## x.var 7.021e-03 6.390e-06 1098.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2121642 on 763 degrees of freedom
## Residual deviance: 138826 on 762 degrees of freedom
## AIC: 144456
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

## SAMOA -- 33
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1103 -2.2524 -0.7446 0.4635 24.6799
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.8119952 0.3789832 -7.42 3.14e-13 ***
## x.var 0.0149826 0.0008583 17.45 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.233 on 762 degrees of freedom
## Multiple R-squared: 0.2856, Adjusted R-squared: 0.2847
## F-statistic: 304.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.66046 -0.32517 -0.00817 0.25519 1.43304
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.780e-01 3.080e-02 -12.27 <2e-16 ***
## x.var 3.326e-03 6.975e-05 47.68 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4252 on 762 degrees of freedom
## Multiple R-squared: 0.749, Adjusted R-squared: 0.7487
## F-statistic: 2274 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.2877 -0.8414 -0.4584 0.7720 4.2690
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.8552499 0.1073692 -26.59 <2e-16 ***
## x.var 0.0074078 0.0001665 44.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4815.5 on 763 degrees of freedom
## Residual deviance: 1441.0 on 762 degrees of freedom
## AIC: 2868.7
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAN MARINO -- 14262
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1628.3 -905.1 -287.2 550.4 5668.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1552.8546 98.3171 -15.79 <2e-16 ***
## x.var 13.2808 0.2227 59.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1357 on 762 degrees of freedom
## Multiple R-squared: 0.8236, Adjusted R-squared: 0.8233
## F-statistic: 3557 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6573 -0.5364 0.3956 0.7569 1.2585
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3670662 0.0901367 48.45 <2e-16 ***
## x.var 0.0076378 0.0002041 37.41 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.244 on 762 degrees of freedom
## Multiple R-squared: 0.6475, Adjusted R-squared: 0.647
## F-statistic: 1400 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -31.424 -15.620 -4.363 13.289 32.525
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.034e+00 2.089e-03 2889 <2e-16 ***
## x.var 4.433e-03 3.532e-06 1255 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2249399 on 763 degrees of freedom
## Residual deviance: 240211 on 762 degrees of freedom
## AIC: 247115
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## SAO TOME AND PRINCIPE -- 5932
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -645.65 -353.59 -39.83 197.18 1665.87
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -651.35848 36.39541 -17.90 <2e-16 ***
## x.var 6.58794 0.08243 79.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 502.5 on 762 degrees of freedom
## Multiple R-squared: 0.8934, Adjusted R-squared: 0.8933
## F-statistic: 6387 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7652 -0.8734 0.3418 1.1343 2.1153
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0999707 0.1117936 27.73 <2e-16 ***
## x.var 0.0088697 0.0002532 35.03 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.544 on 762 degrees of freedom
## Multiple R-squared: 0.6169, Adjusted R-squared: 0.6164
## F-statistic: 1227 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -27.6511 -6.1612 0.8409 6.8583 15.2613
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.610e+00 2.727e-03 2057.3 <2e-16 ***
## x.var 4.055e-03 4.685e-06 865.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1027935 on 763 degrees of freedom
## Residual deviance: 104706 on 762 degrees of freedom
## AIC: 110932
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SAUDI ARABIA -- 741864
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -96790 -43262 -777 40508 95179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29277.735 3920.346 7.468 2.23e-13 ***
## x.var 858.096 8.879 96.643 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 54130 on 762 degrees of freedom
## Multiple R-squared: 0.9246, Adjusted R-squared: 0.9245
## F-statistic: 9340 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.3258 -1.0123 0.4311 1.8407 2.7443
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.9364532 0.1842118 43.08 <2e-16 ***
## x.var 0.0097343 0.0004172 23.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.543 on 762 degrees of freedom
## Multiple R-squared: 0.4167, Adjusted R-squared: 0.4159
## F-statistic: 544.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -514.83 -130.47 61.66 127.43 230.74
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.166e+01 1.616e-04 72151 <2e-16 ***
## x.var 2.548e-03 3.001e-07 8490 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 117323596 on 763 degrees of freedom
## Residual deviance: 38501692 on 762 degrees of freedom
## AIC: 38511933
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SENEGAL -- 85619
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10843.8 -5048.7 -227.7 4611.0 13712.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13838.811 473.606 -29.22 <2e-16 ***
## x.var 126.782 1.073 118.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6539 on 762 degrees of freedom
## Multiple R-squared: 0.9483, Adjusted R-squared: 0.9482
## F-statistic: 1.397e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.7917 -0.7304 0.3773 1.1954 1.9179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.387721 0.130230 41.37 <2e-16 ***
## x.var 0.010099 0.000295 34.24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.798 on 762 degrees of freedom
## Multiple R-squared: 0.606, Adjusted R-squared: 0.6055
## F-statistic: 1172 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -105.732 -54.799 2.945 28.737 79.160
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.416e+00 6.510e-04 12926 <2e-16 ***
## x.var 4.261e-03 1.109e-06 3843 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 20719259 on 763 degrees of freedom
## Residual deviance: 2176094 on 762 degrees of freedom
## AIC: 2184493
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SERBIA -- 1896575
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -244689 -110595 -36225 98410 565044
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -327496.52 12106.58 -27.05 <2e-16 ***
## x.var 2171.50 27.42 79.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 167200 on 762 degrees of freedom
## Multiple R-squared: 0.8917, Adjusted R-squared: 0.8915
## F-statistic: 6272 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.7065 -0.8577 0.8065 1.3939 1.9885
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.1119374 0.1486959 41.10 <2e-16 ***
## x.var 0.0135129 0.0003368 40.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.053 on 762 degrees of freedom
## Multiple R-squared: 0.6787, Adjusted R-squared: 0.6783
## F-statistic: 1610 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -345.6 -274.0 -110.3 184.7 395.5
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.042e+01 1.999e-04 52113 <2e-16 ***
## x.var 5.424e-03 3.263e-07 16622 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 433343445 on 763 degrees of freedom
## Residual deviance: 45578768 on 762 degrees of freedom
## AIC: 45588711
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SEYCHELLES -- 39181
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7531 -4274 974 2096 13111
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8520.0995 370.2512 -23.01 <2e-16 ***
## x.var 45.3938 0.8386 54.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5112 on 762 degrees of freedom
## Multiple R-squared: 0.7936, Adjusted R-squared: 0.7934
## F-statistic: 2930 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.88988 -0.59771 0.08325 0.81636 1.14439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1292907 0.0597473 18.9 <2e-16 ***
## x.var 0.0143507 0.0001353 106.0 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8249 on 762 degrees of freedom
## Multiple R-squared: 0.9365, Adjusted R-squared: 0.9365
## F-statistic: 1.125e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -54.866 -34.346 -23.899 1.556 70.503
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.161e+00 1.951e-03 2645 <2e-16 ***
## x.var 7.409e-03 3.025e-06 2449 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 11291915 on 763 degrees of freedom
## Residual deviance: 1067162 on 762 degrees of freedom
## AIC: 1073520
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SIERRA LEONE -- 7663
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -685.9 -311.5 23.0 236.6 854.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -576.99955 26.55092 -21.73 <2e-16 ***
## x.var 10.86178 0.06013 180.63 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 366.6 on 762 degrees of freedom
## Multiple R-squared: 0.9772, Adjusted R-squared: 0.9771
## F-statistic: 3.263e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4364 -0.8736 0.2501 1.2667 2.0653
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8313875 0.1242816 30.83 <2e-16 ***
## x.var 0.0087678 0.0002815 31.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.716 on 762 degrees of freedom
## Multiple R-squared: 0.5601, Adjusted R-squared: 0.5595
## F-statistic: 970.2 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -43.909 -13.364 4.747 9.970 20.028
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.640e+00 1.794e-03 3701 <2e-16 ***
## x.var 3.354e-03 3.186e-06 1053 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1558001 on 763 degrees of freedom
## Residual deviance: 271733 on 762 degrees of freedom
## AIC: 278501
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SINGAPORE -- 642605
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -97388 -50726 7219 29415 416595
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -42480.73 4996.80 -8.502 <2e-16 ***
## x.var 351.43 11.32 31.053 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 68990 on 762 degrees of freedom
## Multiple R-squared: 0.5586, Adjusted R-squared: 0.558
## F-statistic: 964.3 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.7529 -0.4932 -0.0667 1.1292 1.8143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.7456033 0.1079988 71.72 <2e-16 ***
## x.var 0.0072535 0.0002446 29.65 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.491 on 762 degrees of freedom
## Multiple R-squared: 0.5358, Adjusted R-squared: 0.5351
## F-statistic: 879.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -239.47 -139.77 16.63 92.46 485.75
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.241e+00 4.144e-04 22302 <2e-16 ***
## x.var 4.527e-03 6.981e-07 6484 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 67095763 on 763 degrees of freedom
## Residual deviance: 12979073 on 762 degrees of freedom
## AIC: 12988514
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SLOVAKIA -- 2052260
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -233134 -150889 -15944 96826 740712
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -317554.08 12852.60 -24.71 <2e-16 ***
## x.var 2132.33 29.11 73.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 177500 on 762 degrees of freedom
## Multiple R-squared: 0.8757, Adjusted R-squared: 0.8755
## F-statistic: 5366 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.4661 -1.0481 0.2116 1.4314 2.3758
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7751882 0.1350006 35.37 <2e-16 ***
## x.var 0.0157025 0.0003058 51.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.864 on 762 degrees of freedom
## Multiple R-squared: 0.7758, Adjusted R-squared: 0.7756
## F-statistic: 2637 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -449.8 -316.5 -169.2 172.6 522.2
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.045e+01 1.991e-04 52491 <2e-16 ***
## x.var 5.355e-03 3.257e-07 16444 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 451298997 on 763 degrees of freedom
## Residual deviance: 74394994 on 762 degrees of freedom
## AIC: 74404557
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SLOVENIA -- 884830
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -80634 -54015 -13383 17254 398230
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -122566.13 6051.74 -20.25 <2e-16 ***
## x.var 797.34 13.71 58.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 83550 on 762 degrees of freedom
## Multiple R-squared: 0.8162, Adjusted R-squared: 0.816
## F-statistic: 3384 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5494 -0.8396 0.2280 1.0885 2.0725
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9651911 0.1241338 40.00 <2e-16 ***
## x.var 0.0135859 0.0002811 48.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.714 on 762 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.7536
## F-statistic: 2335 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -242.71 -169.00 -97.87 121.16 232.16
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.340e+00 3.370e-04 27715 <2e-16 ***
## x.var 5.534e-03 5.481e-07 10098 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 165943570 on 763 degrees of freedom
## Residual deviance: 21278387 on 762 degrees of freedom
## AIC: 21287479
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SOLOMON ISLANDS -- 6348
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -492.6 -297.1 -98.6 89.2 5790.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -262.7810 52.6251 -4.993 7.36e-07 ***
## x.var 1.0734 0.1192 9.006 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 726.6 on 762 degrees of freedom
## Multiple R-squared: 0.0962, Adjusted R-squared: 0.09501
## F-statistic: 81.1 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3856 -0.7467 -0.0865 0.5000 3.9061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5864653 0.0713373 -8.221 8.67e-16 ***
## x.var 0.0071157 0.0001616 44.041 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9849 on 762 degrees of freedom
## Multiple R-squared: 0.7179, Adjusted R-squared: 0.7176
## F-statistic: 1940 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -44.546 -0.005 0.000 13.258 39.061
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.835e+01 7.633e-02 -240.4 <2e-16 ***
## x.var 3.483e-02 1.037e-04 336.0 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 650502 on 763 degrees of freedom
## Residual deviance: 135370 on 762 degrees of freedom
## AIC: 137901
##
## Number of Fisher Scoring iterations: 7
##
## --------------------------------------------------------------------------------
## SOMALIA -- 26313
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5241.1 -1200.1 559.8 1480.4 4227.2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4264.4693 157.5287 -27.07 <2e-16 ***
## x.var 37.3184 0.3568 104.60 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2175 on 762 degrees of freedom
## Multiple R-squared: 0.9349, Adjusted R-squared: 0.9348
## F-statistic: 1.094e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7775 -0.7069 0.5026 1.2189 2.1941
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2440547 0.1271090 33.39 <2e-16 ***
## x.var 0.0098786 0.0002879 34.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.755 on 762 degrees of freedom
## Multiple R-squared: 0.6071, Adjusted R-squared: 0.6066
## F-statistic: 1177 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -57.700 -19.461 -1.145 11.387 45.258
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.111e+00 1.230e-03 5782 <2e-16 ***
## x.var 4.372e-03 2.085e-06 2097 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 6128521 on 763 degrees of freedom
## Residual deviance: 548362 on 762 degrees of freedom
## AIC: 555792
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SOUTH AFRICA -- 3665149
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -389844 -148813 -8243 174295 548994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -554248.40 15702.36 -35.3 <2e-16 ***
## x.var 5254.27 35.56 147.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 216800 on 762 degrees of freedom
## Multiple R-squared: 0.9663, Adjusted R-squared: 0.9662
## F-statistic: 2.183e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.0092 -1.1101 0.3365 1.8642 3.1297
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.4378644 0.1875107 39.67 <2e-16 ***
## x.var 0.0132859 0.0004247 31.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.589 on 762 degrees of freedom
## Multiple R-squared: 0.5622, Adjusted R-squared: 0.5617
## F-statistic: 978.7 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -738.74 -367.27 79.07 201.27 474.24
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.220e+01 9.943e-05 122658 <2e-16 ***
## x.var 4.184e-03 1.699e-07 24634 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 867753954 on 763 degrees of freedom
## Residual deviance: 111082322 on 762 degrees of freedom
## AIC: 111093214
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SOUTH SUDAN -- 16946
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2796.65 -840.75 43.35 1084.99 2218.60
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2242.2652 93.8535 -23.89 <2e-16 ***
## x.var 23.6621 0.2126 111.32 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1296 on 762 degrees of freedom
## Multiple R-squared: 0.9421, Adjusted R-squared: 0.942
## F-statistic: 1.239e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3240 -1.1097 0.5585 1.2432 2.4128
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5506850 0.1315396 26.99 <2e-16 ***
## x.var 0.0104505 0.0002979 35.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.816 on 762 degrees of freedom
## Multiple R-squared: 0.6176, Adjusted R-squared: 0.6171
## F-statistic: 1230 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -54.548 -19.711 -4.752 8.030 51.621
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.945e+00 1.414e-03 4912 <2e-16 ***
## x.var 3.978e-03 2.437e-06 1632 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3875690 on 763 degrees of freedom
## Residual deviance: 614003 on 762 degrees of freedom
## AIC: 621036
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SPAIN -- 10914105
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -950678 -526083 -280925 153243 3893262
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1365810.0 66395.4 -20.57 <2e-16 ***
## x.var 10977.3 150.4 73.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 916700 on 762 degrees of freedom
## Multiple R-squared: 0.8749, Adjusted R-squared: 0.8747
## F-statistic: 5329 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.3609 -0.7919 0.8294 1.4199 1.9871
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.2498911 0.1680248 55.05 <2e-16 ***
## x.var 0.0110987 0.0003806 29.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.32 on 762 degrees of freedom
## Multiple R-squared: 0.5275, Adjusted R-squared: 0.5268
## F-statistic: 850.6 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -860.74 -527.19 -98.06 306.29 841.54
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.262e+01 7.554e-05 167042 <2e-16 ***
## x.var 4.615e-03 1.268e-07 36385 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1914425489 on 763 degrees of freedom
## Residual deviance: 196427384 on 762 degrees of freedom
## AIC: 196439074
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SRI LANKA -- 640578
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -155561 -95476 -4844 99519 167621
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -168546 7067 -23.85 <2e-16 ***
## x.var 925 16 57.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 97570 on 762 degrees of freedom
## Multiple R-squared: 0.8142, Adjusted R-squared: 0.814
## F-statistic: 3340 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3481 -0.4665 0.4832 0.9419 1.3697
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2750700 0.1003915 42.58 <2e-16 ***
## x.var 0.0146136 0.0002274 64.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.386 on 762 degrees of freedom
## Multiple R-squared: 0.8443, Adjusted R-squared: 0.8441
## F-statistic: 4131 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -378.04 -127.59 -81.50 35.63 285.70
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.457e+00 4.052e-04 20871 <2e-16 ***
## x.var 7.004e-03 6.338e-07 11051 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 216301463 on 763 degrees of freedom
## Residual deviance: 16016618 on 762 degrees of freedom
## AIC: 16025529
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SUDAN -- 61350
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4925.9 -2711.3 67.7 2372.2 8060.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3469.1908 218.9102 -15.85 <2e-16 ***
## x.var 74.3198 0.4958 149.90 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3022 on 762 degrees of freedom
## Multiple R-squared: 0.9672, Adjusted R-squared: 0.9672
## F-statistic: 2.247e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5276 -1.1704 0.4815 1.6181 2.5198
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9949111 0.1533921 32.56 <2e-16 ***
## x.var 0.0102436 0.0003474 29.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.118 on 762 degrees of freedom
## Multiple R-squared: 0.5329, Adjusted R-squared: 0.5323
## F-statistic: 869.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -119.902 -37.106 2.019 35.337 69.639
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.623e+00 6.723e-04 12828 <2e-16 ***
## x.var 3.276e-03 1.199e-06 2733 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 10922114 on 763 degrees of freedom
## Residual deviance: 2307030 on 762 degrees of freedom
## AIC: 2315145
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SUMMER OLYMPICS 2020 -- 865
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -422.35 -202.51 33.73 204.82 363.86
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -273.54999 16.74250 -16.34 <2e-16 ***
## x.var 1.29982 0.03792 34.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 231.2 on 762 degrees of freedom
## Multiple R-squared: 0.6066, Adjusted R-squared: 0.6061
## F-statistic: 1175 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4018 -1.5586 0.4035 1.5073 2.4870
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.2106069 0.1256661 -17.59 <2e-16 ***
## x.var 0.0109191 0.0002846 38.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.735 on 762 degrees of freedom
## Multiple R-squared: 0.6589, Adjusted R-squared: 0.6584
## F-statistic: 1472 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -22.539 -9.183 -3.937 -1.590 25.428
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.254e-01 1.656e-02 -13.62 <2e-16 ***
## x.var 1.004e-02 2.462e-05 407.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 440053 on 763 degrees of freedom
## Residual deviance: 84305 on 762 degrees of freedom
## AIC: 86264
##
## Number of Fisher Scoring iterations: 8
##
## --------------------------------------------------------------------------------
## SURINAME -- 77935
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14668.9 -8231.2 -221.8 7230.8 27493.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14928.477 723.405 -20.64 <2e-16 ***
## x.var 85.731 1.638 52.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9988 on 762 degrees of freedom
## Multiple R-squared: 0.7823, Adjusted R-squared: 0.782
## F-statistic: 2738 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5674 -1.3031 0.1735 1.2942 2.4912
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8828422 0.1130554 25.50 <2e-16 ***
## x.var 0.0131645 0.0002561 51.41 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.561 on 762 degrees of freedom
## Multiple R-squared: 0.7762, Adjusted R-squared: 0.7759
## F-statistic: 2643 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -52.325 -32.107 1.217 15.131 40.585
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.433e+00 1.222e-03 5262 <2e-16 ***
## x.var 6.496e-03 1.936e-06 3356 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 18135167 on 763 degrees of freedom
## Residual deviance: 557766 on 762 degrees of freedom
## AIC: 565118
##
## Number of Fisher Scoring iterations: 4
##
## --------------------------------------------------------------------------------
## SWEDEN -- 2434783
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -277139 -144164 -33152 96107 813498
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -328842.99 14684.35 -22.39 <2e-16 ***
## x.var 2553.62 33.26 76.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 202700 on 762 degrees of freedom
## Multiple R-squared: 0.8855, Adjusted R-squared: 0.8854
## F-statistic: 5896 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.6818 -0.8085 0.8789 1.2882 1.7259
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.567613 0.146159 51.78 <2e-16 ***
## x.var 0.011414 0.000331 34.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 762 degrees of freedom
## Multiple R-squared: 0.6094, Adjusted R-squared: 0.6089
## F-statistic: 1189 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -439.9 -295.7 -188.9 240.6 477.6
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.108e+01 1.604e-04 69059 <2e-16 ***
## x.var 4.729e-03 2.682e-07 17633 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 473746269 on 763 degrees of freedom
## Residual deviance: 65876841 on 762 degrees of freedom
## AIC: 65887334
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SWITZERLAND -- 2730037
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -258398 -167487 -57081 44150 1343580
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -315656.93 19525.82 -16.17 <2e-16 ***
## x.var 2227.90 44.22 50.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 269600 on 762 degrees of freedom
## Multiple R-squared: 0.7691, Adjusted R-squared: 0.7688
## F-statistic: 2538 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.8419 -0.8206 0.6591 1.2929 1.7731
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.4613256 0.1481844 50.35 <2e-16 ***
## x.var 0.0111943 0.0003356 33.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.046 on 762 degrees of freedom
## Multiple R-squared: 0.5935, Adjusted R-squared: 0.593
## F-statistic: 1113 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -346.7 -277.1 -160.7 233.2 392.6
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.067e+01 1.856e-04 57496 <2e-16 ***
## x.var 5.108e-03 3.060e-07 16692 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 429937373 on 763 degrees of freedom
## Residual deviance: 50781068 on 762 degrees of freedom
## AIC: 50791384
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## SYRIA -- 54040
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5934 -3864 -2311 5131 10752
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.083e+04 3.560e+02 -30.42 <2e-16 ***
## x.var 7.533e+01 8.062e-01 93.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4915 on 762 degrees of freedom
## Multiple R-squared: 0.9197, Adjusted R-squared: 0.9196
## F-statistic: 8731 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9503 -0.8703 0.1618 1.3975 1.9782
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1829345 0.1141783 27.88 <2e-16 ***
## x.var 0.0127896 0.0002586 49.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.576 on 762 degrees of freedom
## Multiple R-squared: 0.7625, Adjusted R-squared: 0.7622
## F-statistic: 2446 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -71.205 -56.140 -4.978 28.187 55.232
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.235e+00 1.023e-03 7074 <2e-16 ***
## x.var 5.175e-03 1.683e-06 3076 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 14305378 on 763 degrees of freedom
## Residual deviance: 1349160 on 762 degrees of freedom
## AIC: 1356623
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## TAIWAN* -- 20156
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7748 -3132 1315 3074 5137
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5165.6903 270.5036 -19.10 <2e-16 ***
## x.var 29.6448 0.6127 48.39 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3735 on 762 degrees of freedom
## Multiple R-squared: 0.7545, Adjusted R-squared: 0.7541
## F-statistic: 2341 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4777 -0.4802 -0.0413 0.6170 1.1441
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1540986 0.0533639 77.84 <2e-16 ***
## x.var 0.0083642 0.0001209 69.20 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7368 on 762 degrees of freedom
## Multiple R-squared: 0.8627, Adjusted R-squared: 0.8626
## F-statistic: 4789 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -64.695 -31.756 -17.018 1.185 87.635
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.367e+00 2.081e-03 2578 <2e-16 ***
## x.var 6.503e-03 3.295e-06 1974 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 7262548 on 763 degrees of freedom
## Residual deviance: 1179691 on 762 degrees of freedom
## AIC: 1186713
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GLM using Family Family: Gamma Link function: log :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6711 -0.5932 -0.2444 0.4013 1.0557
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5411101 0.0466025 97.44 <2e-16 ***
## x.var 0.0079609 0.0001055 75.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.4139992)
##
## Null deviance: 2111.3 on 763 degrees of freedom
## Residual deviance: 366.6 on 762 degrees of freedom
## AIC: 12899
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## TAJIKISTAN -- 17786
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3951.7 -1568.6 166.9 1539.1 3484.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1373.0888 142.5205 9.634 <2e-16 ***
## x.var 25.5940 0.3228 79.290 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1968 on 762 degrees of freedom
## Multiple R-squared: 0.8919, Adjusted R-squared: 0.8918
## F-statistic: 6287 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2795 -1.2648 0.3601 2.0078 2.7971
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2790658 0.1698465 25.19 <2e-16 ***
## x.var 0.0100042 0.0003847 26.01 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.345 on 762 degrees of freedom
## Multiple R-squared: 0.4702, Adjusted R-squared: 0.4695
## F-statistic: 676.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -99.043 -25.058 6.107 25.909 47.293
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.256e+00 8.998e-04 9175 <2e-16 ***
## x.var 2.420e-03 1.684e-06 1437 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3666532 on 763 degrees of freedom
## Residual deviance: 1426843 on 762 degrees of freedom
## AIC: 1434260
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

## TANZANIA -- 33620
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13018.9 -6945.0 -13.1 6409.8 14083.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7781.683 573.063 -13.58 <2e-16 ***
## x.var 36.340 1.298 28.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7912 on 762 degrees of freedom
## Multiple R-squared: 0.5071, Adjusted R-squared: 0.5065
## F-statistic: 784 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3716 -1.1334 0.3204 1.0941 2.3733
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8543567 0.1035164 27.57 <2e-16 ***
## x.var 0.0095777 0.0002345 40.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.429 on 762 degrees of freedom
## Multiple R-squared: 0.6865, Adjusted R-squared: 0.6861
## F-statistic: 1669 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -105.275 -31.556 -2.019 25.731 134.633
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.629e+00 3.391e-03 775.2 <2e-16 ***
## x.var 1.072e-02 5.004e-06 2141.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 12030410 on 763 degrees of freedom
## Residual deviance: 1697935 on 762 degrees of freedom
## AIC: 1704220
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## THAILAND -- 2794350
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -748847 -477736 18549 462853 1051965
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -665945.07 36685.19 -18.15 <2e-16 ***
## x.var 3152.26 83.09 37.94 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 506500 on 762 degrees of freedom
## Multiple R-squared: 0.6539, Adjusted R-squared: 0.6534
## F-statistic: 1439 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2680 -0.5873 -0.0128 0.6347 1.8382
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.8491549 0.0647792 74.86 <2e-16 ***
## x.var 0.0141265 0.0001467 96.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8944 on 762 degrees of freedom
## Multiple R-squared: 0.924, Adjusted R-squared: 0.9239
## F-statistic: 9271 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -720.28 -263.88 -115.38 -32.77 621.83
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.471e+00 3.419e-04 21850 <2e-16 ***
## x.var 1.018e-02 5.076e-07 20048 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 936543065 on 763 degrees of freedom
## Residual deviance: 66742064 on 762 degrees of freedom
## AIC: 66751303
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GLM using Family Family: Gamma Link function: log :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.5641 -0.7719 -0.2499 0.4120 1.4154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.6336607 0.0548260 102.8 <2e-16 ***
## x.var 0.0129707 0.0001242 104.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.5729989)
##
## Null deviance: 4507.30 on 763 degrees of freedom
## Residual deviance: 528.37 on 762 degrees of freedom
## AIC: 17640
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## TIMOR-LESTE -- 22485
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7269.6 -3373.5 203.6 3741.3 6303.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6336.4221 299.9839 -21.12 <2e-16 ***
## x.var 32.4899 0.6794 47.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4142 on 762 degrees of freedom
## Multiple R-squared: 0.7501, Adjusted R-squared: 0.7497
## F-statistic: 2287 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.57004 -0.82712 -0.08726 0.92869 1.73598
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.107274 0.068865 1.558 0.12
## x.var 0.014668 0.000156 94.045 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9508 on 762 degrees of freedom
## Multiple R-squared: 0.9207, Adjusted R-squared: 0.9206
## F-statistic: 8844 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -83.38 -39.52 -18.96 12.71 76.42
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.377e+00 2.542e-03 1721 <2e-16 ***
## x.var 8.053e-03 3.894e-06 2068 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 8988934 on 763 degrees of freedom
## Residual deviance: 1244028 on 762 degrees of freedom
## AIC: 1249674
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## TOGO -- 36764
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5522.2 -3500.8 -786.8 2859.3 8650.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7703.4681 291.5869 -26.42 <2e-16 ***
## x.var 48.2687 0.6604 73.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4026 on 762 degrees of freedom
## Multiple R-squared: 0.8752, Adjusted R-squared: 0.875
## F-statistic: 5342 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0232 -0.5798 0.4715 0.9789 1.2415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.5326949 0.0958427 36.86 <2e-16 ***
## x.var 0.0111474 0.0002171 51.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.323 on 762 degrees of freedom
## Multiple R-squared: 0.7758, Adjusted R-squared: 0.7755
## F-statistic: 2637 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -53.13 -25.40 -11.90 15.09 47.55
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.365e+00 1.433e-03 4442 <2e-16 ***
## x.var 5.775e-03 2.313e-06 2496 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 9579731 on 763 degrees of freedom
## Residual deviance: 526075 on 762 degrees of freedom
## AIC: 533350
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## TONGA -- 289
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.063 -8.000 -3.044 2.018 275.350
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.733928 1.802379 -3.736 0.000201 ***
## x.var 0.026680 0.004082 6.536 1.16e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.88 on 762 degrees of freedom
## Multiple R-squared: 0.05308, Adjusted R-squared: 0.05184
## F-statistic: 42.72 on 1 and 762 DF, p-value: 1.158e-10
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5889 -0.3106 -0.0344 0.1059 4.9088
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3535797 0.0487051 -7.26 9.59e-13 ***
## x.var 0.0014590 0.0001103 13.23 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6725 on 762 degrees of freedom
## Multiple R-squared: 0.1867, Adjusted R-squared: 0.1856
## F-statistic: 174.9 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: fitted rates numerically 0 occurred
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.297 0.000 0.000 0.000 4.994
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -88.276279 1.808384 -48.81 <2e-16 ***
## x.var 0.123041 0.002391 51.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 19823 on 763 degrees of freedom
## Residual deviance: 1032 on 762 degrees of freedom
## AIC: 1357.3
##
## Number of Fisher Scoring iterations: 10
##
## --------------------------------------------------------------------------------
## TRINIDAD AND TOBAGO -- 125210
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25002 -10921 -3266 10188 51918
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -23907.820 1208.742 -19.78 <2e-16 ***
## x.var 127.225 2.738 46.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16690 on 762 degrees of freedom
## Multiple R-squared: 0.7392, Adjusted R-squared: 0.7389
## F-statistic: 2160 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7365 -0.5306 0.1374 0.6156 2.0373
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0491288 0.0927526 32.87 <2e-16 ***
## x.var 0.0132186 0.0002101 62.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.281 on 762 degrees of freedom
## Multiple R-squared: 0.8386, Adjusted R-squared: 0.8384
## F-statistic: 3959 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -53.47 -35.11 -12.57 20.80 54.47
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.179e+00 1.169e-03 5287 <2e-16 ***
## x.var 7.426e-03 1.811e-06 4100 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 29487749 on 763 degrees of freedom
## Residual deviance: 783059 on 762 degrees of freedom
## AIC: 790562
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## TUNISIA -- 990483
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -112477 -96935 167 81368 205801
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -207114.75 7033.37 -29.45 <2e-16 ***
## x.var 1313.88 15.93 82.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 97110 on 762 degrees of freedom
## Multiple R-squared: 0.8993, Adjusted R-squared: 0.8991
## F-statistic: 6803 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2389 -0.7520 0.3678 1.2160 2.1708
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6036610 0.1279976 35.97 <2e-16 ***
## x.var 0.0151242 0.0002899 52.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.767 on 762 degrees of freedom
## Multiple R-squared: 0.7813, Adjusted R-squared: 0.781
## F-statistic: 2722 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -303.02 -230.56 -64.68 130.81 284.98
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.728e+00 2.704e-04 35972 <2e-16 ***
## x.var 5.692e-03 4.377e-07 13004 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 273936622 on 763 degrees of freedom
## Residual deviance: 30250253 on 762 degrees of freedom
## AIC: 30259517
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## TURKEY -- 13762181
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1969478 -844321 -219848 620832 4175763
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2417969.2 86022.0 -28.11 <2e-16 ***
## x.var 15712.5 194.8 80.65 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1188000 on 762 degrees of freedom
## Multiple R-squared: 0.8951, Adjusted R-squared: 0.895
## F-statistic: 6504 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.4353 -0.9194 0.9916 1.6527 2.5445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.7394812 0.1884553 41.07 <2e-16 ***
## x.var 0.0142012 0.0004268 33.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.602 on 762 degrees of freedom
## Multiple R-squared: 0.5923, Adjusted R-squared: 0.5918
## F-statistic: 1107 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -808.3 -620.9 -433.5 416.1 1020.3
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.232e+01 7.601e-05 162034 <2e-16 ***
## x.var 5.541e-03 1.236e-07 44831 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3114993113 on 763 degrees of freedom
## Residual deviance: 261518390 on 762 degrees of freedom
## AIC: 261529770
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## US -- 78733498
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6481470 -3419378 -1766591 2029817 19378597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.035e+07 3.993e+05 -25.91 <2e-16 ***
## x.var 9.142e+04 9.044e+02 101.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5514000 on 762 degrees of freedom
## Multiple R-squared: 0.9306, Adjusted R-squared: 0.9305
## F-statistic: 1.022e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.2293 -0.9585 0.8639 1.7450 2.1062
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.090e+01 1.859e-01 58.62 <2e-16 ***
## x.var 1.211e-02 4.211e-04 28.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.567 on 762 degrees of freedom
## Multiple R-squared: 0.5206, Adjusted R-squared: 0.52
## F-statistic: 827.5 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2775.0 -1482.5 -470.8 889.4 2498.2
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.493e+01 2.471e-05 604197 <2e-16 ***
## x.var 4.348e-03 4.194e-08 103678 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1.5443e+10 on 763 degrees of freedom
## Residual deviance: 1.8380e+09 on 762 degrees of freedom
## AIC: 1.838e+09
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## GLM using Family Family: Gamma Link function: log :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.0486 -0.6041 -0.1120 0.3591 0.8710
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.373e+01 4.304e-02 319.02 <2e-16 ***
## x.var 6.930e-03 9.748e-05 71.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.3531055)
##
## Null deviance: 2284.3 on 763 degrees of freedom
## Residual deviance: 1309.1 on 762 degrees of freedom
## AIC: 26511
##
## Number of Fisher Scoring iterations: 15
##
## --------------------------------------------------------------------------------
## UGANDA -- 163152
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -32986 -14371 70 15547 35521
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -35751.235 1286.991 -27.78 <2e-16 ***
## x.var 230.180 2.915 78.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17770 on 762 degrees of freedom
## Multiple R-squared: 0.8911, Adjusted R-squared: 0.891
## F-statistic: 6236 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4724 -0.8316 0.3332 1.2523 2.0792
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6579970 0.1204276 30.38 <2e-16 ***
## x.var 0.0138042 0.0002728 50.61 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.663 on 762 degrees of freedom
## Multiple R-squared: 0.7707, Adjusted R-squared: 0.7704
## F-statistic: 2561 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -139.45 -91.39 -21.35 55.00 125.00
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.053e+00 6.347e-04 12686 <2e-16 ***
## x.var 5.597e-03 1.030e-06 5433 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 46396107 on 763 degrees of freedom
## Residual deviance: 4259634 on 762 degrees of freedom
## AIC: 4267760
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## UKRAINE -- 5012980
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -505097 -270118 -98707 256746 1211174
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -833141.23 26615.19 -31.3 <2e-16 ***
## x.var 6066.68 60.28 100.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 367500 on 762 degrees of freedom
## Multiple R-squared: 0.93, Adjusted R-squared: 0.9299
## F-statistic: 1.013e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.255 -1.183 0.959 1.724 2.297
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.6550093 0.1743472 38.17 <2e-16 ***
## x.var 0.0146363 0.0003949 37.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.407 on 762 degrees of freedom
## Multiple R-squared: 0.6432, Adjusted R-squared: 0.6428
## F-statistic: 1374 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -601.2 -531.8 -153.4 369.8 658.3
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.177e+01 1.094e-04 107544 <2e-16 ***
## x.var 4.973e-03 1.813e-07 27424 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1152768668 on 763 degrees of freedom
## Residual deviance: 142724588 on 762 degrees of freedom
## AIC: 142735276
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## UNITED ARAB EMIRATES -- 876624
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -109043 -50854 4140 52349 149017
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -150368.48 4808.54 -31.27 <2e-16 ***
## x.var 1351.68 10.89 124.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 66390 on 762 degrees of freedom
## Multiple R-squared: 0.9529, Adjusted R-squared: 0.9528
## F-statistic: 1.54e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.4333 -0.8355 0.7090 1.3195 1.7317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.3576941 0.1347218 54.61 <2e-16 ***
## x.var 0.0108042 0.0003051 35.41 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.86 on 762 degrees of freedom
## Multiple R-squared: 0.622, Adjusted R-squared: 0.6215
## F-statistic: 1254 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -353.12 -204.42 -73.22 183.61 277.25
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.075e+01 2.014e-04 53380 <2e-16 ***
## x.var 4.305e-03 3.423e-07 12578 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 234133452 on 763 degrees of freedom
## Residual deviance: 34657229 on 762 degrees of freedom
## AIC: 34667399
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## UNITED KINGDOM -- 18867585
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2289498 -1389520 -620933 891534 7192814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3023828.5 145061.4 -20.84 <2e-16 ***
## x.var 19239.0 328.5 58.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2003000 on 762 degrees of freedom
## Multiple R-squared: 0.8182, Adjusted R-squared: 0.8179
## F-statistic: 3429 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.2321 -0.7556 0.7432 1.3797 1.8338
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.1243401 0.1480842 61.62 <2e-16 ***
## x.var 0.0119749 0.0003354 35.70 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.045 on 762 degrees of freedom
## Multiple R-squared: 0.6259, Adjusted R-squared: 0.6254
## F-statistic: 1275 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -803.3 -497.8 -159.3 144.7 1074.6
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.243e+01 7.042e-05 176452 <2e-16 ***
## x.var 5.673e-03 1.140e-07 49741 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 3.772e+09 on 763 degrees of freedom
## Residual deviance: 2.131e+08 on 762 degrees of freedom
## AIC: 213116048
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## URUGUAY -- 827814
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -135523 -69937 -3506 58715 329148
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -150033.20 6688.00 -22.43 <2e-16 ***
## x.var 849.08 15.15 56.05 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 92340 on 762 degrees of freedom
## Multiple R-squared: 0.8048, Adjusted R-squared: 0.8046
## F-statistic: 3142 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4796 -0.4824 0.4295 1.0751 1.3705
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6966208 0.1036840 35.65 <2e-16 ***
## x.var 0.0153517 0.0002348 65.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.432 on 762 degrees of freedom
## Multiple R-squared: 0.8487, Adjusted R-squared: 0.8485
## F-statistic: 4274 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -291.48 -178.60 -121.75 41.89 388.01
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.620e+00 3.986e-04 21627 <2e-16 ***
## x.var 6.647e-03 6.287e-07 10573 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 205048676 on 763 degrees of freedom
## Residual deviance: 27995416 on 762 degrees of freedom
## AIC: 28004040
##
## Number of Fisher Scoring iterations: 6
##
## --------------------------------------------------------------------------------
## UZBEKISTAN -- 235740
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24450 -11171 2358 10379 29647
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29660.534 1053.548 -28.15 <2e-16 ***
## x.var 309.635 2.386 129.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14550 on 762 degrees of freedom
## Multiple R-squared: 0.9567, Adjusted R-squared: 0.9566
## F-statistic: 1.684e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.3730 -0.8604 0.4427 1.5256 2.3934
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.7827391 0.1536969 37.62 <2e-16 ***
## x.var 0.0111361 0.0003481 31.99 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.122 on 762 degrees of freedom
## Multiple R-squared: 0.5732, Adjusted R-squared: 0.5727
## F-statistic: 1023 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -183.85 -80.21 12.80 43.29 114.15
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.503e+00 3.926e-04 24207 <2e-16 ***
## x.var 3.997e-03 6.761e-07 5912 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 49675563 on 763 degrees of freedom
## Residual deviance: 6818344 on 762 degrees of freedom
## AIC: 6827326
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## VANUATU -- 15
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7011 -0.7681 0.0017 0.6493 8.5329
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.7087585 0.0744180 -22.96 <2e-16 ***
## x.var 0.0107295 0.0001685 63.66 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.027 on 762 degrees of freedom
## Multiple R-squared: 0.8417, Adjusted R-squared: 0.8415
## F-statistic: 4053 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5910 -0.1536 0.0006 0.1923 0.5255
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4435931 0.0177505 -24.99 <2e-16 ***
## x.var 0.0035311 0.0000402 87.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2451 on 762 degrees of freedom
## Multiple R-squared: 0.9101, Adjusted R-squared: 0.91
## F-statistic: 7715 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.1882 -0.7308 -0.3026 0.2171 1.4056
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.0360912 0.0958444 -21.24 <2e-16 ***
## x.var 0.0057603 0.0001548 37.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2395.64 on 763 degrees of freedom
## Residual deviance: 387.04 on 762 degrees of freedom
## AIC: 1828.7
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## VENEZUELA -- 512560
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -60161 -25969 -8528 32230 92690
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -93405.55 2719.83 -34.34 <2e-16 ***
## x.var 715.11 6.16 116.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 37550 on 762 degrees of freedom
## Multiple R-squared: 0.9465, Adjusted R-squared: 0.9464
## F-statistic: 1.348e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9435 -1.0973 0.3528 1.5951 2.6182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.2491859 0.1504938 34.88 <2e-16 ***
## x.var 0.0133531 0.0003408 39.18 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.078 on 762 degrees of freedom
## Multiple R-squared: 0.6682, Adjusted R-squared: 0.6678
## F-statistic: 1535 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -236.29 -173.55 46.87 80.12 118.01
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.769e+00 3.063e-04 31892 <2e-16 ***
## x.var 4.779e-03 5.111e-07 9349 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 128093572 on 763 degrees of freedom
## Residual deviance: 12870060 on 762 degrees of freedom
## AIC: 12879285
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## VIETNAM -- 2972378
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -636296 -356175 -32066 257651 1819151
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -483999.17 33188.04 -14.58 <2e-16 ***
## x.var 2142.97 75.17 28.51 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 458200 on 762 degrees of freedom
## Multiple R-squared: 0.5161, Adjusted R-squared: 0.5155
## F-statistic: 812.8 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8291 -0.9482 0.3587 0.8129 1.5340
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8136879 0.0743354 37.85 <2e-16 ***
## x.var 0.0154048 0.0001684 91.50 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.026 on 762 degrees of freedom
## Multiple R-squared: 0.9166, Adjusted R-squared: 0.9165
## F-statistic: 8372 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -393.12 -155.49 -23.37 -3.84 438.90
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.400e+00 6.093e-04 7222 <2e-16 ***
## x.var 1.399e-02 8.745e-07 15994 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 730392897 on 763 degrees of freedom
## Residual deviance: 28112867 on 762 degrees of freedom
## AIC: 28120918
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## WEST BANK AND GAZA -- 638172
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -70114 -34007 -2586 25972 128254
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.092e+05 3.189e+03 -34.25 <2e-16 ***
## x.var 8.104e+02 7.222e+00 112.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 44030 on 762 degrees of freedom
## Multiple R-squared: 0.9429, Adjusted R-squared: 0.9429
## F-statistic: 1.259e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5684 -0.9495 0.1680 1.7026 2.1191
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9675169 0.1378003 36.05 <2e-16 ***
## x.var 0.0139750 0.0003121 44.78 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.903 on 762 degrees of freedom
## Multiple R-squared: 0.7246, Adjusted R-squared: 0.7243
## F-statistic: 2005 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -263.42 -198.29 -62.55 119.98 258.39
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.810e+00 2.948e-04 33276 <2e-16 ***
## x.var 4.897e-03 4.898e-07 9997 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 154334343 on 763 degrees of freedom
## Residual deviance: 21110848 on 762 degrees of freedom
## AIC: 21120055
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## WINTER OLYMPICS 2022 -- 510
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -56.69 -34.21 -11.73 10.74 449.54
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.56536 5.55788 -5.320 1.37e-07 ***
## x.var 0.11783 0.01259 9.361 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 76.74 on 762 degrees of freedom
## Multiple R-squared: 0.1031, Adjusted R-squared: 0.102
## F-statistic: 87.62 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8783 -0.5308 -0.1833 0.1643 5.3066
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.4553221 0.0790982 -5.756 1.25e-08 ***
## x.var 0.0018219 0.0001791 10.170 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.092 on 762 degrees of freedom
## Multiple R-squared: 0.1195, Adjusted R-squared: 0.1184
## F-statistic: 103.4 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Warning: glm.fit: fitted rates numerically 0 occurred
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -14.8246 -0.0078 0.0000 0.0000 12.6593
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.506e+01 5.600e-01 -98.32 <2e-16 ***
## x.var 8.100e-02 7.444e-04 108.81 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 77801 on 763 degrees of freedom
## Residual deviance: 3763 on 762 degrees of freedom
## AIC: 4010.3
##
## Number of Fisher Scoring iterations: 9
##
## --------------------------------------------------------------------------------
## YEMEN -- 11751
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2500.7 -261.6 275.6 575.8 1847.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1863.7606 72.4940 -25.71 <2e-16 ***
## x.var 16.4197 0.1642 100.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1001 on 762 degrees of freedom
## Multiple R-squared: 0.9292, Adjusted R-squared: 0.9291
## F-statistic: 1e+04 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8824 -0.9867 0.4385 1.2290 2.4377
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0499529 0.1250268 24.39 <2e-16 ***
## x.var 0.0105373 0.0002832 37.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.726 on 762 degrees of freedom
## Multiple R-squared: 0.645, Adjusted R-squared: 0.6446
## F-statistic: 1385 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -40.71 -18.00 0.66 11.22 31.44
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.302e+00 1.847e-03 3412 <2e-16 ***
## x.var 4.355e-03 3.133e-06 1390 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2767396 on 763 degrees of freedom
## Residual deviance: 320374 on 762 degrees of freedom
## AIC: 327036
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ZAMBIA -- 311888
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -57130 -28528 -3265 26966 66087
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -66504.556 2469.966 -26.93 <2e-16 ***
## x.var 417.270 5.594 74.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34100 on 762 degrees of freedom
## Multiple R-squared: 0.8795, Adjusted R-squared: 0.8794
## F-statistic: 5564 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8644 -1.1570 0.4612 1.3426 2.2074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0749754 0.1294591 31.48 <2e-16 ***
## x.var 0.0140965 0.0002932 48.08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.787 on 762 degrees of freedom
## Multiple R-squared: 0.7521, Adjusted R-squared: 0.7517
## F-statistic: 2311 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -165.97 -110.06 -60.42 65.81 188.14
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 8.529e+00 4.865e-04 17531 <2e-16 ***
## x.var 5.766e-03 7.857e-07 7338 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 86001406 on 763 degrees of freedom
## Residual deviance: 7832249 on 762 degrees of freedom
## AIC: 7840784
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------
## ZIMBABWE -- 234589
## =============================== running models...===============================
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53047 -26270 -1357 17575 72781
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -50359.193 2373.631 -21.22 <2e-16 ***
## x.var 281.176 5.376 52.30 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32770 on 762 degrees of freedom
## Multiple R-squared: 0.7821, Adjusted R-squared: 0.7818
## F-statistic: 2736 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## Linear Regression (lm):
##
## Call:
## lm(formula = y.var ~ x.var)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0569 -1.2107 0.1718 1.4034 2.3486
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.2083176 0.1188354 27.00 <2e-16 ***
## x.var 0.0146310 0.0002691 54.36 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.641 on 762 degrees of freedom
## Multiple R-squared: 0.795, Adjusted R-squared: 0.7947
## F-statistic: 2955 on 1 and 762 DF, p-value: < 2.2e-16
##
## --------------------------------------------------------------------------------
## GLM using Family [1] "poisson" :
##
## Call:
## glm(formula = y.var ~ x.var, family = family)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -120.04 -62.73 -26.20 16.95 133.12
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.411e+00 7.102e-04 10434 <2e-16 ***
## x.var 6.797e-03 1.116e-06 6089 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 62321394 on 763 degrees of freedom
## Residual deviance: 2734644 on 762 degrees of freedom
## AIC: 2742668
##
## Number of Fisher Scoring iterations: 5
##
## --------------------------------------------------------------------------------

# read time series data for confirmed cases
TS.data <- covid19.data("ts-confirmed")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:30:58 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
# compute changes and growth rates per location for all the countries
growth.rate(TS.data,"Libya")
## Processing... LIBYA
## Loading required package: pheatmap
## Warning: package 'pheatmap' was built under R version 4.1.1
## Loading required package: gplots
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
## $Changes
## geo.loc 2020-01-23 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28
## 1 LIBYA 0 0 0 0 0 0
## 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04
## 1 0 0 0 0 0 0 0
## 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11
## 1 0 0 0 0 0 0 0
## 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18
## 1 0 0 0 0 0 0 0
## 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25
## 1 0 0 0 0 0 0 0
## 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03
## 1 0 0 0 0 0 0 0
## 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10
## 1 0 0 0 0 0 0 0
## 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17
## 1 0 0 0 0 0 0 0
## 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24
## 1 0 0 0 0 0 0 1
## 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31
## 1 0 0 0 2 5 0 2
## 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07
## 1 0 1 0 7 0 1 1
## 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14
## 1 1 3 0 0 1 1 9
## 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21
## 1 13 1 0 0 2 0 0
## 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28
## 1 8 1 1 0 0 0 0
## 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05
## 1 0 0 2 0 0 0 0
## 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12
## 1 1 0 0 0 0 0 0
## 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19
## 1 0 0 0 1 0 0 3
## 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26
## 1 1 2 1 3 0 0 2
## 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02
## 1 22 6 13 12 26 12 14
## 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09
## 1 14 13 30 17 0 76 27
## 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16
## 1 19 15 16 9 36 13 17
## 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23
## 1 16 10 10 24 27 24 44
## 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30
## 1 31 28 15 14 35 40 22
## 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07
## 1 50 17 27 71 57 71 65
## 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14
## 1 86 74 0 47 44 79 51
## 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21
## 1 26 63 52 87 75 114 108
## 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28
## 1 88 138 110 123 122 158 190
## 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04
## 1 205 216 183 70 146 226 161
## 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11
## 1 251 404 200 153 219 478 373
## 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18
## 1 309 439 277 411 434 407 489
## 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25
## 1 395 244 414 316 0 572 272
## 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01
## 1 553 440 355 329 465 543 658
## 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08
## 1 532 617 672 649 655 1085 749
## 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15
## 1 879 477 969 440 433 734 629
## 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22
## 1 792 886 616 796 715 847 650
## 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29
## 1 651 535 658 538 536 849 801
## 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06
## 1 511 683 509 370 722 628 1031
## 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13
## 1 1045 779 1076 318 1026 1109 1164
## 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20
## 1 836 855 1169 0 945 1159 957
## 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27
## 1 719 995 764 990 1639 1210 752
## 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03
## 1 899 782 972 467 950 862 781
## 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10
## 1 899 853 1004 595 1078 923 970
## 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17
## 1 875 919 824 0 974 722 612
## 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24
## 1 529 541 802 0 1015 650 707
## 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01
## 1 617 610 866 0 1157 379 608
## 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08
## 1 670 762 680 0 1051 517 889
## 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15
## 1 536 661 697 0 899 578 660
## 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22
## 1 560 706 489 0 788 640 506
## 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29
## 1 640 846 461 0 728 532 437
## 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05
## 1 585 342 467 0 670 561 481
## 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12
## 1 424 635 487 0 743 633 652
## 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19
## 1 640 764 583 0 1071 781 596
## 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26
## 1 659 622 794 0 1148 741 870
## 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02
## 1 765 715 871 0 981 771 1032
## 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09
## 1 809 770 881 0 1132 856 679
## 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16
## 1 467 333 520 0 473 351 331
## 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23
## 1 312 392 585 0 472 415 489
## 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02
## 1 561 571 625 0 880 789 840
## 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09
## 1 618 1002 895 0 1158 1018 1030
## 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16
## 1 910 1073 972 0 1350 1087 1041
## 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23
## 1 1054 1032 1134 0 1264 905 901
## 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30
## 1 909 912 884 0 733 696 706
## 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06
## 1 706 1023 1108 0 1206 1148 876
## 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13
## 1 969 869 732 0 937 851 828
## 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20
## 1 541 513 573 0 749 584 625
## 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27
## 1 594 533 536 0 534 467 501
## 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04
## 1 447 371 436 0 363 464 337
## 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11
## 1 255 266 504 0 273 256 466
## 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18
## 1 253 234 0 0 231 304 298
## 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25
## 1 338 299 250 0 412 281 340
## 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01
## 1 219 321 343 0 366 595 296
## 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08
## 1 251 244 386 0 328 404 243
## 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15
## 1 229 229 376 0 297 225 271
## 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22
## 1 333 258 280 0 322 290 215
## 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29
## 1 223 184 469 0 341 316 452
## 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06
## 1 236 431 418 0 719 782 1070
## 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13
## 1 1248 1384 1710 0 2854 2679 2640
## 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20
## 1 2604 2555 2866 0 4061 3425 1781
## 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27
## 1 0 732 2171 0 3845 3512 3348
## 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03
## 1 3161 2730 2914 0 4322 2892 2139
## 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10
## 1 2484 1997 1879 0 3019 2001 2134
## 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17
## 1 2472 2286 2360 0 2831 2688 2276
## 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24
## 1 2325 1949 2364 0 1722 1625 1894
## 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31
## 1 1682 1722 1613 0 2003 1678 1501
## 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07
## 1 1665 1479 1388 0 1914 1379 1272
## 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14
## 1 1499 1802 1117 0 1443 1291 1149
## 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21
## 1 1433 1053 968 0 1121 1081 1038
## 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28
## 1 985 1006 936 0 989 910 686
## 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05
## 1 693 815 1007 0 748 719 682
## 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12
## 1 692 915 604 0 725 637 551
## 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19
## 1 724 559 563 0 780 638 596
## 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26
## 1 532 436 689 0 745 589 651
## 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02
## 1 624 596 569 0 683 626 499
## 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09
## 1 556 648 599 0 648 795 609
## 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16
## 1 597 568 593 0 599 562 593
## 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23
## 1 408 551 429 0 593 581 595
## 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30
## 1 468 732 600 0 784 638 427
## 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07
## 1 574 529 541 0 709 479 401
## 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13 2021-12-14
## 1 509 495 577 0 655 711 512
## 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20 2021-12-21
## 1 488 648 559 0 726 592 543
## 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27 2021-12-28
## 1 561 560 658 0 735 881 599
## 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03 2022-01-04
## 1 665 640 551 0 916 634 651
## 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10 2022-01-11
## 1 698 643 592 0 579 536 487
## 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17 2022-01-18
## 1 599 618 765 0 867 736 885
## 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24 2022-01-25
## 1 1173 1331 1700 0 2281 2333 3063
## 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31 2022-02-01
## 1 2245 3157 3320 0 5694 4429 4266
## 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07 2022-02-08
## 1 4371 3656 3917 0 4242 2832 3326
## 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14 2022-02-15
## 1 3272 3773 3345 0 3648 2800 2490
## 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21 2022-02-22
## 1 2884 2457 1208 0 2292 2307 1815
## 2022-02-23
## 1 1373
##
## $Growth.Rate
## geo.loc 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28 2020-01-29
## 1 LIBYA NaN NaN NaN NaN NaN NaN
## 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04 2020-02-05
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11 2020-02-12
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18 2020-02-19
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25 2020-02-26
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03 2020-03-04
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10 2020-03-11
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17 2020-03-18
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24 2020-03-25
## 1 NaN NaN NaN NaN NaN NA 0
## 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31 2020-04-01
## 1 NaN NaN NA 2.5 0 NA 0
## 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07 2020-04-08
## 1 NA 0 NA 0 NA 1 1
## 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14 2020-04-15
## 1 3 0 NaN NA 1 9 1.444444
## 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21 2020-04-22
## 1 0.07692308 0 NaN NA 0 NaN NA
## 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28 2020-04-29
## 1 0.125 1 0 NaN NaN NaN NaN
## 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05 2020-05-06
## 1 NaN NA 0 NaN NaN NaN NA
## 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12 2020-05-13
## 1 0 NaN NaN NaN NaN NaN NaN
## 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19 2020-05-20
## 1 NaN NaN NA 0 NaN NA 0.3333333
## 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26 2020-05-27
## 1 2 0.5 3 0 NaN NA 11
## 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02 2020-06-03
## 1 0.2727273 2.166667 0.9230769 2.166667 0.4615385 1.166667 1
## 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09 2020-06-10
## 1 0.9285714 2.307692 0.5666667 0 NA 0.3552632 0.7037037
## 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16 2020-06-17
## 1 0.7894737 1.066667 0.5625 4 0.3611111 1.307692 0.9411765
## 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23 2020-06-24
## 1 0.625 1 2.4 1.125 0.8888889 1.833333 0.7045455
## 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30 2020-07-01
## 1 0.9032258 0.5357143 0.9333333 2.5 1.142857 0.55 2.272727
## 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07 2020-07-08
## 1 0.34 1.588235 2.62963 0.8028169 1.245614 0.915493 1.323077
## 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14 2020-07-15
## 1 0.8604651 0 NA 0.9361702 1.795455 0.6455696 0.5098039
## 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21 2020-07-22
## 1 2.423077 0.8253968 1.673077 0.862069 1.52 0.9473684 0.8148148
## 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28 2020-07-29
## 1 1.568182 0.7971014 1.118182 0.9918699 1.295082 1.202532 1.078947
## 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04 2020-08-05
## 1 1.053659 0.8472222 0.3825137 2.085714 1.547945 0.7123894 1.559006
## 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11 2020-08-12
## 1 1.609562 0.4950495 0.765 1.431373 2.182648 0.7803347 0.8284182
## 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18 2020-08-19
## 1 1.420712 0.6309795 1.483755 1.055961 0.937788 1.201474 0.807771
## 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25 2020-08-26
## 1 0.6177215 1.696721 0.763285 0 NA 0.4755245 2.033088
## 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01 2020-09-02
## 1 0.79566 0.8068182 0.9267606 1.413374 1.167742 1.211786 0.8085106
## 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08 2020-09-09
## 1 1.159774 1.089141 0.9657738 1.009245 1.656489 0.6903226 1.173565
## 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15 2020-09-16
## 1 0.5426621 2.031447 0.4540764 0.9840909 1.69515 0.8569482 1.259141
## 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22 2020-09-23
## 1 1.118687 0.6952596 1.292208 0.8982412 1.184615 0.7674144 1.001538
## 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29 2020-09-30
## 1 0.8218126 1.229907 0.8176292 0.9962825 1.583955 0.9434629 0.6379526
## 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06 2020-10-07
## 1 1.336595 0.7452416 0.7269155 1.951351 0.8698061 1.64172 1.013579
## 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13 2020-10-14
## 1 0.7454545 1.381258 0.295539 3.226415 1.080897 1.049594 0.7182131
## 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20 2020-10-21
## 1 1.022727 1.367251 0 NA 1.226455 0.8257118 0.7513062
## 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27 2020-10-28
## 1 1.383866 0.7678392 1.295812 1.655556 0.738255 0.6214876 1.195479
## 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03 2020-11-04
## 1 0.8698554 1.242967 0.4804527 2.034261 0.9073684 0.9060325 1.151088
## 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10 2020-11-11
## 1 0.948832 1.177022 0.5926295 1.811765 0.8562152 1.050921 0.9020619
## 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17 2020-11-18
## 1 1.050286 0.8966268 0 NA 0.7412731 0.8476454 0.8643791
## 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24 2020-11-25
## 1 1.022684 1.48244 0 NA 0.6403941 1.087692 0.8727016
## 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01 2020-12-02
## 1 0.9886548 1.419672 0 NA 0.3275713 1.604222 1.101974
## 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08 2020-12-09
## 1 1.137313 0.8923885 0 NA 0.4919125 1.719536 0.6029246
## 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15 2020-12-16
## 1 1.233209 1.054463 0 NA 0.6429366 1.141869 0.8484848
## 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22 2020-12-23
## 1 1.260714 0.6926346 0 NA 0.8121827 0.790625 1.264822
## 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29 2020-12-30
## 1 1.321875 0.5449173 0 NA 0.7307692 0.8214286 1.338673
## 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05 2021-01-06
## 1 0.5846154 1.365497 0 NA 0.8373134 0.8573975 0.8814969
## 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12 2021-01-13
## 1 1.497642 0.7669291 0 NA 0.8519515 1.030016 0.9815951
## 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19 2021-01-20
## 1 1.19375 0.763089 0 NA 0.729225 0.7631242 1.105705
## 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26 2021-01-27
## 1 0.9438543 1.276527 0 NA 0.6454704 1.174089 0.8793103
## 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02 2021-02-03
## 1 0.9346405 1.218182 0 NA 0.7859327 1.338521 0.7839147
## 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09 2021-02-10
## 1 0.9517923 1.144156 0 NA 0.7561837 0.7932243 0.6877761
## 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16 2021-02-17
## 1 0.7130621 1.561562 0 NA 0.7420719 0.9430199 0.9425982
## 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23 2021-02-24
## 1 1.25641 1.492347 0 NA 0.8792373 1.178313 1.147239
## 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02 2021-03-03
## 1 1.017825 1.094571 0 NA 0.8965909 1.064639 0.7357143
## 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09 2021-03-10
## 1 1.621359 0.8932136 0 NA 0.8791019 1.011788 0.8834951
## 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16 2021-03-17
## 1 1.179121 0.9058714 0 NA 0.8051852 0.9576817 1.012488
## 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23 2021-03-24
## 1 0.9791271 1.098837 0 NA 0.715981 0.9955801 1.008879
## 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30 2021-03-31
## 1 1.0033 0.9692982 0 NA 0.9495225 1.014368 1
## 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06 2021-04-07
## 1 1.449008 1.083089 0 NA 0.9519071 0.7630662 1.106164
## 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13 2021-04-14
## 1 0.8968008 0.8423475 0 NA 0.9082177 0.972973 0.6533816
## 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20 2021-04-21
## 1 0.948244 1.116959 0 NA 0.7797063 1.070205 0.9504
## 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27 2021-04-28
## 1 0.8973064 1.005629 0 NA 0.8745318 1.072805 0.8922156
## 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04 2021-05-05
## 1 0.8299776 1.175202 0 NA 1.278237 0.7262931 0.7566766
## 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11 2021-05-12
## 1 1.043137 1.894737 0 NA 0.9377289 1.820312 0.5429185
## 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18 2021-05-19
## 1 0.9249012 0 NaN NA 1.316017 0.9802632 1.134228
## 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25 2021-05-26
## 1 0.8846154 0.8361204 0 NA 0.6820388 1.209964 0.6441176
## 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01 2021-06-02
## 1 1.465753 1.068536 0 NA 1.625683 0.497479 0.847973
## 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08 2021-06-09
## 1 0.9721116 1.581967 0 NA 1.231707 0.6014851 0.9423868
## 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15 2021-06-16
## 1 1 1.641921 0 NA 0.7575758 1.204444 1.228782
## 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22 2021-06-23
## 1 0.7747748 1.085271 0 NA 0.9006211 0.7413793 1.037209
## 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29 2021-06-30
## 1 0.8251121 2.548913 0 NA 0.9266862 1.43038 0.5221239
## 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06 2021-07-07
## 1 1.826271 0.9698376 0 NA 1.087622 1.368286 1.166355
## 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13 2021-07-14
## 1 1.108974 1.235549 0 NA 0.9386826 0.9854423 0.9863636
## 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20 2021-07-21
## 1 0.9811828 1.121722 0 NA 0.8433883 0.52 0
## 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27 2021-07-28
## 1 NA 2.965847 0 NA 0.913394 0.953303 0.9441458
## 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03 2021-08-04
## 1 0.8636507 1.067399 0 NA 0.6691347 0.7396266 1.16129
## 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10 2021-08-11
## 1 0.8039452 0.9409114 0 NA 0.6628023 1.066467 1.158388
## 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17 2021-08-18
## 1 0.9247573 1.032371 0 NA 0.9494878 0.8467262 1.021529
## 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24 2021-08-25
## 1 0.8382796 1.21293 0 NA 0.9436702 1.165538 0.8880676
## 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31 2021-09-01
## 1 1.023781 0.9367015 0 NA 0.8377434 0.8945173 1.10926
## 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07 2021-09-08
## 1 0.8882883 0.9384719 0 NA 0.7204807 0.9224075 1.178459
## 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14 2021-09-15
## 1 1.202135 0.6198668 0 NA 0.8946639 0.8900077 1.247171
## 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21 2021-09-22
## 1 0.7348221 0.9192783 0 NA 0.9643176 0.960222 0.9489403
## 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28 2021-09-29
## 1 1.02132 0.9304175 0 NA 0.9201213 0.7538462 1.010204
## 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05 2021-10-06
## 1 1.176046 1.235583 0 NA 0.9612299 0.9485396 1.014663
## 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12 2021-10-13
## 1 1.322254 0.6601093 0 NA 0.8786207 0.8649922 1.313975
## 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19 2021-10-20
## 1 0.7720994 1.007156 0 NA 0.8179487 0.9341693 0.8926174
## 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26 2021-10-27
## 1 0.8195489 1.580275 0 NA 0.790604 1.105263 0.9585253
## 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02 2021-11-03
## 1 0.9551282 0.954698 0 NA 0.9165447 0.7971246 1.114228
## 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09 2021-11-10
## 1 1.165468 0.9243827 0 NA 1.226852 0.7660377 0.9802956
## 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16 2021-11-17
## 1 0.9514238 1.044014 0 NA 0.9382304 1.05516 0.688027
## 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23 2021-11-24
## 1 1.35049 0.7785844 0 NA 0.9797639 1.024096 0.7865546
## 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30 2021-12-01
## 1 1.564103 0.8196721 0 NA 0.8137755 0.669279 1.344262
## 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07 2021-12-08
## 1 0.9216028 1.022684 0 NA 0.6755994 0.8371608 1.269327
## 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13 2021-12-14 2021-12-15
## 1 0.9724951 1.165657 0 NA 1.085496 0.7201125 0.953125
## 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20 2021-12-21 2021-12-22
## 1 1.327869 0.8626543 0 NA 0.815427 0.9172297 1.033149
## 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27 2021-12-28 2021-12-29
## 1 0.9982175 1.175 0 NA 1.198639 0.6799092 1.110184
## 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03 2022-01-04 2022-01-05
## 1 0.962406 0.8609375 0 NA 0.6921397 1.026814 1.072197
## 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10 2022-01-11 2022-01-12
## 1 0.9212034 0.9206843 0 NA 0.925734 0.9085821 1.229979
## 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17 2022-01-18 2022-01-19
## 1 1.03172 1.237864 0 NA 0.8489043 1.202446 1.325424
## 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24 2022-01-25 2022-01-26
## 1 1.134697 1.277235 0 NA 1.022797 1.312902 0.7329416
## 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31 2022-02-01 2022-02-02
## 1 1.406236 1.051631 0 NA 0.7778363 0.9631971 1.024613
## 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07 2022-02-08 2022-02-09
## 1 0.8364219 1.071389 0 NA 0.6676096 1.174435 0.9837643
## 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14 2022-02-15 2022-02-16
## 1 1.153117 0.8865624 0 NA 0.7675439 0.8892857 1.158233
## 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21 2022-02-22 2022-02-23
## 1 0.8519417 0.4916565 0 NA 1.006545 0.786736 0.7564738
## NA
## 1 NA
# compute changes and growth rates per location for 'Italy'
growth.rate(TS.data,geo.loc="Libya")
## Processing... LIBYA

## $Changes
## geo.loc 2020-01-23 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28
## 1 LIBYA 0 0 0 0 0 0
## 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04
## 1 0 0 0 0 0 0 0
## 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11
## 1 0 0 0 0 0 0 0
## 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18
## 1 0 0 0 0 0 0 0
## 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25
## 1 0 0 0 0 0 0 0
## 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03
## 1 0 0 0 0 0 0 0
## 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10
## 1 0 0 0 0 0 0 0
## 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17
## 1 0 0 0 0 0 0 0
## 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24
## 1 0 0 0 0 0 0 1
## 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31
## 1 0 0 0 2 5 0 2
## 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07
## 1 0 1 0 7 0 1 1
## 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14
## 1 1 3 0 0 1 1 9
## 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21
## 1 13 1 0 0 2 0 0
## 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28
## 1 8 1 1 0 0 0 0
## 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05
## 1 0 0 2 0 0 0 0
## 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12
## 1 1 0 0 0 0 0 0
## 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19
## 1 0 0 0 1 0 0 3
## 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26
## 1 1 2 1 3 0 0 2
## 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02
## 1 22 6 13 12 26 12 14
## 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09
## 1 14 13 30 17 0 76 27
## 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16
## 1 19 15 16 9 36 13 17
## 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23
## 1 16 10 10 24 27 24 44
## 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30
## 1 31 28 15 14 35 40 22
## 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07
## 1 50 17 27 71 57 71 65
## 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14
## 1 86 74 0 47 44 79 51
## 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21
## 1 26 63 52 87 75 114 108
## 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28
## 1 88 138 110 123 122 158 190
## 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04
## 1 205 216 183 70 146 226 161
## 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11
## 1 251 404 200 153 219 478 373
## 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18
## 1 309 439 277 411 434 407 489
## 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25
## 1 395 244 414 316 0 572 272
## 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01
## 1 553 440 355 329 465 543 658
## 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08
## 1 532 617 672 649 655 1085 749
## 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15
## 1 879 477 969 440 433 734 629
## 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22
## 1 792 886 616 796 715 847 650
## 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29
## 1 651 535 658 538 536 849 801
## 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06
## 1 511 683 509 370 722 628 1031
## 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13
## 1 1045 779 1076 318 1026 1109 1164
## 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20
## 1 836 855 1169 0 945 1159 957
## 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27
## 1 719 995 764 990 1639 1210 752
## 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03
## 1 899 782 972 467 950 862 781
## 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10
## 1 899 853 1004 595 1078 923 970
## 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17
## 1 875 919 824 0 974 722 612
## 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24
## 1 529 541 802 0 1015 650 707
## 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01
## 1 617 610 866 0 1157 379 608
## 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08
## 1 670 762 680 0 1051 517 889
## 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15
## 1 536 661 697 0 899 578 660
## 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22
## 1 560 706 489 0 788 640 506
## 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29
## 1 640 846 461 0 728 532 437
## 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05
## 1 585 342 467 0 670 561 481
## 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12
## 1 424 635 487 0 743 633 652
## 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19
## 1 640 764 583 0 1071 781 596
## 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26
## 1 659 622 794 0 1148 741 870
## 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02
## 1 765 715 871 0 981 771 1032
## 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09
## 1 809 770 881 0 1132 856 679
## 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16
## 1 467 333 520 0 473 351 331
## 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23
## 1 312 392 585 0 472 415 489
## 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02
## 1 561 571 625 0 880 789 840
## 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09
## 1 618 1002 895 0 1158 1018 1030
## 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16
## 1 910 1073 972 0 1350 1087 1041
## 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23
## 1 1054 1032 1134 0 1264 905 901
## 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30
## 1 909 912 884 0 733 696 706
## 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06
## 1 706 1023 1108 0 1206 1148 876
## 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13
## 1 969 869 732 0 937 851 828
## 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20
## 1 541 513 573 0 749 584 625
## 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27
## 1 594 533 536 0 534 467 501
## 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04
## 1 447 371 436 0 363 464 337
## 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11
## 1 255 266 504 0 273 256 466
## 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18
## 1 253 234 0 0 231 304 298
## 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25
## 1 338 299 250 0 412 281 340
## 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01
## 1 219 321 343 0 366 595 296
## 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08
## 1 251 244 386 0 328 404 243
## 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15
## 1 229 229 376 0 297 225 271
## 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22
## 1 333 258 280 0 322 290 215
## 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29
## 1 223 184 469 0 341 316 452
## 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06
## 1 236 431 418 0 719 782 1070
## 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13
## 1 1248 1384 1710 0 2854 2679 2640
## 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20
## 1 2604 2555 2866 0 4061 3425 1781
## 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27
## 1 0 732 2171 0 3845 3512 3348
## 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03
## 1 3161 2730 2914 0 4322 2892 2139
## 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10
## 1 2484 1997 1879 0 3019 2001 2134
## 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17
## 1 2472 2286 2360 0 2831 2688 2276
## 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24
## 1 2325 1949 2364 0 1722 1625 1894
## 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31
## 1 1682 1722 1613 0 2003 1678 1501
## 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07
## 1 1665 1479 1388 0 1914 1379 1272
## 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14
## 1 1499 1802 1117 0 1443 1291 1149
## 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21
## 1 1433 1053 968 0 1121 1081 1038
## 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28
## 1 985 1006 936 0 989 910 686
## 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05
## 1 693 815 1007 0 748 719 682
## 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12
## 1 692 915 604 0 725 637 551
## 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19
## 1 724 559 563 0 780 638 596
## 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26
## 1 532 436 689 0 745 589 651
## 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02
## 1 624 596 569 0 683 626 499
## 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09
## 1 556 648 599 0 648 795 609
## 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16
## 1 597 568 593 0 599 562 593
## 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23
## 1 408 551 429 0 593 581 595
## 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30
## 1 468 732 600 0 784 638 427
## 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07
## 1 574 529 541 0 709 479 401
## 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13 2021-12-14
## 1 509 495 577 0 655 711 512
## 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20 2021-12-21
## 1 488 648 559 0 726 592 543
## 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27 2021-12-28
## 1 561 560 658 0 735 881 599
## 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03 2022-01-04
## 1 665 640 551 0 916 634 651
## 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10 2022-01-11
## 1 698 643 592 0 579 536 487
## 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17 2022-01-18
## 1 599 618 765 0 867 736 885
## 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24 2022-01-25
## 1 1173 1331 1700 0 2281 2333 3063
## 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31 2022-02-01
## 1 2245 3157 3320 0 5694 4429 4266
## 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07 2022-02-08
## 1 4371 3656 3917 0 4242 2832 3326
## 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14 2022-02-15
## 1 3272 3773 3345 0 3648 2800 2490
## 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21 2022-02-22
## 1 2884 2457 1208 0 2292 2307 1815
## 2022-02-23
## 1 1373
##
## $Growth.Rate
## geo.loc 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28 2020-01-29
## 1 LIBYA NaN NaN NaN NaN NaN NaN
## 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04 2020-02-05
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11 2020-02-12
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18 2020-02-19
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25 2020-02-26
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03 2020-03-04
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10 2020-03-11
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17 2020-03-18
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24 2020-03-25
## 1 NaN NaN NaN NaN NaN NA 0
## 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31 2020-04-01
## 1 NaN NaN NA 2.5 0 NA 0
## 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07 2020-04-08
## 1 NA 0 NA 0 NA 1 1
## 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14 2020-04-15
## 1 3 0 NaN NA 1 9 1.444444
## 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21 2020-04-22
## 1 0.07692308 0 NaN NA 0 NaN NA
## 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28 2020-04-29
## 1 0.125 1 0 NaN NaN NaN NaN
## 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05 2020-05-06
## 1 NaN NA 0 NaN NaN NaN NA
## 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12 2020-05-13
## 1 0 NaN NaN NaN NaN NaN NaN
## 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19 2020-05-20
## 1 NaN NaN NA 0 NaN NA 0.3333333
## 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26 2020-05-27
## 1 2 0.5 3 0 NaN NA 11
## 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02 2020-06-03
## 1 0.2727273 2.166667 0.9230769 2.166667 0.4615385 1.166667 1
## 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09 2020-06-10
## 1 0.9285714 2.307692 0.5666667 0 NA 0.3552632 0.7037037
## 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16 2020-06-17
## 1 0.7894737 1.066667 0.5625 4 0.3611111 1.307692 0.9411765
## 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23 2020-06-24
## 1 0.625 1 2.4 1.125 0.8888889 1.833333 0.7045455
## 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30 2020-07-01
## 1 0.9032258 0.5357143 0.9333333 2.5 1.142857 0.55 2.272727
## 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07 2020-07-08
## 1 0.34 1.588235 2.62963 0.8028169 1.245614 0.915493 1.323077
## 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14 2020-07-15
## 1 0.8604651 0 NA 0.9361702 1.795455 0.6455696 0.5098039
## 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21 2020-07-22
## 1 2.423077 0.8253968 1.673077 0.862069 1.52 0.9473684 0.8148148
## 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28 2020-07-29
## 1 1.568182 0.7971014 1.118182 0.9918699 1.295082 1.202532 1.078947
## 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04 2020-08-05
## 1 1.053659 0.8472222 0.3825137 2.085714 1.547945 0.7123894 1.559006
## 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11 2020-08-12
## 1 1.609562 0.4950495 0.765 1.431373 2.182648 0.7803347 0.8284182
## 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18 2020-08-19
## 1 1.420712 0.6309795 1.483755 1.055961 0.937788 1.201474 0.807771
## 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25 2020-08-26
## 1 0.6177215 1.696721 0.763285 0 NA 0.4755245 2.033088
## 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01 2020-09-02
## 1 0.79566 0.8068182 0.9267606 1.413374 1.167742 1.211786 0.8085106
## 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08 2020-09-09
## 1 1.159774 1.089141 0.9657738 1.009245 1.656489 0.6903226 1.173565
## 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15 2020-09-16
## 1 0.5426621 2.031447 0.4540764 0.9840909 1.69515 0.8569482 1.259141
## 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22 2020-09-23
## 1 1.118687 0.6952596 1.292208 0.8982412 1.184615 0.7674144 1.001538
## 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29 2020-09-30
## 1 0.8218126 1.229907 0.8176292 0.9962825 1.583955 0.9434629 0.6379526
## 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06 2020-10-07
## 1 1.336595 0.7452416 0.7269155 1.951351 0.8698061 1.64172 1.013579
## 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13 2020-10-14
## 1 0.7454545 1.381258 0.295539 3.226415 1.080897 1.049594 0.7182131
## 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20 2020-10-21
## 1 1.022727 1.367251 0 NA 1.226455 0.8257118 0.7513062
## 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27 2020-10-28
## 1 1.383866 0.7678392 1.295812 1.655556 0.738255 0.6214876 1.195479
## 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03 2020-11-04
## 1 0.8698554 1.242967 0.4804527 2.034261 0.9073684 0.9060325 1.151088
## 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10 2020-11-11
## 1 0.948832 1.177022 0.5926295 1.811765 0.8562152 1.050921 0.9020619
## 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17 2020-11-18
## 1 1.050286 0.8966268 0 NA 0.7412731 0.8476454 0.8643791
## 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24 2020-11-25
## 1 1.022684 1.48244 0 NA 0.6403941 1.087692 0.8727016
## 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01 2020-12-02
## 1 0.9886548 1.419672 0 NA 0.3275713 1.604222 1.101974
## 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08 2020-12-09
## 1 1.137313 0.8923885 0 NA 0.4919125 1.719536 0.6029246
## 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15 2020-12-16
## 1 1.233209 1.054463 0 NA 0.6429366 1.141869 0.8484848
## 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22 2020-12-23
## 1 1.260714 0.6926346 0 NA 0.8121827 0.790625 1.264822
## 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29 2020-12-30
## 1 1.321875 0.5449173 0 NA 0.7307692 0.8214286 1.338673
## 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05 2021-01-06
## 1 0.5846154 1.365497 0 NA 0.8373134 0.8573975 0.8814969
## 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12 2021-01-13
## 1 1.497642 0.7669291 0 NA 0.8519515 1.030016 0.9815951
## 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19 2021-01-20
## 1 1.19375 0.763089 0 NA 0.729225 0.7631242 1.105705
## 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26 2021-01-27
## 1 0.9438543 1.276527 0 NA 0.6454704 1.174089 0.8793103
## 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02 2021-02-03
## 1 0.9346405 1.218182 0 NA 0.7859327 1.338521 0.7839147
## 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09 2021-02-10
## 1 0.9517923 1.144156 0 NA 0.7561837 0.7932243 0.6877761
## 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16 2021-02-17
## 1 0.7130621 1.561562 0 NA 0.7420719 0.9430199 0.9425982
## 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23 2021-02-24
## 1 1.25641 1.492347 0 NA 0.8792373 1.178313 1.147239
## 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02 2021-03-03
## 1 1.017825 1.094571 0 NA 0.8965909 1.064639 0.7357143
## 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09 2021-03-10
## 1 1.621359 0.8932136 0 NA 0.8791019 1.011788 0.8834951
## 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16 2021-03-17
## 1 1.179121 0.9058714 0 NA 0.8051852 0.9576817 1.012488
## 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23 2021-03-24
## 1 0.9791271 1.098837 0 NA 0.715981 0.9955801 1.008879
## 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30 2021-03-31
## 1 1.0033 0.9692982 0 NA 0.9495225 1.014368 1
## 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06 2021-04-07
## 1 1.449008 1.083089 0 NA 0.9519071 0.7630662 1.106164
## 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13 2021-04-14
## 1 0.8968008 0.8423475 0 NA 0.9082177 0.972973 0.6533816
## 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20 2021-04-21
## 1 0.948244 1.116959 0 NA 0.7797063 1.070205 0.9504
## 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27 2021-04-28
## 1 0.8973064 1.005629 0 NA 0.8745318 1.072805 0.8922156
## 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04 2021-05-05
## 1 0.8299776 1.175202 0 NA 1.278237 0.7262931 0.7566766
## 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11 2021-05-12
## 1 1.043137 1.894737 0 NA 0.9377289 1.820312 0.5429185
## 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18 2021-05-19
## 1 0.9249012 0 NaN NA 1.316017 0.9802632 1.134228
## 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25 2021-05-26
## 1 0.8846154 0.8361204 0 NA 0.6820388 1.209964 0.6441176
## 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01 2021-06-02
## 1 1.465753 1.068536 0 NA 1.625683 0.497479 0.847973
## 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08 2021-06-09
## 1 0.9721116 1.581967 0 NA 1.231707 0.6014851 0.9423868
## 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15 2021-06-16
## 1 1 1.641921 0 NA 0.7575758 1.204444 1.228782
## 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22 2021-06-23
## 1 0.7747748 1.085271 0 NA 0.9006211 0.7413793 1.037209
## 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29 2021-06-30
## 1 0.8251121 2.548913 0 NA 0.9266862 1.43038 0.5221239
## 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06 2021-07-07
## 1 1.826271 0.9698376 0 NA 1.087622 1.368286 1.166355
## 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13 2021-07-14
## 1 1.108974 1.235549 0 NA 0.9386826 0.9854423 0.9863636
## 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20 2021-07-21
## 1 0.9811828 1.121722 0 NA 0.8433883 0.52 0
## 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27 2021-07-28
## 1 NA 2.965847 0 NA 0.913394 0.953303 0.9441458
## 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03 2021-08-04
## 1 0.8636507 1.067399 0 NA 0.6691347 0.7396266 1.16129
## 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10 2021-08-11
## 1 0.8039452 0.9409114 0 NA 0.6628023 1.066467 1.158388
## 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17 2021-08-18
## 1 0.9247573 1.032371 0 NA 0.9494878 0.8467262 1.021529
## 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24 2021-08-25
## 1 0.8382796 1.21293 0 NA 0.9436702 1.165538 0.8880676
## 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31 2021-09-01
## 1 1.023781 0.9367015 0 NA 0.8377434 0.8945173 1.10926
## 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07 2021-09-08
## 1 0.8882883 0.9384719 0 NA 0.7204807 0.9224075 1.178459
## 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14 2021-09-15
## 1 1.202135 0.6198668 0 NA 0.8946639 0.8900077 1.247171
## 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21 2021-09-22
## 1 0.7348221 0.9192783 0 NA 0.9643176 0.960222 0.9489403
## 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28 2021-09-29
## 1 1.02132 0.9304175 0 NA 0.9201213 0.7538462 1.010204
## 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05 2021-10-06
## 1 1.176046 1.235583 0 NA 0.9612299 0.9485396 1.014663
## 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12 2021-10-13
## 1 1.322254 0.6601093 0 NA 0.8786207 0.8649922 1.313975
## 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19 2021-10-20
## 1 0.7720994 1.007156 0 NA 0.8179487 0.9341693 0.8926174
## 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26 2021-10-27
## 1 0.8195489 1.580275 0 NA 0.790604 1.105263 0.9585253
## 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02 2021-11-03
## 1 0.9551282 0.954698 0 NA 0.9165447 0.7971246 1.114228
## 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09 2021-11-10
## 1 1.165468 0.9243827 0 NA 1.226852 0.7660377 0.9802956
## 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16 2021-11-17
## 1 0.9514238 1.044014 0 NA 0.9382304 1.05516 0.688027
## 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23 2021-11-24
## 1 1.35049 0.7785844 0 NA 0.9797639 1.024096 0.7865546
## 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30 2021-12-01
## 1 1.564103 0.8196721 0 NA 0.8137755 0.669279 1.344262
## 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07 2021-12-08
## 1 0.9216028 1.022684 0 NA 0.6755994 0.8371608 1.269327
## 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13 2021-12-14 2021-12-15
## 1 0.9724951 1.165657 0 NA 1.085496 0.7201125 0.953125
## 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20 2021-12-21 2021-12-22
## 1 1.327869 0.8626543 0 NA 0.815427 0.9172297 1.033149
## 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27 2021-12-28 2021-12-29
## 1 0.9982175 1.175 0 NA 1.198639 0.6799092 1.110184
## 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03 2022-01-04 2022-01-05
## 1 0.962406 0.8609375 0 NA 0.6921397 1.026814 1.072197
## 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10 2022-01-11 2022-01-12
## 1 0.9212034 0.9206843 0 NA 0.925734 0.9085821 1.229979
## 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17 2022-01-18 2022-01-19
## 1 1.03172 1.237864 0 NA 0.8489043 1.202446 1.325424
## 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24 2022-01-25 2022-01-26
## 1 1.134697 1.277235 0 NA 1.022797 1.312902 0.7329416
## 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31 2022-02-01 2022-02-02
## 1 1.406236 1.051631 0 NA 0.7778363 0.9631971 1.024613
## 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07 2022-02-08 2022-02-09
## 1 0.8364219 1.071389 0 NA 0.6676096 1.174435 0.9837643
## 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14 2022-02-15 2022-02-16
## 1 1.153117 0.8865624 0 NA 0.7675439 0.8892857 1.158233
## 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21 2022-02-22 2022-02-23
## 1 0.8519417 0.4916565 0 NA 1.006545 0.786736 0.7564738
## NA
## 1 NA
# compute changes and growth rates per location for 'Italy' and 'Germany'
growth.rate(TS.data,geo.loc=c("Saudi Arabia","Egypt"))
## Processing... SAUDI ARABIA

## Processing... EGYPT





## $Changes
## geo.loc 2020-01-23 2020-01-24 2020-01-25 2020-01-26 2020-01-27
## 1 SAUDI ARABIA 0 0 0 0 0
## 2 EGYPT 0 0 0 0 0
## 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17
## 1 0 0 0 0 0 0 0
## 2 0 0 0 1 0 0 0
## 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02
## 1 0 0 0 0 0 0 1
## 2 0 0 0 0 0 1 0
## 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09
## 1 0 0 4 0 0 6 4
## 2 0 0 1 12 0 34 6
## 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16
## 1 5 1 24 41 17 0 15
## 2 4 1 7 13 29 1 40
## 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23
## 1 53 0 103 70 48 119 51
## 2 46 0 60 29 9 33 39
## 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30
## 1 205 133 112 92 99 96 154
## 2 36 54 39 41 40 33 47
## 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06
## 1 110 157 165 154 140 223 203
## 2 54 69 86 120 85 103 149
## 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13
## 1 190 137 355 364 382 429 472
## 2 128 110 139 95 145 126 125
## 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20
## 1 435 493 518 762 1132 1088 1122
## 2 160 155 168 171 188 112 189
## 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27
## 1 1147 1141 1158 1172 1197 1223 1289
## 2 157 169 232 201 227 215 248
## 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04
## 1 1266 1325 1351 1344 1362 1552 1645
## 2 260 226 269 358 298 272 348
## 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11
## 1 1595 1687 1793 1701 1704 1912 1966
## 2 388 387 393 495 488 436 346
## 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18
## 1 1911 1905 2039 2307 2840 2736 2593
## 2 347 338 398 399 491 510 535
## 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25
## 1 2509 2691 2532 2642 2442 2399 2235
## 2 720 745 774 783 727 752 702
## 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01
## 1 1931 1815 1644 1581 1618 1877 1881
## 2 789 910 1127 1289 1367 1536 1399
## 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08
## 1 1869 2171 1975 2591 3121 3045 3369
## 2 1152 1079 1152 1348 1497 1467 1365
## 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15
## 1 3288 3717 3733 3921 3366 4233 4507
## 2 1385 1455 1442 1577 1677 1618 1691
## 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22
## 1 4267 4919 4757 4301 3941 3379 3393
## 2 1567 1363 1218 1774 1547 1475 1576
## 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29
## 1 3139 3123 3372 3938 3927 3989 3943
## 2 1332 1420 1569 1625 1168 1265 1566
## 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06
## 1 4387 3402 3383 4193 4128 3580 4207
## 2 1557 1503 1485 1412 1324 1218 969
## 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13
## 1 3392 3036 3183 3159 2994 2779 2852
## 2 1057 1025 950 981 923 912 931
## 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20
## 1 2692 2671 2764 2613 2565 2504 2429
## 2 929 913 928 703 698 603 627
## 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27
## 1 2476 2331 2238 2378 2201 1968 1993
## 2 676 667 668 659 511 479 420
## 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03
## 1 1897 1759 1629 1686 1573 1357 1258
## 2 465 409 401 321 238 167 157
## 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10
## 1 1363 1368 1402 1567 1469 1428 1257
## 2 112 123 131 141 167 178 174
## 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17
## 1 1521 1569 1482 1383 1413 1227 1372
## 2 168 129 145 112 116 139 115
## 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24
## 1 1409 1363 1287 1213 1184 1109 1175
## 2 163 161 111 123 89 103 138
## 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31
## 1 1114 1068 1019 1069 987 910 951
## 2 141 206 237 223 212 230 212
## 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07
## 1 898 816 833 822 791 756 768
## 2 176 165 145 157 130 151 178
## 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14
## 1 781 775 708 687 643 601 607
## 2 187 175 154 151 148 153 168
## 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21
## 1 672 621 593 576 551 483 492
## 2 163 160 141 131 128 115 126
## 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28
## 1 552 561 498 472 461 403 455
## 2 113 121 138 112 111 104 115
## 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05
## 1 539 418 492 481 419 390 379
## 2 124 119 119 149 109 108 98
## 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12
## 1 477 468 421 407 405 323 348
## 2 121 133 121 106 125 129 132
## 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19
## 1 474 501 472 433 359 348 381
## 2 139 128 118 126 138 127 123
## 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26
## 1 385 405 401 383 395 323 357
## 2 158 178 177 170 167 143 167
## 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02
## 1 399 416 435 398 402 374 381
## 2 170 153 179 167 179 181 189
## 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09
## 1 473 426 450 436 407 363 392
## 2 197 207 201 224 208 239 221
## 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16
## 1 471 394 311 441 349 305 301
## 2 232 227 214 224 228 220 242
## 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23
## 1 362 290 319 286 221 224 231
## 2 275 329 342 363 358 351 354
## 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30
## 1 252 326 322 302 220 217 232
## 2 361 365 368 357 351 358 370
## 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07
## 1 263 249 230 234 190 187 209
## 2 392 421 432 427 431 418 415
## 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14
## 1 193 159 141 168 166 139 125
## 2 434 421 445 464 478 486 511
## 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21
## 1 142 180 181 174 158 162 168
## 2 523 544 548 579 611 664 718
## 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28
## 1 181 177 189 178 163 154 119
## 2 788 911 1021 1133 1189 1226 1359
## 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04
## 1 149 113 140 137 101 82 94
## 2 1333 1411 1418 1409 1407 1309 1277
## 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11
## 1 104 118 108 97 110 117 140
## 2 1119 1007 1219 1001 989 993 961
## 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18
## 1 147 175 169 173 140 176 170
## 2 970 996 1022 879 887 890 878
## 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25
## 1 226 238 212 213 197 186 213
## 2 899 789 752 748 680 674 669
## 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01
## 1 223 216 253 267 270 261 255
## 2 643 632 521 589 547 533 541
## 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08
## 1 310 306 303 327 386 317 356
## 2 521 512 532 540 509 534 567
## 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15
## 1 353 369 364 353 337 322 314
## 2 573 610 603 609 600 611 613
## 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22
## 1 322 334 327 337 325 315 327
## 2 633 618 656 610 600 608 623
## 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01
## 1 335 353 356 346 338 322 317
## 2 633 644 589 601 588 595 586
## 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08
## 1 302 331 375 384 382 357 351
## 2 581 577 587 579 588 581 591
## 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15
## 1 390 386 390 360 351 348 345
## 2 622 645 639 639 641 644 631
## 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22
## 1 354 393 381 391 382 367 404
## 2 640 645 642 645 644 647 643
## 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29
## 1 410 466 482 510 502 531 541
## 2 648 641 661 670 683 686 689
## 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05
## 1 556 585 590 728 684 673 695
## 2 693 699 712 703 710 709 767
## 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12
## 1 792 783 902 904 878 799 842
## 2 778 783 789 794 801 812 818
## 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19
## 1 951 929 985 964 948 916 970
## 2 823 831 837 841 845 850 852
## 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26
## 1 1070 1028 1055 1098 1072 953 958
## 2 855 861 872 884 912 953 991
## 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03
## 1 1045 1062 1026 1056 1048 937 953
## 2 1003 1011 1003 1021 1032 1051 1078
## 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10
## 1 999 1016 1090 1039 997 942 986
## 2 1090 1102 1110 1125 1132 1138 1150
## 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17
## 1 999 1020 1116 927 837 825 886
## 2 1180 1187 1193 1197 1203 1201 1188
## 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24
## 1 1047 1212 1330 1136 1142 1067 1157
## 2 1169 1160 1153 1148 1151 1145 1149
## 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31
## 1 1389 1320 1183 1215 1106 907 1245
## 2 1140 1151 1132 1133 1119 1007 984
## 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07
## 1 1251 1269 1261 1201 1144 984 1161
## 2 956 951 932 861 821 801 782
## 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14
## 1 1261 1274 0 2461 1077 1017 1109
## 2 773 765 755 733 711 691 613
## 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21
## 1 1269 1239 1309 1236 1153 1079 1212
## 2 609 606 591 589 566 532 509
## 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28
## 1 1479 1253 1255 1312 1301 1218 1318
## 2 498 466 423 412 409 389 376
## 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05
## 1 1567 1486 1534 1338 1148 1173 1247
## 2 261 251 242 198 181 179 175
## 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12
## 1 1277 1207 1257 1133 1177 1112 1244
## 2 164 161 155 127 121 117 110
## 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19
## 1 1295 1226 1165 1298 1098 1055 1293
## 2 108 89 81 77 69 0 126
## 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26
## 1 1273 1142 1162 1247 1256 1194 1252
## 2 51 49 44 41 38 39 35
## 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02
## 1 1379 1334 0 0 3622 1084 0
## 2 31 38 42 45 47 49 51
## 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09
## 1 0 0 0 5121 0 0 0
## 2 53 57 51 57 61 65 83
## 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16
## 1 0 0 0 5439 0 0 1755
## 2 86 91 95 97 99 101 107
## 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23
## 1 0 0 1115 0 957 0 793
## 2 112 123 131 164 173 184 189
## 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30
## 1 0 0 0 1324 0 0 0
## 2 194 203 221 234 251 255 263
## 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06
## 1 0 0 0 0 0 1925 0
## 2 279 291 303 318 331 343 368
## 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13
## 1 262 0 222 102 0 0 0
## 2 378 399 413 433 458 481 491
## 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20
## 1 0 0 507 75 0 0 201
## 2 503 531 569 588 637 653 679
## 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27
## 1 69 54 0 0 147 44 59
## 2 688 692 722 568 667 680 702
## 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04
## 1 50 0 99 0 0 0 0
## 2 718 738 741 745 761 768 771
## 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11
## 1 223 45 47 48 35 59 58
## 2 778 788 799 811 831 837 846
## 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18
## 1 55 57 36 48 45 41 38
## 2 857 861 865 869 874 871 883
## 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25
## 1 49 47 46 51 43 47 51
## 2 868 877 883 885 881 886 889
## 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01
## 1 65 55 51 56 41 46 49
## 2 871 907 923 927 948 933 951
## 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08
## 1 45 49 45 43 42 40 43
## 2 921 951 911 922 909 903 929
## 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15
## 1 49 38 43 45 44 30 38
## 2 921 934 919 909 929 0 1881
## 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22
## 1 37 42 38 35 31 36 39
## 2 941 960 911 892 902 884 870
## 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29
## 1 38 34 28 24 29 24 25
## 2 856 901 899 913 931 951 911
## 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06
## 1 32 34 24 38 29 35 43
## 2 949 938 919 933 892 902 871
## 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13
## 1 42 46 45 48 53 51 64
## 2 889 909 803 822 879 863 0
## 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20
## 1 65 88 85 80 116 104 146
## 2 1621 879 901 910 902 919 903
## 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27
## 1 222 252 287 332 325 389 524
## 2 848 879 883 811 866 823 851
## 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03
## 1 602 744 752 819 846 1024 1746
## 2 809 854 871 847 783 801 723
## 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10
## 1 2585 3045 3168 3575 3068 3460 4778
## 2 769 803 840 821 830 912 951
## 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17
## 1 4652 5362 5499 5628 5281 5477 5505
## 2 932 948 1011 1079 1101 1197 1232
## 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24
## 1 5873 5928 5591 4884 4608 4535 4838
## 2 1303 1379 1403 1533 1569 1603 1651
## 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31
## 1 4541 4526 4738 4474 3913 3669 4211
## 2 1809 1910 1985 2007 2018 2210 2223
## 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07
## 1 3861 4092 3852 3555 3013 3260 3747
## 2 2291 2278 2281 2291 2298 2301 2272
## 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14
## 1 3330 3162 2866 2523 1726 2136 2227
## 2 2194 2191 2189 2179 2145 0 4260
## 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21
## 1 1982 1793 1569 1376 997 1013 1052
## 2 2117 2101 2071 2053 2025 2009 2003
## 2022-02-22 2022-02-23
## 1 841 627
## 2 1989 1892
##
## $Growth.Rate
## geo.loc 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28
## 1 SAUDI ARABIA NaN NaN NaN NaN NaN
## 2 EGYPT NaN NaN NaN NaN NaN
## 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NA 0 NaN NaN NaN
## 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03
## 1 NaN NaN NaN NaN NaN NA 0
## 2 NaN NaN NaN NaN NA 0 NaN
## 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10
## 1 NaN NA 0 NaN NA 0.6666667 1.2500000
## 2 NaN NA 12 0 NA 0.1764706 0.6666667
## 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17
## 1 0.20 24 1.708333 0.4146341 0.00000000 NA 3.533333
## 2 0.25 7 1.857143 2.2307692 0.03448276 40 1.150000
## 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24
## 1 0 NA 0.6796117 0.6857143 2.479167 0.4285714 4.0196078
## 2 0 NA 0.4833333 0.3103448 3.666667 1.1818182 0.9230769
## 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31
## 1 0.6487805 0.8421053 0.8214286 1.0760870 0.969697 1.604167 0.7142857
## 2 1.5000000 0.7222222 1.0512821 0.9756098 0.825000 1.424242 1.1489362
## 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07
## 1 1.427273 1.050955 0.9333333 0.9090909 1.592857 0.9103139 0.9359606
## 2 1.277778 1.246377 1.3953488 0.7083333 1.211765 1.4466019 0.8590604
## 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14
## 1 0.7210526 2.591241 1.0253521 1.049451 1.1230366 1.1002331 0.9216102
## 2 0.8593750 1.263636 0.6834532 1.526316 0.8689655 0.9920635 1.2800000
## 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21
## 1 1.133333 1.050710 1.471042 1.485564 0.9611307 1.03125 1.0222816
## 2 0.968750 1.083871 1.017857 1.099415 0.5957447 1.68750 0.8306878
## 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28
## 1 0.994769 1.014899 1.0120898 1.021331 1.0217210 1.053966 0.9821567
## 2 1.076433 1.372781 0.8663793 1.129353 0.9471366 1.153488 1.0483871
## 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05
## 1 1.0466035 1.019623 0.9948187 1.0133929 1.1395007 1.059923 0.9696049
## 2 0.8692308 1.190265 1.3308550 0.8324022 0.9127517 1.279412 1.1149425
## 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12
## 1 1.0576803 1.062833 0.9486893 1.0017637 1.1220657 1.028243 0.9720244
## 2 0.9974227 1.015504 1.2595420 0.9858586 0.8934426 0.793578 1.0028902
## 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19
## 1 0.9968603 1.070341 1.131437 1.231036 0.9633803 0.9477339 0.9676051
## 2 0.9740634 1.177515 1.002513 1.230576 1.0386965 1.0490196 1.3457944
## 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26
## 1 1.072539 0.9409142 1.043444 0.9242998 0.9823915 0.9316382 0.8639821
## 2 1.034722 1.0389262 1.011628 0.9284802 1.0343879 0.9335106 1.1239316
## 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02
## 1 0.9399275 0.9057851 0.9616788 1.023403 1.160074 1.0021311 0.9936204
## 2 1.1533587 1.2384615 1.1437445 1.060512 1.123628 0.9108073 0.8234453
## 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09
## 1 1.1615837 0.909719 1.311899 1.204554 0.9756488 1.1064039 0.9759573
## 2 0.9366319 1.067655 1.170139 1.110534 0.9799599 0.9304703 1.0146520
## 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16
## 1 1.130474 1.0043045 1.050362 0.8584545 1.2575758 1.064730 0.9467495
## 2 1.050542 0.9910653 1.093620 1.0634115 0.9648181 1.045117 0.9266706
## 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23
## 1 1.1528006 0.9670665 0.9041413 0.9162985 0.8573966 1.004143 0.9251400
## 2 0.8698149 0.8936170 1.4564860 0.8720406 0.9534583 1.068475 0.8451777
## 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30
## 1 0.9949028 1.079731 1.167853 0.9972067 1.015788 0.9884683 1.1126046
## 2 1.0660661 1.104930 1.035692 0.7187692 1.083048 1.2379447 0.9942529
## 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07
## 1 0.7754730 0.994415 1.2394325 0.9844980 0.8672481 1.1751397 0.8062753
## 2 0.9653179 0.988024 0.9508418 0.9376771 0.9199396 0.7955665 1.0908153
## 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14
## 1 0.8950472 1.0484190 0.9924599 0.9477683 0.9281897 1.026268 0.9438990
## 2 0.9697256 0.9268293 1.0326316 0.9408767 0.9880823 1.020833 0.9978518
## 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21
## 1 0.9921991 1.034818 0.9453690 0.9816303 0.9762183 0.9700479 1.01935
## 2 0.9827772 1.016429 0.7575431 0.9928876 0.8638968 1.0398010 1.07815
## 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28
## 1 0.9414378 0.960103 1.0625559 0.9255677 0.8941390 1.0127033 0.9518314
## 2 0.9866864 1.001499 0.9865269 0.7754173 0.9373777 0.8768267 1.1071429
## 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04
## 1 0.9272536 0.9260944 1.0349908 0.9329775 0.8626828 0.9270450 1.0834658
## 2 0.8795699 0.9804401 0.8004988 0.7414330 0.7016807 0.9401198 0.7133758
## 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11
## 1 1.003668 1.024854 1.117689 0.9374601 0.9720899 0.8802521 1.2100239
## 2 1.098214 1.065041 1.076336 1.1843972 1.0658683 0.9775281 0.9655172
## 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18
## 1 1.0315582 0.9445507 0.9331984 1.021692 0.8683652 1.1181744 1.026968
## 2 0.7678571 1.1240310 0.7724138 1.035714 1.1982759 0.8273381 1.417391
## 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25
## 1 0.9673527 0.9442406 0.9425019 0.9760923 0.9366554 1.059513 0.9480851
## 2 0.9877301 0.6894410 1.1081081 0.7235772 1.1573034 1.339806 1.0217391
## 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01
## 1 0.9587074 0.9541199 1.0490677 0.9232928 0.9219858 1.0450549 0.9442692
## 2 1.4609929 1.1504854 0.9409283 0.9506726 1.0849057 0.9217391 0.8301887
## 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08
## 1 0.908686 1.0208333 0.9867947 0.9622871 0.9557522 1.015873 1.016927
## 2 0.937500 0.8787879 1.0827586 0.8280255 1.1615385 1.178808 1.050562
## 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15
## 1 0.9923175 0.9135484 0.9703390 0.9359534 0.9346812 1.009983 1.1070840
## 2 0.9358289 0.8800000 0.9805195 0.9801325 1.0337838 1.098039 0.9702381
## 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22
## 1 0.9241071 0.9549114 0.9713322 0.9565972 0.8765880 1.018634 1.1219512
## 2 0.9815951 0.8812500 0.9290780 0.9770992 0.8984375 1.095652 0.8968254
## 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29
## 1 1.016304 0.8877005 0.9477912 0.9766949 0.8741866 1.129032 1.184615
## 2 1.070796 1.1404959 0.8115942 0.9910714 0.9369369 1.105769 1.078261
## 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06
## 1 0.7755102 1.177033 0.9776423 0.8711019 0.9307876 0.9717949 1.258575
## 2 0.9596774 1.000000 1.2521008 0.7315436 0.9908257 0.9074074 1.234694
## 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13
## 1 0.9811321 0.8995726 0.9667458 0.995086 0.7975309 1.077399 1.362069
## 2 1.0991736 0.9097744 0.8760331 1.179245 1.0320000 1.023256 1.053030
## 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20
## 1 1.0569620 0.9421158 0.9173729 0.8290993 0.9693593 1.0948276 1.010499
## 2 0.9208633 0.9218750 1.0677966 1.0952381 0.9202899 0.9685039 1.284553
## 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27
## 1 1.051948 0.9901235 0.9551122 1.0313316 0.8177215 1.105263 1.117647
## 2 1.126582 0.9943820 0.9604520 0.9823529 0.8562874 1.167832 1.017964
## 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03
## 1 1.042607 1.045673 0.9149425 1.010050 0.9303483 1.018717 1.241470
## 2 0.900000 1.169935 0.9329609 1.071856 1.0111732 1.044199 1.042328
## 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10
## 1 0.9006342 1.0563380 0.9688889 0.9334862 0.8918919 1.0798898 1.201531
## 2 1.0507614 0.9710145 1.1144279 0.9285714 1.1490385 0.9246862 1.049774
## 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17
## 1 0.8365180 0.7893401 1.418006 0.7913832 0.8739255 0.9868852 1.202658
## 2 0.9784483 0.9427313 1.046729 1.0178571 0.9649123 1.1000000 1.136364
## 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24
## 1 0.801105 1.100000 0.8965517 0.7727273 1.0135747 1.031250 1.090909
## 2 1.196364 1.039514 1.0614035 0.9862259 0.9804469 1.008547 1.019774
## 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01
## 1 1.293651 0.9877301 0.9378882 0.7284768 0.9863636 1.069124 1.133621
## 2 1.011080 1.0082192 0.9701087 0.9831933 1.0199430 1.033520 1.059459
## 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08
## 1 0.9467681 0.9236948 1.0173913 0.8119658 0.9842105 1.117647 0.923445
## 2 1.0739796 1.0261283 0.9884259 1.0093677 0.9698376 0.992823 1.045783
## 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15
## 1 0.8238342 0.8867925 1.191489 0.9880952 0.8373494 0.8992806 1.136000
## 2 0.9700461 1.0570071 1.042697 1.0301724 1.0167364 1.0514403 1.023483
## 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22
## 1 1.267606 1.005556 0.961326 0.908046 1.025316 1.037037 1.077381
## 2 1.040153 1.007353 1.056569 1.055268 1.086743 1.081325 1.097493
## 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29
## 1 0.9779006 1.067797 0.9417989 0.9157303 0.9447853 0.7727273 1.2521008
## 2 1.1560914 1.120746 1.1096964 1.0494263 1.0311186 1.1084829 0.9808683
## 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05
## 1 0.7583893 1.238938 0.9785714 0.7372263 0.8118812 1.1463415 1.1063830
## 2 1.0585146 1.004961 0.9936530 0.9985806 0.9303483 0.9755539 0.8762725
## 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12
## 1 1.1346154 0.9152542 0.8981481 1.134021 1.063636 1.1965812 1.050000
## 2 0.8999106 1.2105263 0.8211649 0.988012 1.004044 0.9677744 1.009365
## 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19
## 1 1.190476 0.9657143 1.0236686 0.8092486 1.257143 0.9659091 1.329412
## 2 1.026804 1.0261044 0.8600783 1.0091013 1.003382 0.9865169 1.023918
## 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26
## 1 1.0530973 0.8907563 1.0047170 0.9248826 0.9441624 1.1451613 1.046948
## 2 0.8776418 0.9531052 0.9946809 0.9090909 0.9911765 0.9925816 0.961136
## 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02
## 1 0.9686099 1.1712963 1.055336 1.0112360 0.9666667 0.9770115 1.2156863
## 2 0.9828927 0.8243671 1.130518 0.9286927 0.9744059 1.0150094 0.9630314
## 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09
## 1 0.9870968 0.9901961 1.079208 1.1804281 0.8212435 1.123028 0.991573
## 2 0.9827255 1.0390625 1.015038 0.9425926 1.0491159 1.061798 1.010582
## 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16
## 1 1.045326 0.9864499 0.9697802 0.9546742 0.9554896 0.9751553 1.025478
## 2 1.064572 0.9885246 1.0099502 0.9852217 1.0183333 1.0032733 1.032626
## 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23
## 1 1.0372671 0.9790419 1.030581 0.9643917 0.9692308 1.038095 1.024465
## 2 0.9763033 1.0614887 0.929878 0.9836066 1.0133333 1.024671 1.016051
## 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02
## 1 1.053731 1.0084986 0.9719101 0.9768786 0.9526627 0.9844720 0.9526814
## 2 1.017378 0.9145963 1.0203735 0.9783694 1.0119048 0.9848739 0.9914676
## 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09
## 1 1.0960265 1.132931 1.0240000 0.9947917 0.9345550 0.9831933 1.111111
## 2 0.9931153 1.017331 0.9863714 1.0155440 0.9880952 1.0172117 1.052453
## 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16
## 1 0.9897436 1.0103627 0.9230769 0.97500 0.991453 0.9913793 1.026087
## 2 1.0369775 0.9906977 1.0000000 1.00313 1.004680 0.9798137 1.014263
## 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23
## 1 1.110169 0.9694656 1.026247 0.9769821 0.960733 1.1008174 1.014851
## 2 1.007812 0.9953488 1.004673 0.9984496 1.004658 0.9938176 1.007776
## 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30
## 1 1.1365854 1.034335 1.058091 0.9843137 1.057769 1.018832 1.027726
## 2 0.9891975 1.031201 1.013616 1.0194030 1.004392 1.004373 1.005806
## 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06
## 1 1.052158 1.008547 1.2338983 0.9395604 0.9839181 1.032689 1.139568
## 2 1.008658 1.018598 0.9873596 1.0099573 0.9985915 1.081805 1.014342
## 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13
## 1 0.9886364 1.151980 1.002217 0.9712389 0.9100228 1.053817 1.129454
## 2 1.0064267 1.007663 1.006337 1.0088161 1.0137328 1.007389 1.006112
## 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20
## 1 0.9768665 1.06028 0.9786802 0.9834025 0.9662447 1.058952 1.103093
## 2 1.0097205 1.00722 1.0047790 1.0047562 1.0059172 1.002353 1.003521
## 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27
## 1 0.9607477 1.026265 1.040758 0.9763206 0.8889925 1.005247 1.090814
## 2 1.0070175 1.012776 1.013761 1.0316742 1.0449561 1.039874 1.012109
## 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04
## 1 1.016268 0.9661017 1.029240 0.9924242 0.894084 1.017076 1.048269
## 2 1.007976 0.9920870 1.017946 1.0107738 1.018411 1.025690 1.011132
## 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11
## 1 1.017017 1.072835 0.953211 0.9595765 0.9448345 1.046709 1.013185
## 2 1.011009 1.007260 1.013514 1.0062222 1.0053004 1.010545 1.026087
## 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18
## 1 1.021021 1.094118 0.8306452 0.9029126 0.9856631 1.0739394 1.1817156
## 2 1.005932 1.005055 1.0033529 1.0050125 0.9983375 0.9891757 0.9840067
## 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25
## 1 1.1575931 1.0973597 0.8541353 1.005282 0.9343257 1.084349 1.2005186
## 2 0.9923011 0.9939655 0.9956635 1.002613 0.9947871 1.003493 0.9921671
## 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01
## 1 0.950324 0.8962121 1.027050 0.9102881 0.8200723 1.3726571 1.0048193
## 2 1.009649 0.9834926 1.000883 0.9876434 0.8999106 0.9771599 0.9715447
## 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08
## 1 1.0143885 0.9936958 0.9524187 0.9525396 0.8601399 1.1798780 1.086133
## 2 0.9947699 0.9800210 0.9238197 0.9535424 0.9756395 0.9762797 0.988491
## 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15
## 1 1.0103093 0.0000000 NA 0.4376270 0.9442897 1.0904621 1.1442741
## 2 0.9896507 0.9869281 0.9708609 0.9699864 0.9718706 0.8871201 0.9934747
## 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22
## 1 0.9763593 1.0564972 0.9442322 0.9328479 0.9358196 1.1232623 1.220297
## 2 0.9950739 0.9752475 0.9966159 0.9609508 0.9399293 0.9567669 0.978389
## 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29
## 1 0.8471941 1.0015962 1.0454183 0.9916159 0.9362029 1.082102 1.1889226
## 2 0.9357430 0.9077253 0.9739953 0.9927184 0.9511002 0.966581 0.6941489
## 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06
## 1 0.9483089 1.0323015 0.8722295 0.8579970 1.0217770 1.0630861 1.0240577
## 2 0.9616858 0.9641434 0.8181818 0.9141414 0.9889503 0.9776536 0.9371429
## 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13
## 1 0.9451840 1.0414250 0.9013524 1.0388350 0.9447749 1.1187050 1.0409968
## 2 0.9817073 0.9627329 0.8193548 0.9527559 0.9669421 0.9401709 0.9818182
## 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20
## 1 0.9467181 0.9502447 1.1141631 0.8459168 0.9608379 1.225592 0.9845321
## 2 0.8240741 0.9101124 0.9506173 0.8961039 0.0000000 NA 0.4047619
## 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27
## 1 0.8970935 1.0175131 1.0731497 1.0072173 0.9506369 1.0485762 1.1014377
## 2 0.9607843 0.8979592 0.9318182 0.9268293 1.0263158 0.8974359 0.8857143
## 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03
## 1 0.9673677 0.000000 NaN NA 0.2992822 0.000000 NaN
## 2 1.2258065 1.105263 1.071429 1.044444 1.0425532 1.040816 1.039216
## 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10
## 1 NaN NaN NA 0.000000 NaN NaN NaN
## 2 1.075472 0.8947368 1.117647 1.070175 1.065574 1.276923 1.036145
## 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17
## 1 NaN NaN NA 0.000000 NaN NA 0.000000
## 2 1.05814 1.043956 1.021053 1.020619 1.020202 1.059406 1.046729
## 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24
## 1 NaN NA 0.000000 NA 0.000000 NA 0.000000
## 2 1.098214 1.065041 1.251908 1.054878 1.063584 1.027174 1.026455
## 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31
## 1 NaN NaN NA 0.00000 NaN NaN NaN
## 2 1.046392 1.08867 1.058824 1.07265 1.015936 1.031373 1.060837
## 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07
## 1 NaN NaN NaN NaN NA 0.000000 NA
## 2 1.043011 1.041237 1.049505 1.040881 1.036254 1.072886 1.027174
## 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14
## 1 0.000000 NA 0.4594595 0.000000 NaN NaN NaN
## 2 1.055556 1.035088 1.0484262 1.057737 1.050218 1.02079 1.02444
## 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21
## 1 NaN NA 0.147929 0.000000 NaN NA 0.3432836
## 2 1.055666 1.071563 1.033392 1.083333 1.025118 1.039816 1.0132548
## 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28
## 1 0.7826087 0.000000 NaN NA 0.2993197 1.340909 0.8474576
## 2 1.0058140 1.043353 0.7867036 1.174296 1.0194903 1.032353 1.0227920
## 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05
## 1 0.000000 NA 0.000000 NaN NaN NaN NA
## 2 1.027855 1.004065 1.005398 1.021477 1.009198 1.003906 1.009079
## 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12
## 1 0.2017937 1.044444 1.021277 0.7291667 1.685714 0.9830508 0.9482759
## 2 1.0128535 1.013959 1.015019 1.0246609 1.007220 1.0107527 1.0130024
## 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19
## 1 1.036364 0.6315789 1.333333 0.937500 0.9111111 0.9268293 1.2894737
## 2 1.004667 1.0046458 1.004624 1.005754 0.9965675 1.0137773 0.9830125
## 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26
## 1 0.9591837 0.9787234 1.108696 0.8431373 1.093023 1.085106 1.2745098
## 2 1.0103687 1.0068415 1.002265 0.9954802 1.005675 1.003386 0.9797525
## 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02
## 1 0.8461538 0.9272727 1.098039 0.7321429 1.1219512 1.065217 0.9183673
## 2 1.0413318 1.0176406 1.004334 1.0226537 0.9841772 1.019293 0.9684543
## 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09
## 1 1.088889 0.9183673 0.9555556 0.9767442 0.9523810 1.075000 1.1395349
## 2 1.032573 0.9579390 1.0120746 0.9859002 0.9933993 1.028793 0.9913886
## 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16
## 1 0.7755102 1.131579 1.0465116 0.9777778 0.6818182 1.266667 0.9736842
## 2 1.0141151 0.983940 0.9891186 1.0220022 0.0000000 NA 0.5002658
## 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23
## 1 1.135135 0.9047619 0.9210526 0.8857143 1.1612903 1.0833333 0.974359
## 2 1.020191 0.9489583 0.9791438 1.0112108 0.9800443 0.9841629 0.983908
## 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30
## 1 0.8947368 0.8235294 0.8571429 1.208333 0.8275862 1.041667 1.280000
## 2 1.0525701 0.9977802 1.0155729 1.019715 1.0214823 0.957939 1.041712
## 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07
## 1 1.0625000 0.7058824 1.583333 0.7631579 1.206897 1.2285714 0.9767442
## 2 0.9884089 0.9797441 1.015234 0.9560557 1.011211 0.9656319 1.0206659
## 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13 2021-12-14
## 1 1.095238 0.9782609 1.066667 1.104167 0.9622642 1.254902 1.015625
## 2 1.022497 0.8833883 1.023661 1.069343 0.9817975 0.000000 NA
## 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20 2021-12-21
## 1 1.3538462 0.9659091 0.9411765 1.4500000 0.8965517 1.4038462 1.5205479
## 2 0.5422579 1.0250284 1.0099889 0.9912088 1.0188470 0.9825898 0.9390919
## 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27 2021-12-28
## 1 1.135135 1.138889 1.1567944 0.9789157 1.1969231 1.347044 1.1488550
## 2 1.036557 1.004551 0.9184598 1.0678175 0.9503464 1.034022 0.9506463
## 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03 2022-01-04
## 1 1.235880 1.010753 1.0890957 1.0329670 1.210402 1.7050781 1.480527
## 2 1.055624 1.019906 0.9724455 0.9244392 1.022989 0.9026217 1.063624
## 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10 2022-01-11
## 1 1.177950 1.040394 1.128472 0.8581818 1.127771 1.380925 0.9736291
## 2 1.044213 1.046077 0.977381 1.0109622 1.098795 1.042763 0.9800210
## 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17 2022-01-18
## 1 1.152623 1.025550 1.023459 0.938344 1.037114 1.005112 1.066848
## 2 1.017167 1.066456 1.067260 1.020389 1.087193 1.029240 1.057630
## 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24 2022-01-25
## 1 1.009365 0.9431511 0.8735468 0.9434889 0.984158 1.066814 0.938611
## 2 1.058327 1.0174039 1.0926586 1.0234834 1.021670 1.029944 1.095700
## 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31 2022-02-01
## 1 0.9966968 1.046840 0.9442803 0.8746089 0.9376438 1.147724 0.9168844
## 2 1.0558320 1.039267 1.0110831 1.0054808 1.0951437 1.005882 1.0305893
## 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07 2022-02-08
## 1 1.0598291 0.941349 0.9228972 0.8475387 1.081978 1.1493865 0.888711
## 2 0.9943256 1.001317 1.0043840 1.0030554 1.001305 0.9873968 0.965669
## 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14 2022-02-15
## 1 0.9495495 0.9063884 0.8803210 0.6841062 1.237543 1.042603 0.8899865
## 2 0.9986326 0.9990872 0.9954317 0.9843965 0.000000 NA 0.4969484
## 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21 2022-02-22
## 1 0.9046418 0.8750697 0.8769917 0.7245640 1.0160481 1.0384995 0.7994297
## 2 0.9924421 0.9857211 0.9913085 0.9863614 0.9920988 0.9970134 0.9930105
## 2022-02-23 NA
## 1 0.7455410 NA
## 2 0.9512318 NA
# in Saudi Arabia
growth.rate(TS.data,geo.loc=c("Qatar","Kuwait"))
## Processing... QATAR

## Processing... KUWAIT





## $Changes
## geo.loc 2020-01-23 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28
## 1 QATAR 0 0 0 0 0 0
## 2 KUWAIT 0 0 0 0 0 0
## 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 1 10
## 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03
## 1 0 0 0 1 2 0 4
## 2 15 17 2 0 0 11 0
## 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10
## 1 1 0 0 0 7 3 6
## 2 0 2 0 3 3 0 5
## 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17
## 1 238 0 58 17 64 38 0
## 2 3 8 0 24 8 11 7
## 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24
## 1 13 8 10 11 13 7 25
## 2 12 6 11 17 12 1 2
## 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31
## 1 11 12 13 28 44 59 88
## 2 4 13 17 10 20 11 23
## 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07
## 1 54 114 126 250 279 228 225
## 2 28 25 75 62 77 109 78
## 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14
## 1 153 166 136 216 251 252 197
## 2 112 55 83 161 80 66 55
## 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21
## 1 283 392 560 345 440 567 518
## 2 50 119 134 93 164 80 85
## 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28
## 1 608 623 761 833 929 957 677
## 2 168 151 215 278 183 213 152
## 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05
## 1 643 845 687 776 679 640 951
## 2 300 284 353 242 364 295 526
## 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12
## 1 830 918 1311 1130 1189 1103 1526
## 2 485 278 641 415 1065 598 991
## 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19
## 1 1390 1733 1153 1547 1632 1365 1637
## 2 751 947 885 942 1048 841 1073
## 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26
## 1 1491 1554 1830 1732 1501 1751 1742
## 2 804 1041 955 900 838 665 608
## 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02
## 1 1740 1967 1993 2355 1648 1523 1826
## 2 692 845 1072 1008 851 719 887
## 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09
## 1 1901 1581 1754 1700 1595 1368 1721
## 2 710 562 723 487 717 662 630
## 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16
## 1 1716 1476 1517 1828 1186 1274 1201
## 2 683 609 520 514 454 511 527
## 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23
## 1 1097 1267 1021 1026 881 1034 1176
## 2 575 541 604 467 505 641 742
## 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30
## 1 1199 1060 946 879 750 693 982
## 2 846 909 915 688 551 582 671
## 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07
## 1 915 894 756 530 616 546 600
## 2 745 919 813 631 638 703 601
## 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14
## 1 608 557 520 498 470 418 517
## 2 762 833 740 478 836 614 666
## 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21
## 1 450 494 421 410 340 389 393
## 2 703 791 553 683 300 559 671
## 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28
## 1 441 373 394 398 269 292 283
## 2 751 687 753 684 464 606 770
## 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04
## 1 273 307 235 216 196 215 216
## 2 754 626 428 491 463 388 475
## 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11
## 1 267 287 291 267 297 315 384
## 2 651 620 682 472 514 687 668
## 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18
## 1 292 343 251 277 271 288 293
## 2 717 701 699 512 508 622 643
## 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25
## 1 295 268 257 284 243 258 232
## 2 675 622 502 688 571 432 613
## 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01
## 1 244 246 208 211 168 203 216
## 2 698 674 633 646 412 473 702
## 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08
## 1 212 214 217 227 231 253 231
## 2 667 900 865 720 619 805 857
## 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15
## 1 267 206 235 236 217 235 239
## 2 838 740 653 736 553 708 829
## 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22
## 1 235 244 224 229 230 228 313
## 2 698 825 704 521 385 530 719
## 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29
## 1 258 250 225 200 234 227 222
## 2 616 552 590 758 345 437 587
## 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06
## 1 227 199 205 175 159 194 251
## 2 614 494 411 371 567 567 676
## 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13
## 1 238 213 206 178 207 206 214
## 2 475 698 635 492 548 777 844
## 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20
## 1 198 200 189 235 204 240 273
## 2 532 746 729 739 663 686 886
## 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27
## 1 266 252 249 254 205 262 257
## 2 813 889 812 695 708 682 775
## 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03
## 1 250 211 193 213 164 197 226
## 2 814 760 671 589 608 759 787
## 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10
## 1 227 249 192 202 190 230 230
## 2 763 795 825 742 538 735 903
## 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17
## 1 224 245 235 203 215 243 194
## 2 778 773 718 691 499 489 556
## 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24
## 1 219 208 239 174 167 186 227
## 2 452 485 486 426 322 337 402
## 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01
## 1 209 215 184 227 171 185 168
## 2 422 330 329 319 231 209 357
## 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08
## 1 255 221 166 140 125 178 117
## 2 268 314 343 247 205 230 301
## 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15
## 1 150 163 164 147 134 160 151
## 2 304 291 294 255 174 231 261
## 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22
## 1 145 140 159 142 143 158 149
## 2 261 221 339 244 204 230 298
## 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29
## 1 140 157 129 169 159 160 206
## 2 266 244 260 172 204 204 236
## 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05
## 1 193 213 208 198 197 207 208
## 2 205 286 285 205 269 372 312
## 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12
## 1 209 210 195 206 193 203 211
## 2 411 540 495 427 414 527 494
## 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19
## 1 201 209 196 204 188 227 225
## 2 539 560 530 435 378 467 578
## 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26
## 1 271 258 263 251 247 277 299
## 2 442 570 533 534 384 492 505
## 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02
## 1 338 347 341 363 351 385 375
## 2 580 588 658 514 635 586 811
## 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09
## 1 396 407 398 394 408 427 477
## 2 756 840 940 846 962 996 1002
## 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16
## 1 451 448 450 453 440 888 6
## 2 987 1048 1021 851 798 823 964
## 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23
## 1 453 462 465 449 459 463 455
## 2 1017 979 976 862 768 899 1015
## 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02
## 1 459 465 469 460 467 473 463
## 2 1001 1019 1022 844 962 1179 1341
## 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09
## 1 471 475 469 460 474 468 471
## 2 1409 1716 1613 1318 1144 1326 1157
## 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16
## 1 473 468 455 483 485 481 479
## 2 1333 1505 1356 1211 1063 1332 1314
## 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23
## 1 489 499 497 509 503 519 534
## 2 1504 1394 1519 1347 1192 1330 1288
## 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30
## 1 570 587 602 614 639 690 720
## 2 1299 1390 1548 1198 1121 1251 1271
## 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06
## 1 780 840 874 870 876 910 927
## 2 1282 1418 1233 1235 1203 1357 1403
## 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13
## 1 940 949 950 964 961 973 981
## 2 1517 1379 1477 1379 1390 1635 1544
## 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20
## 1 984 989 978 827 823 896 885
## 2 1402 1391 1406 1388 1127 1510 1371
## 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27
## 1 819 800 798 718 705 703 695
## 2 1439 1459 1432 1206 1545 1286 1446
## 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04
## 1 690 687 676 650 646 644 640
## 2 1464 1417 1429 1279 1316 1246 1253
## 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11
## 1 645 593 600 533 389 397 343
## 2 1451 1236 1209 1095 992 978 1153
## 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18
## 1 392 299 244 260 256 302 370
## 2 985 1059 763 795 828 861 1084
## 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25
## 1 295 313 367 330 283 299 349
## 2 1119 1168 1345 1017 992 1240 1408
## 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01
## 1 306 286 202 156 189 228 230
## 2 1176 1160 1384 1134 1095 1410 1279
## 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08
## 1 194 198 183 192 172 171 182
## 2 1345 1443 1280 1331 1297 1479 1581
## 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15
## 1 158 143 185 147 117 157 146
## 2 1391 1709 1657 1437 1512 1563 1487
## 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22
## 1 165 127 184 184 107 130 189
## 2 1557 1646 1658 1497 1661 1935 1962
## 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29
## 1 154 105 87 125 102 118 143
## 2 1870 1761 1702 1661 1558 1652 1718
## 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06
## 1 118 146 133 103 121 93 93
## 2 1836 1824 1895 1612 1654 1977 1993
## 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13
## 1 158 113 144 97 86 146 142
## 2 1585 1705 1617 1555 1490 1770 1712
## 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20
## 1 134 131 133 116 118 124 108
## 2 1623 1385 1263 1226 1189 1107 1043
## 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27
## 1 128 196 114 124 126 178 146
## 2 969 987 926 987 836 988 933
## 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03
## 1 225 158 172 162 151 150 170
## 2 941 853 766 733 707 805 785
## 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10
## 1 164 181 218 199 217 210 220
## 2 851 718 596 501 555 519 595
## 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17
## 1 227 197 244 194 187 260 269
## 2 424 555 417 375 306 343 256
## 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24
## 1 218 306 221 190 205 289 217
## 2 237 276 226 200 167 189 166
## 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31
## 1 216 233 212 183 179 205 173
## 2 197 212 168 186 189 184 124
## 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07
## 1 166 177 193 157 130 189 172
## 2 101 111 95 103 72 71 83
## 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14
## 1 165 143 126 147 133 131 122
## 2 66 69 62 41 50 58 59
## 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21
## 1 159 133 117 82 101 139 143
## 2 59 58 63 43 56 53 45
## 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28
## 1 138 109 107 108 67 90 94
## 2 38 42 48 41 37 49 39
## 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05
## 1 76 85 92 99 79 77 58
## 2 33 50 35 41 72 52 49
## 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12
## 1 99 78 72 62 65 59 96
## 2 31 46 35 32 31 42 37
## 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19
## 1 83 79 57 69 62 67 83
## 2 38 32 30 39 35 39 32
## 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26
## 1 86 106 88 77 82 122 102
## 2 21 25 32 25 21 30 21
## 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02
## 1 103 105 101 92 104 127 134
## 2 16 25 22 12 25 30 23
## 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09
## 1 138 106 119 124 103 149 138
## 2 21 16 25 28 23 25 24
## 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16
## 1 172 148 123 137 124 143 146
## 2 23 20 24 22 26 26 16
## 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23
## 1 149 145 147 150 118 141 147
## 2 18 22 16 14 17 28 12
## 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30
## 1 143 155 151 155 153 158 157
## 2 21 26 21 21 0 61 35
## 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07
## 1 160 151 154 159 152 164 158
## 2 21 36 22 23 27 33 31
## 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13 2021-12-14
## 1 163 159 163 158 166 169 167
## 2 33 20 29 35 39 0 79
## 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20 2021-12-21
## 1 165 169 164 179 170 177 183
## 2 57 44 81 51 75 80 92
## 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27 2021-12-28
## 1 185 187 248 279 296 343 367
## 2 143 178 170 150 240 198 329
## 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03 2022-01-04
## 1 443 542 741 833 998 1177 1695
## 2 399 554 504 588 609 982 1482
## 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10 2022-01-11
## 1 2273 2779 3192 3487 3689 3878 4169
## 2 2246 2413 2645 2820 2999 3683 4397
## 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17 2022-01-18
## 1 4206 4187 4123 4007 4021 3998 3816
## 2 4548 4883 4881 4517 4503 5147 4825
## 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24 2022-01-25
## 1 3723 3294 3204 3087 2981 2748 2551
## 2 4337 4510 4809 4148 4347 5176 5742
## 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31 2022-02-01
## 1 2204 1952 1743 1538 1557 1509 1236
## 2 6454 6515 6913 5808 5592 6063 6436
## 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07 2022-02-08
## 1 1245 1183 997 903 912 923 819
## 2 6592 5990 5407 4445 4232 4294 3989
## 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14 2022-02-15
## 1 776 783 657 607 613 601 547
## 2 3463 3324 2896 2254 2268 2562 2166
## 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21 2022-02-22
## 1 498 447 452 434 442 416 394
## 2 1917 1501 1348 1019 1195 1329 1053
## 2022-02-23
## 1 365
## 2 1012
##
## $Growth.Rate
## geo.loc 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28 2020-01-29
## 1 QATAR NaN NaN NaN NaN NaN NaN
## 2 KUWAIT NaN NaN NaN NaN NaN NaN
## 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04 2020-02-05
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11 2020-02-12
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18 2020-02-19
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25 2020-02-26
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NA 10 1.5
## 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03 2020-03-04
## 1 NaN NaN NA 2 0 NA 0.25
## 2 1.133333 0.1176471 0 NaN NA 0 NaN
## 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10 2020-03-11
## 1 0 NaN NaN NA 0.4285714 2 39.66667
## 2 NA 0 NA 1 0.0000000 NA 0.60000
## 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17 2020-03-18
## 1 0.000000 NA 0.2931034 3.7647059 0.59375 0.0000000 NA
## 2 2.666667 0 NA 0.3333333 1.37500 0.6363636 1.714286
## 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24 2020-03-25
## 1 0.6153846 1.250000 1.100000 1.1818182 0.53846154 3.571429 0.44
## 2 0.5000000 1.833333 1.545455 0.7058824 0.08333333 2.000000 2.00
## 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31 2020-04-01
## 1 1.090909 1.083333 2.1538462 1.571429 1.340909 1.491525 0.6136364
## 2 3.250000 1.307692 0.5882353 2.000000 0.550000 2.090909 1.2173913
## 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07 2020-04-08
## 1 2.1111111 1.105263 1.9841270 1.116000 0.8172043 0.9868421 0.680000
## 2 0.8928571 3.000000 0.8266667 1.241935 1.4155844 0.7155963 1.435897
## 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14 2020-04-15
## 1 1.0849673 0.8192771 1.588235 1.1620370 1.003984 0.7817460 1.4365482
## 2 0.4910714 1.5090909 1.939759 0.4968944 0.825000 0.8333333 0.9090909
## 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21 2020-04-22
## 1 1.385159 1.428571 0.6160714 1.275362 1.2886364 0.9135802 1.173745
## 2 2.380000 1.126050 0.6940299 1.763441 0.4878049 1.0625000 1.976471
## 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28 2020-04-29
## 1 1.0246711 1.221509 1.094612 1.1152461 1.030140 0.707419 0.9497784
## 2 0.8988095 1.423841 1.293023 0.6582734 1.163934 0.713615 1.9736842
## 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05 2020-05-06
## 1 1.3141524 0.8130178 1.1295488 0.875000 0.9425626 1.485937 0.8727655
## 2 0.9466667 1.2429577 0.6855524 1.504132 0.8104396 1.783051 0.9220532
## 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12 2020-05-13
## 1 1.1060241 1.428105 0.8619375 1.052212 0.9276703 1.383500 0.9108781
## 2 0.5731959 2.305755 0.6474259 2.566265 0.5615023 1.657191 0.7578204
## 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19 2020-05-20
## 1 1.246763 0.6653203 1.341717 1.054945 0.8363971 1.199267 0.9108125
## 2 1.260985 0.9345301 1.064407 1.112527 0.8024809 1.275862 0.7493010
## 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26 2020-05-27
## 1 1.042254 1.1776062 0.9464481 0.8666282 1.1665556 0.9948601 0.9988519
## 2 1.294776 0.9173871 0.9424084 0.9311111 0.7935561 0.9142857 1.1381579
## 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02 2020-06-03
## 1 1.130460 1.013218 1.1816357 0.6997877 0.9241505 1.198949 1.041073
## 2 1.221098 1.268639 0.9402985 0.8442460 0.8448884 1.233658 0.800451
## 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09 2020-06-10
## 1 0.8316675 1.109424 0.9692132 0.9382353 0.8576803 1.2580409 0.9970947
## 2 0.7915493 1.286477 0.6735823 1.4722793 0.9232915 0.9516616 1.0841270
## 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16 2020-06-17
## 1 0.8601399 1.0277778 1.2050099 0.6487965 1.074199 0.9427002 0.9134055
## 2 0.8916545 0.8538588 0.9884615 0.8832685 1.125551 1.0313112 1.0910816
## 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23 2020-06-24
## 1 1.1549681 0.8058406 1.0048972 0.8586745 1.173666 1.137331 1.019558
## 2 0.9408696 1.1164510 0.7731788 1.0813704 1.269307 1.157566 1.140162
## 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30 2020-07-01
## 1 0.8840701 0.8924528 0.9291755 0.8532423 0.924000 1.417027 0.9317719
## 2 1.0744681 1.0066007 0.7519126 0.8008721 1.056261 1.152921 1.1102832
## 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07 2020-07-08
## 1 0.9770492 0.8456376 0.7010582 1.162264 0.8863636 1.0989011 1.013333
## 2 1.2335570 0.8846572 0.7761378 1.011094 1.1018809 0.8549075 1.267887
## 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14 2020-07-15
## 1 0.9161184 0.9335727 0.9576923 0.9437751 0.8893617 1.236842 0.8704062
## 2 1.0931759 0.8883553 0.6459459 1.7489540 0.7344498 1.084691 1.0555556
## 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21 2020-07-22
## 1 1.097778 0.8522267 0.9738717 0.8292683 1.144118 1.010283 1.122137
## 2 1.125178 0.6991150 1.2350814 0.4392387 1.863333 1.200358 1.119225
## 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28 2020-07-29
## 1 0.8458050 1.05630 1.0101523 0.6758794 1.085502 0.9691781 0.9646643
## 2 0.9147803 1.09607 0.9083665 0.6783626 1.306034 1.2706271 0.9792208
## 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04 2020-08-05
## 1 1.1245421 0.7654723 0.9191489 0.9074074 1.096939 1.004651 1.236111
## 2 0.8302387 0.6837061 1.1471963 0.9429735 0.838013 1.224227 1.370526
## 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11 2020-08-12
## 1 1.074906 1.013937 0.9175258 1.112360 1.060606 1.2190476 0.7604167
## 2 0.952381 1.100000 0.6920821 1.088983 1.336576 0.9723435 1.0733533
## 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18 2020-08-19
## 1 1.1746575 0.7317784 1.103586 0.9783394 1.062731 1.017361 1.006826
## 2 0.9776848 0.9971469 0.732475 0.9921875 1.224409 1.033762 1.049767
## 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25 2020-08-26
## 1 0.9084746 0.9589552 1.105058 0.8556338 1.0617284 0.8992248 1.051724
## 2 0.9214815 0.8070740 1.370518 0.8299419 0.7565674 1.4189815 1.138662
## 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01 2020-09-02
## 1 1.008197 0.8455285 1.014423 0.7962085 1.208333 1.064039 0.9814815
## 2 0.965616 0.9391691 1.020537 0.6377709 1.148058 1.484144 0.9501425
## 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08 2020-09-09
## 1 1.009434 1.0140187 1.0460829 1.0176211 1.095238 0.9130435 1.1558442
## 2 1.349325 0.9611111 0.8323699 0.8597222 1.300485 1.0645963 0.9778296
## 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15 2020-09-16
## 1 0.7715356 1.1407767 1.004255 0.9194915 1.082949 1.017021 0.9832636
## 2 0.8830549 0.8824324 1.127106 0.7513587 1.280289 1.170904 0.8419783
## 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22 2020-09-23
## 1 1.038298 0.9180328 1.0223214 1.0043668 0.9913043 1.372807 0.8242812
## 2 1.181948 0.8533333 0.7400568 0.7389635 1.3766234 1.356604 0.8567455
## 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29 2020-09-30
## 1 0.9689922 0.900000 0.8888889 1.1700000 0.9700855 0.9779736 1.022523
## 2 0.8961039 1.068841 1.2847458 0.4551451 1.2666667 1.3432494 1.045997
## 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06 2020-10-07
## 1 0.8766520 1.0301508 0.8536585 0.9085714 1.220126 1.293814 0.9482072
## 2 0.8045603 0.8319838 0.9026764 1.5283019 1.000000 1.192240 0.7026627
## 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13 2020-10-14
## 1 0.894958 0.9671362 0.8640777 1.162921 0.9951691 1.038835 0.9252336
## 2 1.469474 0.9097421 0.7748031 1.113821 1.4178832 1.086229 0.6303318
## 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20 2020-10-21
## 1 1.010101 0.9450000 1.243386 0.8680851 1.176471 1.137500 0.9743590
## 2 1.402256 0.9772118 1.013717 0.8971583 1.034691 1.291545 0.9176072
## 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27 2020-10-28
## 1 0.9473684 0.9880952 1.0200803 0.8070866 1.2780488 0.980916 0.9727626
## 2 1.0934809 0.9133858 0.8559113 1.0187050 0.9632768 1.136364 1.0503226
## 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03 2020-11-04
## 1 0.8440000 0.9146919 1.1036269 0.7699531 1.201220 1.147208 1.0044248
## 2 0.9336609 0.8828947 0.8777943 1.0322581 1.248355 1.036891 0.9695044
## 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10 2020-11-11
## 1 1.096916 0.7710843 1.0520833 0.9405941 1.210526 1.000000 0.9739130
## 2 1.041940 1.0377358 0.8993939 0.7250674 1.366171 1.228571 0.8615725
## 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17 2020-11-18
## 1 1.0937500 0.9591837 0.8638298 1.0591133 1.1302326 0.7983539 1.1288660
## 2 0.9935733 0.9288486 0.9623955 0.7221418 0.9799599 1.1370143 0.8129496
## 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24 2020-11-25
## 1 0.9497717 1.149038 0.7280335 0.9597701 1.113772 1.220430 0.9207048
## 2 1.0730088 1.002062 0.8765432 0.7558685 1.046584 1.192878 1.0497512
## 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01 2020-12-02
## 1 1.0287081 0.8558140 1.2336957 0.7533040 1.0818713 0.9081081 1.5178571
## 2 0.7819905 0.9969697 0.9696049 0.7241379 0.9047619 1.7081340 0.7507003
## 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08 2020-12-09
## 1 0.8666667 0.7511312 0.8433735 0.8928571 1.424000 0.6573034 1.282051
## 2 1.1716418 1.0923567 0.7201166 0.8299595 1.121951 1.3086957 1.009967
## 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15 2020-12-16
## 1 1.0866667 1.006135 0.8963415 0.9115646 1.194030 0.94375 0.9602649
## 2 0.9572368 1.010309 0.8673469 0.6823529 1.327586 1.12987 1.0000000
## 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22 2020-12-23
## 1 0.9655172 1.135714 0.8930818 1.0070423 1.104895 0.943038 0.9395973
## 2 0.8467433 1.533937 0.7197640 0.8360656 1.127451 1.295652 0.8926174
## 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29 2020-12-30
## 1 1.1214286 0.8216561 1.3100775 0.9408284 1.006289 1.287500 0.9368932
## 2 0.9172932 1.0655738 0.6615385 1.1860465 1.000000 1.156863 0.8686441
## 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05 2021-01-06
## 1 1.103627 0.9765258 0.9519231 0.9949495 1.050761 1.0048309 1.004808
## 2 1.395122 0.9965035 0.7192982 1.3121951 1.382900 0.8387097 1.317308
## 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12 2021-01-13
## 1 1.004785 0.9285714 1.0564103 0.9368932 1.051813 1.0394089 0.9526066
## 2 1.313869 0.9166667 0.8626263 0.9695550 1.272947 0.9373814 1.0910931
## 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19 2021-01-20
## 1 1.039801 0.9377990 1.0408163 0.9215686 1.207447 0.9911894 1.2044444
## 2 1.038961 0.9464286 0.8207547 0.8689655 1.235450 1.2376874 0.7647059
## 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26 2021-01-27
## 1 0.9520295 1.0193798 0.9543726 0.9840637 1.121457 1.079422 1.130435
## 2 1.2895928 0.9350877 1.0018762 0.7191011 1.281250 1.026423 1.148515
## 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02 2021-02-03
## 1 1.026627 0.9827089 1.064516 0.9669421 1.0968661 0.974026 1.0560000
## 2 1.013793 1.1190476 0.781155 1.2354086 0.9228346 1.383959 0.9321825
## 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09 2021-02-10
## 1 1.027778 0.977887 0.9899497 1.035533 1.046569 1.117096 0.9454927
## 2 1.111111 1.119048 0.9000000 1.137116 1.035343 1.006024 0.9850299
## 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16 2021-02-17
## 1 0.9933481 1.0044643 1.0066667 0.9713024 2.018182 0.006756757 75.500000
## 2 1.0618034 0.9742366 0.8334966 0.9377203 1.031328 1.171324423 1.054979
## 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23 2021-02-24
## 1 1.0198675 1.0064935 0.9655914 1.0222717 1.008715 0.9827214 1.0087912
## 2 0.9626352 0.9969356 0.8831967 0.8909513 1.170573 1.1290323 0.9862069
## 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02 2021-03-03
## 1 1.013072 1.008602 0.9808102 1.015217 1.012848 0.9788584 1.017279
## 2 1.017982 1.002944 0.8258317 1.139810 1.225572 1.1374046 1.050708
## 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09 2021-03-10
## 1 1.008493 0.9873684 0.9808102 1.0304348 0.9873418 1.006410 1.004246
## 2 1.217885 0.9399767 0.8171110 0.8679818 1.1590909 0.872549 1.152118
## 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16 2021-03-17
## 1 0.9894292 0.9722222 1.0615385 1.004141 0.9917526 0.9958420 1.020877
## 2 1.1290323 0.9009967 0.8930678 0.877787 1.2530574 0.9864865 1.144597
## 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23 2021-03-24
## 1 1.0204499 0.995992 1.0241449 0.9882122 1.031809 1.0289017 1.067416
## 2 0.9268617 1.089670 0.8867676 0.8849295 1.115772 0.9684211 1.008540
## 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30 2021-03-31
## 1 1.029825 1.025554 1.0199336 1.0407166 1.079812 1.043478 1.083333
## 2 1.070054 1.113669 0.7739018 0.9357262 1.115968 1.015987 1.008655
## 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06 2021-04-07
## 1 1.076923 1.0404762 0.9954233 1.0068966 1.038813 1.018681 1.014024
## 2 1.106084 0.8695346 1.0016221 0.9740891 1.128013 1.033898 1.081254
## 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13 2021-04-14
## 1 1.009574 1.001054 1.0147368 0.996888 1.012487 1.0082220 1.0030581
## 2 0.909031 1.071066 0.9336493 1.007977 1.176259 0.9443425 0.9080311
## 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20 2021-04-21
## 1 1.0050813 0.9888777 0.8456033 0.9951632 1.08870 0.9877232 0.9254237
## 2 0.9921541 1.0107836 0.9871977 0.8119597 1.33984 0.9079470 1.0495988
## 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27 2021-04-28
## 1 0.976801 0.9975000 0.8997494 0.9818942 0.9971631 0.9886202 0.9928058
## 2 1.013899 0.9814942 0.8421788 1.2810945 0.8323625 1.1244168 1.0124481
## 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04 2021-05-05
## 1 0.9956522 0.9839884 0.9615385 0.9938462 0.9969040 0.9937888 1.007812
## 2 0.9678962 1.0084686 0.8950315 1.0289289 0.9468085 1.0056180 1.158021
## 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11 2021-05-12
## 1 0.9193798 1.0118044 0.8883333 0.7298311 1.0205656 0.8639798 1.1428571
## 2 0.8518263 0.9781553 0.9057072 0.9059361 0.9858871 1.1789366 0.8542931
## 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18 2021-05-19
## 1 0.7627551 0.8160535 1.065574 0.9846154 1.179688 1.225166 0.7972973
## 2 1.0751269 0.7204910 1.041940 1.0415094 1.039855 1.259001 1.0322878
## 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25 2021-05-26
## 1 1.061017 1.172524 0.8991826 0.8575758 1.056537 1.167224 0.8767908
## 2 1.043789 1.151541 0.7561338 0.9754179 1.250000 1.135484 0.8352273
## 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01 2021-06-02
## 1 0.9346405 0.7062937 0.7722772 1.2115385 1.206349 1.0087719 0.8434783
## 2 0.9863946 1.1931034 0.8193642 0.9656085 1.287671 0.9070922 1.0516028
## 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08 2021-06-09
## 1 1.020619 0.9242424 1.049180 0.8958333 0.994186 1.064327 0.8681319
## 2 1.072862 0.8870409 1.039844 0.9744553 1.140324 1.068966 0.8798229
## 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15 2021-06-16
## 1 0.9050633 1.2937063 0.7945946 0.7959184 1.34188 0.9299363 1.130137
## 2 1.2286125 0.9695728 0.8672299 1.0521921 1.03373 0.9513756 1.047075
## 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22 2021-06-23
## 1 0.769697 1.448819 1.0000000 0.5815217 1.214953 1.453846 0.8148148
## 2 1.057161 1.007290 0.9028951 1.1095524 1.164961 1.013953 0.9531091
## 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29 2021-06-30
## 1 0.6818182 0.8285714 1.4367816 0.8160000 1.156863 1.211864 0.8251748
## 2 0.9417112 0.9664963 0.9759107 0.9379892 1.060334 1.039952 1.0686845
## 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06 2021-07-07
## 1 1.2372881 0.9109589 0.7744361 1.174757 0.768595 1.000000 1.6989247
## 2 0.9934641 1.0389254 0.8506596 1.026055 1.195284 1.008093 0.7952835
## 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13 2021-07-14
## 1 0.7151899 1.2743363 0.6736111 0.8865979 1.697674 0.9726027 0.943662
## 2 1.0757098 0.9483871 0.9616574 0.9581994 1.187919 0.9672316 0.948014
## 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20 2021-07-21
## 1 0.9776119 1.0152672 0.8721805 1.0172414 1.0508475 0.8709677 1.1851852
## 2 0.8533580 0.9119134 0.9707047 0.9698206 0.9310345 0.9421861 0.9290508
## 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27 2021-07-28
## 1 1.531250 0.5816327 1.087719 1.0161290 1.412698 0.8202247 1.541096
## 2 1.018576 0.9381966 1.065875 0.8470111 1.181818 0.9443320 1.008574
## 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03 2021-08-04
## 1 0.7022222 1.088608 0.9418605 0.9320988 0.9933775 1.1333333 0.9647059
## 2 0.9064825 0.898007 0.9569191 0.9645293 1.1386139 0.9751553 1.0840764
## 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10 2021-08-11
## 1 1.1036585 1.2044199 0.912844 1.090452 0.9677419 1.047619 1.031818
## 2 0.8437133 0.8300836 0.840604 1.107784 0.9351351 1.146435 0.712605
## 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17 2021-08-18
## 1 0.8678414 1.2385787 0.7950820 0.9639175 1.390374 1.0346154 0.8104089
## 2 1.3089623 0.7513514 0.8992806 0.8160000 1.120915 0.7463557 0.9257812
## 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24 2021-08-25
## 1 1.403670 0.7222222 0.8597285 1.078947 1.409756 0.7508651 0.9953917
## 2 1.164557 0.8188406 0.8849558 0.835000 1.131737 0.8783069 1.1867470
## 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31 2021-09-01
## 1 1.078704 0.9098712 0.8632075 0.9781421 1.145251 0.8439024 0.9595376
## 2 1.076142 0.7924528 1.1071429 1.0161290 0.973545 0.6739130 0.8145161
## 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07 2021-09-08
## 1 1.066265 1.0903955 0.8134715 0.8280255 1.4538462 0.9100529 0.9593023
## 2 1.099010 0.8558559 1.0842105 0.6990291 0.9861111 1.1690141 0.7951807
## 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14 2021-09-15
## 1 0.8666667 0.8811189 1.1666667 0.9047619 0.9849624 0.9312977 1.303279
## 2 1.0454545 0.8985507 0.6612903 1.2195122 1.1600000 1.0172414 1.000000
## 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21 2021-09-22
## 1 0.8364780 0.8796992 0.7008547 1.231707 1.3762376 1.0287770 0.9650350
## 2 0.9830508 1.0862069 0.6825397 1.302326 0.9464286 0.8490566 0.8444444
## 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28 2021-09-29
## 1 0.7898551 0.9816514 1.0093458 0.6203704 1.343284 1.0444444 0.8085106
## 2 1.1052632 1.1428571 0.8541667 0.9024390 1.324324 0.7959184 0.8461538
## 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05 2021-10-06
## 1 1.118421 1.082353 1.076087 0.7979798 0.9746835 0.7532468 1.7068966
## 2 1.515152 0.700000 1.171429 1.7560976 0.7222222 0.9423077 0.6326531
## 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12 2021-10-13
## 1 0.7878788 0.9230769 0.8611111 1.048387 0.9076923 1.6271186 0.8645833
## 2 1.4838710 0.7608696 0.9142857 0.968750 1.3548387 0.8809524 1.0270270
## 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19 2021-10-20
## 1 0.9518072 0.721519 1.210526 0.8985507 1.080645 1.2388060 1.036145
## 2 0.8421053 0.937500 1.300000 0.8974359 1.114286 0.8205128 0.656250
## 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26 2021-10-27
## 1 1.232558 0.8301887 0.87500 1.064935 1.487805 0.8360656 1.0098039
## 2 1.190476 1.2800000 0.78125 0.840000 1.428571 0.7000000 0.7619048
## 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02 2021-11-03
## 1 1.019417 0.9619048 0.9108911 1.130435 1.221154 1.0551181 1.0298507
## 2 1.562500 0.8800000 0.5454545 2.083333 1.200000 0.7666667 0.9130435
## 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09 2021-11-10
## 1 0.7681159 1.122642 1.042017 0.8306452 1.446602 0.9261745 1.2463768
## 2 0.7619048 1.562500 1.120000 0.8214286 1.086957 0.9600000 0.9583333
## 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16 2021-11-17
## 1 0.8604651 0.8310811 1.1138211 0.9051095 1.153226 1.0209790 1.020548
## 2 0.8695652 1.2000000 0.9166667 1.1818182 1.000000 0.6153846 1.125000
## 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23 2021-11-24
## 1 0.9731544 1.0137931 1.020408 0.7866667 1.194915 1.0425532 0.9727891
## 2 1.2222222 0.7272727 0.875000 1.2142857 1.647059 0.4285714 1.7500000
## 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30 2021-12-01
## 1 1.083916 0.9741935 1.02649 0.9870968 1.03268 0.9936709 1.019108
## 2 1.238095 0.8076923 1.00000 0.0000000 NA 0.5737705 0.600000
## 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07 2021-12-08
## 1 0.943750 1.0198675 1.032468 0.9559748 1.078947 0.9634146 1.031646
## 2 1.714286 0.6111111 1.045455 1.1739130 1.222222 0.9393939 1.064516
## 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13 2021-12-14 2021-12-15
## 1 0.9754601 1.025157 0.9693252 1.050633 1.018072 0.9881657 0.988024
## 2 0.6060606 1.450000 1.2068966 1.114286 0.000000 NA 0.721519
## 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20 2021-12-21 2021-12-22
## 1 1.0242424 0.9704142 1.0914634 0.9497207 1.041176 1.033898 1.010929
## 2 0.7719298 1.8409091 0.6296296 1.4705882 1.066667 1.150000 1.554348
## 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27 2021-12-28 2021-12-29
## 1 1.010811 1.3262032 1.1250000 1.060932 1.158784 1.069971 1.207084
## 2 1.244755 0.9550562 0.8823529 1.600000 0.825000 1.661616 1.212766
## 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03 2022-01-04 2022-01-05
## 1 1.223476 1.3671587 1.124157 1.198079 1.179359 1.440102 1.341003
## 2 1.388471 0.9097473 1.166667 1.035714 1.612479 1.509165 1.515520
## 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10 2022-01-11 2022-01-12
## 1 1.222613 1.148615 1.092419 1.057929 1.051233 1.075039 1.008875
## 2 1.074354 1.096146 1.066163 1.063475 1.228076 1.193864 1.034342
## 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17 2022-01-18 2022-01-19
## 1 0.9954826 0.9847146 0.9718651 1.0034939 0.994280 0.9544772 0.9756289
## 2 1.0736588 0.9995904 0.9254251 0.9969006 1.143016 0.9374393 0.8988601
## 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24 2022-01-25 2022-01-26
## 1 0.8847703 0.9726776 0.9634831 0.9656625 0.9218383 0.9283115 0.8639749
## 2 1.0398893 1.0662971 0.8625494 1.0479749 1.1907062 1.1093509 1.1239986
## 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31 2022-02-01 2022-02-02
## 1 0.8856624 0.8929303 0.8823867 1.0123537 0.9691715 0.8190855 1.007282
## 2 1.0094515 1.0610898 0.8401562 0.9628099 1.0842275 1.0615207 1.024239
## 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07 2022-02-08 2022-02-09
## 1 0.9502008 0.8427726 0.9057172 1.009967 1.012061 0.8873239 0.9474969
## 2 0.9086772 0.9026711 0.8220825 0.952081 1.014650 0.9289707 0.8681374
## 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14 2022-02-15 2022-02-16
## 1 1.0090206 0.8390805 0.9238965 1.009885 0.9804241 0.9101498 0.9104205
## 2 0.9598614 0.8712395 0.7783149 1.006211 1.1296296 0.8454333 0.8850416
## 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21 2022-02-22 2022-02-23
## 1 0.8975904 1.011186 0.9601770 1.018433 0.9411765 0.9471154 0.9263959
## 2 0.7829943 0.898068 0.7559347 1.172718 1.1121339 0.7923251 0.9610636
## NA
## 1 NA
## 2 NA
# obtain Time Series data
TSconfirmed <- covid19.data("ts-confirmed")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:31:13 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
# explore different combinations of regions/cities/countries
# when combining different locations, heatmaps will also be generated comparing the trends among these locations
growth.rate(TSconfirmed,geo.loc=c("Libya","Egypt","Algeria","Jordan","Saudi Arabia"))
## Processing... LIBYA
## Processing... EGYPT
## Processing... ALGERIA
## Processing... JORDAN
## Warning in log1p(changes): NaNs produced

## Processing... SAUDI ARABIA





## $Changes
## geo.loc 2020-01-23 2020-01-24 2020-01-25 2020-01-26 2020-01-27
## 1 LIBYA 0 0 0 0 0
## 2 EGYPT 0 0 0 0 0
## 3 ALGERIA 0 0 0 0 0
## 4 JORDAN 0 0 0 0 0
## 5 SAUDI ARABIA 0 0 0 0 0
## 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17
## 1 0 0 0 0 0 0 0
## 2 0 0 0 1 0 0 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 1 0
## 3 1 0 0 0 0 0 2
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 1
## 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09
## 1 0 0 0 0 0 0 0
## 2 0 0 1 12 0 34 6
## 3 2 7 0 5 0 2 1
## 4 1 0 0 0 0 0 0
## 5 0 0 4 0 0 6 4
## 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16
## 1 0 0 0 0 0 0 0
## 2 4 1 7 13 29 1 40
## 3 0 0 4 2 11 11 6
## 4 0 0 0 0 0 7 9
## 5 5 1 24 41 17 0 15
## 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23
## 1 0 0 0 0 0 0 0
## 2 46 0 60 29 9 33 39
## 3 6 14 13 3 49 62 29
## 4 17 18 17 16 0 27 15
## 5 53 0 103 70 48 119 51
## 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30
## 1 1 0 0 0 2 5 0
## 2 36 54 39 41 40 33 47
## 3 34 38 65 42 45 57 73
## 4 27 18 40 23 11 13 9
## 5 205 133 112 92 99 96 154
## 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06
## 1 2 0 1 0 7 0 1
## 2 54 69 86 120 85 103 149
## 3 132 131 139 185 80 69 103
## 4 6 4 21 11 13 22 4
## 5 110 157 165 154 140 223 203
## 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13
## 1 1 1 3 0 0 1 1
## 2 128 110 139 95 145 126 125
## 3 45 104 94 95 64 89 69
## 4 4 5 14 0 9 8 2
## 5 190 137 355 364 382 429 472
## 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20
## 1 9 13 1 0 0 2 0
## 2 160 155 168 171 188 112 189
## 3 87 90 108 150 116 95 89
## 4 6 4 1 5 6 4 8
## 5 435 493 518 762 1132 1088 1122
## 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27
## 1 0 8 1 1 0 0 0
## 2 157 169 232 201 227 215 248
## 3 93 99 97 120 129 126 135
## 4 3 7 2 4 3 3 2
## 5 1147 1141 1158 1172 1197 1223 1289
## 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04
## 1 0 0 0 2 0 0 0
## 2 260 226 269 358 298 272 348
## 3 132 199 158 148 141 179 174
## 4 0 2 2 6 1 1 4
## 5 1266 1325 1351 1344 1362 1552 1645
## 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11
## 1 0 1 0 0 0 0 0
## 2 388 387 393 495 488 436 346
## 3 190 159 185 187 189 165 168
## 4 6 2 21 14 14 18 22
## 5 1595 1687 1793 1701 1704 1912 1966
## 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18
## 1 0 0 0 0 1 0 0
## 2 347 338 398 399 491 510 535
## 3 176 186 189 187 192 198 182
## 4 14 6 4 10 11 6 16
## 5 1911 1905 2039 2307 2840 2736 2593
## 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25
## 1 3 1 2 1 3 0 0
## 2 720 745 774 783 727 752 702
## 3 176 165 186 190 195 193 197
## 4 20 23 12 16 4 4 3
## 5 2509 2691 2532 2642 2442 2399 2235
## 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01
## 1 2 22 6 13 12 26 12
## 2 789 910 1127 1289 1367 1536 1399
## 3 194 160 140 137 133 127 119
## 4 7 2 8 2 4 5 7
## 5 1931 1815 1644 1581 1618 1877 1881
## 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08
## 1 14 14 13 30 17 0 76
## 2 1152 1079 1152 1348 1497 1467 1365
## 3 113 107 98 104 115 104 111
## 4 9 2 8 19 11 13 23
## 5 1869 2171 1975 2591 3121 3045 3369
## 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15
## 1 27 19 15 16 9 36 13
## 2 1385 1455 1442 1577 1677 1618 1691
## 3 117 102 105 109 112 109 112
## 4 14 18 27 25 38 8 18
## 5 3288 3717 3733 3921 3366 4233 4507
## 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22
## 1 17 16 10 10 24 27 24
## 2 1567 1363 1218 1774 1547 1475 1576
## 3 116 121 117 119 127 140 149
## 4 2 6 14 7 7 18 9
## 5 4267 4919 4757 4301 3941 3379 3393
## 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29
## 1 44 31 28 15 14 35 40
## 2 1332 1420 1569 1625 1168 1265 1566
## 3 156 172 197 240 283 305 298
## 4 5 24 15 18 7 10 7
## 5 3139 3123 3372 3938 3927 3989 3943
## 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06
## 1 22 50 17 27 71 57 71
## 2 1557 1503 1485 1412 1324 1218 969
## 3 336 365 385 413 430 441 463
## 4 4 1 3 11 3 14 3
## 5 4387 3402 3383 4193 4128 3580 4207
## 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13
## 1 65 86 74 0 47 44 79
## 2 1057 1025 950 981 923 912 931
## 3 475 469 460 434 470 483 494
## 4 2 0 0 4 3 3 4
## 5 3392 3036 3183 3159 2994 2779 2852
## 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20
## 1 51 26 63 52 87 75 114
## 2 929 913 928 703 698 603 627
## 3 527 554 585 593 601 535 607
## 4 15 3 5 3 5 4 5
## 5 2692 2671 2764 2613 2565 2504 2429
## 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27
## 1 108 88 138 110 123 122 158
## 2 676 667 668 659 511 479 420
## 3 587 594 612 675 605 593 616
## 4 -110 7 11 15 8 14 8
## 5 2476 2331 2238 2378 2201 1968 1993
## 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03
## 1 190 205 216 183 70 146 226
## 2 465 409 401 321 238 167 157
## 3 642 614 602 563 556 515 507
## 4 6 5 4 2 15 5 5
## 5 1897 1759 1629 1686 1573 1357 1258
## 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10
## 1 161 251 404 200 153 219 478
## 2 112 123 131 141 167 178 174
## 3 532 551 571 529 538 467 552
## 4 6 7 1 5 9 6 16
## 5 1363 1368 1402 1567 1469 1428 1257
## 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17
## 1 373 309 439 277 411 434 407
## 2 168 129 145 112 116 139 115
## 3 492 495 488 477 469 450 442
## 4 15 20 17 9 10 39 20
## 5 1521 1569 1482 1383 1413 1227 1372
## 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24
## 1 489 395 244 414 316 0 572
## 2 163 161 111 123 89 103 138
## 3 419 403 411 409 401 392 398
## 4 40 44 16 34 44 33 30
## 5 1409 1363 1287 1213 1184 1109 1175
## 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31
## 1 272 553 440 355 329 465 543
## 2 141 206 237 223 212 230 212
## 3 370 391 397 387 378 365 348
## 4 77 40 45 68 24 73 68
## 5 1114 1068 1019 1069 987 910 951
## 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07
## 1 658 532 617 672 649 655 1085
## 2 176 165 145 157 130 151 178
## 3 339 325 311 304 298 293 289
## 4 63 64 72 68 52 58 67
## 5 898 816 833 822 791 756 768
## 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14
## 1 749 879 477 969 440 433 734
## 2 187 175 154 151 148 153 168
## 3 285 278 272 264 255 247 242
## 4 103 78 80 206 117 252 214
## 5 781 775 708 687 643 601 607
## 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21
## 1 629 792 886 616 796 715 847
## 2 163 160 141 131 128 115 126
## 3 238 232 228 219 210 203 197
## 4 149 175 279 213 196 239 266
## 5 672 621 593 576 551 483 492
## 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28
## 1 650 651 535 658 538 536 849
## 2 113 121 138 112 111 104 115
## 3 191 186 179 175 160 153 146
## 4 634 363 549 620 850 431 734
## 5 552 561 498 472 461 403 455
## 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05
## 1 801 511 683 509 370 722 628
## 2 124 119 119 149 109 108 98
## 3 155 162 160 157 148 141 134
## 4 823 1776 1276 549 1099 891 1824
## 5 539 418 492 481 419 390 379
## 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12
## 1 1031 1045 779 1076 318 1026 1109
## 2 121 133 121 106 125 129 132
## 3 129 121 138 146 136 132 253
## 4 1537 1199 1317 1246 1235 928 1147
## 5 477 468 421 407 405 323 348
## 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19
## 1 1164 836 855 1169 0 945 1159
## 2 139 128 118 126 138 127 123
## 3 74 185 193 221 205 199 214
## 4 2054 2423 2459 1539 1505 1520 1364
## 5 474 501 472 433 359 348 381
## 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26
## 1 957 719 995 764 990 1639 1210
## 2 158 178 177 170 167 143 167
## 3 213 252 276 273 250 263 276
## 4 2035 2648 2821 2489 1820 2337 1968
## 5 385 405 401 383 395 323 357
## 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02
## 1 752 899 782 972 467 950 862
## 2 170 153 179 167 179 181 189
## 3 287 320 306 319 291 330 302
## 4 3800 3087 3443 3921 3301 3259 5877
## 5 399 416 435 398 402 374 381
## 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09
## 1 781 899 853 1004 595 1078 923
## 2 197 207 201 224 208 239 221
## 3 405 548 642 631 581 670 642
## 4 4833 4658 4630 5384 3554 4519 5665
## 5 473 426 450 436 407 363 392
## 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16
## 1 970 875 919 824 0 974 722
## 2 232 227 214 224 228 220 242
## 3 753 811 851 867 844 860 910
## 4 5996 5419 5685 4469 4750 2373 5861
## 5 471 394 311 441 349 305 301
## 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23
## 1 612 529 541 802 0 1015 650
## 2 275 329 342 363 358 351 354
## 3 1002 1038 1023 1103 1019 1088 1005
## 4 6454 7933 5469 4940 3826 5268 4981
## 5 362 290 319 286 221 224 231
## 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30
## 1 707 617 610 866 0 1157 379
## 2 361 365 368 357 351 358 370
## 3 1133 1025 1085 1058 1044 1009 978
## 4 4586 5025 5000 4580 3108 3598 5123
## 5 252 326 322 302 220 217 232
## 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07
## 1 608 670 762 680 0 1051 517
## 2 392 421 432 427 431 418 415
## 3 953 932 843 803 772 750 573
## 4 4187 3591 4029 3116 3160 2576 3980
## 5 263 249 230 234 190 187 209
## 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14
## 1 889 536 661 697 0 899 578
## 2 434 421 445 464 478 486 511
## 3 591 598 565 542 517 464 495
## 4 3062 3088 2902 2338 1816 2339 2863
## 5 193 159 141 168 166 139 125
## 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21
## 1 660 560 706 489 0 788 640
## 2 523 544 548 579 611 664 718
## 3 468 442 426 438 410 422 456
## 4 2547 2561 2221 1708 1283 2152 2499
## 5 142 180 181 174 158 162 168
## 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28
## 1 506 640 846 461 0 728 532
## 2 788 911 1021 1133 1189 1226 1359
## 3 410 480 458 434 416 392 382
## 4 2444 2091 1707 1616 1050 1590 1802
## 5 181 177 189 178 163 154 119
## 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04
## 1 437 585 342 467 0 670 561
## 2 1333 1411 1418 1409 1407 1309 1277
## 3 357 323 299 287 262 249 237
## 4 1645 1674 1427 1271 903 1540 1623
## 5 149 113 140 137 101 82 94
## 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11
## 1 481 424 635 487 0 743 633
## 2 1119 1007 1219 1001 989 993 961
## 3 228 247 262 275 256 231 225
## 4 1472 1553 1215 1092 796 1250 1461
## 5 104 118 108 97 110 117 140
## 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18
## 1 652 640 764 583 0 1071 781
## 2 970 996 1022 879 887 890 878
## 3 272 219 267 254 230 222 259
## 4 1176 1122 1075 808 706 957 1030
## 5 147 175 169 173 140 176 170
## 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25
## 1 596 659 622 794 0 1148 741
## 2 899 789 752 748 680 674 669
## 3 249 265 246 272 245 227 258
## 4 883 978 776 730 608 934 845
## 5 226 238 212 213 197 186 213
## 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01
## 1 870 765 715 871 0 981 771
## 2 643 632 521 589 547 533 541
## 3 243 262 251 277 235 217 239
## 4 943 870 1058 864 641 1181 1207
## 5 223 216 253 267 270 261 255
## 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08
## 1 1032 809 770 881 0 1132 856
## 2 521 512 532 540 509 534 567
## 3 263 275 265 248 0 459 225
## 4 1132 1280 1294 1222 865 1299 1685
## 5 310 306 303 327 386 317 356
## 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15
## 1 679 467 333 520 0 473 351
## 2 573 610 603 609 600 611 613
## 3 246 223 267 254 210 198 183
## 4 1483 1855 1807 1579 1240 2447 2312
## 5 353 369 364 353 337 322 314
## 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22
## 1 331 312 392 585 0 472 415
## 2 633 618 656 610 600 608 623
## 3 175 178 171 182 164 153 177
## 4 2657 2887 1638 867 2200 3917 4550
## 5 322 334 327 337 325 315 327
## 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01
## 1 489 561 571 625 0 880 789
## 2 633 644 589 601 588 595 586
## 3 185 182 161 183 155 132 163
## 4 4139 4024 3827 3644 2584 4594 6068
## 5 335 353 356 346 338 322 317
## 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08
## 1 840 618 1002 895 0 1158 1018
## 2 581 577 587 579 588 581 591
## 3 175 163 168 187 156 130 148
## 4 5124 5335 5733 4584 3481 6302 7413
## 5 302 331 375 384 382 357 351
## 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15
## 1 1030 910 1073 972 0 1350 1087
## 2 622 645 639 639 641 644 631
## 3 161 138 170 157 135 122 145
## 4 7072 6649 8300 7705 4144 8053 9417
## 5 390 386 390 360 351 348 345
## 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22
## 1 1041 1054 1032 1134 0 1264 905
## 2 640 645 642 645 644 647 643
## 3 130 148 154 128 96 91 98
## 4 8910 9535 9192 7354 5205 8789 9269
## 5 354 393 381 391 382 367 404
## 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29
## 1 901 909 912 884 0 733 696
## 2 648 641 661 670 683 686 689
## 3 94 89 105 114 93 86 110
## 4 9003 9130 8433 6444 4399 7183 7940
## 5 410 466 482 510 502 531 541
## 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05
## 1 706 706 1023 1108 0 1206 1148
## 2 693 699 712 703 710 709 767
## 3 115 131 112 125 95 98 117
## 4 7751 6570 6482 4774 4042 6032 6537
## 5 556 585 590 728 684 673 695
## 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12
## 1 876 969 869 732 0 937 851
## 2 778 783 789 794 801 812 818
## 3 140 125 112 135 127 138 129
## 4 6005 5232 4775 3794 3145 3340 3565
## 5 792 783 902 904 878 799 842
## 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19
## 1 828 541 513 573 0 749 584
## 2 823 831 837 841 845 850 852
## 3 154 176 167 181 163 156 163
## 4 2790 4085 2963 2732 1596 2507 3509
## 5 951 929 985 964 948 916 970
## 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26
## 1 625 594 533 536 0 534 467
## 2 855 861 872 884 912 953 991
## 3 187 182 189 199 174 186 190
## 4 2699 3209 2097 1677 1259 1731 2386
## 5 1070 1028 1055 1098 1072 953 958
## 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03
## 1 501 447 371 436 0 363 464
## 2 1003 1011 1003 1021 1032 1051 1078
## 3 232 236 286 242 203 211 195
## 4 1815 1910 1552 1556 704 824 1272
## 5 1045 1062 1026 1056 1048 937 953
## 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10
## 1 337 255 266 504 0 273 256
## 2 1090 1102 1110 1125 1132 1138 1150
## 3 282 273 201 219 208 204 184
## 4 1530 1220 1007 702 601 0 1765
## 5 999 1016 1090 1039 997 942 986
## 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17
## 1 466 253 234 0 0 231 304
## 2 1180 1187 1193 1197 1203 1201 1188
## 3 195 199 207 170 135 117 174
## 4 855 0 901 0 0 1400 1104
## 5 999 1020 1116 927 837 825 886
## 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24
## 1 298 338 299 250 0 412 281
## 2 1169 1160 1153 1148 1151 1145 1149
## 3 208 203 260 278 217 209 247
## 4 1174 0 0 0 0 0 5004
## 5 1047 1212 1330 1136 1142 1067 1157
## 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31
## 1 340 219 321 343 0 366 595
## 2 1140 1151 1132 1133 1119 1007 984
## 3 254 285 280 272 258 269 188
## 4 0 0 2603 620 0 0 1875
## 5 1389 1320 1183 1215 1106 907 1245
## 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07
## 1 296 251 244 386 0 328 404
## 2 956 951 932 861 821 801 782
## 3 305 422 336 385 320 277 325
## 4 750 604 633 494 304 528 655
## 5 1251 1269 1261 1201 1144 984 1161
## 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14
## 1 243 229 229 376 0 297 225
## 2 773 765 755 733 711 691 613
## 3 364 387 321 372 343 318 354
## 4 599 598 479 343 310 500 546
## 5 1261 1274 0 2461 1077 1017 1109
## 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21
## 1 271 333 258 280 0 322 290
## 2 609 606 591 589 566 532 509
## 3 373 343 382 379 367 235 473
## 4 500 467 522 301 311 502 520
## 5 1269 1239 1309 1236 1153 1079 1212
## 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28
## 1 215 223 184 469 0 341 316
## 2 498 466 423 412 409 389 376
## 3 385 370 354 369 341 352 375
## 4 504 599 582 361 273 465 605
## 5 1479 1253 1255 1312 1301 1218 1318
## 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05
## 1 452 236 431 418 0 719 782
## 2 261 251 242 198 181 179 175
## 3 389 397 449 475 457 464 495
## 4 497 518 533 458 222 575 584
## 5 1567 1486 1534 1338 1148 1173 1247
## 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12
## 1 1070 1248 1384 1710 0 2854 2679
## 2 164 161 155 127 121 117 110
## 3 481 585 620 831 813 768 878
## 4 505 646 553 468 406 569 767
## 5 1277 1207 1257 1133 1177 1112 1244
## 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19
## 1 2640 2604 2555 2866 0 4061 3425
## 2 108 89 81 77 69 0 126
## 3 941 914 1109 1197 1107 1099 1177
## 4 601 734 661 475 389 675 0
## 5 1295 1226 1165 1298 1098 1055 1293
## 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26
## 1 1781 0 732 2171 0 3845 3512
## 2 51 49 44 41 38 39 35
## 3 1298 1221 1208 1350 1305 1287 1505
## 4 1195 286 400 331 485 1061 1131
## 5 1273 1142 1162 1247 1256 1194 1252
## 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02
## 1 3348 3161 2730 2914 0 4322 2892
## 2 31 38 42 45 47 49 51
## 3 1544 1927 1537 1521 1203 1172 1358
## 4 1213 1055 1008 760 562 1041 0
## 5 1379 1334 0 0 3622 1084 0
## 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09
## 1 2139 2484 1997 1879 0 3019 2001
## 2 53 57 51 57 61 65 83
## 3 1307 1495 1289 1203 1140 1020 992
## 4 1904 897 697 531 396 986 929
## 5 0 0 0 5121 0 0 0
## 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16
## 1 2134 2472 2286 2360 0 2831 2688
## 2 86 91 95 97 99 101 107
## 3 979 844 851 860 753 603 710
## 4 926 511 1012 1010 658 1238 1183
## 5 0 0 0 5439 0 0 1755
## 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23
## 1 2276 2325 1949 2364 0 1722 1625
## 2 112 123 131 164 173 184 189
## 3 695 721 694 578 515 412 506
## 4 1066 888 782 721 0 1386 976
## 5 0 0 1115 0 957 0 793
## 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30
## 1 1894 1682 1722 1613 0 2003 1678
## 2 194 203 221 234 251 255 263
## 3 537 545 503 512 485 491 412
## 4 1016 812 904 0 1168 811 1098
## 5 0 0 0 1324 0 0 0
## 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06
## 1 1501 1665 1479 1388 0 1914 1379
## 2 279 291 303 318 331 343 368
## 3 506 447 388 393 351 345 309
## 4 867 965 893 841 415 1048 1061
## 5 0 0 0 0 0 1925 0
## 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13
## 1 1272 1499 1802 1117 0 1443 1291
## 2 378 399 413 433 458 481 491
## 3 332 317 313 285 262 246 233
## 4 1002 975 0 1686 0 1372 0
## 5 262 0 222 102 0 0 0
## 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20
## 1 1149 1433 1053 968 0 1121 1081
## 2 503 531 569 588 637 653 679
## 3 227 242 219 235 201 175 166
## 4 2059 1116 904 790 428 920 0
## 5 0 0 507 75 0 0 201
## 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27
## 1 1038 985 1006 936 0 989 910
## 2 688 692 722 568 667 680 702
## 3 182 174 161 166 125 148 155
## 4 1945 1028 913 871 438 987 1015
## 5 69 54 0 0 147 44 59
## 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04
## 1 686 693 815 1007 0 748 719
## 2 718 738 741 745 761 768 771
## 3 168 153 161 158 140 132 126
## 4 1042 1052 1027 778 548 1037 1222
## 5 50 0 99 0 0 0 0
## 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11
## 1 682 692 915 604 0 725 637
## 2 778 788 799 811 831 837 846
## 3 131 125 105 112 102 107 98
## 4 1068 1316 1056 888 567 1072 1307
## 5 223 45 47 48 35 59 58
## 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18
## 1 551 724 559 563 0 780 638
## 2 857 861 865 869 874 871 883
## 3 95 110 105 101 93 87 78
## 4 1191 1286 1268 1021 573 1372 1715
## 5 55 57 36 48 45 41 38
## 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25
## 1 596 532 436 689 0 745 589
## 2 868 877 883 885 881 886 889
## 3 89 76 70 84 67 72 81
## 4 1597 1232 0 2967 758 1652 1602
## 5 49 47 46 51 43 47 51
## 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01
## 1 651 624 596 569 0 683 626
## 2 871 907 923 927 948 933 951
## 3 87 79 91 110 88 94 114
## 4 1746 1692 1892 1454 1022 1723 2120
## 5 65 55 51 56 41 46 49
## 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08
## 1 499 556 648 599 0 648 795
## 2 921 951 911 922 909 903 929
## 3 83 105 124 117 84 77 98
## 4 1790 2042 2012 2080 1122 2097 2562
## 5 45 49 45 43 42 40 43
## 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15
## 1 609 597 568 593 0 599 562
## 2 921 934 919 909 929 0 1881
## 3 131 124 115 140 109 97 134
## 4 2577 2503 2596 2393 1236 0 5893
## 5 49 38 43 45 44 30 38
## 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22
## 1 593 408 551 429 0 593 581
## 2 941 960 911 892 902 884 870
## 3 141 135 152 163 144 113 159
## 4 0 3118 7056 0 5532 3579 4324
## 5 37 42 38 35 31 36 39
## 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29
## 1 595 468 732 600 0 784 638
## 2 856 901 899 913 931 951 911
## 3 172 180 161 193 163 172 192
## 4 4549 4534 4283 4080 2674 4012 5661
## 5 38 34 28 24 29 24 25
## 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06
## 1 427 574 529 541 0 709 479
## 2 949 938 919 933 892 902 871
## 3 187 192 198 191 185 172 193
## 4 4977 5047 4665 0 7746 4555 5811
## 5 32 34 24 38 29 35 43
## 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13
## 1 401 509 495 577 0 655 711
## 2 889 909 803 822 879 863 0
## 3 197 188 177 210 218 196 210
## 4 6392 5180 5153 4936 2708 3897 5256
## 5 42 46 45 48 53 51 64
## 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20
## 1 512 488 648 559 0 726 592
## 2 1621 879 901 910 902 919 903
## 3 230 245 212 299 286 262 243
## 4 4402 4341 3812 3705 1920 3196 3578
## 5 65 88 85 80 116 104 146
## 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27
## 1 543 561 560 658 0 735 881
## 2 848 879 883 811 866 823 851
## 3 310 285 293 375 278 261 293
## 4 3023 2448 2239 2304 1164 1447 2024
## 5 222 252 287 332 325 389 524
## 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03
## 1 599 665 640 551 0 916 634
## 2 809 854 871 847 783 801 723
## 3 335 382 390 395 386 341 373
## 4 2403 2220 2045 1845 872 1294 1682
## 5 602 744 752 819 846 1024 1746
## 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10
## 1 651 698 643 592 0 579 536
## 2 769 803 840 821 830 912 951
## 3 421 462 410 491 426 415 482
## 4 2296 2288 2170 2033 1392 2349 2789
## 5 2585 3045 3168 3575 3068 3460 4778
## 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17
## 1 487 599 618 765 0 867 736
## 2 932 948 1011 1079 1101 1197 1232
## 3 557 610 577 596 505 573 692
## 4 2930 2829 3362 3396 2387 3493 5039
## 5 4652 5362 5499 5628 5281 5477 5505
## 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24
## 1 885 1173 1331 1700 0 2281 2333
## 2 1303 1379 1403 1533 1569 1603 1651
## 3 810 1359 1552 1855 2211 2134 2215
## 4 5175 6216 6289 6309 4102 6951 11478
## 5 5873 5928 5591 4884 4608 4535 4838
## 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31
## 1 3063 2245 3157 3320 0 5694 4429
## 2 1809 1910 1985 2007 2018 2210 2223
## 3 2521 2162 2130 1870 1742 1464 1343
## 4 11813 12826 7691 4224 8170 11833 16226
## 5 4541 4526 4738 4474 3913 3669 4211
## 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07
## 1 4266 4371 3656 3917 0 4242 2832
## 2 2291 2278 2281 2291 2298 2301 2272
## 3 1403 1365 951 970 792 378 502
## 4 17781 17893 19123 21386 12751 15864 21626
## 5 3861 4092 3852 3555 3013 3260 3747
## 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14
## 1 3326 3272 3773 3345 0 3648 2800
## 2 2194 2191 2189 2179 2145 0 4260
## 3 610 585 518 532 503 526 413
## 4 22720 21977 21460 18872 14048 17550 22113
## 5 3330 3162 2866 2523 1726 2136 2227
## 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21
## 1 2490 2884 2457 1208 0 2292 2307
## 2 2117 2101 2071 2053 2025 2009 2003
## 3 405 424 375 316 251 118 147
## 4 18477 17322 15107 12379 7064 10085 11254
## 5 1982 1793 1569 1376 997 1013 1052
## 2022-02-22 2022-02-23
## 1 1815 1373
## 2 1989 1892
## 3 164 123
## 4 9117 8144
## 5 841 627
##
## $Growth.Rate
## geo.loc 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28
## 1 LIBYA NaN NaN NaN NaN NaN
## 2 EGYPT NaN NaN NaN NaN NaN
## 3 ALGERIA NaN NaN NaN NaN NaN
## 4 JORDAN NaN NaN NaN NaN NaN
## 5 SAUDI ARABIA NaN NaN NaN NaN NaN
## 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 3 NaN NaN NaN NaN NaN NaN NaN
## 4 NaN NaN NaN NaN NaN NaN NaN
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 3 NaN NaN NaN NaN NaN NaN NaN
## 4 NaN NaN NaN NaN NaN NaN NaN
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NA 0 NaN NaN NaN
## 3 NaN NaN NaN NaN NaN NaN NaN
## 4 NaN NaN NaN NaN NaN NaN NaN
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 3 NaN NaN NaN NaN NaN NaN NA
## 4 NaN NaN NaN NaN NaN NaN NaN
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NA 0 NaN
## 3 0 NaN NaN NaN NaN NA 1
## 4 NaN NaN NaN NaN NaN NaN NA
## 5 NaN NaN NaN NaN NaN NA 0
## 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NA 12 0 NA 0.1764706 0.6666667
## 3 3.5 0 NA 0 NA 0.5000000 0.0000000
## 4 0.0 NaN NaN NaN NaN NaN NaN
## 5 NaN NA 0 NaN NA 0.6666667 1.2500000
## 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 0.25 7 1.857143 2.2307692 0.03448276 40.0000000 1.150000
## 3 NaN NA 0.500000 5.5000000 1.00000000 0.5454545 1.000000
## 4 NaN NaN NaN NaN NA 1.2857143 1.888889
## 5 0.20 24 1.708333 0.4146341 0.00000000 NA 3.533333
## 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24
## 1 NaN NaN NaN NaN NaN NaN NA
## 2 0.000000 NA 0.4833333 0.3103448 3.666667 1.1818182 0.9230769
## 3 2.333333 0.9285714 0.2307692 16.3333333 1.265306 0.4677419 1.1724138
## 4 1.058824 0.9444444 0.9411765 0.0000000 NA 0.5555556 1.8000000
## 5 0.000000 NA 0.6796117 0.6857143 2.479167 0.4285714 4.0196078
## 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31
## 1 0.0000000 NaN NaN NA 2.500000 0.0000000 NA
## 2 1.5000000 0.7222222 1.0512821 0.9756098 0.825000 1.4242424 1.1489362
## 3 1.1176471 1.7105263 0.6461538 1.0714286 1.266667 1.2807018 1.8082192
## 4 0.6666667 2.2222222 0.5750000 0.4782609 1.181818 0.6923077 0.6666667
## 5 0.6487805 0.8421053 0.8214286 1.0760870 0.969697 1.6041667 0.7142857
## 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07
## 1 0.0000000 NA 0.0000000 NA 0.000000 NA 1.0000000
## 2 1.2777778 1.246377 1.3953488 0.7083333 1.211765 1.4466019 0.8590604
## 3 0.9924242 1.061069 1.3309353 0.4324324 0.862500 1.4927536 0.4368932
## 4 0.6666667 5.250000 0.5238095 1.1818182 1.692308 0.1818182 1.0000000
## 5 1.4272727 1.050955 0.9333333 0.9090909 1.592857 0.9103139 0.9359606
## 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14
## 1 1.0000000 3.0000000 0.0000000 NaN NA 1.0000000 9.0000000
## 2 0.8593750 1.2636364 0.6834532 1.5263158 0.8689655 0.9920635 1.2800000
## 3 2.3111111 0.9038462 1.0106383 0.6736842 1.3906250 0.7752809 1.2608696
## 4 1.2500000 2.8000000 0.0000000 NA 0.8888889 0.2500000 3.0000000
## 5 0.7210526 2.5912409 1.0253521 1.0494505 1.1230366 1.1002331 0.9216102
## 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21
## 1 1.4444444 0.07692308 0.000000 NaN NA 0.0000000 NaN
## 2 0.9687500 1.08387097 1.017857 1.0994152 0.5957447 1.6875000 0.8306878
## 3 1.0344828 1.20000000 1.388889 0.7733333 0.8189655 0.9368421 1.0449438
## 4 0.6666667 0.25000000 5.000000 1.2000000 0.6666667 2.0000000 0.3750000
## 5 1.1333333 1.05070994 1.471042 1.4855643 0.9611307 1.0312500 1.0222816
## 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28
## 1 NA 0.1250000 1.0000000 0.000000 NaN NaN NaN
## 2 1.076433 1.3727811 0.8663793 1.129353 0.9471366 1.1534884 1.0483871
## 3 1.064516 0.9797980 1.2371134 1.075000 0.9767442 1.0714286 0.9777778
## 4 2.333333 0.2857143 2.0000000 0.750000 1.0000000 0.6666667 0.0000000
## 5 0.994769 1.0148992 1.0120898 1.021331 1.0217210 1.0539657 0.9821567
## 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05
## 1 NaN NaN NA 0.0000000 NaN NaN NaN
## 2 0.8692308 1.1902655 1.3308550 0.8324022 0.9127517 1.279412 1.1149425
## 3 1.5075758 0.7939698 0.9367089 0.9527027 1.2695035 0.972067 1.0919540
## 4 NA 1.0000000 3.0000000 0.1666667 1.0000000 4.000000 1.5000000
## 5 1.0466035 1.0196226 0.9948187 1.0133929 1.1395007 1.059923 0.9696049
## 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12
## 1 NA 0.000000 NaN NaN NaN NaN NaN
## 2 0.9974227 1.015504 1.2595420 0.9858586 0.8934426 0.793578 1.0028902
## 3 0.8368421 1.163522 1.0108108 1.0106952 0.8730159 1.018182 1.0476190
## 4 0.3333333 10.500000 0.6666667 1.0000000 1.2857143 1.222222 0.6363636
## 5 1.0576803 1.062833 0.9486893 1.0017637 1.1220657 1.028243 0.9720244
## 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19
## 1 NaN NaN NaN NA 0.0000000 NaN NA
## 2 0.9740634 1.1775148 1.002513 1.230576 1.0386965 1.0490196 1.3457944
## 3 1.0568182 1.0161290 0.989418 1.026738 1.0312500 0.9191919 0.9670330
## 4 0.4285714 0.6666667 2.500000 1.100000 0.5454545 2.6666667 1.2500000
## 5 0.9968603 1.0703412 1.131437 1.231036 0.9633803 0.9477339 0.9676051
## 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26
## 1 0.3333333 2.0000000 0.500000 3.0000000 0.0000000 NaN NA
## 2 1.0347222 1.0389262 1.011628 0.9284802 1.0343879 0.9335106 1.1239316
## 3 0.9375000 1.1272727 1.021505 1.0263158 0.9897436 1.0207254 0.9847716
## 4 1.1500000 0.5217391 1.333333 0.2500000 1.0000000 0.7500000 2.3333333
## 5 1.0725389 0.9409142 1.043444 0.9242998 0.9823915 0.9316382 0.8639821
## 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02
## 1 11.0000000 0.2727273 2.1666667 0.9230769 2.1666667 0.4615385 1.1666667
## 2 1.1533587 1.2384615 1.1437445 1.0605120 1.1236284 0.9108073 0.8234453
## 3 0.8247423 0.8750000 0.9785714 0.9708029 0.9548872 0.9370079 0.9495798
## 4 0.2857143 4.0000000 0.2500000 2.0000000 1.2500000 1.4000000 1.2857143
## 5 0.9399275 0.9057851 0.9616788 1.0234029 1.1600742 1.0021311 0.9936204
## 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09
## 1 1.0000000 0.9285714 2.307692 0.5666667 0.0000000 NA 0.3552632
## 2 0.9366319 1.0676552 1.170139 1.1105341 0.9799599 0.9304703 1.0146520
## 3 0.9469027 0.9158879 1.061224 1.1057692 0.9043478 1.0673077 1.0540541
## 4 0.2222222 4.0000000 2.375000 0.5789474 1.1818182 1.7692308 0.6086957
## 5 1.1615837 0.9097190 1.311899 1.2045542 0.9756488 1.1064039 0.9759573
## 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16
## 1 0.7037037 0.7894737 1.0666667 0.5625000 4.0000000 0.3611111 1.3076923
## 2 1.0505415 0.9910653 1.0936200 1.0634115 0.9648181 1.0451174 0.9266706
## 3 0.8717949 1.0294118 1.0380952 1.0275229 0.9732143 1.0275229 1.0357143
## 4 1.2857143 1.5000000 0.9259259 1.5200000 0.2105263 2.2500000 0.1111111
## 5 1.1304745 1.0043045 1.0503616 0.8584545 1.2575758 1.0647295 0.9467495
## 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23
## 1 0.9411765 0.6250000 1.0000000 2.4000000 1.1250000 0.8888889 1.8333333
## 2 0.8698149 0.8936170 1.4564860 0.8720406 0.9534583 1.0684746 0.8451777
## 3 1.0431034 0.9669421 1.0170940 1.0672269 1.1023622 1.0642857 1.0469799
## 4 3.0000000 2.3333333 0.5000000 1.0000000 2.5714286 0.5000000 0.5555556
## 5 1.1528006 0.9670665 0.9041413 0.9162985 0.8573966 1.0041432 0.9251400
## 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30
## 1 0.7045455 0.9032258 0.5357143 0.9333333 2.500000 1.1428571 0.5500000
## 2 1.0660661 1.1049296 1.0356915 0.7187692 1.083048 1.2379447 0.9942529
## 3 1.1025641 1.1453488 1.2182741 1.1791667 1.077739 0.9770492 1.1275168
## 4 4.8000000 0.6250000 1.2000000 0.3888889 1.428571 0.7000000 0.5714286
## 5 0.9949028 1.0797310 1.1678529 0.9972067 1.015788 0.9884683 1.1126046
## 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07
## 1 2.2727273 0.340000 1.5882353 2.6296296 0.8028169 1.2456140 0.9154930
## 2 0.9653179 0.988024 0.9508418 0.9376771 0.9199396 0.7955665 1.0908153
## 3 1.0863095 1.054795 1.0727273 1.0411622 1.0255814 1.0498866 1.0259179
## 4 0.2500000 3.000000 3.6666667 0.2727273 4.6666667 0.2142857 0.6666667
## 5 0.7754730 0.994415 1.2394325 0.9844980 0.8672481 1.1751397 0.8062753
## 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14
## 1 1.3230769 0.8604651 0.0000000 NA 0.9361702 1.795455 0.6455696
## 2 0.9697256 0.9268293 1.0326316 0.9408767 0.9880823 1.020833 0.9978518
## 3 0.9873684 0.9808102 0.9434783 1.0829493 1.0276596 1.022774 1.0668016
## 4 0.0000000 NaN NA 0.7500000 1.0000000 1.333333 3.7500000
## 5 0.8950472 1.0484190 0.9924599 0.9477683 0.9281897 1.026268 0.9438990
## 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21
## 1 0.5098039 2.423077 0.8253968 1.6730769 0.8620690 1.5200000 0.9473684
## 2 0.9827772 1.016429 0.7575431 0.9928876 0.8638968 1.0398010 1.0781499
## 3 1.0512334 1.055957 1.0136752 1.0134907 0.8901830 1.1345794 0.9670511
## 4 0.2000000 1.666667 0.6000000 1.6666667 0.8000000 1.2500000 -22.0000000
## 5 0.9921991 1.034818 0.9453690 0.9816303 0.9762183 0.9700479 1.0193495
## 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28
## 1 0.81481481 1.568182 0.7971014 1.1181818 0.9918699 1.2950820 1.2025316
## 2 0.98668639 1.001499 0.9865269 0.7754173 0.9373777 0.8768267 1.1071429
## 3 1.01192504 1.030303 1.1029412 0.8962963 0.9801653 1.0387858 1.0422078
## 4 -0.06363636 1.571429 1.3636364 0.5333333 1.7500000 0.5714286 0.7500000
## 5 0.94143780 0.960103 1.0625559 0.9255677 0.8941390 1.0127033 0.9518314
## 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04
## 1 1.0789474 1.0536585 0.8472222 0.3825137 2.0857143 1.5479452 0.7123894
## 2 0.8795699 0.9804401 0.8004988 0.7414330 0.7016807 0.9401198 0.7133758
## 3 0.9563863 0.9804560 0.9352159 0.9875666 0.9262590 0.9844660 1.0493097
## 4 0.8333333 0.8000000 0.5000000 7.5000000 0.3333333 1.0000000 1.2000000
## 5 0.9272536 0.9260944 1.0349908 0.9329775 0.8626828 0.9270450 1.0834658
## 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11
## 1 1.559006 1.6095618 0.4950495 0.7650000 1.4313725 2.1826484 0.7803347
## 2 1.098214 1.0650407 1.0763359 1.1843972 1.0658683 0.9775281 0.9655172
## 3 1.035714 1.0362976 0.9264448 1.0170132 0.8680297 1.1820128 0.8913043
## 4 1.166667 0.1428571 5.0000000 1.8000000 0.6666667 2.6666667 0.9375000
## 5 1.003668 1.0248538 1.1176890 0.9374601 0.9720899 0.8802521 1.2100239
## 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18
## 1 0.8284182 1.4207120 0.6309795 1.4837545 1.0559611 0.9377880 1.2014742
## 2 0.7678571 1.1240310 0.7724138 1.0357143 1.1982759 0.8273381 1.4173913
## 3 1.0060976 0.9858586 0.9774590 0.9832285 0.9594883 0.9822222 0.9479638
## 4 1.3333333 0.8500000 0.5294118 1.1111111 3.9000000 0.5128205 2.0000000
## 5 1.0315582 0.9445507 0.9331984 1.0216920 0.8683652 1.1181744 1.0269679
## 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25
## 1 0.8077710 0.6177215 1.6967213 0.7632850 0.0000000 NA 0.4755245
## 2 0.9877301 0.6894410 1.1081081 0.7235772 1.1573034 1.3398058 1.0217391
## 3 0.9618138 1.0198511 0.9951338 0.9804401 0.9775561 1.0153061 0.9296482
## 4 1.1000000 0.3636364 2.1250000 1.2941176 0.7500000 0.9090909 2.5666667
## 5 0.9673527 0.9442406 0.9425019 0.9760923 0.9366554 1.0595131 0.9480851
## 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01
## 1 2.0330882 0.7956600 0.8068182 0.9267606 1.4133739 1.1677419 1.2117864
## 2 1.4609929 1.1504854 0.9409283 0.9506726 1.0849057 0.9217391 0.8301887
## 3 1.0567568 1.0153453 0.9748111 0.9767442 0.9656085 0.9534247 0.9741379
## 4 0.5194805 1.1250000 1.5111111 0.3529412 3.0416667 0.9315068 0.9264706
## 5 0.9587074 0.9541199 1.0490677 0.9232928 0.9219858 1.0450549 0.9442692
## 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08
## 1 0.8085106 1.1597744 1.0891410 0.9657738 1.0092450 1.6564885 0.6903226
## 2 0.9375000 0.8787879 1.0827586 0.8280255 1.1615385 1.1788079 1.0505618
## 3 0.9587021 0.9569231 0.9774920 0.9802632 0.9832215 0.9863481 0.9861592
## 4 1.0158730 1.1250000 0.9444444 0.7647059 1.1153846 1.1551724 1.5373134
## 5 0.9086860 1.0208333 0.9867947 0.9622871 0.9557522 1.0158730 1.0169271
## 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15
## 1 1.1735648 0.5426621 2.0314465 0.4540764 0.9840909 1.6951501 0.8569482
## 2 0.9358289 0.8800000 0.9805195 0.9801325 1.0337838 1.0980392 0.9702381
## 3 0.9754386 0.9784173 0.9705882 0.9659091 0.9686275 0.9797571 0.9834711
## 4 0.7572816 1.0256410 2.5750000 0.5679612 2.1538462 0.8492063 0.6962617
## 5 0.9923175 0.9135484 0.9703390 0.9359534 0.9346812 1.0099834 1.1070840
## 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22
## 1 1.2591415 1.1186869 0.6952596 1.2922078 0.8982412 1.1846154 0.7674144
## 2 0.9815951 0.8812500 0.9290780 0.9770992 0.8984375 1.0956522 0.8968254
## 3 0.9747899 0.9827586 0.9605263 0.9589041 0.9666667 0.9704433 0.9695431
## 4 1.1744966 1.5942857 0.7634409 0.9201878 1.2193878 1.1129707 2.3834586
## 5 0.9241071 0.9549114 0.9713322 0.9565972 0.8765880 1.0186335 1.1219512
## 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29
## 1 1.0015385 0.8218126 1.2299065 0.8176292 0.9962825 1.5839552 0.9434629
## 2 1.0707965 1.1404959 0.8115942 0.9910714 0.9369369 1.1057692 1.0782609
## 3 0.9738220 0.9623656 0.9776536 0.9142857 0.9562500 0.9542484 1.0616438
## 4 0.5725552 1.5123967 1.1293260 1.3709677 0.5070588 1.7030162 1.1212534
## 5 1.0163043 0.8877005 0.9477912 0.9766949 0.8741866 1.1290323 1.1846154
## 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06
## 1 0.6379526 1.3365949 0.7452416 0.7269155 1.9513514 0.8698061 1.6417197
## 2 0.9596774 1.0000000 1.2521008 0.7315436 0.9908257 0.9074074 1.2346939
## 3 1.0451613 0.9876543 0.9812500 0.9426752 0.9527027 0.9503546 0.9626866
## 4 2.1579587 0.7184685 0.4302508 2.0018215 0.8107370 2.0471380 0.8426535
## 5 0.7755102 1.1770335 0.9776423 0.8711019 0.9307876 0.9717949 1.2585752
## 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13
## 1 1.0135790 0.7454545 1.3812580 0.2955390 3.2264151 1.080897 1.0495942
## 2 1.0991736 0.9097744 0.8760331 1.1792453 1.0320000 1.023256 1.0530303
## 3 0.9379845 1.1404959 1.0579710 0.9315068 0.9705882 1.916667 0.2924901
## 4 0.7800911 1.0984153 0.9460896 0.9911717 0.7514170 1.235991 1.7907585
## 5 0.9811321 0.8995726 0.9667458 0.9950860 0.7975309 1.077399 1.3620690
## 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20
## 1 0.7182131 1.0227273 1.3672515 0.0000000 NA 1.2264550 0.8257118
## 2 0.9208633 0.9218750 1.0677966 1.0952381 0.9202899 0.9685039 1.2845528
## 3 2.5000000 1.0432432 1.1450777 0.9276018 0.9707317 1.0753769 0.9953271
## 4 1.1796495 1.0148576 0.6258642 0.9779077 1.0099668 0.8973684 1.4919355
## 5 1.0569620 0.9421158 0.9173729 0.8290993 0.9693593 1.0948276 1.0104987
## 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27
## 1 0.7513062 1.3838665 0.7678392 1.2958115 1.6555556 0.7382550 0.6214876
## 2 1.1265823 0.9943820 0.9604520 0.9823529 0.8562874 1.1678322 1.0179641
## 3 1.1830986 1.0952381 0.9891304 0.9157509 1.0520000 1.0494297 1.0398551
## 4 1.3012285 1.0653323 0.8823112 0.7312174 1.2840659 0.8421053 1.9308943
## 5 1.0519481 0.9901235 0.9551122 1.0313316 0.8177215 1.1052632 1.1176471
## 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03
## 1 1.1954787 0.8698554 1.2429668 0.4804527 2.0342612 0.9073684 0.9060325
## 2 0.9000000 1.1699346 0.9329609 1.0718563 1.0111732 1.0441989 1.0423280
## 3 1.1149826 0.9562500 1.0424837 0.9122257 1.1340206 0.9151515 1.3410596
## 4 0.8123684 1.1153223 1.1388324 0.8418771 0.9872766 1.8033139 0.8223583
## 5 1.0426065 1.0456731 0.9149425 1.0100503 0.9303483 1.0187166 1.2414698
## 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10
## 1 1.1510883 0.9488320 1.1770223 0.5926295 1.8117647 0.8562152 1.050921
## 2 1.0507614 0.9710145 1.1144279 0.9285714 1.1490385 0.9246862 1.049774
## 3 1.3530864 1.1715328 0.9828660 0.9207607 1.1531842 0.9582090 1.172897
## 4 0.9637906 0.9939888 1.1628510 0.6601040 1.2715250 1.2535959 1.058429
## 5 0.9006342 1.0563380 0.9688889 0.9334862 0.8918919 1.0798898 1.201531
## 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17
## 1 0.9020619 1.0502857 0.8966268 0.0000000 NA 0.7412731 0.8476454
## 2 0.9784483 0.9427313 1.0467290 1.0178571 0.9649123 1.1000000 1.1363636
## 3 1.0770252 1.0493218 1.0188014 0.9734717 1.0189573 1.0581395 1.1010989
## 4 0.9037692 1.0490865 0.7861038 1.0628776 0.4995789 2.4698694 1.1011773
## 5 0.8365180 0.7893401 1.4180064 0.7913832 0.8739255 0.9868852 1.2026578
## 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24
## 1 0.8643791 1.0226843 1.4824399 0.0000000 NA 0.6403941 1.0876923
## 2 1.1963636 1.0395137 1.0614035 0.9862259 0.9804469 1.0085470 1.0197740
## 3 1.0359281 0.9855491 1.0782014 0.9238441 1.0677134 0.9237132 1.1273632
## 4 1.2291602 0.6893987 0.9032730 0.7744939 1.3768949 0.9455201 0.9206987
## 5 0.8011050 1.1000000 0.8965517 0.7727273 1.0135747 1.0312500 1.0909091
## 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01
## 1 0.8727016 0.9886548 1.4196721 0.0000000 NA 0.3275713 1.6042216
## 2 1.0110803 1.0082192 0.9701087 0.9831933 1.0199430 1.0335196 1.0594595
## 3 0.9046778 1.0585366 0.9751152 0.9867675 0.9664751 0.9692765 0.9744376
## 4 1.0957261 0.9950249 0.9160000 0.6786026 1.1576577 1.4238466 0.8172946
## 5 1.2936508 0.9877301 0.9378882 0.7284768 0.9863636 1.0691244 1.1336207
## 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08
## 1 1.1019737 1.1373134 0.8923885 0.0000000 NA 0.4919125 1.7195358
## 2 1.0739796 1.0261283 0.9884259 1.0093677 0.9698376 0.9928230 1.0457831
## 3 0.9779643 0.9045064 0.9525504 0.9613948 0.9715026 0.7640000 1.0314136
## 4 0.8576546 1.1219716 0.7733929 1.0141207 0.8151899 1.5450311 0.7693467
## 5 0.9467681 0.9236948 1.0173913 0.8119658 0.9842105 1.1176471 0.9234450
## 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15
## 1 0.6029246 1.2332090 1.0544629 0.0000000 NA 0.6429366 1.1418685
## 2 0.9700461 1.0570071 1.0426966 1.0301724 1.0167364 1.0514403 1.0234834
## 3 1.0118443 0.9448161 0.9592920 0.9538745 0.8974855 1.0668103 0.9454545
## 4 1.0084912 0.9397668 0.8056513 0.7767322 1.2879956 1.2240274 0.8896263
## 5 0.8238342 0.8867925 1.1914894 0.9880952 0.8373494 0.8992806 1.1360000
## 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22
## 1 0.8484848 1.2607143 0.6926346 0.0000000 NA 0.8121827 0.7906250
## 2 1.0401530 1.0073529 1.0565693 1.0552677 1.086743 1.0813253 1.0974930
## 3 0.9444444 0.9638009 1.0281690 0.9360731 1.029268 1.0805687 0.8991228
## 4 1.0054967 0.8672394 0.7690230 0.7511710 1.677319 1.1612454 0.9779912
## 5 1.2676056 1.0055556 0.9613260 0.9080460 1.025316 1.0370370 1.0773810
## 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29
## 1 1.2648221 1.3218750 0.5449173 0.0000000 NA 0.7307692 0.8214286
## 2 1.1560914 1.1207464 1.1096964 1.0494263 1.0311186 1.1084829 0.9808683
## 3 1.1707317 0.9541667 0.9475983 0.9585253 0.9423077 0.9744898 0.9345550
## 4 0.8555646 0.8163558 0.9466901 0.6497525 1.5142857 1.1333333 0.9128746
## 5 0.9779006 1.0677966 0.9417989 0.9157303 0.9447853 0.7727273 1.2521008
## 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05
## 1 1.3386728 0.5846154 1.3654971 0.0000000 NA 0.8373134 0.8573975
## 2 1.0585146 1.0049610 0.9936530 0.9985806 0.9303483 0.9755539 0.8762725
## 3 0.9047619 0.9256966 0.9598662 0.9128920 0.9503817 0.9518072 0.9620253
## 4 1.0176292 0.8524492 0.8906797 0.7104642 1.7054264 1.0538961 0.9069624
## 5 0.7583893 1.2389381 0.9785714 0.7372263 0.8118812 1.1463415 1.1063830
## 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12
## 1 0.8814969 1.4976415 0.7669291 0.0000000 NA 0.8519515 1.0300158
## 2 0.8999106 1.2105263 0.8211649 0.9880120 1.0040445 0.9677744 1.0093652
## 3 1.0833333 1.0607287 1.0496183 0.9309091 0.9023438 0.9740260 1.2088889
## 4 1.0550272 0.7823567 0.8987654 0.7289377 1.5703518 1.1688000 0.8049281
## 5 1.1346154 0.9152542 0.8981481 1.1340206 1.0636364 1.1965812 1.0500000
## 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19
## 1 0.9815951 1.1937500 0.7630890 0.0000000 NA 0.7292250 0.7631242
## 2 1.0268041 1.0261044 0.8600783 1.0091013 1.0033822 0.9865169 1.0239180
## 3 0.8051471 1.2191781 0.9513109 0.9055118 0.9652174 1.1666667 0.9613900
## 4 0.9540816 0.9581105 0.7516279 0.8737624 1.3555241 1.0762800 0.8572816
## 5 1.1904762 0.9657143 1.0236686 0.8092486 1.2571429 0.9659091 1.3294118
## 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26
## 1 1.1057047 0.9438543 1.2765273 0.0000000 NA 0.6454704 1.1740891
## 2 0.8776418 0.9531052 0.9946809 0.9090909 0.9911765 0.9925816 0.9611360
## 3 1.0642570 0.9283019 1.1056911 0.9007353 0.9265306 1.1365639 0.9418605
## 4 1.1075878 0.7934560 0.9407216 0.8328767 1.5361842 0.9047109 1.1159763
## 5 1.0530973 0.8907563 1.0047170 0.9248826 0.9441624 1.1451613 1.0469484
## 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02
## 1 0.8793103 0.9346405 1.2181818 0.0000000 NA 0.7859327 1.3385214
## 2 0.9828927 0.8243671 1.1305182 0.9286927 0.9744059 1.0150094 0.9630314
## 3 1.0781893 0.9580153 1.1035857 0.8483755 0.9234043 1.1013825 1.1004184
## 4 0.9225875 1.2160920 0.8166352 0.7418981 1.8424337 1.0220152 0.9378625
## 5 0.9686099 1.1712963 1.0553360 1.0112360 0.9666667 0.9770115 1.2156863
## 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09
## 1 0.7839147 0.9517923 1.1441558 0.0000000 NA 0.7561837 0.7932243
## 2 0.9827255 1.0390625 1.0150376 0.9425926 1.0491159 1.0617978 1.0105820
## 3 1.0456274 0.9636364 0.9358491 0.0000000 NA 0.4901961 1.0933333
## 4 1.1307420 1.0109375 0.9443586 0.7078560 1.5017341 1.2971517 0.8801187
## 5 0.9870968 0.9901961 1.0792079 1.1804281 0.8212435 1.1230284 0.9915730
## 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16
## 1 0.6877761 0.7130621 1.5615616 0.0000000 NA 0.7420719 0.9430199
## 2 1.0645724 0.9885246 1.0099502 0.9852217 1.0183333 1.0032733 1.0326264
## 3 0.9065041 1.1973094 0.9513109 0.8267717 0.9428571 0.9242424 0.9562842
## 4 1.2508429 0.9741240 0.8738240 0.7853072 1.9733871 0.9448304 1.1492215
## 5 1.0453258 0.9864499 0.9697802 0.9546742 0.9554896 0.9751553 1.0254777
## 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23
## 1 0.9425982 1.2564103 1.492347 0.0000000 NA 0.8792373 1.1783133
## 2 0.9763033 1.0614887 0.929878 0.9836066 1.0133333 1.0246711 1.0160514
## 3 1.0171429 0.9606742 1.064327 0.9010989 0.9329268 1.1568627 1.0451977
## 4 1.0865638 0.5673710 0.529304 2.5374856 1.7804545 1.1616033 0.9096703
## 5 1.0372671 0.9790419 1.030581 0.9643917 0.9692308 1.0380952 1.0244648
## 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02
## 1 1.1472393 1.0178253 1.0945709 0.0000000 NA 0.8965909 1.0646388
## 2 1.0173776 0.9145963 1.0203735 0.9783694 1.0119048 0.9848739 0.9914676
## 3 0.9837838 0.8846154 1.1366460 0.8469945 0.8516129 1.2348485 1.0736196
## 4 0.9722155 0.9510437 0.9521819 0.7091109 1.7778638 1.3208533 0.8444298
## 5 1.0537313 1.0084986 0.9719101 0.9768786 0.9526627 0.9844720 0.9526814
## 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09
## 1 0.7357143 1.621359 0.8932136 0.0000000 NA 0.8791019 1.0117878
## 2 0.9931153 1.017331 0.9863714 1.0155440 0.9880952 1.0172117 1.0524535
## 3 0.9314286 1.030675 1.1130952 0.8342246 0.8333333 1.1384615 1.0878378
## 4 1.0411788 1.074602 0.7995814 0.7593805 1.8103993 1.1762932 0.9539997
## 5 1.0960265 1.132931 1.0240000 0.9947917 0.9345550 0.9831933 1.1111111
## 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16
## 1 0.8834951 1.1791209 0.9058714 0.0000000 NA 0.8051852 0.9576817
## 2 1.0369775 0.9906977 1.0000000 1.0031299 1.0046802 0.9798137 1.0142631
## 3 0.8571429 1.2318841 0.9235294 0.8598726 0.9037037 1.1885246 0.8965517
## 4 0.9401867 1.2483080 0.9283133 0.5378326 1.9432915 1.1693779 0.9461612
## 5 0.9897436 1.0103627 0.9230769 0.9750000 0.9914530 0.9913793 1.0260870
## 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23
## 1 1.012488 0.9791271 1.0988372 0.0000000 NA 0.7159810 0.9955801
## 2 1.007812 0.9953488 1.0046729 0.9984496 1.0046584 0.9938176 1.0077760
## 3 1.138462 1.0405405 0.8311688 0.7500000 0.9479167 1.0769231 0.9591837
## 4 1.070146 0.9640273 0.8000435 0.7077781 1.6885687 1.0546137 0.9713022
## 5 1.110169 0.9694656 1.0262467 0.9769821 0.9607330 1.1008174 1.0148515
## 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30
## 1 1.0088790 1.0033003 0.9692982 0.0000000 NA 0.9495225 1.0143678
## 2 0.9891975 1.0312012 1.0136157 1.0194030 1.0043924 1.0043732 1.0058055
## 3 0.9468085 1.1797753 1.0857143 0.8157895 0.9247312 1.2790698 1.0454545
## 4 1.0141064 0.9236583 0.7641409 0.6826505 1.6328711 1.1053877 0.9761965
## 5 1.1365854 1.0343348 1.0580913 0.9843137 1.0577689 1.0188324 1.0277264
## 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06
## 1 1.0000000 1.4490085 1.0830890 0.0000000 NA 0.9519071 0.7630662
## 2 1.0086580 1.0185980 0.9873596 1.0099573 0.9985915 1.0818054 1.0143416
## 3 1.1391304 0.8549618 1.1160714 0.7600000 1.0315789 1.1938776 1.1965812
## 4 0.8476326 0.9866058 0.7365011 0.8466695 1.4923305 1.0837202 0.9186171
## 5 1.0521583 1.0085470 1.2338983 0.9395604 0.9839181 1.0326895 1.1395683
## 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13
## 1 1.1061644 0.8968008 0.8423475 0.0000000 NA 0.9082177 0.9729730
## 2 1.0064267 1.0076628 1.0063371 1.0088161 1.0137328 1.0073892 1.0061125
## 3 0.8928571 0.8960000 1.2053571 0.9407407 1.0866142 0.9347826 1.1937984
## 4 0.8712739 0.9126529 0.7945550 0.8289404 1.0620032 1.0673653 0.7826087
## 5 0.9886364 1.1519796 1.0022173 0.9712389 0.9100228 1.0538173 1.1294537
## 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20
## 1 0.6533816 0.9482440 1.1169591 0.0000000 NA 0.7797063 1.070205
## 2 1.0097205 1.0072202 1.0047790 1.0047562 1.0059172 1.0023529 1.003521
## 3 1.1428571 0.9488636 1.0838323 0.9005525 0.9570552 1.0448718 1.147239
## 4 1.4641577 0.7253366 0.9220385 0.5841874 1.5708020 1.3996809 0.769165
## 5 0.9768665 1.0602799 0.9786802 0.9834025 0.9662447 1.0589520 1.103093
## 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27
## 1 0.9504000 0.8973064 1.0056285 0.0000000 NA 0.8745318 1.0728051
## 2 1.0070175 1.0127758 1.0137615 1.0316742 1.0449561 1.0398741 1.0121090
## 3 0.9732620 1.0384615 1.0529101 0.8743719 1.0689655 1.0215054 1.2210526
## 4 1.1889589 0.6534746 0.7997139 0.7507454 1.3749007 1.3783940 0.7606873
## 5 0.9607477 1.0262646 1.0407583 0.9763206 0.8889925 1.0052466 1.0908142
## 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04
## 1 0.8922156 0.8299776 1.1752022 0.0000000 NA 1.2782369 0.7262931
## 2 1.0079761 0.9920870 1.0179462 1.0107738 1.018411 1.0256898 1.0111317
## 3 1.0172414 1.2118644 0.8461538 0.8388430 1.039409 0.9241706 1.4461538
## 4 1.0523416 0.8125654 1.0025773 0.4524422 1.170455 1.5436893 1.2028302
## 5 1.0162679 0.9661017 1.0292398 0.9924242 0.894084 1.0170758 1.0482686
## 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11
## 1 0.7566766 1.0431373 1.8947368 0.0000000 NA 0.9377289 1.8203125
## 2 1.0110092 1.0072595 1.0135135 1.0062222 1.0053004 1.0105448 1.0260870
## 3 0.9680851 0.7362637 1.0895522 0.9497717 0.9807692 0.9019608 1.0597826
## 4 0.7973856 0.8254098 0.6971202 0.8561254 0.0000000 NA 0.4844193
## 5 1.0170170 1.0728346 0.9532110 0.9595765 0.9448345 1.0467091 1.0131846
## 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18
## 1 0.5429185 0.9249012 0.0000000 NaN NA 1.3160173 0.9802632
## 2 1.0059322 1.0050548 1.0033529 1.0050125 0.9983375 0.9891757 0.9840067
## 3 1.0205128 1.0402010 0.8212560 0.7941176 0.8666667 1.4871795 1.1954023
## 4 0.0000000 NA 0.0000000 NaN NA 0.7885714 1.0634058
## 5 1.0210210 1.0941176 0.8306452 0.9029126 0.9856631 1.0739394 1.1817156
## 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25
## 1 1.1342282 0.8846154 0.8361204 0.0000000 NA 0.6820388 1.2099644
## 2 0.9923011 0.9939655 0.9956635 1.0026132 0.9947871 1.0034934 0.9921671
## 3 0.9759615 1.2807882 1.0692308 0.7805755 0.9631336 1.1818182 1.0283401
## 4 0.0000000 NaN NaN NaN NaN NA 0.0000000
## 5 1.1575931 1.0973597 0.8541353 1.0052817 0.9343257 1.0843486 1.2005186
## 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01
## 1 0.6441176 1.4657534 1.0685358 0.0000000 NA 1.6256831 0.4974790
## 2 1.0096491 0.9834926 1.0008834 0.9876434 0.8999106 0.9771599 0.9715447
## 3 1.1220472 0.9824561 0.9714286 0.9485294 1.0426357 0.6988848 1.6223404
## 4 NaN NA 0.2381867 0.0000000 NaN NA 0.4000000
## 5 0.9503240 0.8962121 1.0270499 0.9102881 0.8200723 1.3726571 1.0048193
## 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08
## 1 0.8479730 0.9721116 1.5819672 0.0000000 NA 1.2317073 0.6014851
## 2 0.9947699 0.9800210 0.9238197 0.9535424 0.9756395 0.9762797 0.9884910
## 3 1.3836066 0.7962085 1.1458333 0.8311688 0.8656250 1.1732852 1.1200000
## 4 0.8053333 1.0480132 0.7804107 0.6153846 1.7368421 1.2405303 0.9145038
## 5 1.0143885 0.9936958 0.9524187 0.9525396 0.8601399 1.1798780 1.0861326
## 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15
## 1 0.9423868 1.0000000 1.6419214 0.0000000 NA 0.7575758 1.2044444
## 2 0.9896507 0.9869281 0.9708609 0.9699864 0.9718706 0.8871201 0.9934747
## 3 1.0631868 0.8294574 1.1588785 0.9220430 0.9271137 1.1132075 1.0536723
## 4 0.9983306 0.8010033 0.7160752 0.9037901 1.6129032 1.0920000 0.9157509
## 5 1.0103093 0.0000000 NA 0.4376270 0.9442897 1.0904621 1.1442741
## 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22
## 1 1.2287823 0.7747748 1.0852713 0.0000000 NA 0.9006211 0.7413793
## 2 0.9950739 0.9752475 0.9966159 0.9609508 0.9399293 0.9567669 0.9783890
## 3 0.9195710 1.1137026 0.9921466 0.9683377 0.6403270 2.0127660 0.8139535
## 4 0.9340000 1.1177730 0.5766284 1.0332226 1.6141479 1.0358566 0.9692308
## 5 0.9763593 1.0564972 0.9442322 0.9328479 0.9358196 1.1232623 1.2202970
## 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29
## 1 1.0372093 0.8251121 2.5489130 0.0000000 NA 0.9266862 1.4303797
## 2 0.9357430 0.9077253 0.9739953 0.9927184 0.9511002 0.9665810 0.6941489
## 3 0.9610390 0.9567568 1.0423729 0.9241192 1.0322581 1.0653409 1.0373333
## 4 1.1884921 0.9716194 0.6202749 0.7562327 1.7032967 1.3010753 0.8214876
## 5 0.8471941 1.0015962 1.0454183 0.9916159 0.9362029 1.0821018 1.1889226
## 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06
## 1 0.5221239 1.8262712 0.9698376 0.0000000 NA 1.0876217 1.3682864
## 2 0.9616858 0.9641434 0.8181818 0.9141414 0.9889503 0.9776536 0.9371429
## 3 1.0205656 1.1309824 1.0579065 0.9621053 1.0153173 1.0668103 0.9717172
## 4 1.0422535 1.0289575 0.8592871 0.4847162 2.5900901 1.0156522 0.8647260
## 5 0.9483089 1.0323015 0.8722295 0.8579970 1.0217770 1.0630861 1.0240577
## 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13
## 1 1.1663551 1.1089744 1.2355491 0.0000000 NA 0.9386826 0.9854423
## 2 0.9817073 0.9627329 0.8193548 0.9527559 0.9669421 0.9401709 0.9818182
## 3 1.2162162 1.0598291 1.3403226 0.9783394 0.9446494 1.1432292 1.0717540
## 4 1.2792079 0.8560372 0.8462929 0.8675214 1.4014778 1.3479789 0.7835724
## 5 0.9451840 1.0414250 0.9013524 1.0388350 0.9447749 1.1187050 1.0409968
## 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20
## 1 0.9863636 0.9811828 1.1217221 0.0000000 NA 0.8433883 0.5200000
## 2 0.8240741 0.9101124 0.9506173 0.8961039 0.0000000 NA 0.4047619
## 3 0.9713071 1.2133479 1.0793508 0.9248120 0.9927733 1.0709736 1.1028037
## 4 1.2212978 0.9005450 0.7186082 0.8189474 1.7352185 0.0000000 NA
## 5 0.9467181 0.9502447 1.1141631 0.8459168 0.9608379 1.2255924 0.9845321
## 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27
## 1 0.0000000 NA 2.9658470 0.0000000 NA 0.9133940 0.9533030
## 2 0.9607843 0.8979592 0.9318182 0.9268293 1.0263158 0.8974359 0.8857143
## 3 0.9406780 0.9893530 1.1175497 0.9666667 0.9862069 1.1693862 1.0259136
## 4 0.2393305 1.3986014 0.8275000 1.4652568 2.1876289 1.0659755 1.0725022
## 5 0.8970935 1.0175131 1.0731497 1.0072173 0.9506369 1.0485762 1.1014377
## 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03
## 1 0.9441458 0.8636507 1.0673993 0.0000000 NA 0.6691347 0.7396266
## 2 1.2258065 1.1052632 1.0714286 1.0444444 1.0425532 1.0408163 1.0392157
## 3 1.2480570 0.7976129 0.9895901 0.7909270 0.9742311 1.1587031 0.9624448
## 4 0.8697444 0.9554502 0.7539683 0.7394737 1.8523132 0.0000000 NA
## 5 0.9673677 0.0000000 NaN NA 0.2992822 0.0000000 NaN
## 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10
## 1 1.1612903 0.8039452 0.9409114 0.0000000 NA 0.6628023 1.0664668
## 2 1.0754717 0.8947368 1.1176471 1.0701754 1.0655738 1.2769231 1.0361446
## 3 1.1438409 0.8622074 0.9332816 0.9476309 0.8947368 0.9725490 0.9868952
## 4 0.4711134 0.7770346 0.7618364 0.7457627 2.4898990 0.9421907 0.9967707
## 5 NaN NaN NA 0.0000000 NaN NaN NaN
## 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17
## 1 1.1583880 0.9247573 1.0323710 0.0000000 NA 0.9494878 0.8467262
## 2 1.0581395 1.0439560 1.0210526 1.0206186 1.0202020 1.0594059 1.0467290
## 3 0.8621042 1.0082938 1.0105758 0.8755814 0.8007968 1.1774461 0.9788732
## 4 0.5518359 1.9804305 0.9980237 0.6514851 1.8814590 0.9555735 0.9010989
## 5 NaN NaN NA 0.0000000 NaN NA 0.0000000
## 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24
## 1 1.0215290 0.8382796 1.2129297 0.0000000 NA 0.9436702 1.165538
## 2 1.0982143 1.0650407 1.2519084 1.0548780 1.063584 1.0271739 1.026455
## 3 1.0374101 0.9625520 0.8328530 0.8910035 0.800000 1.2281553 1.061265
## 4 0.8330206 0.8806306 0.9219949 0.0000000 NA 0.7041847 1.040984
## 5 NaN NA 0.0000000 NA 0.000000 NA 0.000000
## 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31
## 1 0.8880676 1.0237812 0.9367015 0.0000000 NA 0.8377434 0.8945173
## 2 1.0463918 1.0886700 1.0588235 1.0726496 1.0159363 1.0313725 1.0608365
## 3 1.0148976 0.9229358 1.0178926 0.9472656 1.0123711 0.8391039 1.2281553
## 4 0.7992126 1.1133005 0.0000000 NA 0.6943493 1.3538841 0.7896175
## 5 NaN NaN NA 0.0000000 NaN NaN NaN
## 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07
## 1 1.1092605 0.8882883 0.9384719 0.0000000 NA 0.7204807 0.9224075
## 2 1.0430108 1.0412371 1.0495050 1.0408805 1.036254 1.0728863 1.0271739
## 3 0.8833992 0.8680089 1.0128866 0.8931298 0.982906 0.8956522 1.0744337
## 4 1.1130334 0.9253886 0.9417693 0.4934602 2.525301 1.0124046 0.9443921
## 5 NaN NaN NaN NaN NA 0.0000000 NA
## 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14
## 1 1.1784591 1.2021348 0.6198668 0.0000000 NA 0.8946639 0.8900077
## 2 1.0555556 1.0350877 1.0484262 1.0577367 1.0502183 1.0207900 1.0244399
## 3 0.9548193 0.9873817 0.9105431 0.9192982 0.9389313 0.9471545 0.9742489
## 4 0.9730539 0.0000000 NA 0.0000000 NA 0.0000000 NA
## 5 0.0000000 NA 0.4594595 0.0000000 NaN NaN NaN
## 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21
## 1 1.2471715 0.7348221 0.9192783 0.0000000 NA 0.9643176 0.9602220
## 2 1.0556660 1.0715631 1.0333919 1.0833333 1.0251177 1.0398162 1.0132548
## 3 1.0660793 0.9049587 1.0730594 0.8553191 0.8706468 0.9485714 1.0963855
## 4 0.5420107 0.8100358 0.8738938 0.5417722 2.1495327 0.0000000 NA
## 5 NaN NA 0.1479290 0.0000000 NaN NA 0.3432836
## 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28
## 1 0.9489403 1.0213198 0.9304175 0.0000000 NA 0.9201213 0.7538462
## 2 1.0058140 1.0433526 0.7867036 1.1742958 1.0194903 1.0323529 1.0227920
## 3 0.9560440 0.9252874 1.0310559 0.7530120 1.1840000 1.0472973 1.0838710
## 4 0.5285347 0.8881323 0.9539978 0.5028703 2.2534247 1.0283688 1.0266010
## 5 0.7826087 0.0000000 NaN NA 0.2993197 1.3409091 0.8474576
## 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05
## 1 1.0102041 1.1760462 1.2355828 0.0000000 NA 0.9612299 0.9485396
## 2 1.0278552 1.0040650 1.0053981 1.0214765 1.0091984 1.0039062 1.0090791
## 3 0.9107143 1.0522876 0.9813665 0.8860759 0.9428571 0.9545455 1.0396825
## 4 1.0095969 0.9762357 0.7575463 0.7043702 1.8923358 1.1783992 0.8739771
## 5 0.0000000 NA 0.0000000 NaN NaN NaN NA
## 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12
## 1 1.0146628 1.3222543 0.6601093 0.0000000 NA 0.8786207 0.8649922
## 2 1.0128535 1.0139594 1.0150188 1.0246609 1.007220 1.0107527 1.0130024
## 3 0.9541985 0.8400000 1.0666667 0.9107143 1.049020 0.9158879 0.9693878
## 4 1.2322097 0.8024316 0.8409091 0.6385135 1.890653 1.2192164 0.9112471
## 5 0.2017937 1.0444444 1.0212766 0.7291667 1.685714 0.9830508 0.9482759
## 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19
## 1 1.313975 0.7720994 1.0071556 0.0000000 NA 0.8179487 0.9341693
## 2 1.004667 1.0046458 1.0046243 1.0057537 0.9965675 1.0137773 0.9830125
## 3 1.157895 0.9545455 0.9619048 0.9207921 0.9354839 0.8965517 1.1410256
## 4 1.079765 0.9860031 0.8052050 0.5612145 2.3944154 1.2500000 0.9311953
## 5 1.036364 0.6315789 1.3333333 0.9375000 0.9111111 0.9268293 1.2894737
## 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26
## 1 0.8926174 0.8195489 1.580275 0.0000000 NA 0.7906040 1.1052632
## 2 1.0103687 1.0068415 1.002265 0.9954802 1.005675 1.0033860 0.9797525
## 3 0.8539326 0.9210526 1.200000 0.7976190 1.074627 1.1250000 1.0740741
## 4 0.7714465 0.0000000 NA 0.2554769 2.179420 0.9697337 1.0898876
## 5 0.9591837 0.9787234 1.108696 0.8431373 1.093023 1.0851064 1.2745098
## 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02
## 1 0.9585253 0.9551282 0.9546980 0.0000000 NA 0.9165447 0.7971246
## 2 1.0413318 1.0176406 1.0043337 1.0226537 0.9841772 1.0192926 0.9684543
## 3 0.9080460 1.1518987 1.2087912 0.8000000 1.0681818 1.2127660 0.7280702
## 4 0.9690722 1.1182033 0.7684989 0.7028886 1.6859100 1.2304121 0.8443396
## 5 0.8461538 0.9272727 1.0980392 0.7321429 1.1219512 1.0652174 0.9183673
## 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09
## 1 1.114228 1.1654676 0.9243827 0.0000000 NA 1.226852 0.7660377
## 2 1.032573 0.9579390 1.0120746 0.9859002 0.9933993 1.028793 0.9913886
## 3 1.265060 1.1809524 0.9435484 0.7179487 0.9166667 1.272727 1.3367347
## 4 1.140782 0.9853085 1.0337972 0.5394231 1.8689840 1.221745 1.0058548
## 5 1.088889 0.9183673 0.9555556 0.9767442 0.9523810 1.075000 1.1395349
## 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16
## 1 0.9802956 0.9514238 1.0440141 0.0000000 NA 0.9382304 1.0551601
## 2 1.0141151 0.9839400 0.9891186 1.0220022 0.0000000 NA 0.5002658
## 3 0.9465649 0.9274194 1.2173913 0.7785714 0.8899083 1.3814433 1.0522388
## 4 0.9712844 1.0371554 0.9218028 0.5165065 0.0000000 NA 0.0000000
## 5 0.7755102 1.1315789 1.0465116 0.9777778 0.6818182 1.2666667 0.9736842
## 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23
## 1 0.6880270 1.3504902 0.7785844 0.0000000 NA 0.9797639 1.024096
## 2 1.0201913 0.9489583 0.9791438 1.0112108 0.9800443 0.9841629 0.983908
## 3 0.9574468 1.1259259 1.0723684 0.8834356 0.7847222 1.4070796 1.081761
## 4 NA 2.2629891 0.0000000 NA 0.6469631 1.2081587 1.052035
## 5 1.1351351 0.9047619 0.9210526 0.8857143 1.1612903 1.0833333 0.974359
## 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30
## 1 0.7865546 1.5641026 0.8196721 0.0000000 NA 0.8137755 0.6692790
## 2 1.0525701 0.9977802 1.0155729 1.0197152 1.0214823 0.9579390 1.0417124
## 3 1.0465116 0.8944444 1.1987578 0.8445596 1.0552147 1.1162791 0.9739583
## 4 0.9967026 0.9446405 0.9526033 0.6553922 1.5003740 1.4110169 0.8791733
## 5 0.8947368 0.8235294 0.8571429 1.2083333 0.8275862 1.0416667 1.2800000
## 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07
## 1 1.3442623 0.9216028 1.0226843 0.0000000 NA 0.6755994 0.8371608
## 2 0.9884089 0.9797441 1.0152339 0.9560557 1.0112108 0.9656319 1.0206659
## 3 1.0267380 1.0312500 0.9646465 0.9685864 0.9297297 1.1220930 1.0207254
## 4 1.0140647 0.9243115 0.0000000 NA 0.5880454 1.2757409 1.0999828
## 5 1.0625000 0.7058824 1.5833333 0.7631579 1.2068966 1.2285714 0.9767442
## 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13 2021-12-14
## 1 1.2693267 0.9724951 1.1656566 0.0000000 NA 1.085496 0.7201125
## 2 1.0224972 0.8833883 1.0236613 1.0693431 0.9817975 0.000000 NA
## 3 0.9543147 0.9414894 1.1864407 1.0380952 0.8990826 1.071429 1.0952381
## 4 0.8103880 0.9947876 0.9578886 0.5486224 1.4390694 1.348730 0.8375190
## 5 1.0952381 0.9782609 1.0666667 1.1041667 0.9622642 1.254902 1.0156250
## 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20 2021-12-21
## 1 0.9531250 1.3278689 0.8626543 0.0000000 NA 0.8154270 0.9172297
## 2 0.5422579 1.0250284 1.0099889 0.9912088 1.0188470 0.9825898 0.9390919
## 3 1.0652174 0.8653061 1.4103774 0.9565217 0.9160839 0.9274809 1.2757202
## 4 0.9861427 0.8781387 0.9719307 0.5182186 1.6645833 1.1195244 0.8448854
## 5 1.3538462 0.9659091 0.9411765 1.4500000 0.8965517 1.4038462 1.5205479
## 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27 2021-12-28
## 1 1.0331492 0.9982175 1.1750000 0.0000000 NA 1.198639 0.6799092
## 2 1.0365566 1.0045506 0.9184598 1.0678175 0.9503464 1.034022 0.9506463
## 3 0.9193548 1.0280702 1.2798635 0.7413333 0.9388489 1.122605 1.1433447
## 4 0.8097916 0.9146242 1.0290308 0.5052083 1.2431271 1.398756 1.1872530
## 5 1.1351351 1.1388889 1.1567944 0.9789157 1.1969231 1.347044 1.1488550
## 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03 2022-01-04
## 1 1.1101836 0.9624060 0.8609375 0.0000000 NA 0.6921397 1.026814
## 2 1.0556242 1.0199063 0.9724455 0.9244392 1.0229885 0.9026217 1.063624
## 3 1.1402985 1.0209424 1.0128205 0.9772152 0.8834197 1.0938416 1.128686
## 4 0.9238452 0.9211712 0.9022005 0.4726287 1.4839450 1.2998454 1.365042
## 5 1.2358804 1.0107527 1.0890957 1.0329670 1.2104019 1.7050781 1.480527
## 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10 2022-01-11
## 1 1.0721966 0.9212034 0.9206843 0.0000000 NA 0.925734 0.9085821
## 2 1.0442133 1.0460772 0.9773810 1.0109622 1.0987952 1.042763 0.9800210
## 3 1.0973872 0.8874459 1.1975610 0.8676171 0.9741784 1.161446 1.1556017
## 4 0.9965157 0.9484266 0.9368664 0.6847024 1.6875000 1.187314 1.0505558
## 5 1.1779497 1.0403941 1.1284722 0.8581818 1.1277705 1.380925 0.9736291
## 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17 2022-01-18
## 1 1.229979 1.0317195 1.237864 0.0000000 NA 0.8489043 1.202446
## 2 1.017167 1.0664557 1.067260 1.0203892 1.087193 1.0292398 1.057630
## 3 1.095153 0.9459016 1.032929 0.8473154 1.134653 1.2076789 1.170520
## 4 0.965529 1.1884058 1.010113 0.7028857 1.463343 1.4425995 1.026989
## 5 1.152623 1.0255502 1.023459 0.9383440 1.037114 1.0051123 1.066848
## 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24 2022-01-25
## 1 1.325424 1.1346974 1.2772352 0.0000000 NA 1.022797 1.312902
## 2 1.058327 1.0174039 1.0926586 1.0234834 1.0216699 1.029944 1.095700
## 3 1.677778 1.1420162 1.1952320 1.1919137 0.9651741 1.037957 1.138149
## 4 1.201159 1.0117439 1.0031802 0.6501823 1.6945392 1.651273 1.029186
## 5 1.009365 0.9431511 0.8735468 0.9434889 0.9841580 1.066814 0.938611
## 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31 2022-02-01
## 1 0.7329416 1.4062361 1.0516313 0.0000000 NA 0.7778363 0.9631971
## 2 1.0558320 1.0392670 1.0110831 1.0054808 1.0951437 1.0058824 1.0305893
## 3 0.8575962 0.9851989 0.8779343 0.9315508 0.8404133 0.9173497 1.0446761
## 4 1.0857530 0.5996414 0.5492134 1.9341856 1.4483476 1.3712499 1.0958338
## 5 0.9966968 1.0468405 0.9442803 0.8746089 0.9376438 1.1477242 0.9168844
## 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07 2022-02-08
## 1 1.0246132 0.8364219 1.0713895 0.0000000 NA 0.6676096 1.174435
## 2 0.9943256 1.0013169 1.0043840 1.0030554 1.0013055 0.9873968 0.965669
## 3 0.9729152 0.6967033 1.0199790 0.8164948 0.4772727 1.3280423 1.215139
## 4 1.0062989 1.0687420 1.1183392 0.5962312 1.2441377 1.3632123 1.050587
## 5 1.0598291 0.9413490 0.9228972 0.8475387 1.0819781 1.1493865 0.888711
## 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14 2022-02-15
## 1 0.9837643 1.1531174 0.8865624 0.0000000 NA 0.7675439 0.8892857
## 2 0.9986326 0.9990872 0.9954317 0.9843965 0.000000 NA 0.4969484
## 3 0.9590164 0.8854701 1.0270270 0.9454887 1.045726 0.7851711 0.9806295
## 4 0.9672975 0.9764754 0.8794035 0.7443832 1.249288 1.2600000 0.8355718
## 5 0.9495495 0.9063884 0.8803210 0.6841062 1.237543 1.0426030 0.8899865
## 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21 2022-02-22
## 1 1.1582329 0.8519417 0.4916565 0.0000000 NA 1.0065445 0.7867360
## 2 0.9924421 0.9857211 0.9913085 0.9863614 0.9920988 0.9970134 0.9930105
## 3 1.0469136 0.8844340 0.8426667 0.7943038 0.4701195 1.2457627 1.1156463
## 4 0.9374899 0.8721279 0.8194215 0.5706438 1.4276614 1.1159147 0.8101120
## 5 0.9046418 0.8750697 0.8769917 0.7245640 1.0160481 1.0384995 0.7994297
## 2022-02-23 NA
## 1 0.7564738 NA
## 2 0.9512318 NA
## 3 0.7500000 NA
## 4 0.8932763 NA
## 5 0.7455410 NA
growth.rate(TSconfirmed,geo.loc=c("Egypt","Libra","SJordan","United Arab Emirates","Qatar","Kuwait","Yemen","Lebnon"))
## Warning in checkGeoLoc(data0, geo.loc): Unrecognized region: Libra will skip it!
## Warning in checkGeoLoc(data0, geo.loc): Unrecognized region: SJordan will skip
## it!
## Warning in checkGeoLoc(data0, geo.loc): Unrecognized region: Lebnon will skip
## it!
## Processing... EGYPT
## Processing... UNITED ARAB EMIRATES
## Processing... QATAR
## Processing... KUWAIT

## Processing... YEMEN





## $Changes
## geo.loc 2020-01-23 2020-01-24 2020-01-25 2020-01-26 2020-01-27
## 1 EGYPT 0 0 0 0 0
## 2 UNITED ARAB EMIRATES 0 0 0 0 0
## 3 QATAR 0 0 0 0 0
## 4 KUWAIT 0 0 0 0 0
## 5 YEMEN 0 0 0 0 0
## 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03
## 1 0 0 0 0 0 0 0
## 2 0 4 0 0 0 1 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 2 0 1
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17
## 1 0 0 0 1 0 0 0
## 2 0 0 0 0 0 1 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0
## 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 4 0 0
## 3 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 1
## 5 0 0 0 0 0 0 0
## 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02
## 1 0 0 0 0 0 1 0
## 2 0 0 0 6 2 0 0
## 3 0 0 0 0 1 2 0
## 4 10 15 17 2 0 0 11
## 5 0 0 0 0 0 0 0
## 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09
## 1 0 0 1 12 0 34 6
## 2 6 0 2 0 16 0 0
## 3 4 1 0 0 0 7 3
## 4 0 0 2 0 3 3 0
## 5 0 0 0 0 0 0 0
## 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16
## 1 4 1 7 13 29 1 40
## 2 29 0 11 0 0 13 0
## 3 6 238 0 58 17 64 38
## 4 5 3 8 0 24 8 11
## 5 0 0 0 0 0 0 0
## 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23
## 1 46 0 60 29 9 33 39
## 2 0 15 27 0 13 0 45
## 3 0 13 8 10 11 13 7
## 4 7 12 6 11 17 12 1
## 5 0 0 0 0 0 0 0
## 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30
## 1 36 54 39 41 40 33 47
## 2 50 85 0 72 63 102 41
## 3 25 11 12 13 28 44 59
## 4 2 4 13 17 10 20 11
## 5 0 0 0 0 0 0 0
## 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06
## 1 54 69 86 120 85 103 149
## 2 53 150 210 240 241 294 277
## 3 88 54 114 126 250 279 228
## 4 23 28 25 75 62 77 109
## 5 0 0 0 0 0 0 0
## 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13
## 1 128 110 139 95 145 126 125
## 2 283 300 331 370 376 387 398
## 3 225 153 166 136 216 251 252
## 4 78 112 55 83 161 80 66
## 5 0 0 0 1 0 0 0
## 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20
## 1 160 155 168 171 188 112 189
## 2 412 432 460 477 0 479 484
## 3 197 283 392 560 345 440 567
## 4 55 50 119 134 93 164 80
## 5 0 0 0 0 0 0 0
## 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27
## 1 157 169 232 201 227 215 248
## 2 490 483 518 525 532 536 490
## 3 518 608 623 761 833 929 957
## 4 85 168 151 215 278 183 213
## 5 0 0 0 0 0 0 0
## 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04
## 1 260 226 269 358 298 272 348
## 2 541 549 552 557 561 564 567
## 3 677 643 845 687 776 679 640
## 4 152 300 284 353 242 364 295
## 5 0 5 0 1 3 0 2
## 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11
## 1 388 387 393 495 488 436 346
## 2 462 546 502 553 624 781 680
## 3 951 830 918 1311 1130 1189 1103
## 4 526 485 278 641 415 1065 598
## 5 9 4 0 9 0 17 5
## 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18
## 1 347 338 398 399 491 510 535
## 2 783 725 698 747 796 731 832
## 3 1526 1390 1733 1153 1547 1632 1365
## 4 991 751 947 885 942 1048 841
## 5 9 5 15 21 16 6 2
## 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25
## 1 720 745 774 783 727 752 702
## 2 873 941 894 994 812 781 822
## 3 1637 1491 1554 1830 1732 1501 1751
## 4 1073 804 1041 955 900 838 665
## 5 37 13 13 12 7 10 11
## 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01
## 1 789 910 1127 1289 1367 1536 1399
## 2 779 883 563 638 726 661 635
## 3 1742 1740 1967 1993 2355 1648 1523
## 4 608 692 845 1072 1008 851 719
## 5 16 6 23 5 27 13 31
## 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08
## 1 1152 1079 1152 1348 1497 1467 1365
## 2 596 571 659 624 626 540 568
## 3 1826 1901 1581 1754 1700 1595 1368
## 4 887 710 562 723 487 717 662
## 5 45 20 34 16 13 2 12
## 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15
## 1 1385 1455 1442 1577 1677 1618 1691
## 2 528 603 479 513 491 304 342
## 3 1721 1716 1476 1517 1828 1186 1274
## 4 630 683 609 520 514 454 511
## 5 28 36 31 41 73 23 116
## 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22
## 1 1567 1363 1218 1774 1547 1475 1576
## 2 346 382 388 393 388 392 378
## 3 1201 1097 1267 1021 1026 881 1034
## 4 527 575 541 604 467 505 641
## 5 41 17 7 10 3 19 26
## 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29
## 1 1332 1420 1569 1625 1168 1265 1566
## 2 380 450 430 410 387 437 449
## 3 1176 1199 1060 946 879 750 693
## 4 742 846 909 915 688 551 582
## 5 25 23 61 13 14 15 10
## 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06
## 1 1557 1503 1485 1412 1324 1218 969
## 2 421 402 400 672 716 683 528
## 3 982 915 894 756 530 616 546
## 4 671 745 919 813 631 638 703
## 5 30 32 31 19 8 17 25
## 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13
## 1 1057 1025 950 981 923 912 931
## 2 532 445 532 473 403 401 344
## 3 600 608 557 520 498 470 418
## 4 601 762 833 740 478 836 614
## 5 7 21 38 24 9 76 33
## 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20
## 1 929 913 928 703 698 603 627
## 2 375 275 281 293 289 211 271
## 3 517 450 494 421 410 340 389
## 4 666 703 791 553 683 300 559
## 5 18 10 26 24 5 25 13
## 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27
## 1 676 667 668 659 511 479 420
## 2 305 236 254 261 313 351 264
## 3 393 441 373 394 398 269 292
## 4 671 751 687 753 684 464 606
## 5 10 11 14 20 0 7 10
## 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03
## 1 465 409 401 321 238 167 157
## 2 369 375 302 283 254 239 164
## 3 283 273 307 235 216 196 215
## 4 770 754 626 428 491 463 388
## 5 12 8 15 2 2 4 0
## 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10
## 1 112 123 131 141 167 178 174
## 2 189 254 239 216 239 225 179
## 3 216 267 287 291 267 297 315
## 4 475 651 620 682 472 514 687
## 5 26 3 5 28 1 7 28
## 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17
## 1 168 129 145 112 116 139 115
## 2 262 246 277 330 283 210 229
## 3 384 292 343 251 277 271 288
## 4 668 717 701 699 512 508 622
## 5 -1 10 6 11 0 11 0
## 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24
## 1 163 161 111 123 89 103 138
## 2 365 435 461 391 424 390 275
## 3 293 295 268 257 284 243 258
## 4 643 675 622 502 688 571 432
## 5 20 3 7 7 1 4 5
## 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31
## 1 141 206 237 223 212 230 212
## 2 339 399 491 390 427 362 541
## 3 232 244 246 208 211 168 203
## 4 613 698 674 633 646 412 473
## 5 8 6 3 10 3 7 5
## 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07
## 1 176 165 145 157 130 151 178
## 2 574 735 614 612 705 513 470
## 3 216 212 214 217 227 231 253
## 4 702 667 900 865 720 619 805
## 5 4 14 3 4 0 4 2
## 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14
## 1 187 175 154 151 148 153 168
## 2 644 883 930 931 1007 640 777
## 3 231 267 206 235 236 217 235
## 4 857 838 740 653 736 553 708
## 5 5 5 4 4 2 2 2
## 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21
## 1 163 160 141 131 128 115 126
## 2 674 842 786 865 809 674 679
## 3 239 235 244 224 229 230 228
## 4 829 698 825 704 521 385 530
## 5 3 3 3 2 2 0 2
## 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28
## 1 113 121 138 112 111 104 115
## 2 852 1083 1002 1008 1078 851 626
## 3 313 258 250 225 200 234 227
## 4 719 616 552 590 758 345 437
## 5 0 1 0 0 1 0 1
## 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05
## 1 124 119 119 149 109 108 98
## 2 995 1100 1158 1181 1231 1041 932
## 3 222 227 199 205 175 159 194
## 4 587 614 494 411 371 567 567
## 5 0 3 5 1 1 0 0
## 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12
## 1 121 133 121 106 125 129 132
## 2 1061 1046 1089 1075 1129 1096 1064
## 3 251 238 213 206 178 207 206
## 4 676 475 698 635 492 548 777
## 5 6 2 1 1 0 1 0
## 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19
## 1 139 128 118 126 138 127 123
## 2 1315 1431 1398 1412 1538 1215 915
## 3 214 198 200 189 235 204 240
## 4 844 532 746 729 739 663 686
## 5 1 0 0 2 0 1 0
## 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26
## 1 158 178 177 170 167 143 167
## 2 1077 1538 1578 1563 1491 1359 1111
## 3 273 266 252 249 254 205 262
## 4 886 813 889 812 695 708 682
## 5 1 0 0 3 0 0 0
## 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02
## 1 170 153 179 167 179 181 189
## 2 1390 1400 1312 1172 1121 1278 1234
## 3 257 250 211 193 213 164 197
## 4 775 814 760 671 589 608 759
## 5 0 1 1 0 1 0 0
## 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09
## 1 197 207 201 224 208 239 221
## 2 1008 1161 1289 1292 1141 1111 1146
## 3 226 227 249 192 202 190 230
## 4 787 763 795 825 742 538 735
## 5 0 0 0 0 0 0 0
## 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16
## 1 232 227 214 224 228 220 242
## 2 1096 1214 1136 1226 1174 1210 1209
## 3 230 224 245 235 203 215 243
## 4 903 778 773 718 691 499 489
## 5 0 0 5 0 0 0 0
## 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23
## 1 275 329 342 363 358 351 354
## 2 1255 1292 1153 1269 1262 1205 1065
## 3 194 219 208 239 174 167 186
## 4 556 452 485 486 426 322 337
## 5 0 0 0 1 0 0 3
## 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30
## 1 361 365 368 357 351 358 370
## 2 1310 1297 1305 1283 1252 1251 1107
## 3 227 209 215 184 227 171 185
## 4 402 422 330 329 319 231 209
## 5 1 0 1 0 0 3 0
## 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07
## 1 392 421 432 427 431 418 415
## 2 1289 1285 1317 1311 1214 1153 1148
## 3 168 255 221 166 140 125 178
## 4 357 268 314 343 247 205 230
## 5 0 0 0 0 0 1 0
## 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14
## 1 434 421 445 464 478 486 511
## 2 1260 1313 1255 1196 1154 1194 1092
## 3 117 150 163 164 147 134 160
## 4 301 304 291 294 255 174 231
## 5 1 0 2 1 1 0 1
## 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21
## 1 523 544 548 579 611 664 718
## 2 1226 1278 1321 1284 1254 1171 1077
## 3 151 145 140 159 142 143 158
## 4 261 261 221 339 244 204 230
## 5 1 0 2 0 0 0 0
## 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28
## 1 788 911 1021 1133 1189 1226 1359
## 2 1226 1246 1311 1230 1227 944 1027
## 3 149 140 157 129 169 159 160
## 4 298 266 244 260 172 204 204
## 5 0 0 5 0 0 2 2
## 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04
## 1 1333 1411 1418 1409 1407 1309 1277
## 2 1506 1723 1730 1856 1963 1590 1501
## 3 206 193 213 208 198 197 207
## 4 236 205 286 285 205 269 372
## 5 0 1 2 2 0 0 0
## 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11
## 1 1119 1007 1219 1001 989 993 961
## 2 1967 2067 2988 2950 2998 2876 2404
## 3 208 209 210 195 206 193 203
## 4 312 411 540 495 427 414 527
## 5 0 1 2 0 0 0 1
## 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18
## 1 970 996 1022 879 887 890 878
## 2 3243 3362 3382 3407 3432 3453 3471
## 3 211 201 209 196 204 188 227
## 4 494 539 560 530 435 378 467
## 5 2 2 1 1 1 0 1
## 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25
## 1 899 789 752 748 680 674 669
## 2 3491 3506 3529 3552 3566 3579 3591
## 3 225 271 258 263 251 247 277
## 4 578 442 570 533 534 384 492
## 5 2 0 0 3 0 0 0
## 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01
## 1 643 632 521 589 547 533 541
## 2 3601 3939 3966 3962 3647 2948 2730
## 3 299 338 347 341 363 351 385
## 4 505 580 588 658 514 635 586
## 5 1 1 0 0 0 1 1
## 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08
## 1 521 512 532 540 509 534 567
## 2 3310 3977 3249 3251 3276 3093 2798
## 3 375 396 407 398 394 408 427
## 4 811 756 840 940 846 962 996
## 5 0 0 0 2 3 0 4
## 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15
## 1 573 610 603 609 600 611 613
## 2 3310 3539 3525 3307 2631 3167 3123
## 3 477 451 448 450 453 440 888
## 4 1002 987 1048 1021 851 798 823
## 5 0 2 1 2 0 9 0
## 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22
## 1 633 618 656 610 600 608 623
## 2 3236 3452 3294 3140 3158 2250 2105
## 3 6 453 462 465 449 459 463
## 4 964 1017 979 976 862 768 899
## 5 3 3 3 3 0 8 11
## 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01
## 1 633 644 589 601 588 595 586
## 2 3005 3102 3025 3498 3434 2930 2526
## 3 455 459 465 469 460 467 473
## 4 1015 1001 1019 1022 844 962 1179
## 5 11 34 34 12 2 16 25
## 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08
## 1 581 577 587 579 588 581 591
## 2 2721 2692 2742 3072 2959 2613 2483
## 3 463 471 475 469 460 474 468
## 4 1341 1409 1716 1613 1318 1144 1326
## 5 32 21 12 36 33 29 72
## 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15
## 1 622 645 639 639 641 644 631
## 2 2373 2204 2087 2250 2159 1992 1898
## 3 471 473 468 455 483 485 481
## 4 1157 1333 1505 1356 1211 1063 1332
## 5 41 41 40 62 42 65 72
## 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22
## 1 640 645 642 645 644 647 643
## 2 2018 2051 2101 2160 2013 1717 1871
## 3 479 489 499 497 509 503 519
## 4 1314 1504 1394 1519 1347 1192 1330
## 5 61 68 89 91 61 140 98
## 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29
## 1 648 641 661 670 683 686 689
## 2 2172 2196 2043 2128 2304 2128 1874
## 3 534 570 587 602 614 639 690
## 4 1288 1299 1390 1548 1198 1121 1251
## 5 96 91 113 84 69 64 82
## 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05
## 1 693 699 712 703 710 709 767
## 2 2289 2084 2315 2180 2084 2113 2012
## 3 720 780 840 874 870 876 910
## 4 1271 1282 1418 1233 1235 1203 1357
## 5 132 110 174 89 77 101 83
## 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12
## 1 778 783 789 794 801 812 818
## 2 1988 1883 2112 1875 1931 1810 1928
## 3 927 940 949 950 964 961 973
## 4 1403 1517 1379 1477 1379 1390 1635
## 5 94 72 86 100 43 81 89
## 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19
## 1 823 831 837 841 845 850 852
## 2 2022 1798 1928 1843 1958 1930 1803
## 3 981 984 989 978 827 823 896
## 4 1544 1402 1391 1406 1388 1127 1510
## 5 61 75 75 58 55 42 46
## 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26
## 1 855 861 872 884 912 953 991
## 2 1903 1931 2081 1973 2080 1813 1759
## 3 885 819 800 798 718 705 703
## 4 1371 1439 1459 1432 1206 1545 1286
## 5 60 42 60 36 49 32 46
## 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03
## 1 1003 1011 1003 1021 1032 1051 1078
## 2 2094 1710 1961 1974 1712 1847 1772
## 3 695 690 687 676 650 646 644
## 4 1446 1464 1417 1429 1279 1316 1246
## 5 37 43 31 23 8 16 22
## 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10
## 1 1090 1102 1110 1125 1132 1138 1150
## 2 1699 1954 1724 1766 1735 1572 1507
## 3 640 645 593 600 533 389 397
## 4 1253 1451 1236 1209 1095 992 978
## 5 27 24 12 20 16 20 3
## 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17
## 1 1180 1187 1193 1197 1203 1201 1188
## 2 1614 1508 1512 1452 1321 1251 1229
## 3 343 392 299 244 260 256 302
## 4 1153 985 1059 763 795 828 861
## 5 7 6 9 16 15 5 25
## 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24
## 1 1169 1160 1153 1148 1151 1145 1149
## 2 1270 1348 1401 1490 1596 1591 1512
## 3 370 295 313 367 330 283 299
## 4 1084 1119 1168 1345 1017 992 1240
## 5 18 7 20 19 17 9 4
## 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31
## 1 1140 1151 1132 1133 1119 1007 984
## 2 1672 1757 2167 2236 1812 1810 1763
## 3 349 306 286 202 156 189 228
## 4 1408 1176 1160 1384 1134 1095 1410
## 5 8 18 8 27 8 6 5
## 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07
## 1 956 951 932 861 821 801 782
## 2 1968 2154 1989 2062 2188 1874 1968
## 3 230 194 198 183 192 172 171
## 4 1279 1345 1443 1280 1331 1297 1479
## 5 9 8 8 6 7 7 25
## 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14
## 1 773 765 755 733 711 691 613
## 2 2205 2179 0 4471 2123 1969 1837
## 3 182 158 143 185 147 117 157
## 4 1581 1391 1709 1657 1437 1512 1563
## 5 11 9 4 20 1 5 1
## 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21
## 1 609 606 591 589 566 532 509
## 2 2127 2011 2167 1942 2109 1850 1964
## 3 146 165 127 184 184 107 130
## 4 1487 1557 1646 1658 1497 1661 1935
## 5 1 3 2 6 2 8 4
## 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28
## 1 498 466 423 412 409 389 376
## 2 2167 1988 2161 2223 2282 2122 2040
## 3 189 154 105 87 125 102 118
## 4 1962 1870 1761 1702 1661 1558 1652
## 5 3 6 7 0 1 2 1
## 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05
## 1 261 251 242 198 181 179 175
## 2 2184 1747 1675 1663 1632 1599 1573
## 3 143 118 146 133 103 121 93
## 4 1718 1836 1824 1895 1612 1654 1977
## 5 9 2 3 1 2 3 0
## 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12
## 1 164 161 155 127 121 117 110
## 2 1552 1513 1539 1529 1520 1518 1542
## 3 93 158 113 144 97 86 146
## 4 1993 1585 1705 1617 1555 1490 1770
## 5 2 3 2 4 1 7 4
## 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19
## 1 108 89 81 77 69 0 126
## 2 1522 1529 1541 1530 1565 1529 1508
## 3 142 134 131 133 116 118 124
## 4 1712 1623 1385 1263 1226 1189 1107
## 5 9 3 3 5 5 4 6
## 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26
## 1 51 49 44 41 38 39 35
## 2 1541 1506 1547 1521 1507 1528 1549
## 3 108 128 196 114 124 126 178
## 4 1043 969 987 926 987 836 988
## 5 5 5 4 2 5 4 0
## 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02
## 1 31 38 42 45 47 49 51
## 2 1539 1527 1550 1520 1537 1519 1537
## 3 146 225 158 172 162 151 150
## 4 933 941 853 766 733 707 805
## 5 10 5 15 16 3 9 11
## 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09
## 1 53 57 51 57 61 65 83
## 2 1548 1519 1508 1520 1545 1410 1321
## 3 170 164 181 218 199 217 210
## 4 785 851 718 596 501 555 519
## 5 5 10 8 27 0 34 22
## 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16
## 1 86 91 95 97 99 101 107
## 2 1334 1287 1260 1215 1206 1189 1109
## 3 220 227 197 244 194 187 260
## 4 595 424 555 417 375 306 343
## 5 11 15 20 23 17 20 15
## 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23
## 1 112 123 131 164 173 184 189
## 2 1115 1089 1077 1070 1066 1076 1060
## 3 269 218 306 221 190 205 289
## 4 256 237 276 226 200 167 189
## 5 39 25 35 47 33 22 30
## 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30
## 1 194 203 221 234 251 255 263
## 2 990 983 991 994 998 987 993
## 3 217 216 233 212 183 179 205
## 4 166 197 212 168 186 189 184
## 5 41 45 51 35 40 33 45
## 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06
## 1 279 291 303 318 331 343 368
## 2 996 985 975 978 984 971 977
## 3 173 166 177 193 157 130 189
## 4 124 101 111 95 103 72 71
## 5 40 31 51 67 38 52 34
## 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13
## 1 378 399 413 433 458 481 491
## 2 952 833 772 744 725 620 632
## 3 172 165 143 126 147 133 131
## 4 83 66 69 62 41 50 58
## 5 39 49 37 39 52 56 38
## 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20
## 1 503 531 569 588 637 653 679
## 2 617 608 564 521 471 391 313
## 3 122 159 133 117 82 101 139
## 4 59 59 58 63 43 56 53
## 5 50 25 30 36 37 37 51
## 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27
## 1 688 692 722 568 667 680 702
## 2 322 318 329 303 321 298 286
## 3 143 138 109 107 108 67 90
## 4 45 38 42 48 41 37 49
## 5 34 37 41 31 30 43 54
## 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04
## 1 718 738 741 745 761 768 771
## 2 277 270 265 276 256 184 189
## 3 94 76 85 92 99 79 77
## 4 39 33 50 35 41 72 52
## 5 28 23 28 44 28 0 75
## 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11
## 1 778 788 799 811 831 837 846
## 2 176 156 144 136 146 111 124
## 3 58 99 78 72 62 65 59
## 4 49 31 46 35 32 31 42
## 5 20 37 28 34 12 24 33
## 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18
## 1 857 861 865 869 874 871 883
## 2 136 126 116 104 115 99 104
## 3 96 83 79 57 69 62 67
## 4 37 38 32 30 39 35 39
## 5 10 27 28 28 17 14 30
## 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25
## 1 868 877 883 885 881 886 889
## 2 122 112 94 88 84 94 97
## 3 83 86 106 88 77 82 122
## 4 32 21 25 32 25 21 30
## 5 19 21 39 15 12 16 16
## 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01
## 1 871 907 923 927 948 933 951
## 2 90 95 88 82 88 81 78
## 3 102 103 105 101 92 104 127
## 4 21 16 25 22 12 25 30
## 5 17 17 23 22 6 12 8
## 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08
## 1 921 951 911 922 909 903 929
## 2 74 79 73 80 73 70 68
## 3 134 138 106 119 124 103 149
## 4 23 21 16 25 28 23 25
## 5 7 4 21 12 15 12 13
## 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15
## 1 921 934 919 909 929 0 1881
## 2 72 75 82 72 78 66 61
## 3 138 172 148 123 137 124 143
## 4 24 23 20 24 22 26 26
## 5 8 11 5 5 6 0 18
## 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22
## 1 941 960 911 892 902 884 870
## 2 68 74 66 77 79 63 67
## 3 146 149 145 147 150 118 141
## 4 16 18 22 16 14 17 28
## 5 0 11 3 4 1 0 6
## 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29
## 1 856 901 899 913 931 951 911
## 2 70 73 77 70 68 60 58
## 3 147 143 155 151 155 153 158
## 4 12 21 26 21 21 0 61
## 5 6 5 5 2 2 6 8
## 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06
## 1 949 938 919 933 892 902 871
## 2 65 68 0 54 51 114 48
## 3 157 160 151 154 159 152 164
## 4 35 21 36 22 23 27 33
## 5 9 2 0 14 1 4 9
## 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13
## 1 889 909 803 822 879 863 0
## 2 62 69 60 74 78 83 92
## 3 158 163 159 163 158 166 169
## 4 31 33 20 29 35 39 0
## 5 9 4 0 9 7 6 3
## 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20
## 1 1621 879 901 910 902 919 903
## 2 110 148 200 234 0 551 301
## 3 167 165 169 164 179 170 177
## 4 79 57 44 81 51 75 80
## 5 3 6 5 6 5 4 1
## 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27
## 1 848 879 883 811 866 823 851
## 2 452 665 1002 1352 1621 1803 1732
## 3 183 185 187 248 279 296 343
## 4 92 143 178 170 150 240 198
## 5 1 0 2 4 2 4 3
## 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03
## 1 809 854 871 847 783 801 723
## 2 1846 2234 2366 2426 2556 2600 2515
## 3 367 443 542 741 833 998 1177
## 4 329 399 554 504 588 609 982
## 5 5 2 1 0 1 3 8
## 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10
## 1 769 803 840 821 830 912 951
## 2 2581 2708 2687 2627 2655 2759 2562
## 3 1695 2273 2779 3192 3487 3689 3878
## 4 1482 2246 2413 2645 2820 2999 3683
## 5 5 3 6 7 19 19 0
## 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17
## 1 932 948 1011 1079 1101 1197 1232
## 2 2511 2616 2683 3068 3116 3067 2989
## 3 4169 4206 4187 4123 4007 4021 3998
## 4 4397 4548 4883 4881 4517 4503 5147
## 5 11 12 13 0 0 19 100
## 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24
## 1 1303 1379 1403 1533 1569 1603 1651
## 2 2792 2902 3014 2921 3020 2813 2629
## 3 3816 3723 3294 3204 3087 2981 2748
## 4 4825 4337 4510 4809 4148 4347 5176
## 5 56 41 58 78 0 0 0
## 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31
## 1 1809 1910 1985 2007 2018 2210 2223
## 2 2504 2369 2638 2545 2355 2291 2028
## 3 2551 2204 1952 1743 1538 1557 1509
## 4 5742 6454 6515 6913 5808 5592 6063
## 5 0 236 67 54 0 0 77
## 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07
## 1 2291 2278 2281 2291 2298 2301 2272
## 2 2084 2163 2232 2114 1991 2015 1704
## 3 1236 1245 1183 997 903 912 923
## 4 6436 6592 5990 5407 4445 4232 4294
## 5 42 52 32 0 4 17 100
## 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14
## 1 2194 2191 2189 2179 2145 0 4260
## 2 1615 1538 1588 1474 1395 1266 1191
## 3 819 776 783 657 607 613 601
## 4 3989 3463 3324 2896 2254 2268 2562
## 5 287 26 25 55 5 7 8
## 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21
## 1 2117 2101 2071 2053 2025 2009 2003
## 2 930 957 895 882 790 725 651
## 3 547 498 447 452 434 442 416
## 4 2166 1917 1501 1348 1019 1195 1329
## 5 20 8 11 13 0 5 5
## 2022-02-22 2022-02-23
## 1 1989 1892
## 2 626 740
## 3 394 365
## 4 1053 1012
## 5 5 5
##
## $Growth.Rate
## geo.loc 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28
## 1 EGYPT NaN NaN NaN NaN NaN
## 2 UNITED ARAB EMIRATES NaN NaN NaN NaN NaN
## 3 QATAR NaN NaN NaN NaN NaN
## 4 KUWAIT NaN NaN NaN NaN NaN
## 5 YEMEN NaN NaN NaN NaN NaN
## 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NA 0 NaN NaN NA 0 NaN
## 3 NaN NaN NaN NaN NaN NaN NaN
## 4 NaN NaN NaN NaN NaN NaN NaN
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NA 0 NA 0
## 3 NaN NaN NaN NaN NaN NaN NaN
## 4 NaN NaN NaN NaN NaN NaN NaN
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18
## 1 NaN NaN NA 0 NaN NaN NaN
## 2 NaN NaN NaN NaN NA 0 NaN
## 3 NaN NaN NaN NaN NaN NaN NaN
## 4 NaN NaN NaN NaN NaN NaN NaN
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NA 0 NaN NaN
## 3 NaN NaN NaN NaN NaN NaN NaN
## 4 NaN NaN NaN NaN NaN NA 10
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03
## 1 NaN NaN NaN NaN NA 0 NaN
## 2 NaN NaN NA 0.3333333 0 NaN NA
## 3 NaN NaN NaN NA 2 0 NA
## 4 1.5 1.133333 0.1176471 0.0000000 NaN NA 0
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10
## 1 NaN NA 12 0 NA 0.1764706 0.6666667
## 2 0.00 NA 0 NA 0 NaN NA
## 3 0.25 0 NaN NaN NA 0.4285714 2.0000000
## 4 NaN NA 0 NA 1 0.0000000 NA
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17
## 1 0.25000 7.000000 1.857143 2.2307692 0.03448276 40.00000 1.1500000
## 2 0.00000 NA 0.000000 NaN NA 0.00000 NaN
## 3 39.66667 0.000000 NA 0.2931034 3.76470588 0.59375 0.0000000
## 4 0.60000 2.666667 0.000000 NA 0.33333333 1.37500 0.6363636
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24
## 1 0.000000 NA 0.4833333 0.3103448 3.6666667 1.18181818 0.9230769
## 2 NA 1.8000000 0.0000000 NA 0.0000000 NA 1.1111111
## 3 NA 0.6153846 1.2500000 1.1000000 1.1818182 0.53846154 3.5714286
## 4 1.714286 0.5000000 1.8333333 1.5454545 0.7058824 0.08333333 2.0000000
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31
## 1 1.50 0.7222222 1.051282 0.9756098 0.825000 1.4242424 1.148936
## 2 1.70 0.0000000 NA 0.8750000 1.619048 0.4019608 1.292683
## 3 0.44 1.0909091 1.083333 2.1538462 1.571429 1.3409091 1.491525
## 4 2.00 3.2500000 1.307692 0.5882353 2.000000 0.5500000 2.090909
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07
## 1 1.2777778 1.2463768 1.395349 0.7083333 1.211765 1.4466019 0.8590604
## 2 2.8301887 1.4000000 1.142857 1.0041667 1.219917 0.9421769 1.0216606
## 3 0.6136364 2.1111111 1.105263 1.9841270 1.116000 0.8172043 0.9868421
## 4 1.2173913 0.8928571 3.000000 0.8266667 1.241935 1.4155844 0.7155963
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14
## 1 0.859375 1.2636364 0.6834532 1.526316 0.8689655 0.9920635 1.2800000
## 2 1.060071 1.1033333 1.1178248 1.016216 1.0292553 1.0284238 1.0351759
## 3 0.680000 1.0849673 0.8192771 1.588235 1.1620370 1.0039841 0.7817460
## 4 1.435897 0.4910714 1.5090909 1.939759 0.4968944 0.8250000 0.8333333
## 5 NaN NaN NA 0.000000 NaN NaN NaN
## 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21
## 1 0.9687500 1.083871 1.017857 1.0994152 0.5957447 1.6875000 0.8306878
## 2 1.0485437 1.064815 1.036957 0.0000000 NA 1.0104384 1.0123967
## 3 1.4365482 1.385159 1.428571 0.6160714 1.2753623 1.2886364 0.9135802
## 4 0.9090909 2.380000 1.126050 0.6940299 1.7634409 0.4878049 1.0625000
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28
## 1 1.0764331 1.3727811 0.8663793 1.129353 0.9471366 1.1534884 1.048387
## 2 0.9857143 1.0724638 1.0135135 1.013333 1.0075188 0.9141791 1.104082
## 3 1.1737452 1.0246711 1.2215088 1.094612 1.1152461 1.0301399 0.707419
## 4 1.9764706 0.8988095 1.4238411 1.293023 0.6582734 1.1639344 0.713615
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05
## 1 0.8692308 1.1902655 1.3308550 0.8324022 0.9127517 1.2794118 1.1149425
## 2 1.0147874 1.0054645 1.0090580 1.0071813 1.0053476 1.0053191 0.8148148
## 3 0.9497784 1.3141524 0.8130178 1.1295488 0.8750000 0.9425626 1.4859375
## 4 1.9736842 0.9466667 1.2429577 0.6855524 1.5041322 0.8104396 1.7830508
## 5 NA 0.0000000 NA 3.0000000 0.0000000 NA 4.5000000
## 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12
## 1 0.9974227 1.0155039 1.259542 0.9858586 0.8934426 0.7935780 1.002890
## 2 1.1818182 0.9194139 1.101594 1.1283906 1.2516026 0.8706786 1.151471
## 3 0.8727655 1.1060241 1.428105 0.8619375 1.0522124 0.9276703 1.383500
## 4 0.9220532 0.5731959 2.305755 0.6474259 2.5662651 0.5615023 1.657191
## 5 0.4444444 0.0000000 NA 0.0000000 NA 0.2941176 1.800000
## 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19
## 1 0.9740634 1.1775148 1.0025126 1.2305764 1.0386965 1.0490196 1.345794
## 2 0.9259259 0.9627586 1.0702006 1.0655957 0.9183417 1.1381669 1.049279
## 3 0.9108781 1.2467626 0.6653203 1.3417173 1.0549451 0.8363971 1.199267
## 4 0.7578204 1.2609854 0.9345301 1.0644068 1.1125265 0.8024809 1.275862
## 5 0.5555556 3.0000000 1.4000000 0.7619048 0.3750000 0.3333333 18.500000
## 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26
## 1 1.0347222 1.0389262 1.0116279 0.9284802 1.0343879 0.9335106 1.1239316
## 2 1.0778923 0.9500531 1.1118568 0.8169014 0.9618227 1.0524968 0.9476886
## 3 0.9108125 1.0422535 1.1776062 0.9464481 0.8666282 1.1665556 0.9948601
## 4 0.7493010 1.2947761 0.9173871 0.9424084 0.9311111 0.7935561 0.9142857
## 5 0.3513514 1.0000000 0.9230769 0.5833333 1.4285714 1.1000000 1.4545455
## 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02
## 1 1.1533587 1.2384615 1.1437445 1.0605120 1.1236284 0.9108073 0.8234453
## 2 1.1335045 0.6375991 1.1332149 1.1379310 0.9104683 0.9606657 0.9385827
## 3 0.9988519 1.1304598 1.0132181 1.1816357 0.6997877 0.9241505 1.1989494
## 4 1.1381579 1.2210983 1.2686391 0.9402985 0.8442460 0.8448884 1.2336579
## 5 0.3750000 3.8333333 0.2173913 5.4000000 0.4814815 2.3846154 1.4516129
## 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09
## 1 0.9366319 1.0676552 1.1701389 1.1105341 0.9799599 0.9304703 1.0146520
## 2 0.9580537 1.1541156 0.9468892 1.0032051 0.8626198 1.0518519 0.9295775
## 3 1.0410734 0.8316675 1.1094244 0.9692132 0.9382353 0.8576803 1.2580409
## 4 0.8004510 0.7915493 1.2864769 0.6735823 1.4722793 0.9232915 0.9516616
## 5 0.4444444 1.7000000 0.4705882 0.8125000 0.1538462 6.0000000 2.3333333
## 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16
## 1 1.0505415 0.9910653 1.0936200 1.0634115 0.9648181 1.045117 0.9266706
## 2 1.1420455 0.7943615 1.0709812 0.9571150 0.6191446 1.125000 1.0116959
## 3 0.9970947 0.8601399 1.0277778 1.2050099 0.6487965 1.074199 0.9427002
## 4 1.0841270 0.8916545 0.8538588 0.9884615 0.8832685 1.125551 1.0313112
## 5 1.2857143 0.8611111 1.3225806 1.7804878 0.3150685 5.043478 0.3534483
## 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23
## 1 0.8698149 0.8936170 1.4564860 0.8720406 0.9534583 1.0684746 0.8451777
## 2 1.1040462 1.0157068 1.0128866 0.9872774 1.0103093 0.9642857 1.0052910
## 3 0.9134055 1.1549681 0.8058406 1.0048972 0.8586745 1.1736663 1.1373308
## 4 1.0910816 0.9408696 1.1164510 0.7731788 1.0813704 1.2693069 1.1575663
## 5 0.4146341 0.4117647 1.4285714 0.3000000 6.3333333 1.3684211 0.9615385
## 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30
## 1 1.066066 1.1049296 1.0356915 0.7187692 1.0830479 1.2379447 0.9942529
## 2 1.184211 0.9555556 0.9534884 0.9439024 1.1291990 1.0274600 0.9376392
## 3 1.019558 0.8840701 0.8924528 0.9291755 0.8532423 0.9240000 1.4170274
## 4 1.140162 1.0744681 1.0066007 0.7519126 0.8008721 1.0562613 1.1529210
## 5 0.920000 2.6521739 0.2131148 1.0769231 1.0714286 0.6666667 3.0000000
## 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07
## 1 0.9653179 0.9880240 0.9508418 0.9376771 0.9199396 0.7955665 1.0908153
## 2 0.9548694 0.9950249 1.6800000 1.0654762 0.9539106 0.7730600 1.0075758
## 3 0.9317719 0.9770492 0.8456376 0.7010582 1.1622642 0.8863636 1.0989011
## 4 1.1102832 1.2335570 0.8846572 0.7761378 1.0110935 1.1018809 0.8549075
## 5 1.0666667 0.9687500 0.6129032 0.4210526 2.1250000 1.4705882 0.2800000
## 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14
## 1 0.9697256 0.9268293 1.0326316 0.9408767 0.9880823 1.0208333 0.9978518
## 2 0.8364662 1.1955056 0.8890977 0.8520085 0.9950372 0.8578554 1.0901163
## 3 1.0133333 0.9161184 0.9335727 0.9576923 0.9437751 0.8893617 1.2368421
## 4 1.2678869 1.0931759 0.8883553 0.6459459 1.7489540 0.7344498 1.0846906
## 5 3.0000000 1.8095238 0.6315789 0.3750000 8.4444444 0.4342105 0.5454545
## 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21
## 1 0.9827772 1.016429 0.7575431 0.9928876 0.8638968 1.039801 1.0781499
## 2 0.7333333 1.021818 1.0427046 0.9863481 0.7301038 1.284360 1.1254613
## 3 0.8704062 1.097778 0.8522267 0.9738717 0.8292683 1.144118 1.0102828
## 4 1.0555556 1.125178 0.6991150 1.2350814 0.4392387 1.863333 1.2003578
## 5 0.5555556 2.600000 0.9230769 0.2083333 5.0000000 0.520000 0.7692308
## 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28
## 1 0.9866864 1.0014993 0.9865269 0.7754173 0.9373777 0.8768267 1.1071429
## 2 0.7737705 1.0762712 1.0275591 1.1992337 1.1214058 0.7521368 1.3977273
## 3 1.1221374 0.8458050 1.0563003 1.0101523 0.6758794 1.0855019 0.9691781
## 4 1.1192250 0.9147803 1.0960699 0.9083665 0.6783626 1.3060345 1.2706271
## 5 1.1000000 1.2727273 1.4285714 0.0000000 NA 1.4285714 1.2000000
## 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04
## 1 0.8795699 0.9804401 0.8004988 0.7414330 0.7016807 0.9401198 0.7133758
## 2 1.0162602 0.8053333 0.9370861 0.8975265 0.9409449 0.6861925 1.1524390
## 3 0.9646643 1.1245421 0.7654723 0.9191489 0.9074074 1.0969388 1.0046512
## 4 0.9792208 0.8302387 0.6837061 1.1471963 0.9429735 0.8380130 1.2242268
## 5 0.6666667 1.8750000 0.1333333 1.0000000 2.0000000 0.0000000 NA
## 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11
## 1 1.0982143 1.0650407 1.0763359 1.18439716 1.0658683 0.9775281 0.96551724
## 2 1.3439153 0.9409449 0.9037657 1.10648148 0.9414226 0.7955556 1.46368715
## 3 1.2361111 1.0749064 1.0139373 0.91752577 1.1123596 1.0606061 1.21904762
## 4 1.3705263 0.9523810 1.1000000 0.69208211 1.0889831 1.3365759 0.97234352
## 5 0.1153846 1.6666667 5.6000000 0.03571429 7.0000000 4.0000000 -0.03571429
## 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18
## 1 0.7678571 1.1240310 0.7724138 1.0357143 1.1982759 0.8273381 1.417391
## 2 0.9389313 1.1260163 1.1913357 0.8575758 0.7420495 1.0904762 1.593886
## 3 0.7604167 1.1746575 0.7317784 1.1035857 0.9783394 1.0627306 1.017361
## 4 1.0733533 0.9776848 0.9971469 0.7324750 0.9921875 1.2244094 1.033762
## 5 -10.0000000 0.6000000 1.8333333 0.0000000 NA 0.0000000 NA
## 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25
## 1 0.9877301 0.6894410 1.1081081 0.7235772 1.1573034 1.3398058 1.0217391
## 2 1.1917808 1.0597701 0.8481562 1.0843990 0.9198113 0.7051282 1.2327273
## 3 1.0068259 0.9084746 0.9589552 1.1050584 0.8556338 1.0617284 0.8992248
## 4 1.0497667 0.9214815 0.8070740 1.3705179 0.8299419 0.7565674 1.4189815
## 5 0.1500000 2.3333333 1.0000000 0.1428571 4.0000000 1.2500000 1.6000000
## 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01
## 1 1.460993 1.150485 0.9409283 0.9506726 1.0849057 0.9217391 0.8301887
## 2 1.176991 1.230576 0.7942974 1.0948718 0.8477752 1.4944751 1.0609982
## 3 1.051724 1.008197 0.8455285 1.0144231 0.7962085 1.2083333 1.0640394
## 4 1.138662 0.965616 0.9391691 1.0205371 0.6377709 1.1480583 1.4841438
## 5 0.750000 0.500000 3.3333333 0.3000000 2.3333333 0.7142857 0.8000000
## 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08
## 1 0.9375000 0.8787879 1.0827586 0.8280255 1.1615385 1.1788079 1.0505618
## 2 1.2804878 0.8353741 0.9967427 1.1519608 0.7276596 0.9161793 1.3702128
## 3 0.9814815 1.0094340 1.0140187 1.0460829 1.0176211 1.0952381 0.9130435
## 4 0.9501425 1.3493253 0.9611111 0.8323699 0.8597222 1.3004847 1.0645963
## 5 3.5000000 0.2142857 1.3333333 0.0000000 NA 0.5000000 2.5000000
## 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15
## 1 0.9358289 0.8800000 0.9805195 0.9801325 1.0337838 1.098039 0.9702381
## 2 1.3711180 1.0532276 1.0010753 1.0816327 0.6355511 1.214063 0.8674389
## 3 1.1558442 0.7715356 1.1407767 1.0042553 0.9194915 1.082949 1.0170213
## 4 0.9778296 0.8830549 0.8824324 1.1271057 0.7513587 1.280289 1.1709040
## 5 1.0000000 0.8000000 1.0000000 0.5000000 1.0000000 1.000000 1.5000000
## 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22
## 1 0.9815951 0.8812500 0.9290780 0.9770992 0.8984375 1.0956522 0.8968254
## 2 1.2492582 0.9334917 1.1005089 0.9352601 0.8331273 1.0074184 1.2547865
## 3 0.9832636 1.0382979 0.9180328 1.0223214 1.0043668 0.9913043 1.3728070
## 4 0.8419783 1.1819484 0.8533333 0.7400568 0.7389635 1.3766234 1.3566038
## 5 1.0000000 1.0000000 0.6666667 1.0000000 0.0000000 NA 0.0000000
## 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29
## 1 1.0707965 1.1404959 0.8115942 0.9910714 0.9369369 1.1057692 1.0782609
## 2 1.2711268 0.9252078 1.0059880 1.0694444 0.7894249 0.7356052 1.5894569
## 3 0.8242812 0.9689922 0.9000000 0.8888889 1.1700000 0.9700855 0.9779736
## 4 0.8567455 0.8961039 1.0688406 1.2847458 0.4551451 1.2666667 1.3432494
## 5 NA 0.0000000 NaN NA 0.0000000 NA 0.0000000
## 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06
## 1 0.9596774 1.0000000 1.2521008 0.7315436 0.9908257 0.9074074 1.234694
## 2 1.1055276 1.0527273 1.0198618 1.0423370 0.8456539 0.8952930 1.138412
## 3 1.0225225 0.8766520 1.0301508 0.8536585 0.9085714 1.2201258 1.293814
## 4 1.0459966 0.8045603 0.8319838 0.9026764 1.5283019 1.0000000 1.192240
## 5 NA 1.6666667 0.2000000 1.0000000 0.0000000 NaN NA
## 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13
## 1 1.0991736 0.9097744 0.8760331 1.1792453 1.0320000 1.0232558 1.053030
## 2 0.9858624 1.0411090 0.9871442 1.0502326 0.9707706 0.9708029 1.235902
## 3 0.9482072 0.8949580 0.9671362 0.8640777 1.1629213 0.9951691 1.038835
## 4 0.7026627 1.4694737 0.9097421 0.7748031 1.1138211 1.4178832 1.086229
## 5 0.3333333 0.5000000 1.0000000 0.0000000 NA 0.0000000 NA
## 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20
## 1 0.9208633 0.9218750 1.0677966 1.095238 0.9202899 0.9685039 1.284553
## 2 1.0882129 0.9769392 1.0100143 1.089235 0.7899870 0.7530864 1.177049
## 3 0.9252336 1.0101010 0.9450000 1.243386 0.8680851 1.1764706 1.137500
## 4 0.6303318 1.4022556 0.9772118 1.013717 0.8971583 1.0346908 1.291545
## 5 0.0000000 NaN NA 0.000000 NA 0.0000000 NA
## 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27
## 1 1.1265823 0.9943820 0.9604520 0.9823529 0.8562874 1.1678322 1.017964
## 2 1.4280409 1.0260078 0.9904943 0.9539347 0.9114688 0.8175129 1.251125
## 3 0.9743590 0.9473684 0.9880952 1.0200803 0.8070866 1.2780488 0.980916
## 4 0.9176072 1.0934809 0.9133858 0.8559113 1.0187050 0.9632768 1.136364
## 5 0.0000000 NaN NA 0.0000000 NaN NaN NaN
## 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03
## 1 0.9000000 1.1699346 0.9329609 1.0718563 1.0111732 1.0441989 1.0423280
## 2 1.0071942 0.9371429 0.8932927 0.9564846 1.1400535 0.9655712 0.8168558
## 3 0.9727626 0.8440000 0.9146919 1.1036269 0.7699531 1.2012195 1.1472081
## 4 1.0503226 0.9336609 0.8828947 0.8777943 1.0322581 1.2483553 1.0368906
## 5 NA 1.0000000 0.0000000 NA 0.0000000 NaN NaN
## 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10
## 1 1.0507614 0.9710145 1.1144279 0.9285714 1.1490385 0.9246862 1.049774
## 2 1.1517857 1.1102498 1.0023274 0.8831269 0.9737073 1.0315032 0.956370
## 3 1.0044248 1.0969163 0.7710843 1.0520833 0.9405941 1.2105263 1.000000
## 4 0.9695044 1.0419397 1.0377358 0.8993939 0.7250674 1.3661710 1.228571
## 5 NaN NaN NaN NaN NaN NaN NaN
## 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17
## 1 0.9784483 0.9427313 1.0467290 1.0178571 0.9649123 1.1000000 1.1363636
## 2 1.1076642 0.9357496 1.0792254 0.9575856 1.0306644 0.9991736 1.0380480
## 3 0.9739130 1.0937500 0.9591837 0.8638298 1.0591133 1.1302326 0.7983539
## 4 0.8615725 0.9935733 0.9288486 0.9623955 0.7221418 0.9799599 1.1370143
## 5 NaN NA 0.0000000 NaN NaN NaN NaN
## 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24
## 1 1.1963636 1.0395137 1.061404 0.9862259 0.9804469 1.0085470 1.0197740
## 2 1.0294821 0.8924149 1.100607 0.9944838 0.9548336 0.8838174 1.2300469
## 3 1.1288660 0.9497717 1.149038 0.7280335 0.9597701 1.1137725 1.2204301
## 4 0.8129496 1.0730088 1.002062 0.8765432 0.7558685 1.0465839 1.1928783
## 5 NaN NaN NA 0.0000000 NaN NA 0.3333333
## 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01
## 1 1.0110803 1.0082192 0.9701087 0.9831933 1.0199430 1.0335196 1.0594595
## 2 0.9900763 1.0061681 0.9831418 0.9758379 0.9992013 0.8848921 1.1644083
## 3 0.9207048 1.0287081 0.8558140 1.2336957 0.7533040 1.0818713 0.9081081
## 4 1.0497512 0.7819905 0.9969697 0.9696049 0.7241379 0.9047619 1.7081340
## 5 0.0000000 NA 0.0000000 NaN NA 0.0000000 NaN
## 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08
## 1 1.0739796 1.0261283 0.9884259 1.0093677 0.9698376 0.9928230 1.0457831
## 2 0.9968968 1.0249027 0.9954442 0.9260107 0.9497529 0.9956635 1.0975610
## 3 1.5178571 0.8666667 0.7511312 0.8433735 0.8928571 1.4240000 0.6573034
## 4 0.7507003 1.1716418 1.0923567 0.7201166 0.8299595 1.1219512 1.3086957
## 5 NaN NaN NaN NaN NA 0.0000000 NA
## 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15
## 1 0.9700461 1.0570071 1.042697 1.0301724 1.0167364 1.0514403 1.023483
## 2 1.0420635 0.9558264 0.952988 0.9648829 1.0346620 0.9145729 1.122711
## 3 1.2820513 1.0866667 1.006135 0.8963415 0.9115646 1.1940299 0.943750
## 4 1.0099668 0.9572368 1.010309 0.8673469 0.6823529 1.3275862 1.129870
## 5 0.0000000 NA 0.500000 1.0000000 0.0000000 NA 1.000000
## 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22
## 1 1.0401530 1.0073529 1.0565693 1.0552677 1.0867430 1.0813253 1.097493
## 2 1.0424144 1.0336463 0.9719909 0.9766355 0.9338118 0.9197267 1.138347
## 3 0.9602649 0.9655172 1.1357143 0.8930818 1.0070423 1.1048951 0.943038
## 4 1.0000000 0.8467433 1.5339367 0.7197640 0.8360656 1.1274510 1.295652
## 5 0.0000000 NA 0.0000000 NaN NaN NaN NaN
## 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29
## 1 1.1560914 1.1207464 1.1096964 1.0494263 1.0311186 1.108483 0.9808683
## 2 1.0163132 1.0521669 0.9382151 0.9975610 0.7693562 1.087924 1.4664070
## 3 0.9395973 1.1214286 0.8216561 1.3100775 0.9408284 1.006289 1.2875000
## 4 0.8926174 0.9172932 1.0655738 0.6615385 1.1860465 1.000000 1.1568627
## 5 NaN NA 0.0000000 NaN NA 1.000000 0.0000000
## 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05
## 1 1.0585146 1.004961 0.9936530 0.9985806 0.9303483 0.9755539 0.8762725
## 2 1.1440903 1.004063 1.0728324 1.0576509 0.8099847 0.9440252 1.3104597
## 3 0.9368932 1.103627 0.9765258 0.9519231 0.9949495 1.0507614 1.0048309
## 4 0.8686441 1.395122 0.9965035 0.7192982 1.3121951 1.3828996 0.8387097
## 5 NA 2.000000 1.0000000 0.0000000 NaN NaN NaN
## 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12
## 1 0.8999106 1.210526 0.8211649 0.9880120 1.0040445 0.9677744 1.0093652
## 2 1.0508388 1.445573 0.9872825 1.0162712 0.9593062 0.8358832 1.3490017
## 3 1.0048077 1.004785 0.9285714 1.0564103 0.9368932 1.0518135 1.0394089
## 4 1.3173077 1.313869 0.9166667 0.8626263 0.9695550 1.2729469 0.9373814
## 5 NA 2.000000 0.0000000 NaN NaN NA 2.0000000
## 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19
## 1 1.0268041 1.026104 0.8600783 1.0091013 1.0033822 0.9865169 1.0239180
## 2 1.0366944 1.005949 1.0073921 1.0073378 1.0061189 1.0052129 1.0057620
## 3 0.9526066 1.039801 0.9377990 1.0408163 0.9215686 1.2074468 0.9911894
## 4 1.0910931 1.038961 0.9464286 0.8207547 0.8689655 1.2354497 1.2376874
## 5 1.0000000 0.500000 1.0000000 1.0000000 0.0000000 NA 2.0000000
## 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26
## 1 0.8776418 0.9531052 0.9946809 0.9090909 0.9911765 0.9925816 0.961136
## 2 1.0042968 1.0065602 1.0065174 1.0039414 1.0036455 1.0033529 1.002785
## 3 1.2044444 0.9520295 1.0193798 0.9543726 0.9840637 1.1214575 1.079422
## 4 0.7647059 1.2895928 0.9350877 1.0018762 0.7191011 1.2812500 1.026423
## 5 0.0000000 NaN NA 0.0000000 NaN NaN NA
## 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02
## 1 0.9828927 0.8243671 1.1305182 0.9286927 0.9744059 1.0150094 0.9630314
## 2 1.0938628 1.0068545 0.9989914 0.9204947 0.8083356 0.9260516 1.2124542
## 3 1.1304348 1.0266272 0.9827089 1.0645161 0.9669421 1.0968661 0.9740260
## 4 1.1485149 1.0137931 1.1190476 0.7811550 1.2354086 0.9228346 1.3839590
## 5 1.0000000 0.0000000 NaN NaN NA 1.0000000 0.0000000
## 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09
## 1 0.9827255 1.0390625 1.015038 0.9425926 1.0491159 1.0617978 1.010582
## 2 1.2015106 0.8169474 1.000616 1.0076899 0.9441392 0.9046233 1.182988
## 3 1.0560000 1.0277778 0.977887 0.9899497 1.0355330 1.0465686 1.117096
## 4 0.9321825 1.1111111 1.119048 0.9000000 1.1371158 1.0353430 1.006024
## 5 NaN NaN NA 1.5000000 0.0000000 NA 0.000000
## 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16
## 1 1.0645724 0.9885246 1.0099502 0.9852217 1.0183333 1.0032733 1.032626427
## 2 1.0691843 0.9960441 0.9381560 0.7955851 1.2037248 0.9861067 1.036183157
## 3 0.9454927 0.9933481 1.0044643 1.0066667 0.9713024 2.0181818 0.006756757
## 4 0.9850299 1.0618034 0.9742366 0.8334966 0.9377203 1.0313283 1.171324423
## 5 NA 0.5000000 2.0000000 0.0000000 NA 0.0000000 NA
## 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23
## 1 0.9763033 1.0614887 0.9298780 0.9836066 1.0133333 1.0246711 1.0160514
## 2 1.0667491 0.9542294 0.9532483 1.0057325 0.7124763 0.9355556 1.4275534
## 3 75.5000000 1.0198675 1.0064935 0.9655914 1.0222717 1.0087146 0.9827214
## 4 1.0549793 0.9626352 0.9969356 0.8831967 0.8909513 1.1705729 1.1290323
## 5 1.0000000 1.0000000 1.0000000 0.0000000 NA 1.3750000 1.0000000
## 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02
## 1 1.0173776 0.9145963 1.0203735 0.9783694 1.0119048 0.9848739 0.9914676
## 2 1.0322795 0.9751773 1.1563636 0.9817038 0.8532324 0.8621160 1.0771971
## 3 1.0087912 1.0130719 1.0086022 0.9808102 1.0152174 1.0128480 0.9788584
## 4 0.9862069 1.0179820 1.0029441 0.8258317 1.1398104 1.2255717 1.1374046
## 5 3.0909091 1.0000000 0.3529412 0.1666667 8.0000000 1.5625000 1.2800000
## 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09
## 1 0.9931153 1.0173310 0.9863714 1.0155440 0.9880952 1.0172117 1.0524535
## 2 0.9893422 1.0185736 1.1203501 0.9632161 0.8830686 0.9502488 0.9556988
## 3 1.0172786 1.0084926 0.9873684 0.9808102 1.0304348 0.9873418 1.0064103
## 4 1.0507084 1.2178850 0.9399767 0.8171110 0.8679818 1.1590909 0.8725490
## 5 0.6562500 0.5714286 3.0000000 0.9166667 0.8787879 2.4827586 0.5694444
## 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16
## 1 1.0369775 0.9906977 1.0000000 1.0031299 1.0046802 0.9798137 1.0142631
## 2 0.9287821 0.9469147 1.0781025 0.9595556 0.9226494 0.9528112 1.0632244
## 3 1.0042463 0.9894292 0.9722222 1.0615385 1.0041408 0.9917526 0.9958420
## 4 1.1521175 1.1290323 0.9009967 0.8930678 0.8777870 1.2530574 0.9864865
## 5 1.0000000 0.9756098 1.5500000 0.6774194 1.5476190 1.1076923 0.8472222
## 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23
## 1 1.007812 0.9953488 1.004673 0.9984496 1.0046584 0.9938176 1.0077760
## 2 1.016353 1.0243784 1.028082 0.9319444 0.8529558 1.0896913 1.1608765
## 3 1.020877 1.0204499 0.995992 1.0241449 0.9882122 1.0318091 1.0289017
## 4 1.144597 0.9268617 1.089670 0.8867676 0.8849295 1.1157718 0.9684211
## 5 1.114754 1.3088235 1.022472 0.6703297 2.2950820 0.7000000 0.9795918
## 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30
## 1 0.9891975 1.0312012 1.0136157 1.0194030 1.0043924 1.0043732 1.005806
## 2 1.0110497 0.9303279 1.0416055 1.0827068 0.9236111 0.8806391 1.221451
## 3 1.0674157 1.0298246 1.0255537 1.0199336 1.0407166 1.0798122 1.043478
## 4 1.0085404 1.0700539 1.1136691 0.7739018 0.9357262 1.1159679 1.015987
## 5 0.9479167 1.2417582 0.7433628 0.8214286 0.9275362 1.2812500 1.609756
## 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06
## 1 1.0086580 1.018598 0.9873596 1.0099573 0.9985915 1.0818054 1.0143416
## 2 0.9104412 1.110845 0.9416847 0.9559633 1.0139155 0.9522007 0.9880716
## 3 1.0833333 1.076923 1.0404762 0.9954233 1.0068966 1.0388128 1.0186813
## 4 1.0086546 1.106084 0.8695346 1.0016221 0.9740891 1.1280133 1.0338983
## 5 0.8333333 1.581818 0.5114943 0.8651685 1.3116883 0.8217822 1.1325301
## 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13
## 1 1.0064267 1.007663 1.0063371 1.0088161 1.0137328 1.007389 1.0061125
## 2 0.9471831 1.121614 0.8877841 1.0298667 0.9373382 1.065193 1.0487552
## 3 1.0140237 1.009574 1.0010537 1.0147368 0.9968880 1.012487 1.0082220
## 4 1.0812545 0.909031 1.0710660 0.9336493 1.0079768 1.176259 0.9443425
## 5 0.7659574 1.194444 1.1627907 0.4300000 1.8837209 1.098765 0.6853933
## 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20
## 1 1.0097205 1.0072202 1.0047790 1.0047562 1.0059172 1.0023529 1.0035211
## 2 0.8892186 1.0723026 0.9559129 1.0623983 0.9856997 0.9341969 1.0554631
## 3 1.0030581 1.0050813 0.9888777 0.8456033 0.9951632 1.0886999 0.9877232
## 4 0.9080311 0.9921541 1.0107836 0.9871977 0.8119597 1.3398403 0.9079470
## 5 1.2295082 1.0000000 0.7733333 0.9482759 0.7636364 1.0952381 1.3043478
## 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27
## 1 1.0070175 1.012776 1.0137615 1.0316742 1.0449561 1.0398741 1.0121090
## 2 1.0147136 1.077680 0.9481019 1.0542321 0.8716346 0.9702151 1.1904491
## 3 0.9254237 0.976801 0.9975000 0.8997494 0.9818942 0.9971631 0.9886202
## 4 1.0495988 1.013899 0.9814942 0.8421788 1.2810945 0.8323625 1.1244168
## 5 0.7000000 1.428571 0.6000000 1.3611111 0.6530612 1.4375000 0.8043478
## 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04
## 1 1.0079761 0.9920870 1.0179462 1.0107738 1.0184109 1.0256898 1.0111317
## 2 0.8166189 1.1467836 1.0066293 0.8672746 1.0788551 0.9593936 0.9588036
## 3 0.9928058 0.9956522 0.9839884 0.9615385 0.9938462 0.9969040 0.9937888
## 4 1.0124481 0.9678962 1.0084686 0.8950315 1.0289289 0.9468085 1.0056180
## 5 1.1621622 0.7209302 0.7419355 0.3478261 2.0000000 1.3750000 1.2272727
## 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11
## 1 1.0110092 1.0072595 1.0135135 1.0062222 1.0053004 1.0105448 1.0260870
## 2 1.1500883 0.8822927 1.0243619 0.9824462 0.9060519 0.9586514 1.0710020
## 3 1.0078125 0.9193798 1.0118044 0.8883333 0.7298311 1.0205656 0.8639798
## 4 1.1580208 0.8518263 0.9781553 0.9057072 0.9059361 0.9858871 1.1789366
## 5 0.8888889 0.5000000 1.6666667 0.8000000 1.2500000 0.1500000 2.3333333
## 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18
## 1 1.0059322 1.0050548 1.0033529 1.0050125 0.9983375 0.9891757 0.9840067
## 2 0.9343247 1.0026525 0.9603175 0.9097796 0.9470098 0.9824141 1.0333605
## 3 1.1428571 0.7627551 0.8160535 1.0655738 0.9846154 1.1796875 1.2251656
## 4 0.8542931 1.0751269 0.7204910 1.0419397 1.0415094 1.0398551 1.2590012
## 5 0.8571429 1.5000000 1.7777778 0.9375000 0.3333333 5.0000000 0.7200000
## 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25
## 1 0.9923011 0.9939655 0.9956635 1.0026132 0.9947871 1.0034934 0.9921671
## 2 1.0614173 1.0393175 1.0635261 1.0711409 0.9968672 0.9503457 1.1058201
## 3 0.7972973 1.0610169 1.1725240 0.8991826 0.8575758 1.0565371 1.1672241
## 4 1.0322878 1.0437891 1.1515411 0.7561338 0.9754179 1.2500000 1.1354839
## 5 0.3888889 2.8571429 0.9500000 0.8947368 0.5294118 0.4444444 2.0000000
## 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01
## 1 1.0096491 0.9834926 1.0008834 0.9876434 0.8999106 0.9771599 0.9715447
## 2 1.0508373 1.2333523 1.0318413 0.8103757 0.9988962 0.9740331 1.1162791
## 3 0.8767908 0.9346405 0.7062937 0.7722772 1.2115385 1.2063492 1.0087719
## 4 0.8352273 0.9863946 1.1931034 0.8193642 0.9656085 1.2876712 0.9070922
## 5 2.2500000 0.4444444 3.3750000 0.2962963 0.7500000 0.8333333 1.8000000
## 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08
## 1 0.9947699 0.9800210 0.9238197 0.9535424 0.9756395 0.9762797 0.988491
## 2 1.0945122 0.9233983 1.0367019 1.0611057 0.8564899 1.0501601 1.120427
## 3 0.8434783 1.0206186 0.9242424 1.0491803 0.8958333 0.9941860 1.064327
## 4 1.0516028 1.0728625 0.8870409 1.0398437 0.9744553 1.1403238 1.068966
## 5 0.8888889 1.0000000 0.7500000 1.1666667 1.0000000 3.5714286 0.440000
## 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15
## 1 0.9896507 0.9869281 0.9708609 0.9699864 0.9718706 0.8871201 0.9934747
## 2 0.9882086 0.0000000 NA 0.4748378 0.9274611 0.9329609 1.1578661
## 3 0.8681319 0.9050633 1.2937063 0.7945946 0.7959184 1.3418803 0.9299363
## 4 0.8798229 1.2286125 0.9695728 0.8672299 1.0521921 1.0337302 0.9513756
## 5 0.8181818 0.4444444 5.0000000 0.0500000 5.0000000 0.2000000 1.0000000
## 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22
## 1 0.9950739 0.9752475 0.9966159 0.9609508 0.9399293 0.9567669 0.978389
## 2 0.9454631 1.0775733 0.8961698 1.0859938 0.8771930 1.0616216 1.103360
## 3 1.1301370 0.7696970 1.4488189 1.0000000 0.5815217 1.2149533 1.453846
## 4 1.0470746 1.0571612 1.0072904 0.9028951 1.1095524 1.1649609 1.013953
## 5 3.0000000 0.6666667 3.0000000 0.3333333 4.0000000 0.5000000 0.750000
## 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29
## 1 0.9357430 0.9077253 0.9739953 0.9927184 0.9511002 0.9665810 0.6941489
## 2 0.9173973 1.0870221 1.0286904 1.0265407 0.9298861 0.9613572 1.0705882
## 3 0.8148148 0.6818182 0.8285714 1.4367816 0.8160000 1.1568627 1.2118644
## 4 0.9531091 0.9417112 0.9664963 0.9759107 0.9379892 1.0603338 1.0399516
## 5 2.0000000 1.1666667 0.0000000 NA 2.0000000 0.5000000 9.0000000
## 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06
## 1 0.9616858 0.9641434 0.8181818 0.9141414 0.9889503 0.9776536 0.9371429
## 2 0.7999084 0.9587865 0.9928358 0.9813590 0.9797794 0.9837398 0.9866497
## 3 0.8251748 1.2372881 0.9109589 0.7744361 1.1747573 0.7685950 1.0000000
## 4 1.0686845 0.9934641 1.0389254 0.8506596 1.0260546 1.1952842 1.0080931
## 5 0.2222222 1.5000000 0.3333333 2.0000000 1.5000000 0.0000000 NA
## 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13
## 1 0.9817073 0.9627329 0.8193548 0.9527559 0.9669421 0.9401709 0.9818182
## 2 0.9748711 1.0171844 0.9935023 0.9941138 0.9986842 1.0158103 0.9870298
## 3 1.6989247 0.7151899 1.2743363 0.6736111 0.8865979 1.6976744 0.9726027
## 4 0.7952835 1.0757098 0.9483871 0.9616574 0.9581994 1.1879195 0.9672316
## 5 1.5000000 0.6666667 2.0000000 0.2500000 7.0000000 0.5714286 2.2500000
## 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20
## 1 0.8240741 0.9101124 0.9506173 0.8961039 0.0000000 NA 0.4047619
## 2 1.0045992 1.0078483 0.9928618 1.0228758 0.9769968 0.9862655 1.0218833
## 3 0.9436620 0.9776119 1.0152672 0.8721805 1.0172414 1.0508475 0.8709677
## 4 0.9480140 0.8533580 0.9119134 0.9707047 0.9698206 0.9310345 0.9421861
## 5 0.3333333 1.0000000 1.6666667 1.0000000 0.8000000 1.5000000 0.8333333
## 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27
## 1 0.9607843 0.8979592 0.9318182 0.9268293 1.0263158 0.8974359 0.8857143
## 2 0.9772875 1.0272244 0.9831933 0.9907955 1.0139350 1.0137435 0.9935442
## 3 1.1851852 1.5312500 0.5816327 1.0877193 1.0161290 1.4126984 0.8202247
## 4 0.9290508 1.0185759 0.9381966 1.0658747 0.8470111 1.1818182 0.9443320
## 5 1.0000000 0.8000000 0.5000000 2.5000000 0.8000000 0.0000000 NA
## 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03
## 1 1.2258065 1.1052632 1.0714286 1.0444444 1.0425532 1.0408163 1.0392157
## 2 0.9922027 1.0150622 0.9806452 1.0111842 0.9882889 1.0118499 1.0071568
## 3 1.5410959 0.7022222 1.0886076 0.9418605 0.9320988 0.9933775 1.1333333
## 4 1.0085745 0.9064825 0.8980070 0.9569191 0.9645293 1.1386139 0.9751553
## 5 0.5000000 3.0000000 1.0666667 0.1875000 3.0000000 1.2222222 0.4545455
## 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10
## 1 1.0754717 0.8947368 1.1176471 1.070175 1.0655738 1.2769231 1.036145
## 2 0.9812661 0.9927584 1.0079576 1.016447 0.9126214 0.9368794 1.009841
## 3 0.9647059 1.1036585 1.2044199 0.912844 1.0904523 0.9677419 1.047619
## 4 1.0840764 0.8437133 0.8300836 0.840604 1.1077844 0.9351351 1.146435
## 5 2.0000000 0.8000000 3.3750000 0.000000 NA 0.6470588 0.500000
## 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17
## 1 1.0581395 1.0439560 1.0210526 1.0206186 1.0202020 1.0594059 1.0467290
## 2 0.9647676 0.9790210 0.9642857 0.9925926 0.9859038 0.9327166 1.0054103
## 3 1.0318182 0.8678414 1.2385787 0.7950820 0.9639175 1.3903743 1.0346154
## 4 0.7126050 1.3089623 0.7513514 0.8992806 0.8160000 1.1209150 0.7463557
## 5 1.3636364 1.3333333 1.1500000 0.7391304 1.1764706 0.7500000 2.6000000
## 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24
## 1 1.0982143 1.0650407 1.2519084 1.0548780 1.0635838 1.0271739 1.0264550
## 2 0.9766816 0.9889807 0.9935005 0.9962617 1.0093809 0.9851301 0.9339623
## 3 0.8104089 1.4036697 0.7222222 0.8597285 1.0789474 1.4097561 0.7508651
## 4 0.9257812 1.1645570 0.8188406 0.8849558 0.8350000 1.1317365 0.8783069
## 5 0.6410256 1.4000000 1.3428571 0.7021277 0.6666667 1.3636364 1.3666667
## 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31
## 1 1.0463918 1.088670 1.0588235 1.0726496 1.0159363 1.031373 1.0608365
## 2 0.9929293 1.008138 1.0030272 1.0040241 0.9889780 1.006079 1.0030211
## 3 0.9953917 1.078704 0.9098712 0.8632075 0.9781421 1.145251 0.8439024
## 4 1.1867470 1.076142 0.7924528 1.1071429 1.0161290 0.973545 0.6739130
## 5 1.0975610 1.133333 0.6862745 1.1428571 0.8250000 1.363636 0.8888889
## 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07
## 1 1.0430108 1.0412371 1.0495050 1.0408805 1.0362538 1.0728863 1.0271739
## 2 0.9889558 0.9898477 1.0030769 1.0061350 0.9867886 1.0061792 0.9744115
## 3 0.9595376 1.0662651 1.0903955 0.8134715 0.8280255 1.4538462 0.9100529
## 4 0.8145161 1.0990099 0.8558559 1.0842105 0.6990291 0.9861111 1.1690141
## 5 0.7750000 1.6451613 1.3137255 0.5671642 1.3684211 0.6538462 1.1470588
## 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14
## 1 1.0555556 1.0350877 1.0484262 1.0577367 1.0502183 1.0207900 1.0244399
## 2 0.8750000 0.9267707 0.9637306 0.9744624 0.8551724 1.0193548 0.9762658
## 3 0.9593023 0.8666667 0.8811189 1.1666667 0.9047619 0.9849624 0.9312977
## 4 0.7951807 1.0454545 0.8985507 0.6612903 1.2195122 1.1600000 1.0172414
## 5 1.2564103 0.7551020 1.0540541 1.3333333 1.0769231 0.6785714 1.3157895
## 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21
## 1 1.0556660 1.0715631 1.0333919 1.0833333 1.0251177 1.0398162 1.0132548
## 2 0.9854133 0.9276316 0.9237589 0.9040307 0.8301486 0.8005115 1.0287540
## 3 1.3032787 0.8364780 0.8796992 0.7008547 1.2317073 1.3762376 1.0287770
## 4 1.0000000 0.9830508 1.0862069 0.6825397 1.3023256 0.9464286 0.8490566
## 5 0.5000000 1.2000000 1.2000000 1.0277778 1.0000000 1.3783784 0.6666667
## 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28
## 1 1.0058140 1.0433526 0.7867036 1.1742958 1.0194903 1.0323529 1.0227920
## 2 0.9875776 1.0345912 0.9209726 1.0594059 0.9283489 0.9597315 0.9685315
## 3 0.9650350 0.7898551 0.9816514 1.0093458 0.6203704 1.3432836 1.0444444
## 4 0.8444444 1.1052632 1.1428571 0.8541667 0.9024390 1.3243243 0.7959184
## 5 1.0882353 1.1081081 0.7560976 0.9677419 1.4333333 1.2558140 0.5185185
## 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05
## 1 1.0278552 1.0040650 1.005398 1.0214765 1.0091984 1.0039062 1.0090791
## 2 0.9747292 0.9814815 1.041509 0.9275362 0.7187500 1.0271739 0.9312169
## 3 0.8085106 1.1184211 1.082353 1.0760870 0.7979798 0.9746835 0.7532468
## 4 0.8461538 1.5151515 0.700000 1.1714286 1.7560976 0.7222222 0.9423077
## 5 0.8214286 1.2173913 1.571429 0.6363636 0.0000000 NA 0.2666667
## 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12
## 1 1.0128535 1.0139594 1.0150188 1.0246609 1.007220 1.0107527 1.0130024
## 2 0.8863636 0.9230769 0.9444444 1.0735294 0.760274 1.1171171 1.0967742
## 3 1.7068966 0.7878788 0.9230769 0.8611111 1.048387 0.9076923 1.6271186
## 4 0.6326531 1.4838710 0.7608696 0.9142857 0.968750 1.3548387 0.8809524
## 5 1.8500000 0.7567568 1.2142857 0.3529412 2.000000 1.3750000 0.3030303
## 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19
## 1 1.0046674 1.0046458 1.0046243 1.0057537 0.9965675 1.013777 0.9830125
## 2 0.9264706 0.9206349 0.8965517 1.1057692 0.8608696 1.050505 1.1730769
## 3 0.8645833 0.9518072 0.7215190 1.2105263 0.8985507 1.080645 1.2388060
## 4 1.0270270 0.8421053 0.9375000 1.3000000 0.8974359 1.114286 0.8205128
## 5 2.7000000 1.0370370 1.0000000 0.6071429 0.8235294 2.142857 0.6333333
## 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26
## 1 1.0103687 1.0068415 1.0022650 0.9954802 1.005675 1.003386 0.9797525
## 2 0.9180328 0.8392857 0.9361702 0.9545455 1.119048 1.031915 0.9278351
## 3 1.0361446 1.2325581 0.8301887 0.8750000 1.064935 1.487805 0.8360656
## 4 0.6562500 1.1904762 1.2800000 0.7812500 0.840000 1.428571 0.7000000
## 5 1.1052632 1.8571429 0.3846154 0.8000000 1.333333 1.000000 1.0625000
## 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02
## 1 1.0413318 1.0176406 1.0043337 1.0226537 0.9841772 1.0192926 0.9684543
## 2 1.0555556 0.9263158 0.9318182 1.0731707 0.9204545 0.9629630 0.9487179
## 3 1.0098039 1.0194175 0.9619048 0.9108911 1.1304348 1.2211538 1.0551181
## 4 0.7619048 1.5625000 0.8800000 0.5454545 2.0833333 1.2000000 0.7666667
## 5 1.0000000 1.3529412 0.9565217 0.2727273 2.0000000 0.6666667 0.8750000
## 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09
## 1 1.0325733 0.9579390 1.0120746 0.9859002 0.9933993 1.0287929 0.9913886
## 2 1.0675676 0.9240506 1.0958904 0.9125000 0.9589041 0.9714286 1.0588235
## 3 1.0298507 0.7681159 1.1226415 1.0420168 0.8306452 1.4466019 0.9261745
## 4 0.9130435 0.7619048 1.5625000 1.1200000 0.8214286 1.0869565 0.9600000
## 5 0.5714286 5.2500000 0.5714286 1.2500000 0.8000000 1.0833333 0.6153846
## 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16
## 1 1.0141151 0.9839400 0.9891186 1.0220022 0.0000000 NA 0.5002658
## 2 1.0416667 1.0933333 0.8780488 1.0833333 0.8461538 0.9242424 1.1147541
## 3 1.2463768 0.8604651 0.8310811 1.1138211 0.9051095 1.1532258 1.0209790
## 4 0.9583333 0.8695652 1.2000000 0.9166667 1.1818182 1.0000000 0.6153846
## 5 1.3750000 0.4545455 1.0000000 1.2000000 0.0000000 NA 0.0000000
## 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23
## 1 1.020191 0.9489583 0.9791438 1.011211 0.9800443 0.9841629 0.9839080
## 2 1.088235 0.8918919 1.1666667 1.025974 0.7974684 1.0634921 1.0447761
## 3 1.020548 0.9731544 1.0137931 1.020408 0.7866667 1.1949153 1.0425532
## 4 1.125000 1.2222222 0.7272727 0.875000 1.2142857 1.6470588 0.4285714
## 5 NA 0.2727273 1.3333333 0.250000 0.0000000 NA 1.0000000
## 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30
## 1 1.0525701 0.9977802 1.0155729 1.0197152 1.0214823 0.9579390 1.0417124
## 2 1.0428571 1.0547945 0.9090909 0.9714286 0.8823529 0.9666667 1.1206897
## 3 0.9727891 1.0839161 0.9741935 1.0264901 0.9870968 1.0326797 0.9936709
## 4 1.7500000 1.2380952 0.8076923 1.0000000 0.0000000 NA 0.5737705
## 5 0.8333333 1.0000000 0.4000000 1.0000000 3.0000000 1.3333333 1.1250000
## 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07
## 1 0.9884089 0.9797441 1.0152339 0.95605573 1.0112108 0.9656319 1.0206659
## 2 1.0461538 0.0000000 NA 0.94444444 2.2352941 0.4210526 1.2916667
## 3 1.0191083 0.9437500 1.0198675 1.03246753 0.9559748 1.0789474 0.9634146
## 4 0.6000000 1.7142857 0.6111111 1.04545455 1.1739130 1.2222222 0.9393939
## 5 0.2222222 0.0000000 NA 0.07142857 4.0000000 2.2500000 1.0000000
## 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13 2021-12-14
## 1 1.0224972 0.8833883 1.023661 1.0693431 0.9817975 0.000000 NA
## 2 1.1129032 0.8695652 1.233333 1.0540541 1.0641026 1.108434 1.1956522
## 3 1.0316456 0.9754601 1.025157 0.9693252 1.0506329 1.018072 0.9881657
## 4 1.0645161 0.6060606 1.450000 1.2068966 1.1142857 0.000000 NA
## 5 0.4444444 0.0000000 NA 0.7777778 0.8571429 0.500000 1.0000000
## 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20 2021-12-21
## 1 0.5422579 1.0250284 1.0099889 0.9912088 1.0188470 0.9825898 0.9390919
## 2 1.3454545 1.3513514 1.1700000 0.0000000 NA 0.5462795 1.5016611
## 3 0.9880240 1.0242424 0.9704142 1.0914634 0.9497207 1.0411765 1.0338983
## 4 0.7215190 0.7719298 1.8409091 0.6296296 1.4705882 1.0666667 1.1500000
## 5 2.0000000 0.8333333 1.2000000 0.8333333 0.8000000 0.2500000 1.0000000
## 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27 2021-12-28
## 1 1.036557 1.004551 0.9184598 1.0678175 0.9503464 1.0340219 0.9506463
## 2 1.471239 1.506767 1.3493014 1.1989645 1.1122764 0.9606212 1.0658199
## 3 1.010929 1.010811 1.3262032 1.1250000 1.0609319 1.1587838 1.0699708
## 4 1.554348 1.244755 0.9550562 0.8823529 1.6000000 0.8250000 1.6616162
## 5 0.000000 NA 2.0000000 0.5000000 2.0000000 0.7500000 1.6666667
## 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03 2022-01-04
## 1 1.055624 1.019906 0.9724455 0.9244392 1.022989 0.9026217 1.063624
## 2 1.210184 1.059087 1.0253593 1.0535862 1.017214 0.9673077 1.026243
## 3 1.207084 1.223476 1.3671587 1.1241565 1.198079 1.1793587 1.440102
## 4 1.212766 1.388471 0.9097473 1.1666667 1.035714 1.6124795 1.509165
## 5 0.400000 0.500000 0.0000000 NA 3.000000 2.6666667 0.625000
## 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10 2022-01-11
## 1 1.044213 1.0460772 0.9773810 1.010962 1.098795 1.0427632 0.9800210
## 2 1.049206 0.9922452 0.9776703 1.010659 1.039171 0.9285973 0.9800937
## 3 1.341003 1.2226133 1.1486146 1.092419 1.057929 1.0512334 1.0750387
## 4 1.515520 1.0743544 1.0961459 1.066163 1.063475 1.2280760 1.1938637
## 5 0.600000 2.0000000 1.1666667 2.714286 1.000000 0.0000000 NA
## 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17 2022-01-18
## 1 1.017167 1.0664557 1.0672601 1.0203892 1.0871935 1.029240 1.0576299
## 2 1.041816 1.0256116 1.1434961 1.0156454 0.9842747 0.974568 0.9340917
## 3 1.008875 0.9954826 0.9847146 0.9718651 1.0034939 0.994280 0.9544772
## 4 1.034342 1.0736588 0.9995904 0.9254251 0.9969006 1.143016 0.9374393
## 5 1.090909 1.0833333 0.0000000 NaN NA 5.263158 0.5600000
## 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24 2022-01-25
## 1 1.0583269 1.0174039 1.0926586 1.0234834 1.0216699 1.0299439 1.0956996
## 2 1.0393983 1.0385941 0.9691440 1.0338925 0.9314570 0.9345894 0.9524534
## 3 0.9756289 0.8847703 0.9726776 0.9634831 0.9656625 0.9218383 0.9283115
## 4 0.8988601 1.0398893 1.0662971 0.8625494 1.0479749 1.1907062 1.1093509
## 5 0.7321429 1.4146341 1.3448276 0.0000000 NaN NaN NaN
## 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31 2022-02-01
## 1 1.0558320 1.0392670 1.0110831 1.0054808 1.0951437 1.0058824 1.0305893
## 2 0.9460863 1.1135500 0.9647460 0.9253438 0.9728238 0.8852030 1.0276134
## 3 0.8639749 0.8856624 0.8929303 0.8823867 1.0123537 0.9691715 0.8190855
## 4 1.1239986 1.0094515 1.0610898 0.8401562 0.9628099 1.0842275 1.0615207
## 5 NA 0.2838983 0.8059701 0.0000000 NaN NA 0.5454545
## 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07 2022-02-08
## 1 0.9943256 1.0013169 1.0043840 1.0030554 1.001305 0.9873968 0.9656690
## 2 1.0379079 1.0319001 0.9471326 0.9418165 1.012054 0.8456576 0.9477700
## 3 1.0072816 0.9502008 0.8427726 0.9057172 1.009967 1.0120614 0.8873239
## 4 1.0242387 0.9086772 0.9026711 0.8220825 0.952081 1.0146503 0.9289707
## 5 1.2380952 0.6153846 0.0000000 NA 4.250000 5.8823529 2.8700000
## 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14 2022-02-15
## 1 0.99863263 0.9990872 0.9954317 0.98439651 0.0000000 NA 0.4969484
## 2 0.95232198 1.0325098 0.9282116 0.94640434 0.9075269 0.9407583 0.7808564
## 3 0.94749695 1.0090206 0.8390805 0.92389650 1.0098847 0.9804241 0.9101498
## 4 0.86813738 0.9598614 0.8712395 0.77831492 1.0062112 1.1296296 0.8454333
## 5 0.09059233 0.9615385 2.2000000 0.09090909 1.4000000 1.1428571 2.5000000
## 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21 2022-02-22
## 1 0.9924421 0.9857211 0.9913085 0.9863614 0.9920988 0.9970134 0.9930105
## 2 1.0290323 0.9352142 0.9854749 0.8956916 0.9177215 0.8979310 0.9615975
## 3 0.9104205 0.8975904 1.0111857 0.9601770 1.0184332 0.9411765 0.9471154
## 4 0.8850416 0.7829943 0.8980680 0.7559347 1.1727184 1.1121339 0.7923251
## 5 0.4000000 1.3750000 1.1818182 0.0000000 NA 1.0000000 1.0000000
## 2022-02-23 NA
## 1 0.9512318 NA
## 2 1.1821086 NA
## 3 0.9263959 NA
## 4 0.9610636 NA
## 5 1.0000000 NA
growth.rate(TSconfirmed,geo.loc=c("Saudi Arabia","Italy","Spain","US","Canada","Libya","Qatar"))
## Processing... SAUDI ARABIA
## Processing... ITALY
## Warning in log1p(changes): NaNs produced
## Processing... SPAIN
## Warning in log1p(changes): NaNs produced
## Processing... US

## Processing... CANADA
## Processing... LIBYA
## Processing... QATAR





## $Changes
## geo.loc 2020-01-23 2020-01-24 2020-01-25 2020-01-26 2020-01-27
## 1 SAUDI ARABIA 0 0 0 0 0
## 2 ITALY 0 0 0 0 0
## 3 SPAIN 0 0 0 0 0
## 4 US 0 1 0 3 0
## 5 CANADA 0 0 0 1 0
## 6 LIBYA 0 0 0 0 0
## 7 QATAR 0 0 0 0 0
## 2020-01-28 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03
## 1 0 0 0 0 0 0 0
## 2 0 0 0 2 0 0 0
## 3 0 0 0 0 1 0 0
## 4 0 1 0 2 0 0 3
## 5 1 0 0 2 0 0 0
## 6 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0
## 2020-02-04 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10
## 1 0 0 0 0 0 0 0
## 2 0 0 0 1 0 0 0
## 3 0 0 0 0 0 1 0
## 4 0 0 1 0 0 0 0
## 5 0 1 0 2 0 0 0
## 6 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0
## 2020-02-11 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17
## 1 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0
## 4 1 0 1 0 0 0 0
## 5 0 0 0 0 0 0 1
## 6 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0
## 2020-02-18 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24
## 1 0 0 0 0 0 0 0
## 2 0 0 0 17 42 93 74
## 3 0 0 0 0 0 0 0
## 4 0 0 0 2 0 0 0
## 5 0 0 0 1 0 0 1
## 6 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0
## 2020-02-25 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02
## 1 0 0 0 0 0 0 1
## 2 93 131 202 233 240 566 342
## 3 4 7 2 17 13 39 36
## 4 0 0 1 0 8 7 23
## 5 2 0 2 1 6 5 6
## 6 0 0 0 0 0 0 0
## 7 0 0 0 0 1 2 0
## 2020-03-03 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09
## 1 0 0 4 0 0 6 4
## 2 466 587 769 778 1247 1492 1797
## 3 45 57 37 141 100 173 400
## 4 19 33 77 53 166 116 75
## 5 5 5 4 14 4 10 14
## 6 0 0 0 0 0 0 0
## 7 4 1 0 0 0 7 3
## 2020-03-10 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16
## 1 5 1 24 41 17 0 15
## 2 977 2313 2651 2547 3497 3590 3233
## 3 622 582 0 2955 1159 1407 2144
## 4 188 365 439 633 759 234 1467
## 5 4 35 14 72 23 60 154
## 6 0 0 0 0 0 0 0
## 7 6 238 0 58 17 64 38
## 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23
## 1 53 0 103 70 48 119 51
## 2 3526 4207 5322 5986 6557 5560 4789
## 3 1806 2162 4053 2447 4964 3394 6368
## 4 1833 2657 4494 6367 5995 8919 11152
## 5 82 200 189 254 478 392 555
## 6 0 0 0 0 0 0 0
## 7 0 13 8 10 11 13 7
## 2020-03-24 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30
## 1 205 133 112 92 99 96 154
## 2 5249 5210 6203 5909 5974 5217 4050
## 3 4749 9630 8271 7933 7516 6875 7846
## 4 10618 12127 17821 18591 22164 16127 22154
## 5 585 512 853 707 828 908 1147
## 6 1 0 0 0 2 5 0
## 7 25 11 12 13 28 44 59
## 2020-03-31 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06
## 1 110 157 165 154 140 223 203
## 2 4053 4782 4668 4585 4805 4316 3599
## 3 7967 8195 7947 7134 6969 5478 5029
## 4 26381 31463 32089 32204 31891 29242 31729
## 5 1106 1281 1692 1340 1358 1242 1366
## 6 2 0 1 0 7 0 1
## 7 88 54 114 126 250 279 228
## 2020-04-07 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13
## 1 190 137 355 364 382 429 472
## 2 3039 3836 4204 3951 4694 4092 3153
## 3 5267 6278 5002 5051 4754 3804 3268
## 4 30065 31078 35611 34339 28873 26451 27042
## 5 1333 1307 1375 1237 1307 1219 1634
## 6 1 1 3 0 0 1 1
## 7 225 153 166 136 216 251 252
## 2020-04-14 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20
## 1 435 493 518 762 1132 1088 1122
## 2 2972 2667 3786 3493 3491 3047 2256
## 3 2442 5103 7304 5891 887 6948 1536
## 4 28350 25630 29669 32794 27561 25641 30026
## 5 1627 1659 1688 2034 1410 1688 1669
## 6 9 13 1 0 0 2 0
## 7 197 283 392 560 345 440 567
## 2020-04-21 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27
## 1 1147 1141 1158 1172 1197 1223 1289
## 2 2729 3370 2646 3021 2357 2324 1739
## 3 3968 4211 4635 -10034 2915 1729 1831
## 4 25927 29385 32377 31942 31065 26140 24629
## 5 1642 1814 1953 1855 1577 1313 1641
## 6 0 8 1 1 0 0 0
## 7 518 608 623 761 833 929 957
## 2020-04-28 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04
## 1 1266 1325 1351 1344 1362 1552 1645
## 2 2091 2086 1872 1965 1900 1389 1221
## 3 1308 2144 518 1781 1366 884 545
## 4 24441 26605 29063 35273 27305 23883 23880
## 5 1671 1633 1697 1769 1544 1341 1407
## 6 0 0 0 2 0 0 0
## 7 677 643 845 687 776 679 640
## 2020-05-05 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11
## 1 1595 1687 1793 1701 1704 1912 1966
## 2 1075 1444 1401 1327 1083 802 744
## 3 1318 996 1122 1410 721 772 3086
## 4 23933 24479 27500 27347 24550 18717 19059
## 5 1373 1573 1364 1378 1184 1064 1110
## 6 0 1 0 0 0 0 0
## 7 951 830 918 1311 1130 1189 1103
## 2020-05-12 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18
## 1 1911 1905 2039 2307 2840 2736 2593
## 2 1402 888 992 789 875 675 451
## 3 594 661 849 643 515 0 908
## 4 23231 19963 25972 24881 24129 18374 22590
## 5 1217 1195 1117 1211 1184 1132 1033
## 6 0 0 0 0 1 0 0
## 7 1526 1390 1733 1153 1547 1632 1365
## 2020-05-19 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25
## 1 2509 2691 2532 2642 2442 2399 2235
## 2 813 665 642 652 669 531 300
## 3 431 518 482 1787 466 482 -372
## 4 20551 22569 25381 23914 20156 20182 18921
## 5 1108 1253 1177 1115 946 1049 947
## 6 3 1 2 1 3 0 0
## 7 1637 1491 1554 1830 1732 1501 1751
## 2020-05-26 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01
## 1 1931 1815 1644 1581 1618 1877 1881
## 2 397 584 593 516 416 333 200
## 3 859 0 1647 658 664 251 159
## 4 18680 18914 21068 25241 23138 18288 17264
## 5 770 851 845 799 751 642 791
## 6 2 22 6 13 12 26 12
## 7 1742 1740 1967 1993 2355 1648 1523
## 2020-06-02 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08
## 1 1869 2171 1975 2591 3121 3045 3369
## 2 318 321 177 518 270 197 280
## 3 294 394 334 318 332 240 167
## 4 21210 19299 28051 26370 20340 17742 16922
## 5 693 661 638 597 742 606 465
## 6 14 14 13 30 17 0 76
## 7 1826 1901 1581 1754 1700 1595 1368
## 2020-06-09 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15
## 1 3288 3717 3733 3921 3366 4233 4507
## 2 283 202 379 163 346 338 301
## 3 249 314 427 502 396 323 181
## 4 20287 21649 22079 25786 24071 19092 20952
## 5 436 488 415 407 430 343 370
## 6 27 19 15 16 9 36 13
## 7 1721 1716 1476 1517 1828 1186 1274
## 2020-06-16 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22
## 1 4267 4919 4757 4301 3941 3379 3393
## 2 210 328 331 -148 264 224 221
## 3 219 355 585 307 363 334 232
## 4 24669 27018 27780 31572 31838 25915 29552
## 5 362 390 382 375 361 307 316
## 6 17 16 10 10 24 27 24
## 7 1201 1097 1267 1021 1026 881 1034
## 2020-06-23 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29
## 1 3139 3123 3372 3938 3927 3989 3943
## 2 113 577 296 255 175 174 126
## 3 248 334 400 419 564 301 200
## 4 38326 36350 39107 49551 41268 42262 41660
## 5 371 315 328 257 326 276 415
## 6 44 31 28 15 14 35 40
## 7 1176 1199 1060 946 879 750 693
## 2020-06-30 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06
## 1 4387 3402 3383 4193 4128 3580 4207
## 2 142 182 201 223 235 192 208
## 3 301 388 444 442 0 0 1244
## 4 49381 49502 54583 51991 45949 53573 42983
## 5 316 222 353 320 216 197 393
## 6 22 50 17 27 71 57 71
## 7 982 915 894 756 530 616 546
## 2020-07-07 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13
## 1 3392 3036 3183 3159 2994 2779 2852
## 2 137 193 214 276 188 234 169
## 3 341 383 543 852 0 0 2045
## 4 56561 61043 59384 68781 60736 58821 61000
## 5 279 285 364 333 231 205 540
## 6 65 86 74 0 47 44 79
## 7 600 608 557 520 498 470 418
## 2020-07-14 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20
## 1 2692 2671 2764 2613 2565 2504 2429
## 2 114 162 230 231 249 218 190
## 3 666 875 1361 1400 0 0 4581
## 4 65061 66334 70352 66654 64716 59164 61121
## 5 414 359 433 460 360 301 767
## 6 51 26 63 52 87 75 114
## 7 517 450 494 421 410 340 389
## 2020-07-21 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27
## 1 2476 2331 2238 2378 2201 1968 1993
## 2 128 280 306 252 274 254 168
## 3 1358 1357 2615 2255 0 0 6361
## 4 67170 68072 67970 75411 62827 56708 60299
## 5 543 408 649 504 368 333 630
## 6 108 88 138 110 123 122 158
## 7 393 441 373 394 398 269 292
## 2020-07-28 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03
## 1 1897 1759 1629 1686 1573 1357 1258
## 2 202 288 382 379 295 238 159
## 3 1828 2031 2789 3092 0 0 8532
## 4 64968 64741 67704 65955 57725 47410 40876
## 5 358 477 424 466 271 236 256
## 6 190 205 216 183 70 146 226
## 7 283 273 307 235 216 196 215
## 2020-08-04 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10
## 1 1363 1368 1402 1567 1469 1428 1257
## 2 190 384 401 552 347 463 259
## 3 5760 2953 4088 4507 0 0 8618
## 4 61760 54666 59633 61217 63729 54799 51912
## 5 700 365 333 444 224 223 625
## 6 161 251 404 200 153 219 478
## 7 216 267 287 291 267 297 315
## 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17
## 1 1521 1569 1482 1383 1413 1227 1372
## 2 412 476 522 574 629 477 320
## 3 3632 3172 7550 5479 0 0 16269
## 4 56245 55359 51332 70733 51744 35318 37974
## 5 298 333 469 406 223 175 185
## 6 373 309 439 277 411 434 407
## 7 384 292 343 251 277 271 288
## 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24
## 1 1409 1363 1287 1213 1184 1109 1175
## 2 401 642 840 947 1071 1209 953
## 3 5114 6671 7039 8148 0 0 19382
## 4 44121 46493 44112 48710 44615 32971 33836
## 5 912 345 219 695 225 269 726
## 6 489 395 244 414 316 0 572
## 7 293 295 268 257 284 243 258
## 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31
## 1 1114 1068 1019 1069 987 910 951
## 2 876 1366 1409 1460 1444 1365 996
## 3 7117 7296 9658 9779 0 0 23572
## 4 41783 42615 50046 46923 43194 33610 33863
## 5 359 432 442 551 351 261 998
## 6 272 553 440 355 329 465 543
## 7 232 244 246 208 211 168 203
## 2020-09-01 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07
## 1 898 816 833 822 791 756 768
## 2 975 1326 1397 1732 1694 1296 1150
## 3 8115 8581 8959 10476 0 0 26560
## 4 41608 40187 45226 48265 42905 30189 24863
## 5 509 550 610 631 392 389 412
## 6 658 532 617 672 649 655 1085
## 7 216 212 214 217 227 231 253
## 2020-09-08 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14
## 1 781 775 708 687 643 601 607
## 2 1369 1430 1597 1616 1501 1456 1008
## 3 8964 8866 10764 12183 0 0 27404
## 4 26408 33265 39177 45038 45312 40008 33443
## 5 1445 420 900 789 566 555 1352
## 6 749 879 477 969 440 433 734
## 7 231 267 206 235 236 217 235
## 2020-09-15 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21
## 1 672 621 593 576 551 483 492
## 2 1229 1452 1583 1907 1637 1587 1350
## 3 9437 11193 11291 14389 0 0 31428
## 4 36213 38969 44441 51173 44619 42730 32302
## 5 822 944 972 1234 933 916 1658
## 6 629 792 886 616 796 715 847
## 7 239 235 244 224 229 230 228
## 2020-09-22 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28
## 1 552 561 498 472 461 403 455
## 2 1391 1640 1786 1912 1869 1766 1494
## 3 10799 11289 10653 12272 0 0 31785
## 4 37167 41861 48420 47500 43027 34613 37646
## 5 1281 1307 1337 1616 1430 1408 2335
## 6 650 651 535 658 538 536 849
## 7 313 258 250 225 200 234 227
## 2020-09-29 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05
## 1 539 418 492 481 419 390 379
## 2 1647 1850 2548 2499 2843 2578 2257
## 3 0 20922 9419 11325 0 0 23480
## 4 41700 38814 46300 53252 49154 33053 37457
## 5 1819 1976 1801 2241 1860 1655 2458
## 6 801 511 683 509 370 722 628
## 7 222 227 199 205 175 159 194
## 2020-10-06 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12
## 1 477 468 421 407 405 323 348
## 2 2677 3677 4458 5372 5724 5456 4619
## 3 11998 10491 12423 12788 0 0 27856
## 4 44240 49359 57778 55283 55095 46204 43804
## 5 2000 1876 2455 2596 1875 1823 1735
## 6 1031 1045 779 1076 318 1026 1109
## 7 251 238 213 206 178 207 206
## 2020-10-13 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19
## 1 474 501 472 433 359 348 381
## 2 5898 7332 8803 10009 10925 11705 9337
## 3 7118 11970 13318 15186 0 0 37889
## 4 49579 57859 64239 69230 54855 52220 68636
## 5 3369 2398 2525 2453 1898 1800 3097
## 6 1164 836 855 1169 0 945 1159
## 7 214 198 200 189 235 204 240
## 2020-10-20 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26
## 1 385 405 401 383 395 323 357
## 2 10871 15199 16078 19143 19640 21273 17007
## 3 13873 16973 20986 19851 0 0 52188
## 4 61808 60733 78494 82550 77461 61717 64972
## 5 2503 2580 2413 2989 2056 2091 4290
## 6 957 719 995 764 990 1639 1210
## 7 273 266 252 249 254 205 262
## 2020-10-27 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02
## 1 399 416 435 398 402 374 381
## 2 21989 24988 26829 31079 31756 29905 22253
## 3 18418 19765 23580 25595 0 0 55019
## 4 76764 85808 91443 99969 88661 76273 82843
## 5 2681 2761 2990 3302 2431 2389 3281
## 6 752 899 782 972 467 950 862
## 7 257 250 211 193 213 164 197
## 2020-11-03 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09
## 1 473 426 450 436 407 363 392
## 2 28241 30548 34502 37802 39809 32614 25269
## 3 18669 25042 21908 22516 0 0 52386
## 4 123529 100616 128375 124960 128463 117900 120564
## 5 4865 2903 3768 4534 4250 3964 4660
## 6 781 899 853 1004 595 1078 923
## 7 226 227 249 192 202 190 230
## 2020-11-10 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16
## 1 471 394 311 441 349 305 301
## 2 35090 32961 37977 40902 37249 33977 27352
## 3 0 36491 19511 21371 0 0 38273
## 4 135273 146661 159291 178116 165250 138939 156341
## 5 4445 4036 5484 4815 4408 4044 5920
## 6 970 875 919 824 0 974 722
## 7 230 224 245 235 203 215 243
## 2020-11-17 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23
## 1 362 290 319 286 221 224 231
## 2 32191 34280 36176 37239 34764 28337 22927
## 3 13159 15318 16233 15156 0 0 25886
## 4 162596 172201 192101 200945 181157 146052 183102
## 5 4419 4666 4746 4853 4919 4845 6967
## 6 612 529 541 802 0 1015 650
## 7 194 219 208 239 174 167 186
## 2020-11-24 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30
## 1 252 326 322 302 220 217 232
## 2 23227 25852 29001 28342 26315 20646 16376
## 3 12228 10222 12289 10853 0 0 19979
## 4 172630 180187 116599 213585 170321 138002 157371
## 5 5009 5304 5506 5971 5694 5455 7794
## 6 707 617 610 866 0 1157 379
## 7 227 209 215 184 227 171 185
## 2020-12-01 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07
## 1 263 249 230 234 190 187 209
## 2 19347 20709 23219 24110 21052 18887 13679
## 3 8257 9331 10127 8745 0 0 17681
## 4 195966 197107 219575 234648 223927 178283 196551
## 5 5669 6339 6526 6723 5958 6109 7924
## 6 608 670 762 680 0 1051 517
## 7 168 255 221 166 140 125 178
## 2020-12-08 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14
## 1 193 159 141 168 166 139 125
## 2 14837 12755 16998 18726 19902 17937 12025
## 3 0 9773 7955 10519 0 0 21309
## 4 224498 220612 234129 240445 222439 191830 212018
## 5 6073 6313 6657 6969 6100 5659 8391
## 6 889 536 661 697 0 899 578
## 7 117 150 163 164 147 134 160
## 2020-12-15 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21
## 1 142 180 181 174 158 162 168
## 2 14839 17568 18233 15401 16305 15102 10869
## 3 10328 11078 12131 11815 0 0 22013
## 4 223181 236783 238966 250482 198781 193412 200898
## 5 6400 6637 7469 7052 6264 6022 7518
## 6 660 560 706 489 0 788 640
## 7 151 145 140 159 142 143 158
## 2020-12-22 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28
## 1 181 177 189 178 163 154 119
## 2 13316 13908 18039 19037 10405 8937 8581
## 3 10654 12386 12662 0 0 0 24462
## 4 203437 222506 211510 120700 226971 135766 173593
## 5 6168 6821 6844 5878 5277 5346 5381
## 6 506 640 846 461 0 728 532
## 7 149 140 157 129 169 159 160
## 2020-12-29 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04
## 1 149 113 140 137 101 82 94
## 2 11210 16202 23477 22210 11825 14245 10798
## 3 14089 16716 18047 0 0 0 30579
## 4 202572 219895 312008 172374 282367 204005 185505
## 5 8742 7767 6933 5503 6318 9274 9777
## 6 437 585 342 467 0 670 561
## 7 206 193 213 208 198 197 207
## 2021-01-05 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11
## 1 104 118 108 97 110 117 140
## 2 15375 20326 18416 17529 19976 18625 12530
## 3 23700 0 42360 25456 0 0 61422
## 4 229800 260202 287853 304488 263438 212926 203619
## 5 7300 8376 8652 9373 7008 7261 7817
## 6 481 424 635 487 0 743 633
## 7 208 209 210 195 206 193 203
## 2021-01-12 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18
## 1 147 175 169 173 140 176 170
## 2 14242 15773 17243 16144 16310 12544 8825
## 3 25438 38869 35878 40197 0 0 84287
## 4 220469 229777 234436 247912 215531 178528 141562
## 5 6542 6798 7377 6776 6177 6201 6159
## 6 652 640 764 583 0 1071 781
## 7 211 201 209 196 204 188 227
## 2021-01-19 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25
## 1 226 238 212 213 197 186 213
## 2 10496 13568 14055 13633 13331 11628 8559
## 3 34291 41576 44357 42885 0 0 93822
## 4 154476 188529 191345 193233 177834 141429 129414
## 5 4811 5818 6126 5860 4769 4560 5643
## 6 596 659 622 794 0 1148 741
## 7 225 271 258 263 251 247 277
## 2021-01-26 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01
## 1 223 216 253 267 270 261 255
## 2 10584 15191 14360 13563 12713 11249 7925
## 3 36435 40285 34899 38118 0 0 79686
## 4 149846 156138 164598 166993 149712 113827 124883
## 5 4196 4149 4795 4681 4121 3579 4701
## 6 870 765 715 871 0 981 771
## 7 299 338 347 341 363 351 385
## 2021-02-02 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08
## 1 310 306 303 327 386 317 356
## 2 9651 13182 13656 14213 13439 11640 7969
## 3 29064 31596 29960 28565 0 0 47095
## 4 117849 122871 125304 131559 116344 90476 82766
## 5 2942 3264 4070 4140 3143 2959 3786
## 6 1032 809 770 881 0 1132 856
## 7 375 396 407 398 394 408 427
## 2021-02-09 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15
## 1 353 369 364 353 337 322 314
## 2 10612 12947 15137 13893 13523 11060 7344
## 3 16402 18114 17853 14581 0 0 30251
## 4 94165 95987 106009 100917 90917 68397 55723
## 5 2820 3358 3075 3181 2830 2245 2039
## 6 679 467 333 520 0 473 351
## 7 477 451 448 450 453 440 888
## 2021-02-16 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22
## 1 322 334 327 337 325 315 327
## 2 10368 12066 13755 15470 14914 13450 9617
## 3 10057 10829 14515 11435 0 0 20849
## 4 59023 68672 72167 75511 73779 55534 55339
## 5 3874 2587 3274 3067 2664 2501 3696
## 6 331 312 392 585 0 472 415
## 7 6 453 462 465 449 459 463
## 2021-02-23 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01
## 1 335 353 356 346 338 322 317
## 2 13299 16402 19871 20488 18902 17440 13106
## 3 7461 9212 9568 8341 0 0 15978
## 4 73234 74765 77597 75889 71255 52026 50527
## 5 2845 2904 3045 3243 2568 2152 3570
## 6 489 561 571 625 0 880 789
## 7 455 459 465 469 460 467 473
## 2021-03-02 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08
## 1 302 331 375 384 382 357 351
## 2 17063 20840 22845 24010 23633 20724 13882
## 3 -74347 6137 6037 6654 0 0 11958
## 4 57509 67337 68883 68127 61140 42142 43373
## 5 2889 2767 2983 3273 2321 2390 4160
## 6 840 618 1002 895 0 1158 1018
## 7 463 471 475 469 460 474 468
## 2021-03-09 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15
## 1 390 386 390 360 351 348 345
## 2 19725 22275 25649 26790 26031 21304 15252
## 3 4012 7119 6255 5348 0 0 11358
## 4 55483 57523 61931 63063 55398 38624 53153
## 5 2969 3146 3037 3534 2853 2887 3872
## 6 1030 910 1073 972 0 1350 1087
## 7 471 473 468 455 483 485 481
## 2021-03-16 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22
## 1 354 393 381 391 382 367 404
## 2 20376 23040 24901 25707 23913 20045 24501
## 3 4962 6092 6216 0 0 0 16471
## 4 53496 60048 61641 61710 58157 34620 49073
## 5 2980 3398 3669 4254 3358 3286 4927
## 6 1041 1054 1032 1134 0 1264 905
## 7 479 489 499 497 509 503 519
## 2021-03-23 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29
## 1 410 466 482 510 502 531 541
## 2 18739 21246 23681 24076 23834 19604 12900
## 3 5516 0 13419 7586 0 0 15501
## 4 53170 87474 68017 76193 63343 45498 67396
## 5 3717 4294 5257 5148 4354 4228 6367
## 6 901 909 912 884 0 733 696
## 7 534 570 587 602 614 639 690
## 2021-03-30 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05
## 1 556 585 590 728 684 673 695
## 2 16055 23887 22184 21917 21247 18017 10680
## 3 4994 8534 7041 0 9571 0 10360
## 4 61365 68983 77423 73002 64047 37356 69430
## 5 5011 5919 5815 4649 5870 4416 7410
## 6 706 706 1023 1108 0 1206 1148
## 7 720 780 840 874 870 876 910
## 2021-04-06 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12
## 1 792 783 902 904 878 799 842
## 2 7763 13686 17209 18924 17551 15737 9780
## 3 6623 8788 9901 10875 0 0 22744
## 4 62547 75687 80458 84445 69827 46785 63616
## 5 10706 7518 8106 9423 7140 7578 10679
## 6 876 969 869 732 0 937 851
## 7 927 940 949 950 964 961 973
## 2021-04-13 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19
## 1 951 929 985 964 948 916 970
## 2 13439 16160 16963 15923 15364 12688 8863
## 3 6292 10474 9663 10598 0 0 21071
## 4 81224 75024 74123 80678 54869 43277 62890
## 5 7594 8554 9735 9274 7589 7269 10380
## 6 828 541 513 573 0 749 584
## 7 981 984 989 978 827 823 896
## 2021-04-20 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26
## 1 1070 1028 1055 1098 1072 953 958
## 2 12069 13836 16046 14758 13814 13157 8440
## 3 0 17718 10814 11731 0 0 19852
## 4 62135 64247 66901 63191 54291 34141 43132
## 5 7357 8403 8227 8616 7511 6859 9010
## 6 625 594 533 536 0 534 467
## 7 885 819 800 798 718 705 703
## 2021-04-27 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03
## 1 1045 1062 1026 1056 1048 937 953
## 2 10398 13382 14314 13445 12964 9145 5946
## 3 7665 8665 10143 9135 0 0 16353
## 4 52351 55145 58863 58001 48263 30068 45874
## 5 7257 7722 8419 8472 7429 6925 9124
## 6 501 447 371 436 0 363 464
## 7 695 690 687 676 650 646 644
## 2021-05-04 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10
## 1 999 1016 1090 1039 997 942 986
## 2 9113 10579 11798 10549 10174 8289 5077
## 3 4515 6317 7960 8186 0 0 13984
## 4 42565 45778 46599 48178 35155 22491 33191
## 5 6801 7374 8130 7912 6658 6444 7544
## 6 337 255 266 504 0 273 256
## 7 640 645 593 600 533 389 397
## 2021-05-11 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17
## 1 999 1020 1116 927 837 825 886
## 2 6943 7848 8082 7562 6652 5748 3454
## 3 4941 6418 5701 6347 0 0 11061
## 4 35204 35921 38887 42047 30397 17431 25820
## 5 5559 6328 6724 5944 5165 4744 5554
## 6 466 253 234 0 0 231 304
## 7 343 392 299 244 260 256 302
## 2021-05-18 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24
## 1 1047 1212 1330 1136 1142 1067 1157
## 2 4449 5500 5736 5215 4714 3993 2489
## 3 3988 6080 5733 4792 0 0 11067
## 4 28786 29501 30099 28690 20945 13530 22255
## 5 4070 4463 5071 4478 3634 3287 2806
## 6 298 338 299 250 0 412 281
## 7 370 295 313 367 330 283 299
## 2021-05-25 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31
## 1 1389 1320 1183 1215 1106 907 1245
## 2 3220 3935 4143 3737 3348 2948 1818
## 3 5359 5007 5290 5482 0 0 9732
## 4 24525 24521 26836 22230 13149 7186 6077
## 5 3532 2745 2944 3181 2352 2195 2582
## 6 340 219 321 343 0 366 595
## 7 349 306 286 202 156 189 228
## 2021-06-01 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07
## 1 1251 1269 1261 1201 1144 984 1161
## 2 2483 2896 1963 2556 2434 2275 1270
## 3 4388 4984 5250 4969 0 0 9542
## 4 20977 16698 18369 17808 15446 5922 14158
## 5 1711 2072 2169 2018 1653 1361 1552
## 6 296 251 244 386 0 328 404
## 7 230 194 198 183 192 172 171
## 2021-06-08 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14
## 1 1261 1274 0 2461 1077 1017 1109
## 2 1894 2198 2078 1892 1722 1390 907
## 3 3504 4427 14004 4142 0 0 8167
## 4 12945 18541 14928 25001 9043 5184 11543
## 5 1317 1384 1503 1410 1237 1094 1143
## 6 243 229 229 376 0 297 225
## 7 182 158 143 185 147 117 157
## 2021-06-15 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21
## 1 1269 1239 1309 1236 1153 1079 1212
## 2 1253 1400 1323 1147 1193 881 484
## 3 3432 3832 4197 4214 0 0 7209
## 4 10865 11873 11597 21281 8931 4839 10667
## 5 886 1038 1114 1010 816 669 754
## 6 271 333 258 280 0 322 290
## 7 146 165 127 184 184 107 130
## 2021-06-22 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28
## 1 1479 1253 1255 1312 1301 1218 1318
## 2 834 1140 266 751 838 780 387
## 3 4040 4341 4507 4924 0 0 10179
## 4 10680 12620 14315 24388 9315 4524 13655
## 5 670 672 706 588 623 484 730
## 6 215 223 184 469 0 341 316
## 7 189 154 105 87 125 102 118
## 2021-06-29 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05
## 1 1567 1486 1534 1338 1148 1173 1247
## 2 677 776 879 794 929 806 480
## 3 7091 9227 12345 12563 0 0 32607
## 4 7010 15180 15006 29692 5150 4098 8713
## 5 690 501 374 658 375 348 609
## 6 452 236 431 418 0 719 782
## 7 143 118 146 133 103 121 93
## 2021-07-06 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12
## 1 1277 1207 1257 1133 1177 1112 1244
## 2 907 1010 1391 1386 1394 1391 887
## 3 14137 17384 17317 21879 0 0 33932
## 4 22751 20089 20783 47577 9727 11523 30017
## 5 427 527 574 545 369 306 454
## 6 1070 1248 1384 1710 0 2854 2679
## 7 93 158 113 144 97 86 146
## 2021-07-13 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19
## 1 1295 1226 1165 1298 1098 1055 1293
## 2 1530 2153 2473 2895 3118 3126 2070
## 3 43960 26390 27688 31060 0 0 61628
## 4 26318 31227 31761 77330 13491 20582 49779
## 5 354 332 402 353 369 340 554
## 6 2640 2604 2555 2866 0 4061 3425
## 7 142 134 131 133 116 118 124
## 2021-07-20 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26
## 1 1273 1142 1162 1247 1256 1194 1252
## 2 3555 4254 5056 5142 5138 4742 3115
## 3 27286 30587 29535 31171 0 0 61625
## 4 39383 47594 56392 120767 27495 27093 80830
## 5 316 497 383 606 397 330 932
## 6 1781 0 732 2171 0 3845 3512
## 7 108 128 196 114 124 126 178
## 2021-07-27 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02
## 1 1379 1334 0 0 3622 1084 0
## 2 4516 5693 6167 6613 6509 5320 3185
## 3 26399 27149 26689 24753 0 0 55939
## 4 64813 73140 72827 190573 41911 42877 112400
## 5 550 763 901 899 531 437 354
## 6 3348 3161 2730 2914 0 4322 2892
## 7 146 225 158 172 162 151 150
## 2021-08-03 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09
## 1 0 0 0 5121 0 0 0
## 2 4841 6590 7224 6599 6897 5733 4200
## 3 20327 21874 21387 21561 0 0 39638
## 4 96718 102962 109086 251286 60451 32700 165435
## 5 1977 959 1444 1517 752 798 2844
## 6 2139 2484 1997 1879 0 3019 2001
## 7 170 164 181 218 199 217 210
## 2021-08-10 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16
## 1 0 0 0 5439 0 0 1755
## 2 5624 6921 7267 7398 7181 5661 3669
## 3 15680 17023 17410 15657 0 0 25726
## 4 117191 152970 144947 225945 68248 44035 203799
## 5 1339 1869 2136 2407 1139 975 3992
## 6 2134 2472 2286 2360 0 2831 2688
## 7 220 227 197 244 194 187 260
## 2021-08-17 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23
## 1 0 0 1115 0 957 0 793
## 2 5268 7159 7240 7220 7466 5922 4166
## 3 14336 11956 12445 12450 0 0 23899
## 4 148804 166567 154372 240002 82491 40147 223018
## 5 1813 2407 2732 2991 1439 1405 4934
## 6 2276 2325 1949 2364 0 1722 1625
## 7 269 218 306 221 190 205 289
## 2021-08-24 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30
## 1 0 0 0 1324 0 0 0
## 2 6078 7539 7215 7823 6858 5954 4253
## 3 10072 10781 7115 9489 0 0 15489
## 4 155058 172419 187652 238455 72876 45605 239512
## 5 2312 3332 3367 3756 1794 1577 6501
## 6 1894 1682 1722 1613 0 2003 1678
## 7 217 216 233 212 183 179 205
## 2021-08-31 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06
## 1 0 0 0 0 0 1925 0
## 2 5492 6496 6754 6729 6156 5314 3347
## 3 7767 6818 9561 6311 0 0 9357
## 4 180246 196632 175841 237301 77116 52220 80525
## 5 2860 3861 4029 4162 1971 1989 1527
## 6 1501 1665 1479 1388 0 1914 1379
## 7 173 166 177 193 157 130 189
## 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13
## 1 262 0 222 102 0 0 0
## 2 4715 5921 5518 5617 5191 4664 2792
## 3 5528 5618 4763 4440 0 0 7804
## 4 242228 177900 165411 232265 78105 44911 235211
## 5 8934 3646 4195 4631 1230 2987 8797
## 6 1272 1499 1802 1117 0 1443 1291
## 7 172 165 143 126 147 133 131
## 2021-09-14 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20
## 1 0 0 507 75 0 0 201
## 2 4009 4826 5115 4544 4576 3836 2405
## 3 3261 3723 4075 3222 0 0 5988
## 4 142649 176319 156922 210579 71301 43172 179259
## 5 3985 4285 4701 5078 2164 2000 8578
## 6 1149 1433 1053 968 0 1121 1081
## 7 122 159 133 117 82 101 139
## 2021-09-21 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27
## 1 69 54 0 0 147 44 59
## 2 3374 3963 4053 3790 3519 3099 1773
## 3 2450 2840 3031 2746 0 0 5039
## 4 117044 136582 127559 176534 58973 52241 159749
## 5 3831 3872 4603 4605 1262 1311 11013
## 6 1038 985 1006 936 0 989 910
## 7 143 138 109 107 108 67 90
## 2021-09-28 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04
## 1 50 0 99 0 0 0 0
## 2 2962 3212 4094 3403 3309 2967 1612
## 3 2290 2761 2400 2037 0 0 4271
## 4 112700 120936 111326 154598 46992 43591 145448
## 5 3488 4270 3709 5347 1972 1534 8077
## 6 686 693 815 1007 0 748 719
## 7 94 76 85 92 99 79 77
## 2021-10-05 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11
## 1 223 45 47 48 35 59 58
## 2 2463 3232 2933 3017 2747 2278 1516
## 3 1801 2303 1807 2309 0 0 3829
## 4 95362 112967 101447 131712 37694 38902 97479
## 5 2667 3725 4078 4133 1875 1743 1482
## 6 682 692 915 604 0 725 637
## 7 58 99 78 72 62 65 59
## 2021-10-12 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18
## 1 55 57 36 48 45 41 38
## 2 2486 2769 2666 2729 2982 2435 1594
## 3 0 2758 1932 2248 0 0 4492
## 4 111129 108839 86973 109833 39229 31071 100014
## 5 7135 2609 3180 3426 1679 1375 5487
## 6 551 724 559 563 0 780 638
## 7 96 83 79 57 69 62 67
## 2021-10-19 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25
## 1 49 47 46 51 43 47 51
## 2 2695 3699 3791 3879 3905 3723 2535
## 3 1889 2528 1881 2556 0 0 4485
## 4 81272 91932 77907 96371 31825 18561 111109
## 5 2222 2664 2871 2666 1814 1616 3376
## 6 596 532 436 689 0 745 589
## 7 83 86 106 88 77 82 122
## 2021-10-26 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01
## 1 65 55 51 56 41 46 49
## 2 4053 4595 4863 5332 4877 4525 2818
## 3 1926 2532 2212 2261 0 0 0
## 4 69210 102364 75744 95117 33855 32018 111462
## 5 1750 2511 2643 2589 1737 1579 3048
## 6 651 624 596 569 0 683 626
## 7 102 103 105 101 92 104 127
## 2021-11-02 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08
## 1 45 49 45 43 42 40 43
## 2 2831 5188 5902 6761 6760 5822 4547
## 3 5820 2287 3291 3093 0 0 6417
## 4 70948 85342 81723 96680 34603 36302 109024
## 5 1836 2249 2589 2534 1410 1391 4598
## 6 499 556 648 599 0 648 795
## 7 134 138 106 119 124 103 149
## 2021-11-09 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15
## 1 49 38 43 45 44 30 38
## 2 6111 8033 8697 8522 8539 7565 5199
## 3 0 6461 4286 4353 0 0 9798
## 4 79956 95703 56663 144813 43498 31210 134810
## 5 2344 2577 1557 3813 1517 1475 4080
## 6 609 597 568 593 0 599 562
## 7 138 172 148 123 137 124 143
## 2021-11-16 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22
## 1 37 42 38 35 31 36 39
## 2 7815 10167 10645 10554 11540 9707 6403
## 3 4091 6667 6315 6636 0 0 15875
## 4 87055 112681 110177 126907 44792 39230 145647
## 5 1907 2438 2738 2876 1863 1600 4212
## 6 593 408 551 429 0 593 581
## 7 146 149 145 147 150 118 141
## 2021-11-23 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29
## 1 38 34 28 24 29 24 25
## 2 10044 12450 13756 13681 12869 12927 7972
## 3 6777 8527 9258 9912 0 0 22911
## 4 91279 111530 39053 52694 25993 42495 187710
## 5 2217 2627 4168 3053 2183 1937 3855
## 6 595 468 732 600 0 784 638
## 7 147 143 155 151 155 153 158
## 2021-11-30 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06
## 1 32 34 24 38 29 35 43
## 2 12757 15073 16810 17015 16627 15010 9494
## 3 10261 10536 14500 13738 0 0 0
## 4 117320 136956 139205 158617 65579 54283 179490
## 5 2357 3130 3234 3487 2710 2628 4529
## 6 427 574 529 541 0 709 479
## 7 157 160 151 154 159 152 164
## 2021-12-07 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13
## 1 42 46 45 48 53 51 64
## 2 15742 17946 12516 20490 21035 19212 12704
## 3 43808 0 26412 17095 -83 0 49802
## 4 113230 149670 122457 160702 55856 51325 187081
## 5 2997 3522 4264 2924 5793 3489 5933
## 6 401 509 495 577 0 655 711
## 7 158 163 159 163 158 166 169
## 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20
## 1 65 88 85 80 116 104 146
## 2 20665 23190 26104 28615 28057 24303 16205
## 3 26136 27140 28900 33359 0 0 79704
## 4 114824 143586 141644 192840 77843 87922 242563
## 5 4394 5855 7128 9129 7552 8746 14353
## 6 512 488 648 559 0 726 592
## 7 167 165 169 164 179 170 177
## 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27
## 1 222 252 287 332 325 389 524
## 2 30783 36326 44585 50590 54787 24882 30799
## 3 49823 60041 72912 0 0 0 214619
## 4 178753 241504 270510 244068 82844 176880 509074
## 5 11772 14962 20665 24049 20438 18434 21149
## 6 543 561 560 658 0 735 881
## 7 183 185 187 248 279 296 343
## 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03
## 1 602 744 752 819 846 1024 1746
## 2 78300 98016 127000 144255 141256 61137 68034
## 3 99671 100760 161688 0 0 0 372766
## 4 356767 499445 589420 502575 181206 278018 1076090
## 5 23818 48887 39671 40607 37051 33815 39293
## 6 599 665 640 551 0 916 634
## 7 367 443 542 741 833 998 1177
## 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10
## 1 2585 3045 3168 3575 3068 3460 4778
## 2 170837 189088 219430 108297 197535 155642 117405
## 3 117775 137180 0 242440 0 0 292394
## 4 805783 644962 815037 856334 386198 475934 1368120
## 5 47842 38354 41674 44511 30903 29183 58891
## 6 651 698 643 592 0 579 536
## 7 1695 2273 2779 3192 3487 3689 3878
## 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17
## 1 4652 5362 5499 5628 5281 5477 5505
## 2 220519 196205 184577 200869 192936 157465 83387
## 3 134942 179125 159161 162508 0 0 331467
## 4 769444 909434 840531 859485 394376 468310 661569
## 5 30891 33040 31001 40323 19000 18250 44104
## 6 487 599 618 765 0 867 736
## 7 4169 4206 4187 4123 4007 4021 3998
## 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24
## 1 5873 5928 5591 4884 4608 4535 4838
## 2 228123 200966 198865 185600 177335 142487 77666
## 3 94472 157941 157447 141095 0 0 305432
## 4 1113126 998599 711006 822963 286698 356210 903142
## 5 20918 22592 23531 22989 14512 7475 19121
## 6 885 1173 1331 1700 0 2281 2333
## 7 3816 3723 3294 3204 3087 2981 2748
## 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31
## 1 4541 4526 4738 4474 3913 3669 4211
## 2 211277 170940 156040 144347 137427 104110 57631
## 3 114877 133553 130888 118922 0 0 182123
## 4 478068 728848 488392 601500 169525 192866 531236
## 5 28564 7106 30034 17688 9867 8541 21757
## 6 3063 2245 3157 3320 0 5694 4429
## 7 2551 2204 1952 1743 1538 1557 1509
## 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07
## 1 3861 4092 3852 3555 3013 3260 3747
## 2 133306 119323 112956 100900 93192 78943 41602
## 3 77873 86222 74368 0 0 0 195755
## 4 414544 327163 253357 371155 104593 80566 339241
## 5 10697 15338 14023 14115 7464 6342 15823
## 6 4266 4371 3656 3917 0 4242 2832
## 7 1236 1245 1183 997 903 912 923
## 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14
## 1 3330 3162 2866 2523 1726 2136 2227
## 2 102429 81669 76195 67478 62221 52345 28776
## 3 43831 62839 53055 49004 0 0 68706
## 4 222972 188875 172066 210402 55352 56932 164053
## 5 9023 10806 10923 7664 10790 4401 12519
## 6 3326 3272 3773 3345 0 3648 2800
## 7 819 776 783 657 607 613 601
## 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21
## 1 1982 1793 1569 1376 997 1013 1052
## 2 71023 59869 58055 53700 50675 42202 24484
## 3 34380 37108 34213 30615 0 0 48778
## 4 115055 115253 101335 145871 33556 22053 80981
## 5 5808 8177 7254 7255 3980 3163 2818
## 6 2490 2884 2457 1208 0 2292 2307
## 7 547 498 447 452 434 442 416
## 2022-02-22 2022-02-23
## 1 841 627
## 2 60137 49162
## 3 22193 33912
## 4 90495 84805
## 5 8547 9211
## 6 1815 1373
## 7 394 365
##
## $Growth.Rate
## geo.loc 2020-01-24 2020-01-25 2020-01-26 2020-01-27 2020-01-28
## 1 SAUDI ARABIA NaN NaN NaN NaN NaN
## 2 ITALY NaN NaN NaN NaN NaN
## 3 SPAIN NaN NaN NaN NaN NaN
## 4 US NA 0 NA 0 NaN
## 5 CANADA NaN NaN NA 0 NA
## 6 LIBYA NaN NaN NaN NaN NaN
## 7 QATAR NaN NaN NaN NaN NaN
## 2020-01-29 2020-01-30 2020-01-31 2020-02-01 2020-02-02 2020-02-03 2020-02-04
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NA 0 NaN NaN NaN
## 3 NaN NaN NaN NA 0 NaN NaN
## 4 NA 0 NA 0 NaN NA 0
## 5 0 NaN NA 0 NaN NaN NaN
## 6 NaN NaN NaN NaN NaN NaN NaN
## 7 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-05 2020-02-06 2020-02-07 2020-02-08 2020-02-09 2020-02-10 2020-02-11
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NA 0 NaN NaN NaN
## 3 NaN NaN NaN NaN NA 0 NaN
## 4 NaN NA 0 NaN NaN NaN NA
## 5 NA 0 NA 0 NaN NaN NaN
## 6 NaN NaN NaN NaN NaN NaN NaN
## 7 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-12 2020-02-13 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NaN NaN NaN NaN NaN
## 3 NaN NaN NaN NaN NaN NaN NaN
## 4 0 NA 0 NaN NaN NaN NaN
## 5 NaN NaN NaN NaN NaN NA 0
## 6 NaN NaN NaN NaN NaN NaN NaN
## 7 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-19 2020-02-20 2020-02-21 2020-02-22 2020-02-23 2020-02-24 2020-02-25
## 1 NaN NaN NaN NaN NaN NaN NaN
## 2 NaN NaN NA 2.470588 2.214286 0.7956989 1.256757
## 3 NaN NaN NaN NaN NaN NaN NA
## 4 NaN NaN NA 0.000000 NaN NaN NaN
## 5 NaN NaN NA 0.000000 NaN NA 2.000000
## 6 NaN NaN NaN NaN NaN NaN NaN
## 7 NaN NaN NaN NaN NaN NaN NaN
## 2020-02-26 2020-02-27 2020-02-28 2020-02-29 2020-03-01 2020-03-02 2020-03-03
## 1 NaN NaN NaN NaN NaN NA 0.0000000
## 2 1.408602 1.5419847 1.153465 1.0300429 2.3583333 0.6042403 1.3625731
## 3 1.750000 0.2857143 8.500000 0.7647059 3.0000000 0.9230769 1.2500000
## 4 NaN NA 0.000000 NA 0.8750000 3.2857143 0.8260870
## 5 0.000000 NA 0.500000 6.0000000 0.8333333 1.2000000 0.8333333
## 6 NaN NaN NaN NaN NaN NaN NaN
## 7 NaN NaN NaN NA 2.0000000 0.0000000 NA
## 2020-03-04 2020-03-05 2020-03-06 2020-03-07 2020-03-08 2020-03-09 2020-03-10
## 1 NaN NA 0.0000000 NaN NA 0.6666667 1.2500000
## 2 1.259657 1.3100511 1.0117035 1.6028278 1.1964715 1.2044236 0.5436839
## 3 1.266667 0.6491228 3.8108108 0.7092199 1.7300000 2.3121387 1.5550000
## 4 1.736842 2.3333333 0.6883117 3.1320755 0.6987952 0.6465517 2.5066667
## 5 1.000000 0.8000000 3.5000000 0.2857143 2.5000000 1.4000000 0.2857143
## 6 NaN NaN NaN NaN NaN NaN NaN
## 7 0.250000 0.0000000 NaN NaN NA 0.4285714 2.0000000
## 2020-03-11 2020-03-12 2020-03-13 2020-03-14 2020-03-15 2020-03-16 2020-03-17
## 1 0.2000000 24.000000 1.7083333 0.4146341 0.0000000 NA 3.5333333
## 2 2.3674514 1.146131 0.9607695 1.3729878 1.0265942 0.9005571 1.0906279
## 3 0.9356913 0.000000 NA 0.3922166 1.2139776 1.5238095 0.8423507
## 4 1.9414894 1.202740 1.4419134 1.1990521 0.3083004 6.2692308 1.2494888
## 5 8.7500000 0.400000 5.1428571 0.3194444 2.6086957 2.5666667 0.5324675
## 6 NaN NaN NaN NaN NaN NaN NaN
## 7 39.6666667 0.000000 NA 0.2931034 3.7647059 0.5937500 0.0000000
## 2020-03-18 2020-03-19 2020-03-20 2020-03-21 2020-03-22 2020-03-23 2020-03-24
## 1 0.000000 NA 0.6796117 0.6857143 2.4791667 0.4285714 4.0196078
## 2 1.193137 1.2650345 1.1247651 1.0953892 0.8479488 0.8613309 1.0960535
## 3 1.197121 1.8746531 0.6037503 2.0286065 0.6837228 1.8762522 0.7457601
## 4 1.449536 1.6913813 1.4167779 0.9415737 1.4877398 1.2503644 0.9521162
## 5 2.439024 0.9450000 1.3439153 1.8818898 0.8200837 1.4158163 1.0540541
## 6 NaN NaN NaN NaN NaN NaN NA
## 7 NA 0.6153846 1.2500000 1.1000000 1.1818182 0.5384615 3.5714286
## 2020-03-25 2020-03-26 2020-03-27 2020-03-28 2020-03-29 2020-03-30 2020-03-31
## 1 0.6487805 0.8421053 0.8214286 1.0760870 0.9696970 1.6041667 0.7142857
## 2 0.9925700 1.1905950 0.9526036 1.0110002 0.8732842 0.7763082 1.0007407
## 3 2.0277953 0.8588785 0.9591343 0.9474348 0.9147153 1.1412364 1.0154219
## 4 1.1421172 1.4695308 1.0432075 1.1921898 0.7276214 1.3737211 1.1908008
## 5 0.8752137 1.6660156 0.8288394 1.1711457 1.0966184 1.2632159 0.9642546
## 6 0.0000000 NaN NaN NA 2.5000000 0.0000000 NA
## 7 0.4400000 1.0909091 1.0833333 2.1538462 1.5714286 1.3409091 1.4915254
## 2020-04-01 2020-04-02 2020-04-03 2020-04-04 2020-04-05 2020-04-06 2020-04-07
## 1 1.4272727 1.0509554 0.9333333 0.9090909 1.5928571 0.9103139 0.9359606
## 2 1.1798668 0.9761606 0.9822194 1.0479826 0.8982310 0.8338740 0.8444012
## 3 1.0286180 0.9697376 0.8976972 0.9768713 0.7860525 0.9180358 1.0473255
## 4 1.1926386 1.0198964 1.0035838 0.9902807 0.9169358 1.0850489 0.9475559
## 5 1.1582278 1.3208431 0.7919622 1.0134328 0.9145803 1.0998390 0.9758419
## 6 0.0000000 NA 0.0000000 NA 0.0000000 NA 1.0000000
## 7 0.6136364 2.1111111 1.1052632 1.9841270 1.1160000 0.8172043 0.9868421
## 2020-04-08 2020-04-09 2020-04-10 2020-04-11 2020-04-12 2020-04-13 2020-04-14
## 1 0.7210526 2.5912409 1.0253521 1.0494505 1.1230366 1.1002331 0.9216102
## 2 1.2622573 1.0959333 0.9398192 1.1880537 0.8717512 0.7705279 0.9425944
## 3 1.1919499 0.7967506 1.0097961 0.9411998 0.8001683 0.8590957 0.7472460
## 4 1.0336937 1.1458588 0.9642807 0.8408224 0.9161154 1.0223432 1.0483692
## 5 0.9804951 1.0520275 0.8996364 1.0565885 0.9326702 1.3404430 0.9957160
## 6 1.0000000 3.0000000 0.0000000 NaN NA 1.0000000 9.0000000
## 7 0.6800000 1.0849673 0.8192771 1.5882353 1.1620370 1.0039841 0.7817460
## 2020-04-15 2020-04-16 2020-04-17 2020-04-18 2020-04-19 2020-04-20 2020-04-21
## 1 1.1333333 1.05070994 1.4710425 1.4855643 0.9611307 1.0312500 1.0222816
## 2 0.8973755 1.41957255 0.9226096 0.9994274 0.8728158 0.7404004 1.2096631
## 3 2.0896806 1.43131491 0.8065444 0.1505687 7.8331454 0.2210708 2.5833333
## 4 0.9040564 1.15758876 1.1053288 0.8404281 0.9303363 1.1710152 0.8634850
## 5 1.0196681 1.01748041 1.2049763 0.6932153 1.1971631 0.9887441 0.9838226
## 6 1.4444444 0.07692308 0.0000000 NaN NA 0.0000000 NaN
## 7 1.4365482 1.38515901 1.4285714 0.6160714 1.2753623 1.2886364 0.9135802
## 2020-04-22 2020-04-23 2020-04-24 2020-04-25 2020-04-26 2020-04-27 2020-04-28
## 1 0.994769 1.0148992 1.0120898 1.0213311 1.0217210 1.0539657 0.9821567
## 2 1.234885 0.7851632 1.1417234 0.7802052 0.9859992 0.7482788 1.2024152
## 3 1.061240 1.1006887 -2.1648328 -0.2905123 0.5931389 1.0589936 0.7143637
## 4 1.133374 1.1018207 0.9865645 0.9725440 0.8414615 0.9421959 0.9923667
## 5 1.104750 1.0766262 0.9498208 0.8501348 0.8325935 1.2498096 1.0182815
## 6 NA 0.1250000 1.0000000 0.0000000 NaN NaN NaN
## 7 1.173745 1.0246711 1.2215088 1.0946124 1.1152461 1.0301399 0.7074190
## 2020-04-29 2020-04-30 2020-05-01 2020-05-02 2020-05-03 2020-05-04 2020-05-05
## 1 1.0466035 1.0196226 0.9948187 1.0133929 1.1395007 1.0599227 0.9696049
## 2 0.9976088 0.8974113 1.0496795 0.9669211 0.7310526 0.8790497 0.8804259
## 3 1.6391437 0.2416045 3.4382239 0.7669848 0.6471449 0.6165158 2.4183486
## 4 1.0885397 1.0923886 1.2136737 0.7741048 0.8746750 0.9998744 1.0022194
## 5 0.9772591 1.0391917 1.0424278 0.8728095 0.8685233 1.0492170 0.9758351
## 6 NaN NaN NA 0.0000000 NaN NaN NaN
## 7 0.9497784 1.3141524 0.8130178 1.1295488 0.8750000 0.9425626 1.4859375
## 2020-05-06 2020-05-07 2020-05-08 2020-05-09 2020-05-10 2020-05-11 2020-05-12
## 1 1.0576803 1.0628334 0.9486893 1.0017637 1.1220657 1.0282427 0.9720244
## 2 1.3432558 0.9702216 0.9471806 0.8161266 0.7405355 0.9276808 1.8844086
## 3 0.7556904 1.1265060 1.2566845 0.5113475 1.0707351 3.9974093 0.1924822
## 4 1.0228137 1.1234119 0.9944364 0.8977219 0.7624033 1.0182722 1.2188992
## 5 1.1456664 0.8671329 1.0102639 0.8592163 0.8986486 1.0432331 1.0963964
## 6 NA 0.0000000 NaN NaN NaN NaN NaN
## 7 0.8727655 1.1060241 1.4281046 0.8619375 1.0522124 0.9276703 1.3834995
## 2020-05-13 2020-05-14 2020-05-15 2020-05-16 2020-05-17 2020-05-18 2020-05-19
## 1 0.9968603 1.070341 1.1314370 1.2310360 0.9633803 0.9477339 0.9676051
## 2 0.6333809 1.117117 0.7953629 1.1089987 0.7714286 0.6681481 1.8026608
## 3 1.1127946 1.284418 0.7573616 0.8009331 0.0000000 NA 0.4746696
## 4 0.8593259 1.301007 0.9579932 0.9697761 0.7614903 1.2294547 0.9097388
## 5 0.9819228 0.934728 1.0841540 0.9777044 0.9560811 0.9125442 1.0726041
## 6 NaN NaN NaN NA 0.0000000 NaN NA
## 7 0.9108781 1.246763 0.6653203 1.3417173 1.0549451 0.8363971 1.1992674
## 2020-05-20 2020-05-21 2020-05-22 2020-05-23 2020-05-24 2020-05-25 2020-05-26
## 1 1.0725389 0.9409142 1.0434439 0.9242998 0.9823915 0.9316382 0.8639821
## 2 0.8179582 0.9654135 1.0155763 1.0260736 0.7937220 0.5649718 1.3233333
## 3 1.2018561 0.9305019 3.7074689 0.2607722 1.0343348 -0.7717842 -2.3091398
## 4 1.0981947 1.1245957 0.9422009 0.8428536 1.0012899 0.9375186 0.9872628
## 5 1.1308664 0.9393456 0.9473237 0.8484305 1.1088795 0.9027645 0.8130940
## 6 0.3333333 2.0000000 0.5000000 3.0000000 0.0000000 NaN NA
## 7 0.9108125 1.0422535 1.1776062 0.9464481 0.8666282 1.1665556 0.9948601
## 2020-05-27 2020-05-28 2020-05-29 2020-05-30 2020-05-31 2020-06-01 2020-06-02
## 1 0.9399275 0.9057851 0.9616788 1.0234029 1.1600742 1.0021311 0.9936204
## 2 1.4710327 1.0154110 0.8701518 0.8062016 0.8004808 0.6006006 1.5900000
## 3 0.0000000 NA 0.3995143 1.0091185 0.3780120 0.6334661 1.8490566
## 4 1.0125268 1.1138839 1.1980729 0.9166832 0.7903881 0.9440070 1.2285681
## 5 1.1051948 0.9929495 0.9455621 0.9399249 0.8548602 1.2320872 0.8761062
## 6 11.0000000 0.2727273 2.1666667 0.9230769 2.1666667 0.4615385 1.1666667
## 7 0.9988519 1.1304598 1.0132181 1.1816357 0.6997877 0.9241505 1.1989494
## 2020-06-03 2020-06-04 2020-06-05 2020-06-06 2020-06-07 2020-06-08 2020-06-09
## 1 1.161584 0.9097190 1.3118987 1.2045542 0.9756488 1.1064039 0.9759573
## 2 1.009434 0.5514019 2.9265537 0.5212355 0.7296296 1.4213198 1.0107143
## 3 1.340136 0.8477157 0.9520958 1.0440252 0.7228916 0.6958333 1.4910180
## 4 0.909901 1.4534950 0.9400734 0.7713311 0.8722714 0.9537820 1.1988536
## 5 0.953824 0.9652042 0.9357367 1.2428811 0.8167116 0.7673267 0.9376344
## 6 1.000000 0.9285714 2.3076923 0.5666667 0.0000000 NA 0.3552632
## 7 1.041073 0.8316675 1.1094244 0.9692132 0.9382353 0.8576803 1.2580409
## 2020-06-10 2020-06-11 2020-06-12 2020-06-13 2020-06-14 2020-06-15 2020-06-16
## 1 1.1304745 1.0043045 1.0503616 0.8584545 1.2575758 1.0647295 0.9467495
## 2 0.7137809 1.8762376 0.4300792 2.1226994 0.9768786 0.8905325 0.6976744
## 3 1.2610442 1.3598726 1.1756440 0.7888446 0.8156566 0.5603715 1.2099448
## 4 1.0671366 1.0198623 1.1678971 0.9334910 0.7931536 1.0974230 1.1774055
## 5 1.1192661 0.8504098 0.9807229 1.0565111 0.7976744 1.0787172 0.9783784
## 6 0.7037037 0.7894737 1.0666667 0.5625000 4.0000000 0.3611111 1.3076923
## 7 0.9970947 0.8601399 1.0277778 1.2050099 0.6487965 1.0741990 0.9427002
## 2020-06-17 2020-06-18 2020-06-19 2020-06-20 2020-06-21 2020-06-22 2020-06-23
## 1 1.1528006 0.9670665 0.9041413 0.9162985 0.8573966 1.0041432 0.9251400
## 2 1.5619048 1.0091463 -0.4471299 -1.7837838 0.8484848 0.9866071 0.5113122
## 3 1.6210046 1.6478873 0.5247863 1.1824104 0.9201102 0.6946108 1.0689655
## 4 1.0952207 1.0282034 1.1365011 1.0084252 0.8139644 1.1403434 1.2969004
## 5 1.0773481 0.9794872 0.9816754 0.9626667 0.8504155 1.0293160 1.1740506
## 6 0.9411765 0.6250000 1.0000000 2.4000000 1.1250000 0.8888889 1.8333333
## 7 0.9134055 1.1549681 0.8058406 1.0048972 0.8586745 1.1736663 1.1373308
## 2020-06-24 2020-06-25 2020-06-26 2020-06-27 2020-06-28 2020-06-29 2020-06-30
## 1 0.9949028 1.0797310 1.1678529 0.9972067 1.0157881 0.9884683 1.1126046
## 2 5.1061947 0.5129983 0.8614865 0.6862745 0.9942857 0.7241379 1.1269841
## 3 1.3467742 1.1976048 1.0475000 1.3460621 0.5336879 0.6644518 1.5050000
## 4 0.9484423 1.0758459 1.2670622 0.8328389 1.0240865 0.9857555 1.1853337
## 5 0.8490566 1.0412698 0.7835366 1.2684825 0.8466258 1.5036232 0.7614458
## 6 0.7045455 0.9032258 0.5357143 0.9333333 2.5000000 1.1428571 0.5500000
## 7 1.0195578 0.8840701 0.8924528 0.9291755 0.8532423 0.9240000 1.4170274
## 2020-07-01 2020-07-02 2020-07-03 2020-07-04 2020-07-05 2020-07-06 2020-07-07
## 1 0.7754730 0.9944150 1.2394325 0.9844980 0.8672481 1.1751397 0.8062753
## 2 1.2816901 1.1043956 1.1094527 1.0538117 0.8170213 1.0833333 0.6586538
## 3 1.2890365 1.1443299 0.9954955 0.0000000 NaN NA 0.2741158
## 4 1.0024503 1.1026423 0.9525127 0.8837876 1.1659231 0.8023258 1.3158923
## 5 0.7025316 1.5900901 0.9065156 0.6750000 0.9120370 1.9949239 0.7099237
## 6 2.2727273 0.3400000 1.5882353 2.6296296 0.8028169 1.2456140 0.9154930
## 7 0.9317719 0.9770492 0.8456376 0.7010582 1.1622642 0.8863636 1.0989011
## 2020-07-08 2020-07-09 2020-07-10 2020-07-11 2020-07-12 2020-07-13 2020-07-14
## 1 0.8950472 1.0484190 0.9924599 0.9477683 0.9281897 1.0262684 0.9438990
## 2 1.4087591 1.1088083 1.2897196 0.6811594 1.2446809 0.7222222 0.6745562
## 3 1.1231672 1.4177546 1.5690608 0.0000000 NaN NA 0.3256724
## 4 1.0792419 0.9728224 1.1582413 0.8830346 0.9684701 1.0370446 1.0665738
## 5 1.0215054 1.2771930 0.9148352 0.6936937 0.8874459 2.6341463 0.7666667
## 6 1.3230769 0.8604651 0.0000000 NA 0.9361702 1.7954545 0.6455696
## 7 1.0133333 0.9161184 0.9335727 0.9576923 0.9437751 0.8893617 1.2368421
## 2020-07-15 2020-07-16 2020-07-17 2020-07-18 2020-07-19 2020-07-20 2020-07-21
## 1 0.9921991 1.034818 0.9453690 0.9816303 0.9762183 0.9700479 1.0193495
## 2 1.4210526 1.419753 1.0043478 1.0779221 0.8755020 0.8715596 0.6736842
## 3 1.3138138 1.555429 1.0286554 0.0000000 NaN NA 0.2964418
## 4 1.0195663 1.060572 0.9474358 0.9709245 0.9142098 1.0330775 1.0989676
## 5 0.8671498 1.206128 1.0623557 0.7826087 0.8361111 2.5481728 0.7079531
## 6 0.5098039 2.423077 0.8253968 1.6730769 0.8620690 1.5200000 0.9473684
## 7 0.8704062 1.097778 0.8522267 0.9738717 0.8292683 1.1441176 1.0102828
## 2020-07-22 2020-07-23 2020-07-24 2020-07-25 2020-07-26 2020-07-27 2020-07-28
## 1 0.9414378 0.9601030 1.0625559 0.9255677 0.8941390 1.0127033 0.9518314
## 2 2.1875000 1.0928571 0.8235294 1.0873016 0.9270073 0.6614173 1.2023810
## 3 0.9992636 1.9270450 0.8623327 0.0000000 NaN NA 0.2873762
## 4 1.0134286 0.9985016 1.1094748 0.8331278 0.9026056 1.0633244 1.0774308
## 5 0.7513812 1.5906863 0.7765794 0.7301587 0.9048913 1.8918919 0.5682540
## 6 0.8148148 1.5681818 0.7971014 1.1181818 0.9918699 1.2950820 1.2025316
## 7 1.1221374 0.8458050 1.0563003 1.0101523 0.6758794 1.0855019 0.9691781
## 2020-07-29 2020-07-30 2020-07-31 2020-08-01 2020-08-02 2020-08-03 2020-08-04
## 1 0.9272536 0.9260944 1.0349908 0.9329775 0.8626828 0.9270450 1.0834658
## 2 1.4257426 1.3263889 0.9921466 0.7783641 0.8067797 0.6680672 1.1949686
## 3 1.1110503 1.3732152 1.1086411 0.0000000 NaN NA 0.6751055
## 4 0.9965060 1.0457670 0.9741670 0.8752180 0.8213079 0.8621810 1.5109110
## 5 1.3324022 0.8888889 1.0990566 0.5815451 0.8708487 1.0847458 2.7343750
## 6 1.0789474 1.0536585 0.8472222 0.3825137 2.0857143 1.5479452 0.7123894
## 7 0.9646643 1.1245421 0.7654723 0.9191489 0.9074074 1.0969388 1.0046512
## 2020-08-05 2020-08-06 2020-08-07 2020-08-08 2020-08-09 2020-08-10 2020-08-11
## 1 1.0036684 1.0248538 1.1176890 0.9374601 0.9720899 0.8802521 1.2100239
## 2 2.0210526 1.0442708 1.3765586 0.6286232 1.3342939 0.5593952 1.5907336
## 3 0.5126736 1.3843549 1.1024951 0.0000000 NaN NA 0.4214435
## 4 0.8851360 1.0908609 1.0265625 1.0410344 0.8598754 0.9473166 1.0834682
## 5 0.5214286 0.9123288 1.3333333 0.5045045 0.9955357 2.8026906 0.4768000
## 6 1.5590062 1.6095618 0.4950495 0.7650000 1.4313725 2.1826484 0.7803347
## 7 1.2361111 1.0749064 1.0139373 0.9175258 1.1123596 1.0606061 1.2190476
## 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18
## 1 1.0315582 0.9445507 0.9331984 1.0216920 0.8683652 1.1181744 1.0269679
## 2 1.1553398 1.0966387 1.0996169 1.0958188 0.7583466 0.6708595 1.2531250
## 3 0.8733480 2.3802018 0.7256954 0.0000000 NaN NA 0.3143402
## 4 0.9842475 0.9272566 1.3779514 0.7315397 0.6825526 1.0752024 1.1618739
## 5 1.1174497 1.4084084 0.8656716 0.5492611 0.7847534 1.0571429 4.9297297
## 6 0.8284182 1.4207120 0.6309795 1.4837545 1.0559611 0.9377880 1.2014742
## 7 0.7604167 1.1746575 0.7317784 1.1035857 0.9783394 1.0627306 1.0173611
## 2020-08-19 2020-08-20 2020-08-21 2020-08-22 2020-08-23 2020-08-24 2020-08-25
## 1 0.9673527 0.9442406 0.9425019 0.9760923 0.9366554 1.0595131 0.9480851
## 2 1.6009975 1.3084112 1.1273810 1.1309398 1.1288515 0.7882548 0.9192025
## 3 1.3044583 1.0551641 1.1575508 0.0000000 NaN NA 0.3671964
## 4 1.0537612 0.9487880 1.1042347 0.9159310 0.7390115 1.0262352 1.2348682
## 5 0.3782895 0.6347826 3.1735160 0.3237410 1.1955556 2.6988848 0.4944904
## 6 0.8077710 0.6177215 1.6967213 0.7632850 0.0000000 NA 0.4755245
## 7 1.0068259 0.9084746 0.9589552 1.1050584 0.8556338 1.0617284 0.8992248
## 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-09-01
## 1 0.9587074 0.9541199 1.0490677 0.9232928 0.9219858 1.0450549 0.9442692
## 2 1.5593607 1.0314788 1.0361959 0.9890411 0.9452909 0.7296703 0.9789157
## 3 1.0251510 1.3237390 1.0125285 0.0000000 NaN NA 0.3442644
## 4 1.0199124 1.1743752 0.9375974 0.9205294 0.7781173 1.0075275 1.2287157
## 5 1.2033426 1.0231481 1.2466063 0.6370236 0.7435897 3.8237548 0.5100200
## 6 2.0330882 0.7956600 0.8068182 0.9267606 1.4133739 1.1677419 1.2117864
## 7 1.0517241 1.0081967 0.8455285 1.0144231 0.7962085 1.2083333 1.0640394
## 2020-09-02 2020-09-03 2020-09-04 2020-09-05 2020-09-06 2020-09-07 2020-09-08
## 1 0.9086860 1.020833 0.9867947 0.9622871 0.9557522 1.0158730 1.0169271
## 2 1.3600000 1.053544 1.2397996 0.9780600 0.7650531 0.8873457 1.1904348
## 3 1.0574245 1.044051 1.1693269 0.0000000 NaN NA 0.3375000
## 4 0.9658479 1.125389 1.0671959 0.8889464 0.7036243 0.8235781 1.0621405
## 5 1.0805501 1.109091 1.0344262 0.6212361 0.9923469 1.0591260 3.5072816
## 6 0.8085106 1.159774 1.0891410 0.9657738 1.0092450 1.6564885 0.6903226
## 7 0.9814815 1.009434 1.0140187 1.0460829 1.0176211 1.0952381 0.9130435
## 2020-09-09 2020-09-10 2020-09-11 2020-09-12 2020-09-13 2020-09-14 2020-09-15
## 1 0.9923175 0.9135484 0.9703390 0.9359534 0.9346812 1.0099834 1.1070840
## 2 1.0445581 1.1167832 1.0118973 0.9288366 0.9700200 0.6923077 1.2192460
## 3 0.9890674 1.2140762 1.1318283 0.0000000 NaN NA 0.3443658
## 4 1.2596562 1.1777243 1.1496031 1.0060838 0.8829449 0.8359078 1.0828275
## 5 0.2906574 2.1428571 0.8766667 0.7173638 0.9805654 2.4360360 0.6079882
## 6 1.1735648 0.5426621 2.0314465 0.4540764 0.9840909 1.6951501 0.8569482
## 7 1.1558442 0.7715356 1.1407767 1.0042553 0.9194915 1.0829493 1.0170213
## 2020-09-16 2020-09-17 2020-09-18 2020-09-19 2020-09-20 2020-09-21 2020-09-22
## 1 0.9241071 0.9549114 0.9713322 0.9565972 0.8765880 1.0186335 1.1219512
## 2 1.1814483 1.0902204 1.2046747 0.8584164 0.9694563 0.8506616 1.0303704
## 3 1.1860761 1.0087555 1.2743778 0.0000000 NaN NA 0.3436108
## 4 1.0761053 1.1404193 1.1514817 0.8719246 0.9576638 0.7559560 1.1506099
## 5 1.1484185 1.0296610 1.2695473 0.7560778 0.9817792 1.8100437 0.7726176
## 6 1.2591415 1.1186869 0.6952596 1.2922078 0.8982412 1.1846154 0.7674144
## 7 0.9832636 1.0382979 0.9180328 1.0223214 1.0043668 0.9913043 1.3728070
## 2020-09-23 2020-09-24 2020-09-25 2020-09-26 2020-09-27 2020-09-28 2020-09-29
## 1 1.0163043 0.8877005 0.9477912 0.9766949 0.8741866 1.1290323 1.1846154
## 2 1.1790079 1.0890244 1.0705487 0.9775105 0.9448903 0.8459796 1.1024096
## 3 1.0453746 0.9436620 1.1519760 0.0000000 NaN NA 0.0000000
## 4 1.1262948 1.1566852 0.9809996 0.9058316 0.8044484 1.0876260 1.1076874
## 5 1.0202966 1.0229533 1.2086761 0.8849010 0.9846154 1.6583807 0.7790150
## 6 1.0015385 0.8218126 1.2299065 0.8176292 0.9962825 1.5839552 0.9434629
## 7 0.8242812 0.9689922 0.9000000 0.8888889 1.1700000 0.9700855 0.9779736
## 2020-09-30 2020-10-01 2020-10-02 2020-10-03 2020-10-04 2020-10-05 2020-10-06
## 1 0.7755102 1.1770335 0.9776423 0.8711019 0.9307876 0.9717949 1.2585752
## 2 1.1232544 1.3772973 0.9807692 1.1376551 0.9067886 0.8754849 1.1860877
## 3 NA 0.4501960 1.2023569 0.0000000 NaN NA 0.5109881
## 4 0.9307914 1.1928686 1.1501512 0.9230451 0.6724376 1.1332406 1.1810876
## 5 1.0863112 0.9114372 1.2443087 0.8299866 0.8897849 1.4851964 0.8136697
## 6 0.6379526 1.3365949 0.7452416 0.7269155 1.9513514 0.8698061 1.6417197
## 7 1.0225225 0.8766520 1.0301508 0.8536585 0.9085714 1.2201258 1.2938144
## 2020-10-07 2020-10-08 2020-10-09 2020-10-10 2020-10-11 2020-10-12 2020-10-13
## 1 0.9811321 0.8995726 0.9667458 0.9950860 0.7975309 1.0773994 1.3620690
## 2 1.3735525 1.2124014 1.2050247 1.0655249 0.9531796 0.8465909 1.2768998
## 3 0.8743957 1.1841578 1.0293810 0.0000000 NaN NA 0.2555284
## 4 1.1157098 1.1705667 0.9568175 0.9965993 0.8386242 0.9480564 1.1318373
## 5 0.9380000 1.3086354 1.0574338 0.7222650 0.9722667 0.9517279 1.9417867
## 6 1.0135790 0.7454545 1.3812580 0.2955390 3.2264151 1.0808967 1.0495942
## 7 0.9482072 0.8949580 0.9671362 0.8640777 1.1629213 0.9951691 1.0388350
## 2020-10-14 2020-10-15 2020-10-16 2020-10-17 2020-10-18 2020-10-19 2020-10-20
## 1 1.0569620 0.9421158 0.9173729 0.8290993 0.9693593 1.0948276 1.0104987
## 2 1.2431333 1.2006274 1.1369988 1.0915176 1.0713959 0.7976933 1.1642926
## 3 1.6816521 1.1126149 1.1402613 0.0000000 NaN NA 0.3661485
## 4 1.1670062 1.1102681 1.0776942 0.7923588 0.9519643 1.3143623 0.9005187
## 5 0.7117839 1.0529608 0.9714851 0.7737464 0.9483667 1.7205556 0.8082015
## 6 0.7182131 1.0227273 1.3672515 0.0000000 NA 1.2264550 0.8257118
## 7 0.9252336 1.0101010 0.9450000 1.2433862 0.8680851 1.1764706 1.1375000
## 2020-10-21 2020-10-22 2020-10-23 2020-10-24 2020-10-25 2020-10-26 2020-10-27
## 1 1.0519481 0.9901235 0.9551122 1.0313316 0.8177215 1.1052632 1.1176471
## 2 1.3981234 1.0578328 1.1906332 1.0259625 1.0831466 0.7994641 1.2929382
## 3 1.2234556 1.2364343 0.9459163 0.0000000 NaN NA 0.3529164
## 4 0.9826074 1.2924440 1.0516727 0.9383525 0.7967493 1.0527407 1.1814936
## 5 1.0307631 0.9352713 1.2387070 0.6878555 1.0170233 2.0516499 0.6249417
## 6 0.7513062 1.3838665 0.7678392 1.2958115 1.6555556 0.7382550 0.6214876
## 7 0.9743590 0.9473684 0.9880952 1.0200803 0.8070866 1.2780488 0.9809160
## 2020-10-28 2020-10-29 2020-10-30 2020-10-31 2020-11-01 2020-11-02 2020-11-03
## 1 1.0426065 1.0456731 0.9149425 1.0100503 0.9303483 1.0187166 1.2414698
## 2 1.1363864 1.0736754 1.1584107 1.0217832 0.9417118 0.7441231 1.2690873
## 3 1.0731350 1.1930180 1.0854538 0.0000000 NaN NA 0.3393191
## 4 1.1178156 1.0656699 1.0932384 0.8868849 0.8602768 1.0861380 1.4911218
## 5 1.0298396 1.0829410 1.1043478 0.7362205 0.9827232 1.3733780 1.4827796
## 6 1.1954787 0.8698554 1.2429668 0.4804527 2.0342612 0.9073684 0.9060325
## 7 0.9727626 0.8440000 0.9146919 1.1036269 0.7699531 1.2012195 1.1472081
## 2020-11-04 2020-11-05 2020-11-06 2020-11-07 2020-11-08 2020-11-09 2020-11-10
## 1 0.9006342 1.0563380 0.9688889 0.9334862 0.8918919 1.0798898 1.2015306
## 2 1.0816897 1.1294356 1.0956466 1.0530924 0.8192620 0.7747900 1.3886580
## 3 1.3413680 0.8748503 1.0277524 0.0000000 NaN NA 0.0000000
## 4 0.8145132 1.2758905 0.9733982 1.0280330 0.9177740 1.0225954 1.1220016
## 5 0.5967112 1.2979676 1.2032909 0.9373622 0.9327059 1.1755802 0.9538627
## 6 1.1510883 0.9488320 1.1770223 0.5926295 1.8117647 0.8562152 1.0509209
## 7 1.0044248 1.0969163 0.7710843 1.0520833 0.9405941 1.2105263 1.0000000
## 2020-11-11 2020-11-12 2020-11-13 2020-11-14 2020-11-15 2020-11-16 2020-11-17
## 1 0.8365180 0.7893401 1.4180064 0.7913832 0.8739255 0.9868852 1.2026578
## 2 0.9393274 1.1521798 1.0770203 0.9106890 0.9121587 0.8050152 1.1769158
## 3 NA 0.5346798 1.0953308 0.0000000 NaN NA 0.3438194
## 4 1.0841853 1.0861170 1.1181799 0.9277662 0.8407806 1.1252492 1.0400087
## 5 0.9079865 1.3587711 0.8780088 0.9154725 0.9174229 1.4638971 0.7464527
## 6 0.9020619 1.0502857 0.8966268 0.0000000 NA 0.7412731 0.8476454
## 7 0.9739130 1.0937500 0.9591837 0.8638298 1.0591133 1.1302326 0.7983539
## 2020-11-18 2020-11-19 2020-11-20 2020-11-21 2020-11-22 2020-11-23 2020-11-24
## 1 0.8011050 1.1000000 0.8965517 0.7727273 1.0135747 1.0312500 1.0909091
## 2 1.0648939 1.0553092 1.0293841 0.9335374 0.8151248 0.8090835 1.0130850
## 3 1.1640702 1.0597336 0.9336537 0.0000000 NaN NA 0.4723789
## 4 1.0590728 1.1155626 1.0460383 0.9015253 0.8062178 1.2536768 0.9428078
## 5 1.0558950 1.0171453 1.0225453 1.0135998 0.9849563 1.4379773 0.7189608
## 6 0.8643791 1.0226843 1.4824399 0.0000000 NA 0.6403941 1.0876923
## 7 1.1288660 0.9497717 1.1490385 0.7280335 0.9597701 1.1137725 1.2204301
## 2020-11-25 2020-11-26 2020-11-27 2020-11-28 2020-11-29 2020-11-30 2020-12-01
## 1 1.2936508 0.9877301 0.9378882 0.7284768 0.9863636 1.0691244 1.1336207
## 2 1.1130150 1.1218088 0.9772766 0.9284807 0.7845715 0.7931803 1.1814240
## 3 0.8359503 1.2022109 0.8831475 0.0000000 NaN NA 0.4132839
## 4 1.0437757 0.6471000 1.8317910 0.7974390 0.8102465 1.1403530 1.2452485
## 5 1.0588940 1.0380845 1.0844533 0.9536091 0.9580260 1.4287809 0.7273544
## 6 0.8727016 0.9886548 1.4196721 0.0000000 NA 0.3275713 1.6042216
## 7 0.9207048 1.0287081 0.8558140 1.2336957 0.7533040 1.0818713 0.9081081
## 2020-12-02 2020-12-03 2020-12-04 2020-12-05 2020-12-06 2020-12-07 2020-12-08
## 1 0.9467681 0.9236948 1.0173913 0.8119658 0.9842105 1.1176471 0.9234450
## 2 1.0703985 1.1212033 1.0383737 0.8731647 0.8971594 0.7242548 1.0846553
## 3 1.1300715 1.0853070 0.8635331 0.0000000 NaN NA 0.0000000
## 4 1.0058224 1.1139888 1.0686462 0.9543103 0.7961657 1.1024663 1.1421870
## 5 1.1181866 1.0294999 1.0301869 0.8862115 1.0253441 1.2971026 0.7664059
## 6 1.1019737 1.1373134 0.8923885 0.0000000 NA 0.4919125 1.7195358
## 7 1.5178571 0.8666667 0.7511312 0.8433735 0.8928571 1.4240000 0.6573034
## 2020-12-09 2020-12-10 2020-12-11 2020-12-12 2020-12-13 2020-12-14 2020-12-15
## 1 0.8238342 0.8867925 1.191489 0.9880952 0.8373494 0.8992806 1.1360000
## 2 0.8596751 1.3326539 1.101659 1.0628004 0.9012662 0.6704020 1.2340125
## 3 NA 0.8139773 1.322313 0.0000000 NaN NA 0.4846778
## 4 0.9826903 1.0612705 1.026977 0.9251139 0.8623937 1.1052390 1.0526512
## 5 1.0395192 1.0544907 1.046868 0.8753049 0.9277049 1.4827708 0.7627220
## 6 0.6029246 1.2332090 1.054463 0.0000000 NA 0.6429366 1.1418685
## 7 1.2820513 1.0866667 1.006135 0.8963415 0.9115646 1.1940299 0.9437500
## 2020-12-16 2020-12-17 2020-12-18 2020-12-19 2020-12-20 2020-12-21 2020-12-22
## 1 1.2676056 1.0055556 0.9613260 0.9080460 1.0253165 1.0370370 1.0773810
## 2 1.1839073 1.0378529 0.8446772 1.0586975 0.9262190 0.7197060 1.2251357
## 3 1.0726181 1.0950533 0.9739510 0.0000000 NaN NA 0.4839867
## 4 1.0609460 1.0092194 1.0481910 0.7935940 0.9729904 1.0387049 1.0126383
## 5 1.0370313 1.1253578 0.9441692 0.8882587 0.9613665 1.2484225 0.8204310
## 6 0.8484848 1.2607143 0.6926346 0.0000000 NA 0.8121827 0.7906250
## 7 0.9602649 0.9655172 1.1357143 0.8930818 1.0070423 1.1048951 0.9430380
## 2020-12-23 2020-12-24 2020-12-25 2020-12-26 2020-12-27 2020-12-28 2020-12-29
## 1 0.9779006 1.0677966 0.9417989 0.9157303 0.9447853 0.7727273 1.2521008
## 2 1.0444578 1.2970233 1.0553246 0.5465672 0.8589140 0.9601656 1.3063745
## 3 1.1625680 1.0222832 0.0000000 NaN NaN NA 0.5759545
## 4 1.0937342 0.9505811 0.5706586 1.8804557 0.5981645 1.2786191 1.1669365
## 5 1.1058690 1.0033719 0.8588545 0.8977543 1.0130756 1.0065470 1.6246051
## 6 1.2648221 1.3218750 0.5449173 0.0000000 NA 0.7307692 0.8214286
## 7 0.9395973 1.1214286 0.8216561 1.3100775 0.9408284 1.0062893 1.2875000
## 2020-12-30 2020-12-31 2021-01-01 2021-01-02 2021-01-03 2021-01-04 2021-01-05
## 1 0.7583893 1.2389381 0.9785714 0.7372263 0.8118812 1.1463415 1.1063830
## 2 1.4453167 1.4490186 0.9460323 0.5324178 1.2046512 0.7580204 1.4238748
## 3 1.1864575 1.0796243 0.0000000 NaN NaN NA 0.7750417
## 4 1.0855153 1.4188954 0.5524666 1.6381067 0.7224817 0.9093159 1.2387806
## 5 0.8884695 0.8926226 0.7937401 1.1481010 1.4678696 1.0542377 0.7466503
## 6 1.3386728 0.5846154 1.3654971 0.0000000 NA 0.8373134 0.8573975
## 7 0.9368932 1.1036269 0.9765258 0.9519231 0.9949495 1.0507614 1.0048309
## 2021-01-06 2021-01-07 2021-01-08 2021-01-09 2021-01-10 2021-01-11 2021-01-12
## 1 1.1346154 0.9152542 0.8981481 1.1340206 1.0636364 1.1965812 1.0500000
## 2 1.3220163 0.9060317 0.9518354 1.1395972 0.9323688 0.6727517 1.1366321
## 3 0.0000000 NA 0.6009443 0.0000000 NaN NA 0.4141513
## 4 1.1322977 1.1062674 1.0577899 0.8651835 0.8082585 0.9562900 1.0827526
## 5 1.1473973 1.0329513 1.0833333 0.7476795 1.0361016 1.0765735 0.8368939
## 6 0.8814969 1.4976415 0.7669291 0.0000000 NA 0.8519515 1.0300158
## 7 1.0048077 1.0047847 0.9285714 1.0564103 0.9368932 1.0518135 1.0394089
## 2021-01-13 2021-01-14 2021-01-15 2021-01-16 2021-01-17 2021-01-18 2021-01-19
## 1 1.1904762 0.9657143 1.0236686 0.8092486 1.2571429 0.9659091 1.3294118
## 2 1.1074989 1.0931972 0.9362640 1.0102825 0.7690987 0.7035236 1.1893484
## 3 1.5279896 0.9230492 1.1203802 0.0000000 NaN NA 0.4068362
## 4 1.0422191 1.0202762 1.0574826 0.8693851 0.8283170 0.7929400 1.0912250
## 5 1.0391318 1.0851721 0.9185306 0.9115998 1.0038854 0.9932269 0.7811333
## 6 0.9815951 1.1937500 0.7630890 0.0000000 NA 0.7292250 0.7631242
## 7 0.9526066 1.0398010 0.9377990 1.0408163 0.9215686 1.2074468 0.9911894
## 2021-01-20 2021-01-21 2021-01-22 2021-01-23 2021-01-24 2021-01-25 2021-01-26
## 1 1.053097 0.8907563 1.0047170 0.9248826 0.9441624 1.1451613 1.0469484
## 2 1.292683 1.0358933 0.9699751 0.9778479 0.8722526 0.7360681 1.2365931
## 3 1.212446 1.0668896 0.9668147 0.0000000 NaN NA 0.3883418
## 4 1.220442 1.0149367 1.0098670 0.9203086 0.7952866 0.9150457 1.1578809
## 5 1.209312 1.0529392 0.9565785 0.8138225 0.9561753 1.2375000 0.7435761
## 6 1.105705 0.9438543 1.2765273 0.0000000 NA 0.6454704 1.1740891
## 7 1.204444 0.9520295 1.0193798 0.9543726 0.9840637 1.1214575 1.0794224
## 2021-01-27 2021-01-28 2021-01-29 2021-01-30 2021-01-31 2021-02-01 2021-02-02
## 1 0.9686099 1.1712963 1.0553360 1.0112360 0.9666667 0.9770115 1.2156863
## 2 1.4352797 0.9452966 0.9444986 0.9373295 0.8848423 0.7045071 1.2177918
## 3 1.1056676 0.8663026 1.0922376 0.0000000 NaN NA 0.3647316
## 4 1.0419898 1.0541828 1.0145506 0.8965166 0.7603065 1.0971299 0.9436753
## 5 0.9887989 1.1557002 0.9762252 0.8803674 0.8684785 1.3134954 0.6258243
## 6 0.8793103 0.9346405 1.2181818 0.0000000 NA 0.7859327 1.3385214
## 7 1.1304348 1.0266272 0.9827089 1.0645161 0.9669421 1.0968661 0.9740260
## 2021-02-03 2021-02-04 2021-02-05 2021-02-06 2021-02-07 2021-02-08 2021-02-09
## 1 0.9870968 0.9901961 1.0792079 1.1804281 0.8212435 1.1230284 0.9915730
## 2 1.3658688 1.0359581 1.0407879 0.9455428 0.8661359 0.6846220 1.3316602
## 3 1.0871181 0.9482213 0.9534379 0.0000000 NaN NA 0.3482748
## 4 1.0426139 1.0198013 1.0499186 0.8843485 0.7776594 0.9147840 1.1377256
## 5 1.1094494 1.2469363 1.0171990 0.7591787 0.9414572 1.2794863 0.7448494
## 6 0.7839147 0.9517923 1.1441558 0.0000000 NA 0.7561837 0.7932243
## 7 1.0560000 1.0277778 0.9778870 0.9899497 1.0355330 1.0465686 1.1170960
## 2021-02-10 2021-02-11 2021-02-12 2021-02-13 2021-02-14 2021-02-15 2021-02-16
## 1 1.0453258 0.9864499 0.9697802 0.9546742 0.9554896 0.9751553 1.025477707
## 2 1.2200339 1.1691512 0.9178173 0.9733679 0.8178659 0.6640145 1.411764706
## 3 1.1043775 0.9855913 0.8167255 0.0000000 NaN NA 0.332451820
## 4 1.0193490 1.1044100 0.9519663 0.9009087 0.7523015 0.8146995 1.059221506
## 5 1.1907801 0.9157236 1.0344715 0.8896573 0.7932862 0.9082405 1.899950956
## 6 0.6877761 0.7130621 1.5615616 0.0000000 NA 0.7420719 0.943019943
## 7 0.9454927 0.9933481 1.0044643 1.0066667 0.9713024 2.0181818 0.006756757
## 2021-02-17 2021-02-18 2021-02-19 2021-02-20 2021-02-21 2021-02-22 2021-02-23
## 1 1.0372671 0.9790419 1.0305810 0.9643917 0.9692308 1.0380952 1.0244648
## 2 1.1637731 1.1399801 1.1246819 0.9640595 0.9018372 0.7150186 1.3828637
## 3 1.0767625 1.3403823 0.7878057 0.0000000 NaN NA 0.3578589
## 4 1.1634786 1.0508941 1.0463370 0.9770629 0.7527074 0.9964886 1.3233705
## 5 0.6677852 1.2655586 0.9367746 0.8686012 0.9388138 1.4778089 0.7697511
## 6 0.9425982 1.2564103 1.4923469 0.0000000 NA 0.8792373 1.1783133
## 7 75.5000000 1.0198675 1.0064935 0.9655914 1.0222717 1.0087146 0.9827214
## 2021-02-24 2021-02-25 2021-02-26 2021-02-27 2021-02-28 2021-03-01 2021-03-02
## 1 1.053731 1.008499 0.9719101 0.9768786 0.9526627 0.9844720 0.9526814
## 2 1.233326 1.211499 1.0310503 0.9225888 0.9226537 0.7514908 1.3019228
## 3 1.234687 1.038645 0.8717600 0.0000000 NaN NA -4.6530855
## 4 1.020906 1.037879 0.9779888 0.9389371 0.7301382 0.9711875 1.1381835
## 5 1.020738 1.048554 1.0650246 0.7918594 0.8380062 1.6589219 0.8092437
## 6 1.147239 1.017825 1.0945709 0.0000000 NA 0.8965909 1.0646388
## 7 1.008791 1.013072 1.0086022 0.9808102 1.0152174 1.0128480 0.9788584
## 2021-03-03 2021-03-04 2021-03-05 2021-03-06 2021-03-07 2021-03-08 2021-03-09
## 1 1.09602649 1.1329305 1.0240000 0.9947917 0.9345550 0.9831933 1.1111111
## 2 1.22135615 1.0962092 1.0509958 0.9842982 0.8769094 0.6698514 1.4209048
## 3 -0.08254536 0.9837054 1.1022031 0.0000000 NaN NA 0.3355076
## 4 1.17089499 1.0229591 0.9890249 0.8974415 0.6892705 1.0292108 1.2792060
## 5 0.95777085 1.0780629 1.0972176 0.7091353 1.0297286 1.7405858 0.7137019
## 6 0.73571429 1.6213592 0.8932136 0.0000000 NA 0.8791019 1.0117878
## 7 1.01727862 1.0084926 0.9873684 0.9808102 1.0304348 0.9873418 1.0064103
## 2021-03-10 2021-03-11 2021-03-12 2021-03-13 2021-03-14 2021-03-15 2021-03-16
## 1 0.9897436 1.0103627 0.9230769 0.9750000 0.9914530 0.9913793 1.0260870
## 2 1.1292776 1.1514703 1.0444852 0.9716685 0.8184088 0.7159219 1.3359559
## 3 1.7744267 0.8786346 0.8549960 0.0000000 NaN NA 0.4368727
## 4 1.0367680 1.0766302 1.0182784 0.8784549 0.6972093 1.3761651 1.0064531
## 5 1.0596160 0.9653528 1.1636483 0.8073005 1.0119173 1.3411846 0.7696281
## 6 0.8834951 1.1791209 0.9058714 0.0000000 NA 0.8051852 0.9576817
## 7 1.0042463 0.9894292 0.9722222 1.0615385 1.0041408 0.9917526 0.9958420
## 2021-03-17 2021-03-18 2021-03-19 2021-03-20 2021-03-21 2021-03-22 2021-03-23
## 1 1.110169 0.9694656 1.026247 0.9769821 0.9607330 1.100817 1.0148515
## 2 1.130742 1.0807726 1.032368 0.9302136 0.8382470 1.222300 0.7648259
## 3 1.227731 1.0203546 0.000000 NaN NaN NA 0.3348916
## 4 1.122476 1.0265288 1.001119 0.9424242 0.5952852 1.417475 1.0834879
## 5 1.140268 1.0797528 1.159444 0.7893747 0.9785587 1.499391 0.7544145
## 6 1.012488 0.9791271 1.098837 0.0000000 NA 0.715981 0.9955801
## 7 1.020877 1.0204499 0.995992 1.0241449 0.9882122 1.031809 1.0289017
## 2021-03-24 2021-03-25 2021-03-26 2021-03-27 2021-03-28 2021-03-29 2021-03-30
## 1 1.136585 1.0343348 1.0580913 0.9843137 1.0577689 1.0188324 1.0277264
## 2 1.133785 1.1146098 1.0166800 0.9899485 0.8225224 0.6580290 1.2445736
## 3 0.000000 NA 0.5653178 0.0000000 NaN NA 0.3221728
## 4 1.645176 0.7775682 1.1202052 0.8313493 0.7182798 1.4812959 0.9105140
## 5 1.155233 1.2242664 0.9792657 0.8457653 0.9710611 1.5059130 0.7870269
## 6 1.008879 1.0033003 0.9692982 0.0000000 NA 0.9495225 1.0143678
## 7 1.067416 1.0298246 1.0255537 1.0199336 1.0407166 1.0798122 1.0434783
## 2021-03-31 2021-04-01 2021-04-02 2021-04-03 2021-04-04 2021-04-05 2021-04-06
## 1 1.052158 1.0085470 1.2338983 0.9395604 0.9839181 1.0326895 1.1395683
## 2 1.487823 0.9287060 0.9879643 0.9694301 0.8479785 0.5927735 0.7268727
## 3 1.708851 0.8250527 0.0000000 NA 0.0000000 NA 0.6392857
## 4 1.124142 1.1223490 0.9428981 0.8773321 0.5832592 1.8586037 0.9008642
## 5 1.181201 0.9824295 0.7994841 1.2626371 0.7522998 1.6779891 1.4448043
## 6 1.000000 1.4490085 1.0830890 0.0000000 NA 0.9519071 0.7630662
## 7 1.083333 1.0769231 1.0404762 0.9954233 1.0068966 1.0388128 1.0186813
## 2021-04-07 2021-04-08 2021-04-09 2021-04-10 2021-04-11 2021-04-12 2021-04-13
## 1 0.9886364 1.1519796 1.0022173 0.9712389 0.9100228 1.0538173 1.1294537
## 2 1.7629782 1.2574163 1.0996572 0.9274466 0.8966441 0.6214653 1.3741309
## 3 1.3268911 1.1266500 1.0983739 0.0000000 NaN NA 0.2766444
## 4 1.2100820 1.0630359 1.0495538 0.8268932 0.6700130 1.3597521 1.2767857
## 5 0.7022231 1.0782123 1.1624722 0.7577205 1.0613445 1.4092109 0.7111153
## 6 1.1061644 0.8968008 0.8423475 0.0000000 NA 0.9082177 0.9729730
## 7 1.0140237 1.0095745 1.0010537 1.0147368 0.9968880 1.0124870 1.0082220
## 2021-04-14 2021-04-15 2021-04-16 2021-04-17 2021-04-18 2021-04-19 2021-04-20
## 1 0.9768665 1.0602799 0.9786802 0.9834025 0.9662447 1.0589520 1.1030928
## 2 1.2024704 1.0496906 0.9386901 0.9648936 0.8258266 0.6985340 1.3617285
## 3 1.6646535 0.9225702 1.0967608 0.0000000 NaN NA 0.0000000
## 4 0.9236679 0.9879905 1.0884341 0.6800987 0.7887332 1.4531968 0.9879949
## 5 1.1264156 1.1380641 0.9526451 0.8183093 0.9578337 1.4279818 0.7087669
## 6 0.6533816 0.9482440 1.1169591 0.0000000 NA 0.7797063 1.0702055
## 7 1.0030581 1.0050813 0.9888777 0.8456033 0.9951632 1.0886999 0.9877232
## 2021-04-21 2021-04-22 2021-04-23 2021-04-24 2021-04-25 2021-04-26 2021-04-27
## 1 0.9607477 1.0262646 1.0407583 0.9763206 0.8889925 1.0052466 1.0908142
## 2 1.1464082 1.1597282 0.9197308 0.9360347 0.9524396 0.6414836 1.2319905
## 3 NA 0.6103398 1.0847975 0.0000000 NaN NA 0.3861072
## 4 1.0339905 1.0413093 0.9445449 0.8591572 0.6288519 1.2633491 1.2137392
## 5 1.1421775 0.9790551 1.0472833 0.8717502 0.9131940 1.3136026 0.8054384
## 6 0.9504000 0.8973064 1.0056285 0.0000000 NA 0.8745318 1.0728051
## 7 0.9254237 0.9768010 0.9975000 0.8997494 0.9818942 0.9971631 0.9886202
## 2021-04-28 2021-04-29 2021-04-30 2021-05-01 2021-05-02 2021-05-03 2021-05-04
## 1 1.0162679 0.9661017 1.0292398 0.9924242 0.8940840 1.0170758 1.0482686
## 2 1.2869783 1.0696458 0.9392902 0.9642246 0.7054150 0.6501914 1.5326270
## 3 1.1304631 1.1705713 0.9006211 0.0000000 NaN NA 0.2760961
## 4 1.0533705 1.0674223 0.9853558 0.8321063 0.6230031 1.5256751 0.9278676
## 5 1.0640761 1.0902616 1.0062953 0.8768886 0.9321578 1.3175451 0.7453968
## 6 0.8922156 0.8299776 1.1752022 0.0000000 NA 1.2782369 0.7262931
## 7 0.9928058 0.9956522 0.9839884 0.9615385 0.9938462 0.9969040 0.9937888
## 2021-05-05 2021-05-06 2021-05-07 2021-05-08 2021-05-09 2021-05-10 2021-05-11
## 1 1.0170170 1.0728346 0.9532110 0.9595765 0.9448345 1.0467091 1.0131846
## 2 1.1608691 1.1152283 0.8941346 0.9644516 0.8147238 0.6124985 1.3675399
## 3 1.3991141 1.2600918 1.0283920 0.0000000 NaN NA 0.3533324
## 4 1.0754846 1.0179344 1.0338848 0.7296899 0.6397667 1.4757459 1.0606490
## 5 1.0842523 1.1025224 0.9731857 0.8415066 0.9678582 1.1707014 0.7368770
## 6 0.7566766 1.0431373 1.8947368 0.0000000 NA 0.9377289 1.8203125
## 7 1.0078125 0.9193798 1.0118044 0.8883333 0.7298311 1.0205656 0.8639798
## 2021-05-12 2021-05-13 2021-05-14 2021-05-15 2021-05-16 2021-05-17 2021-05-18
## 1 1.0210210 1.0941176 0.8306452 0.9029126 0.9856631 1.0739394 1.1817156
## 2 1.1303471 1.0298165 0.9356595 0.8796615 0.8641010 0.6009047 1.2880718
## 3 1.2989273 0.8882830 1.1133135 0.0000000 NaN NA 0.3605461
## 4 1.0203670 1.0825701 1.0812611 0.7229291 0.5734447 1.4812690 1.1148722
## 5 1.1383342 1.0625790 0.8839976 0.8689435 0.9184898 1.1707420 0.7328052
## 6 0.5429185 0.9249012 0.0000000 NaN NA 1.3160173 0.9802632
## 7 1.1428571 0.7627551 0.8160535 1.0655738 0.9846154 1.1796875 1.2251656
## 2021-05-19 2021-05-20 2021-05-21 2021-05-22 2021-05-23 2021-05-24 2021-05-25
## 1 1.1575931 1.0973597 0.8541353 1.0052817 0.9343257 1.0843486 1.2005186
## 2 1.2362329 1.0429091 0.9091702 0.9039310 0.8470513 0.6233408 1.2936922
## 3 1.5245737 0.9429276 0.8358626 0.0000000 NaN NA 0.4842324
## 4 1.0248385 1.0202705 0.9531878 0.7300453 0.6459776 1.6448633 1.1019996
## 5 1.0965602 1.1362312 0.8830605 0.8115230 0.9045129 0.8536660 1.2587313
## 6 1.1342282 0.8846154 0.8361204 0.0000000 NA 0.6820388 1.2099644
## 7 0.7972973 1.0610169 1.1725240 0.8991826 0.8575758 1.0565371 1.1672241
## 2021-05-26 2021-05-27 2021-05-28 2021-05-29 2021-05-30 2021-05-31 2021-06-01
## 1 0.9503240 0.8962121 1.0270499 0.9102881 0.8200723 1.3726571 1.0048193
## 2 1.2220497 1.0528590 0.9020034 0.8959058 0.8805257 0.6166893 1.3657866
## 3 0.9343161 1.0565209 1.0362949 0.0000000 NaN NA 0.4508837
## 4 0.9998369 1.0944089 0.8283649 0.5914980 0.5465054 0.8456721 3.4518677
## 5 0.7771801 1.0724954 1.0805027 0.7393901 0.9332483 1.1763098 0.6626646
## 6 0.6441176 1.4657534 1.0685358 0.0000000 NA 1.6256831 0.4974790
## 7 0.8767908 0.9346405 0.7062937 0.7722772 1.2115385 1.2063492 1.0087719
## 2021-06-02 2021-06-03 2021-06-04 2021-06-05 2021-06-06 2021-06-07 2021-06-08
## 1 1.0143885 0.9936958 0.9524187 0.9525396 0.8601399 1.1798780 1.0861326
## 2 1.1663311 0.6778315 1.3020886 0.9522692 0.9346754 0.5582418 1.4913386
## 3 1.1358250 1.0533708 0.9464762 0.0000000 NaN NA 0.3672186
## 4 0.7960147 1.1000719 0.9694594 0.8673630 0.3834002 2.3907464 0.9143241
## 5 1.2109877 1.0468147 0.9303827 0.8191278 0.8233515 1.1403380 0.8485825
## 6 0.8479730 0.9721116 1.5819672 0.0000000 NA 1.2317073 0.6014851
## 7 0.8434783 1.0206186 0.9242424 1.0491803 0.8958333 0.9941860 1.0643275
## 2021-06-09 2021-06-10 2021-06-11 2021-06-12 2021-06-13 2021-06-14 2021-06-15
## 1 1.0103093 0.0000000 NA 0.4376270 0.9442897 1.0904621 1.1442741
## 2 1.1605069 0.9454049 0.9104909 0.9101480 0.8072009 0.6525180 1.3814774
## 3 1.2634132 3.1633160 0.2957726 0.0000000 NaN NA 0.4202277
## 4 1.4322905 0.8051346 1.6747722 0.3617055 0.5732611 2.2266590 0.9412631
## 5 1.0508732 1.0859827 0.9381238 0.8773050 0.8843977 1.0447898 0.7751531
## 6 0.9423868 1.0000000 1.6419214 0.0000000 NA 0.7575758 1.2044444
## 7 0.8681319 0.9050633 1.2937063 0.7945946 0.7959184 1.3418803 0.9299363
## 2021-06-16 2021-06-17 2021-06-18 2021-06-19 2021-06-20 2021-06-21 2021-06-22
## 1 0.9763593 1.0564972 0.9442322 0.9328479 0.9358196 1.1232623 1.2202970
## 2 1.1173184 0.9450000 0.8669690 1.0401046 0.7384744 0.5493757 1.7231405
## 3 1.1165501 1.0952505 1.0040505 0.0000000 NaN NA 0.5604106
## 4 1.0927750 0.9767540 1.8350435 0.4196701 0.5418206 2.2043811 1.0012187
## 5 1.1715576 1.0732177 0.9066427 0.8079208 0.8198529 1.1270553 0.8885942
## 6 1.2287823 0.7747748 1.0852713 0.0000000 NA 0.9006211 0.7413793
## 7 1.1301370 0.7696970 1.4488189 1.0000000 0.5815217 1.2149533 1.4538462
## 2021-06-23 2021-06-24 2021-06-25 2021-06-26 2021-06-27 2021-06-28 2021-06-29
## 1 0.8471941 1.0015962 1.0454183 0.9916159 0.9362029 1.0821018 1.1889226
## 2 1.3669065 0.2333333 2.8233083 1.1158455 0.9307876 0.4961538 1.7493540
## 3 1.0745050 1.0382400 1.0925227 0.0000000 NaN NA 0.6966303
## 4 1.1816479 1.1343106 1.7036675 0.3819501 0.4856683 3.0183466 0.5133651
## 5 1.0029851 1.0505952 0.8328612 1.0595238 0.7768860 1.5082645 0.9452055
## 6 1.0372093 0.8251121 2.5489130 0.0000000 NA 0.9266862 1.4303797
## 7 0.8148148 0.6818182 0.8285714 1.4367816 0.8160000 1.1568627 1.2118644
## 2021-06-30 2021-07-01 2021-07-02 2021-07-03 2021-07-04 2021-07-05 2021-07-06
## 1 0.9483089 1.0323015 0.8722295 0.8579970 1.0217770 1.0630861 1.0240577
## 2 1.1462334 1.1327320 0.9032992 1.1700252 0.8675996 0.5955335 1.8895833
## 3 1.3012269 1.3379213 1.0176590 0.0000000 NaN NA 0.4335572
## 4 2.1654779 0.9885375 1.9786752 0.1734474 0.7957282 2.1261591 2.6111557
## 5 0.7260870 0.7465070 1.7593583 0.5699088 0.9280000 1.7500000 0.7011494
## 6 0.5221239 1.8262712 0.9698376 0.0000000 NA 1.0876217 1.3682864
## 7 0.8251748 1.2372881 0.9109589 0.7744361 1.1747573 0.7685950 1.0000000
## 2021-07-07 2021-07-08 2021-07-09 2021-07-10 2021-07-11 2021-07-12 2021-07-13
## 1 0.9451840 1.0414250 0.9013524 1.0388350 0.9447749 1.1187050 1.0409968
## 2 1.1135612 1.3772277 0.9964055 1.0057720 0.9978479 0.6376707 1.7249154
## 3 1.2296810 0.9961459 1.2634405 0.0000000 NaN NA 1.2955322
## 4 0.8829942 1.0345463 2.2892268 0.2044475 1.1846407 2.6049640 0.8767698
## 5 1.2341920 1.0891841 0.9494774 0.6770642 0.8292683 1.4836601 0.7797357
## 6 1.1663551 1.1089744 1.2355491 0.0000000 NA 0.9386826 0.9854423
## 7 1.6989247 0.7151899 1.2743363 0.6736111 0.8865979 1.6976744 0.9726027
## 2021-07-14 2021-07-15 2021-07-16 2021-07-17 2021-07-18 2021-07-19 2021-07-20
## 1 0.9467181 0.9502447 1.1141631 0.8459168 0.9608379 1.2255924 0.9845321
## 2 1.4071895 1.1486298 1.1706429 1.0770294 1.0025657 0.6621881 1.7173913
## 3 0.6003185 1.0491853 1.1217856 0.0000000 NaN NA 0.4427533
## 4 1.1865263 1.0171006 2.4347470 0.1744601 1.5256097 2.4185696 0.7911569
## 5 0.9378531 1.2108434 0.8781095 1.0453258 0.9214092 1.6294118 0.5703971
## 6 0.9863636 0.9811828 1.1217221 0.0000000 NA 0.8433883 0.5200000
## 7 0.9436620 0.9776119 1.0152672 0.8721805 1.0172414 1.0508475 0.8709677
## 2021-07-21 2021-07-22 2021-07-23 2021-07-24 2021-07-25 2021-07-26 2021-07-27
## 1 0.8970935 1.0175131 1.0731497 1.0072173 0.9506369 1.0485762 1.1014377
## 2 1.1966245 1.1885284 1.0170095 0.9992221 0.9229272 0.6568958 1.4497592
## 3 1.1209778 0.9656063 1.0553919 0.0000000 NaN NA 0.4283813
## 4 1.2084910 1.1848552 2.1415626 0.2276698 0.9853792 2.9834275 0.8018434
## 5 1.5727848 0.7706237 1.5822454 0.6551155 0.8312343 2.8242424 0.5901288
## 6 0.0000000 NA 2.9658470 0.0000000 NA 0.9133940 0.9533030
## 7 1.1851852 1.5312500 0.5816327 1.0877193 1.0161290 1.4126984 0.8202247
## 2021-07-28 2021-07-29 2021-07-30 2021-07-31 2021-08-01 2021-08-02 2021-08-03
## 1 0.9673677 0.0000000 NaN NA 0.2992822 0.0000000 NaN
## 2 1.2606289 1.0832601 1.0723204 0.9842734 0.8173299 0.5986842 1.5199372
## 3 1.0284102 0.9830565 0.9274608 0.0000000 NaN NA 0.3633780
## 4 1.1284773 0.9957205 2.6167905 0.2199210 1.0230488 2.6214521 0.8604804
## 5 1.3872727 1.1808650 0.9977802 0.5906563 0.8229755 0.8100686 5.5847458
## 6 0.9441458 0.8636507 1.0673993 0.0000000 NA 0.6691347 0.7396266
## 7 1.5410959 0.7022222 1.0886076 0.9418605 0.9320988 0.9933775 1.1333333
## 2021-08-04 2021-08-05 2021-08-06 2021-08-07 2021-08-08 2021-08-09 2021-08-10
## 1 NaN NaN NA 0.0000000 NaN NaN NaN
## 2 1.3612890 1.0962064 0.9134828 1.0451584 0.831231 0.7326007 1.3390476
## 3 1.0761057 0.9777361 1.0081358 0.0000000 NaN NA 0.3955800
## 4 1.0645588 1.0594783 2.3035587 0.2405665 0.540934 5.0591743 0.7083809
## 5 0.4850784 1.5057351 1.0505540 0.4957152 1.061170 3.5639098 0.4708158
## 6 1.1612903 0.8039452 0.9409114 0.0000000 NA 0.6628023 1.0664668
## 7 0.9647059 1.1036585 1.2044199 0.9128440 1.090452 0.9677419 1.0476190
## 2021-08-11 2021-08-12 2021-08-13 2021-08-14 2021-08-15 2021-08-16 2021-08-17
## 1 NaN NaN NA 0.0000000 NaN NA 0.0000000
## 2 1.230619 1.0499928 1.0180267 0.9706677 0.7883303 0.6481187 1.4358136
## 3 1.085651 1.0227339 0.8993107 0.0000000 NaN NA 0.5572572
## 4 1.305305 0.9475518 1.5588112 0.3020558 0.6452204 4.6281140 0.7301508
## 5 1.395818 1.1428571 1.1268727 0.4732032 0.8560140 4.0943590 0.4541583
## 6 1.158388 0.9247573 1.0323710 0.0000000 NA 0.9494878 0.8467262
## 7 1.031818 0.8678414 1.2385787 0.7950820 0.9639175 1.3903743 1.0346154
## 2021-08-18 2021-08-19 2021-08-20 2021-08-21 2021-08-22 2021-08-23 2021-08-24
## 1 NaN NA 0.0000000 NA 0.0000000 NA 0.0000000
## 2 1.3589598 1.0113144 0.9972376 1.0340720 0.7931958 0.7034786 1.4589534
## 3 0.8339844 1.0409000 1.0004018 0.0000000 NaN NA 0.4214402
## 4 1.1193718 0.9267862 1.5546990 0.3437096 0.4866834 5.5550352 0.6952712
## 5 1.3276338 1.1350229 1.0948023 0.4811100 0.9763725 3.5117438 0.4685853
## 6 1.0215290 0.8382796 1.2129297 0.0000000 NA 0.9436702 1.1655385
## 7 0.8104089 1.4036697 0.7222222 0.8597285 1.0789474 1.4097561 0.7508651
## 2021-08-25 2021-08-26 2021-08-27 2021-08-28 2021-08-29 2021-08-30 2021-08-31
## 1 NaN NaN NA 0.0000000 NaN NaN NaN
## 2 1.2403751 0.9570235 1.0842689 0.8766458 0.8681831 0.7143097 1.2913238
## 3 1.0703932 0.6599573 1.3336613 0.0000000 NaN NA 0.5014526
## 4 1.1119646 1.0883487 1.2707299 0.3056174 0.6257890 5.2518803 0.7525552
## 5 1.4411765 1.0105042 1.1155331 0.4776358 0.8790412 4.1223843 0.4399323
## 6 0.8880676 1.0237812 0.9367015 0.0000000 NA 0.8377434 0.8945173
## 7 0.9953917 1.0787037 0.9098712 0.8632075 0.9781421 1.1452514 0.8439024
## 2021-09-01 2021-09-02 2021-09-03 2021-09-04 2021-09-05 2021-09-06 2021-09-07
## 1 NaN NaN NaN NaN NA 0.0000000 NA
## 2 1.1828114 1.0397167 0.9962985 0.9148462 0.8632229 0.6298457 1.4087242
## 3 0.8778164 1.4023174 0.6600774 0.0000000 NaN NA 0.5907876
## 4 1.0909091 0.8942644 1.3495203 0.3249712 0.6771617 1.5420337 3.0081093
## 5 1.3500000 1.0435120 1.0330107 0.4735704 1.0091324 0.7677225 5.8506876
## 6 1.1092605 0.8882883 0.9384719 0.0000000 NA 0.7204807 0.9224075
## 7 0.9595376 1.0662651 1.0903955 0.8134715 0.8280255 1.4538462 0.9100529
## 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 2021-09-13 2021-09-14
## 1 0.0000000 NA 0.4594595 0.0000000 NaN NaN NaN
## 2 1.2557794 0.9319372 1.0179413 0.9241588 0.8984781 0.5986278 1.4358883
## 3 1.0162808 0.8478106 0.9321856 0.0000000 NaN NA 0.4178626
## 4 0.7344320 0.9297976 1.4041690 0.3362754 0.5750080 5.2372693 0.6064725
## 5 0.4081039 1.1505760 1.1039333 0.2656014 2.4284553 2.9450954 0.4529953
## 6 1.1784591 1.2021348 0.6198668 0.0000000 NA 0.8946639 0.8900077
## 7 0.9593023 0.8666667 0.8811189 1.1666667 0.9047619 0.9849624 0.9312977
## 2021-09-15 2021-09-16 2021-09-17 2021-09-18 2021-09-19 2021-09-20 2021-09-21
## 1 NaN NA 0.1479290 0.0000000 NaN NA 0.3432836
## 2 1.203791 1.0598840 0.8883675 1.0070423 0.8382867 0.6269552 1.4029106
## 3 1.141674 1.0945474 0.7906748 0.0000000 NaN NA 0.4091516
## 4 1.236034 0.8899892 1.3419342 0.3385950 0.6054894 4.1522051 0.6529323
## 5 1.075282 1.0970828 1.0801957 0.4261520 0.9242144 4.2890000 0.4466076
## 6 1.247171 0.7348221 0.9192783 0.0000000 NA 0.9643176 0.9602220
## 7 1.303279 0.8364780 0.8796992 0.7008547 1.2317073 1.3762376 1.0287770
## 2021-09-22 2021-09-23 2021-09-24 2021-09-25 2021-09-26 2021-09-27 2021-09-28
## 1 0.7826087 0.0000000 NaN NA 0.2993197 1.3409091 0.8474576
## 2 1.1745702 1.0227101 0.9351098 0.9284960 0.8806479 0.5721200 1.6706148
## 3 1.1591837 1.0672535 0.9059716 0.0000000 NaN NA 0.4544552
## 4 1.1669287 0.9339371 1.3839400 0.3340603 0.8858461 3.0579239 0.7054817
## 5 1.0107022 1.1887913 1.0004345 0.2740499 1.0388273 8.4004577 0.3167166
## 6 0.9489403 1.0213198 0.9304175 0.0000000 NA 0.9201213 0.7538462
## 7 0.9650350 0.7898551 0.9816514 1.0093458 0.6203704 1.3432836 1.0444444
## 2021-09-29 2021-09-30 2021-10-01 2021-10-02 2021-10-03 2021-10-04 2021-10-05
## 1 0.0000000 NA 0.0000000 NaN NaN NaN NA
## 2 1.0844024 1.2745953 0.8312164 0.9723773 0.8966455 0.5433097 1.5279156
## 3 1.2056769 0.8692503 0.8487500 0.0000000 NaN NA 0.4216811
## 4 1.0730790 0.9205365 1.3886963 0.3039625 0.9276260 3.3366521 0.6556433
## 5 1.2241972 0.8686183 1.4416285 0.3688049 0.7778905 5.2653194 0.3301969
## 6 1.0102041 1.1760462 1.2355828 0.0000000 NA 0.9612299 0.9485396
## 7 0.8085106 1.1184211 1.0823529 1.0760870 0.7979798 0.9746835 0.7532468
## 2021-10-06 2021-10-07 2021-10-08 2021-10-09 2021-10-10 2021-10-11 2021-10-12
## 1 0.2017937 1.0444444 1.0212766 0.7291667 1.6857143 0.9830508 0.9482759
## 2 1.3122209 0.9074876 1.0286396 0.9105071 0.8292683 0.6654960 1.6398417
## 3 1.2787340 0.7846287 1.2778085 0.0000000 NaN NA 0.0000000
## 4 1.1846123 0.8980233 1.2983331 0.2861850 1.0320475 2.5057581 1.1400302
## 5 1.3967004 1.0947651 1.0134870 0.4536656 0.9296000 0.8502582 4.8144399
## 6 1.0146628 1.3222543 0.6601093 0.0000000 NA 0.8786207 0.8649922
## 7 1.7068966 0.7878788 0.9230769 0.8611111 1.0483871 0.9076923 1.6271186
## 2021-10-13 2021-10-14 2021-10-15 2021-10-16 2021-10-17 2021-10-18 2021-10-19
## 1 1.0363636 0.6315789 1.333333 0.9375000 0.9111111 0.9268293 1.2894737
## 2 1.1138375 0.9628025 1.023631 1.0927080 0.8165661 0.6546201 1.6907152
## 3 NA 0.7005076 1.163561 0.0000000 NaN NA 0.4205254
## 4 0.9793933 0.7990977 1.262840 0.3571695 0.7920416 3.2188858 0.8126062
## 5 0.3656622 1.2188578 1.077358 0.4900759 0.8189398 3.9905455 0.4049572
## 6 1.3139746 0.7720994 1.007156 0.0000000 NA 0.8179487 0.9341693
## 7 0.8645833 0.9518072 0.721519 1.2105263 0.8985507 1.0806452 1.2388060
## 2021-10-20 2021-10-21 2021-10-22 2021-10-23 2021-10-24 2021-10-25 2021-10-26
## 1 0.9591837 0.9787234 1.1086957 0.8431373 1.0930233 1.0851064 1.2745098
## 2 1.3725417 1.0248716 1.0232129 1.0067028 0.9533931 0.6809025 1.5988166
## 3 1.3382742 0.7440665 1.3588517 0.0000000 NaN NA 0.4294314
## 4 1.1311645 0.8474416 1.2370005 0.3302342 0.5832207 5.9861538 0.6229018
## 5 1.1989199 1.0777027 0.9285963 0.6804201 0.8908490 2.0891089 0.5183649
## 6 0.8926174 0.8195489 1.5802752 0.0000000 NA 0.7906040 1.1052632
## 7 1.0361446 1.2325581 0.8301887 0.8750000 1.0649351 1.4878049 0.8360656
## 2021-10-27 2021-10-28 2021-10-29 2021-10-30 2021-10-31 2021-11-01 2021-11-02
## 1 0.8461538 0.9272727 1.0980392 0.7321429 1.1219512 1.0652174 0.9183673
## 2 1.1337281 1.0583243 1.0964425 0.9146662 0.9278245 0.6227624 1.0046132
## 3 1.3146417 0.8736177 1.0221519 0.0000000 NaN NaN NA
## 4 1.4790348 0.7399476 1.2557694 0.3559301 0.9457392 3.4812293 0.6365219
## 5 1.4348571 1.0525687 0.9795687 0.6709154 0.9090386 1.9303357 0.6023622
## 6 0.9585253 0.9551282 0.9546980 0.0000000 NA 0.9165447 0.7971246
## 7 1.0098039 1.0194175 0.9619048 0.9108911 1.1304348 1.2211538 1.0551181
## 2021-11-03 2021-11-04 2021-11-05 2021-11-06 2021-11-07 2021-11-08 2021-11-09
## 1 1.0888889 0.9183673 0.9555556 0.9767442 0.9523810 1.0750000 1.1395349
## 2 1.8325680 1.1376253 1.1455439 0.9998521 0.8612426 0.7810031 1.3439631
## 3 0.3929553 1.4390031 0.9398359 0.0000000 NaN NA 0.0000000
## 4 1.2028810 0.9575942 1.1830207 0.3579127 1.0490998 3.0032505 0.7333798
## 5 1.2249455 1.1511783 0.9787563 0.5564325 0.9865248 3.3055356 0.5097869
## 6 1.1142285 1.1654676 0.9243827 0.0000000 NA 1.2268519 0.7660377
## 7 1.0298507 0.7681159 1.1226415 1.0420168 0.8306452 1.4466019 0.9261745
## 2021-11-10 2021-11-11 2021-11-12 2021-11-13 2021-11-14 2021-11-15 2021-11-16
## 1 0.7755102 1.1315789 1.0465116 0.9777778 0.6818182 1.2666667 0.9736842
## 2 1.3145148 1.0826590 0.9798781 1.0019948 0.8859351 0.6872439 1.5031737
## 3 NA 0.6633648 1.0156323 0.0000000 NaN NA 0.4175342
## 4 1.1969458 0.5920713 2.5556889 0.3003736 0.7175043 4.3194489 0.6457607
## 5 1.0994027 0.6041909 2.4489403 0.3978495 0.9723138 2.7661017 0.4674020
## 6 0.9802956 0.9514238 1.0440141 0.0000000 NA 0.9382304 1.0551601
## 7 1.2463768 0.8604651 0.8310811 1.1138211 0.9051095 1.1532258 1.0209790
## 2021-11-17 2021-11-18 2021-11-19 2021-11-20 2021-11-21 2021-11-22 2021-11-23
## 1 1.135135 0.9047619 0.9210526 0.8857143 1.1612903 1.0833333 0.9743590
## 2 1.300960 1.0470149 0.9914514 1.0934243 0.8411612 0.6596271 1.5686397
## 3 1.629675 0.9472026 1.0508314 0.0000000 NaN NA 0.4268976
## 4 1.294366 0.9777780 1.1518466 0.3529514 0.8758260 3.7126434 0.6267139
## 5 1.278448 1.1230517 1.0504018 0.6477747 0.8588298 2.6325000 0.5263533
## 6 0.688027 1.3504902 0.7785844 0.0000000 NA 0.9797639 1.0240964
## 7 1.020548 0.9731544 1.0137931 1.0204082 0.7866667 1.1949153 1.0425532
## 2021-11-24 2021-11-25 2021-11-26 2021-11-27 2021-11-28 2021-11-29 2021-11-30
## 1 0.8947368 0.8235294 0.8571429 1.2083333 0.8275862 1.0416667 1.2800000
## 2 1.2395460 1.1048996 0.9945478 0.9406476 1.0045070 0.6166937 1.6002258
## 3 1.2582264 1.0857277 1.0706416 0.0000000 NaN NA 0.4478635
## 4 1.2218583 0.3501569 1.3492945 0.4932820 1.6348632 4.4172256 0.6250067
## 5 1.1849346 1.5866007 0.7324856 0.7150344 0.8873110 1.9901910 0.6114137
## 6 0.7865546 1.5641026 0.8196721 0.0000000 NA 0.8137755 0.6692790
## 7 0.9727891 1.0839161 0.9741935 1.0264901 0.9870968 1.0326797 0.9936709
## 2021-12-01 2021-12-02 2021-12-03 2021-12-04 2021-12-05 2021-12-06 2021-12-07
## 1 1.062500 0.7058824 1.5833333 0.7631579 1.2068966 1.2285714 0.9767442
## 2 1.181547 1.1152392 1.0121951 0.9771966 0.9027485 0.6325117 1.6580999
## 3 1.026801 1.3762339 0.9474483 0.0000000 NaN NaN NA
## 4 1.167371 1.0164213 1.1394490 0.4134424 0.8277497 3.3065601 0.6308429
## 5 1.327959 1.0332268 1.0782313 0.7771724 0.9697417 1.7233638 0.6617355
## 6 1.344262 0.9216028 1.0226843 0.0000000 NA 0.6755994 0.8371608
## 7 1.019108 0.9437500 1.0198675 1.0324675 0.9559748 1.0789474 0.9634146
## 2021-12-08 2021-12-09 2021-12-10 2021-12-11 2021-12-12 2021-12-13
## 1 1.095238 0.9782609 1.0666667 1.104166667 0.9622642 1.2549020
## 2 1.140008 0.6974256 1.6371045 1.026598341 0.9133349 0.6612534
## 3 0.000000 NA 0.6472437 -0.004855221 0.0000000 NA
## 4 1.321823 0.8181800 1.3123137 0.347575015 0.9188807 3.6450268
## 5 1.175175 1.2106758 0.6857411 1.981190150 0.6022786 1.7004872
## 6 1.269327 0.9724951 1.1656566 0.000000000 NA 1.0854962
## 7 1.031646 0.9754601 1.0251572 0.969325153 1.0506329 1.0180723
## 2021-12-14 2021-12-15 2021-12-16 2021-12-17 2021-12-18 2021-12-19 2021-12-20
## 1 1.0156250 1.353846 0.9659091 0.9411765 1.4500000 0.8965517 1.4038462
## 2 1.6266530 1.122187 1.1256576 1.0961922 0.9804997 0.8662009 0.6667901
## 3 0.5247982 1.038414 1.0648489 1.1542907 0.0000000 NaN NA
## 4 0.6137662 1.250488 0.9864750 1.3614414 0.4036663 1.1294786 2.7588431
## 5 0.7406034 1.332499 1.2174210 1.2807239 0.8272538 1.1581038 1.6410931
## 6 0.7201125 0.953125 1.3278689 0.8626543 0.0000000 NA 0.8154270
## 7 0.9881657 0.988024 1.0242424 0.9704142 1.0914634 0.9497207 1.0411765
## 2021-12-21 2021-12-22 2021-12-23 2021-12-24 2021-12-25 2021-12-26 2021-12-27
## 1 1.5205479 1.135135 1.1388889 1.1567944 0.9789157 1.1969231 1.347044
## 2 1.8995989 1.180067 1.2273578 1.1346866 1.0829611 0.4541588 1.237802
## 3 0.6251004 1.205086 1.2143702 0.0000000 NaN NaN NA
## 4 0.7369343 1.351049 1.1201057 0.9022513 0.3394300 2.1350973 2.878076
## 5 0.8201770 1.270982 1.3811656 1.1637551 0.8498482 0.9019474 1.147282
## 6 0.9172297 1.033149 0.9982175 1.1750000 0.0000000 NA 1.198639
## 7 1.0338983 1.010929 1.0108108 1.3262032 1.1250000 1.0609319 1.158784
## 2021-12-28 2021-12-29 2021-12-30 2021-12-31 2022-01-01 2022-01-02 2022-01-03
## 1 1.1488550 1.235880 1.0107527 1.0890957 1.0329670 1.2104019 1.7050781
## 2 2.5422903 1.251801 1.2957068 1.1358661 0.9792104 0.4328099 1.1128122
## 3 0.4644090 1.010926 1.6046844 0.0000000 NaN NaN NA
## 4 0.7008156 1.399919 1.1801500 0.8526602 0.3605551 1.5342649 3.8705767
## 5 1.1261998 2.052523 0.8114836 1.0235941 0.9124289 0.9126609 1.1619991
## 6 0.6799092 1.110184 0.9624060 0.8609375 0.0000000 NA 0.6921397
## 7 1.0699708 1.207084 1.2234763 1.3671587 1.1241565 1.1980792 1.1793587
## 2022-01-04 2022-01-05 2022-01-06 2022-01-07 2022-01-08 2022-01-09 2022-01-10
## 1 1.4805269 1.1779497 1.0403941 1.1284722 0.8581818 1.1277705 1.3809249
## 2 2.5110533 1.1068328 1.1604650 0.4935378 1.8240117 0.7879211 0.7543272
## 3 0.3159489 1.1647633 0.0000000 NA 0.0000000 NaN NA
## 4 0.7488063 0.8004165 1.2636977 1.0506689 0.4509899 1.2323575 2.8746003
## 5 1.2175706 0.8016805 1.0865620 1.0680760 0.6942778 0.9443420 2.0179899
## 6 1.0268139 1.0721966 0.9212034 0.9206843 0.0000000 NA 0.9257340
## 7 1.4401020 1.3410029 1.2226133 1.1486146 1.0924185 1.0579295 1.0512334
## 2022-01-11 2022-01-12 2022-01-13 2022-01-14 2022-01-15 2022-01-16 2022-01-17
## 1 0.9736291 1.1526225 1.0255502 1.0234588 0.9383440 1.0371142 1.0051123
## 2 1.8782761 0.8897419 0.9407355 1.0882667 0.9605066 0.8161515 0.5295589
## 3 0.4615074 1.3274222 0.8885471 1.0210290 0.0000000 NaN NA
## 4 0.5624097 1.1819366 0.9242353 1.0225500 0.4588515 1.1874708 1.4126732
## 5 0.5245453 1.0695672 0.9382869 1.3007000 0.4711951 0.9605263 2.4166575
## 6 0.9085821 1.2299795 1.0317195 1.2378641 0.0000000 NA 0.8489043
## 7 1.0750387 1.0088750 0.9954826 0.9847146 0.9718651 1.0034939 0.9942800
## 2022-01-18 2022-01-19 2022-01-20 2022-01-21 2022-01-22 2022-01-23 2022-01-24
## 1 1.0668483 1.0093649 0.9431511 0.8735468 0.9434889 0.9841580 1.0668137
## 2 2.7357142 0.8809546 0.9895455 0.9332965 0.9554687 0.8034906 0.5450743
## 3 0.2850118 1.6718287 0.9968722 0.8961428 0.0000000 NaN NA
## 4 1.6825547 0.8971123 0.7120035 1.1574628 0.3483729 1.2424572 2.5354201
## 5 0.4742880 1.0800268 1.0415634 0.9769666 0.6312584 0.5150910 2.5579933
## 6 1.2024457 1.3254237 1.1346974 1.2772352 0.0000000 NA 1.0227970
## 7 0.9544772 0.9756289 0.8847703 0.9726776 0.9634831 0.9656625 0.9218383
## 2022-01-25 2022-01-26 2022-01-27 2022-01-28 2022-01-29 2022-01-30 2022-01-31
## 1 0.9386110 0.9966968 1.0468405 0.9442803 0.8746089 0.9376438 1.1477242
## 2 2.7203281 0.8090800 0.9128349 0.9250641 0.9520600 0.7575658 0.5535587
## 3 0.3761132 1.1625739 0.9800454 0.9085783 0.0000000 NaN NA
## 4 0.5293387 1.5245697 0.6700876 1.2315927 0.2818371 1.1376847 2.7544305
## 5 1.4938549 0.2487747 4.2265691 0.5889325 0.5578358 0.8656126 2.5473598
## 6 1.3129018 0.7329416 1.4062361 1.0516313 0.0000000 NA 0.7778363
## 7 0.9283115 0.8639749 0.8856624 0.8929303 0.8823867 1.0123537 0.9691715
## 2022-02-01 2022-02-02 2022-02-03 2022-02-04 2022-02-05 2022-02-06 2022-02-07
## 1 0.9168844 1.0598291 0.9413490 0.9228972 0.8475387 1.0819781 1.1493865
## 2 2.3130954 0.8951060 0.9466406 0.8932682 0.9236075 0.8471006 0.5269878
## 3 0.4275847 1.1072130 0.8625177 0.0000000 NaN NaN NA
## 4 0.7803387 0.7892118 0.7744060 1.4649487 0.2818041 0.7702810 4.2107216
## 5 0.4916579 1.4338600 0.9142652 1.0065607 0.5287991 0.8496785 2.4949543
## 6 0.9631971 1.0246132 0.8364219 1.0713895 0.0000000 NA 0.6676096
## 7 0.8190855 1.0072816 0.9502008 0.8427726 0.9057172 1.0099668 1.0120614
## 2022-02-08 2022-02-09 2022-02-10 2022-02-11 2022-02-12 2022-02-13 2022-02-14
## 1 0.8887110 0.9495495 0.9063884 0.8803210 0.6841062 1.2375435 1.0426030
## 2 2.4621172 0.7973230 0.9329733 0.8855962 0.9220931 0.8412755 0.5497373
## 3 0.2239074 1.4336657 0.8443005 0.9236453 0.0000000 NaN NA
## 4 0.6572673 0.8470795 0.9110046 1.2227982 0.2630773 1.0285446 2.8815605
## 5 0.5702458 1.1976061 1.0108273 0.7016387 1.4078810 0.4078777 2.8445808
## 6 1.1744350 0.9837643 1.1531174 0.8865624 0.0000000 NA 0.7675439
## 7 0.8873239 0.9474969 1.0090206 0.8390805 0.9238965 1.0098847 0.9804241
## 2022-02-15 2022-02-16 2022-02-17 2022-02-18 2022-02-19 2022-02-20 2022-02-21
## 1 0.8899865 0.9046418 0.8750697 0.8769917 0.7245640 1.0160481 1.0384995
## 2 2.4681332 0.8429523 0.9697005 0.9249849 0.9436685 0.8327972 0.5801621
## 3 0.5003930 1.0793485 0.9219845 0.8948353 0.0000000 NaN NA
## 4 0.7013282 1.0017209 0.8792396 1.4394928 0.2300389 0.6571999 3.6721081
## 5 0.4639348 1.4078857 0.8871224 1.0001379 0.5485872 0.7947236 0.8909263
## 6 0.8892857 1.1582329 0.8519417 0.4916565 0.0000000 NA 1.0065445
## 7 0.9101498 0.9104205 0.8975904 1.0111857 0.9601770 1.0184332 0.9411765
## 2022-02-22 2022-02-23 NA
## 1 0.7994297 0.7455410 NA
## 2 2.4561755 0.8175000 NA
## 3 0.4549797 1.5280494 NA
## 4 1.1174843 0.9371236 NA
## 5 3.0330021 1.0776881 NA
## 6 0.7867360 0.7564738 NA
## 7 0.9471154 0.9263959 NA
# retrieve time series data
TS.data <- covid19.data("ts-ALL")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:31:34 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv
## Data retrieved on 2022-02-25 06:31:36 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv
## Data retrieved on 2022-02-25 06:31:38 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 269
## --------------------------------------------------------------------------------
# static and interactive plot
totals.plt(TS.data)
## Loading required package: plotly
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout

totals.plt(TS.data, c("Libya","Egypt","Saudia Arabia","Kuwait"), with.totals=TRUE,one.plt.per.page=FALSE)
## Warning in if (toupper(geo.loc0) != "ALL") {: the condition has length > 1 and
## only the first element will be used
## Warning in checkGeoLoc(total.cases, geo.loc0): Unrecognized region: Saudia
## Arabia will skip it!
## A line object has been specified, but lines is not in the mode
## Adding lines to the mode...
## A line object has been specified, but lines is not in the mode
## Adding lines to the mode...
## A line object has been specified, but lines is not in the mode
## Adding lines to the mode...

totals.plt(TS.data, c("Algeria","Morocco","Tunisia","Egypt"), with.totals=TRUE,one.plt.per.page=FALSE)
## Warning in if (toupper(geo.loc0) != "ALL") {: the condition has length > 1 and
## only the first element will be used
## A line object has been specified, but lines is not in the mode
## Adding lines to the mode...
## A line object has been specified, but lines is not in the mode
## Adding lines to the mode...
## A line object has been specified, but lines is not in the mode
## Adding lines to the mode...
## A line object has been specified, but lines is not in the mode
## Adding lines to the mode...

# retrieve aggregated data
data <- covid19.data("aggregated")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
# interactive map of aggregated cases -- with more spatial resolution
live.map(data)
## Warning: Ignoring 87 observations
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning: Ignoring 87 observations
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
# or
live.map()
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## ================================================================================
## A problem was detected when trying to retrieve the data for the package: https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv
## The URL or file was not found! Please contact the developer about this!
## simpleWarning in file(file, "rt"): cannot open URL 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/02-24-2022.csv': HTTP status was '404 Not Found'
## ================================================================================
## We will load the preserved data instead, please notice that this data is not the latest one but instead an 'image' from previous records.
## Data being read from *local* repo in the 'covid19.analytics' package
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from C:/Users/DR.dardery/Documents/R/win-library/4.1/covid19.analytics/extdata/latest.RDS
## Warning: Ignoring 87 observations
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning: Ignoring 87 observations
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
# interactive map of the time series data of the confirmed cases with less spatial resolution, ie. aggregated by country
live.map(covid19.data("ts-confirmed"))
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:32:06 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
## Warning: Ignoring 2 observations
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning: Ignoring 2 observations
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Spectral is 11
## Returning the palette you asked for with that many colors
data <- covid19.data("ts-confirmed")
## Data being read from JHU/CCSE repository
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Reading data from https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv
## Data retrieved on 2022-02-25 06:32:15 || Range of dates on data: 2020-01-22--2022-02-23 | Nbr of records: 284
## --------------------------------------------------------------------------------
# run a SIR model for a given geographical location
generate.SIR.model(data,"Hubei", t0=1,t1=15)
## ################################################################################
## This is an experimental feature, being currently under active development!
## Please check the development version of the package for the latest updates on it
## ################################################################################
## Processing... HUBEI
## [1] 444 444 549 761 1058 1423 3554 3554 4903 5806 7153 11177
## [13] 13522 16678 19665
## ------------------------ Parameters used to create model ------------------------
## Region: HUBEI
## Time interval to consider: t0=1 - t1=15 ; tfinal=90
## t0: 2020-01-23 -- t1: 2020-02-06
## Number of days considered for initial guess: 15
## Fatality rate: 0.02
## Population of the region: 1.4e+09
## --------------------------------------------------------------------------------
## Loading required package: deSolve
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
## beta gamma
## 0.6384639 0.3615361
## R0 = 1.76597526188731
## Max nbr of infected: 156344176.33 ( 11.17 %)
## Max nbr of casualties, assuming 2% fatality rate: 3126883.53
## Max reached at day : 53 ==> 2020-03-16
## ================================================================================
## Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE): 1 y value
## <= 0 omitted from logarithmic plot

## $Infected
## [1] 444 444 549 761 1058 1423 3554 3554 4903 5806 7153 11177
## [13] 13522 16678 19665
##
## $model
## time S I R
## 1 1 1399999556 4.440000e+02 0.000000e+00
## 2 2 1399999229 5.856674e+02 1.849505e+02
## 3 3 1399998799 7.725366e+02 4.289133e+02
## 4 4 1399998230 1.019030e+03 7.507177e+02
## 5 5 1399997481 1.344172e+03 1.175200e+03
## 6 6 1399996492 1.773056e+03 1.735122e+03
## 7 7 1399995188 2.338783e+03 2.473697e+03
## 8 8 1399993467 3.085013e+03 3.447928e+03
## 9 9 1399991198 4.069338e+03 4.733006e+03
## 10 10 1399988204 5.367722e+03 6.428108e+03
## 11 11 1399984256 7.080364e+03 8.664056e+03
## 12 12 1399979047 9.339428e+03 1.161341e+04
## 13 13 1399972177 1.231924e+04 1.550378e+04
## 14 14 1399963115 1.624971e+04 2.063539e+04
## 15 15 1399951162 2.143411e+04 2.740423e+04
## 16 16 1399935395 2.827240e+04 3.633262e+04
## 17 17 1399914599 3.729204e+04 4.810945e+04
## 18 18 1399887168 4.918865e+04 6.364331e+04
## 19 19 1399850988 6.487949e+04 8.413251e+04
## 20 20 1399803269 8.557398e+04 1.111574e+05
## 21 21 1399740332 1.128665e+05 1.468019e+05
## 22 22 1399657328 1.488587e+05 1.938138e+05
## 23 23 1399547864 1.963198e+05 2.558162e+05
## 24 24 1399403517 2.588983e+05 3.375846e+05
## 25 25 1399213188 3.413983e+05 4.454132e+05
## 26 26 1398962262 4.501426e+05 5.875953e+05
## 27 27 1398631500 5.934466e+05 7.750536e+05
## 28 28 1398195596 7.822358e+05 1.022168e+06
## 29 29 1397621294 1.030847e+06 1.347859e+06
## 30 30 1396864941 1.358063e+06 1.776996e+06
## 31 31 1395869326 1.788435e+06 2.342239e+06
## 32 32 1394559624 2.353962e+06 3.086414e+06
## 33 33 1392838241 3.096189e+06 4.065571e+06
## 34 34 1390578343 4.068773e+06 5.352884e+06
## 35 35 1387615890 5.340542e+06 7.043568e+06
## 36 36 1383740046 6.998967e+06 9.260987e+06
## 37 37 1378682122 9.153829e+06 1.216405e+07
## 38 38 1372103515 1.194058e+07 1.595590e+07
## 39 39 1363583873 1.552246e+07 2.089366e+07
## 40 40 1352611807 2.008977e+07 2.729843e+07
## 41 41 1338582022 2.585378e+07 3.556420e+07
## 42 42 1320804880 3.303203e+07 4.616309e+07
## 43 43 1298536002 4.182090e+07 5.964309e+07
## 44 44 1271034744 5.235216e+07 7.661309e+07
## 45 45 1237657551 6.463330e+07 9.770915e+07
## 46 46 1197984811 7.847806e+07 1.235371e+08
## 47 47 1151965271 9.344396e+07 1.545908e+08
## 48 48 1100044035 1.088036e+08 1.911524e+08
## 49 49 1043226901 1.235792e+08 2.331939e+08
## 50 50 983038577 1.366571e+08 2.803043e+08
## 51 51 921361541 1.469663e+08 3.316721e+08
## 52 52 860188039 1.536758e+08 3.861361e+08
## 53 53 801353923 1.563442e+08 4.423019e+08
## 54 54 746328839 1.549751e+08 4.986960e+08
## 55 55 696107910 1.499711e+08 5.539210e+08
## 56 56 651207460 1.420129e+08 6.067796e+08
## 57 57 611736122 1.319149e+08 6.563490e+08
## 58 58 577501208 1.204941e+08 7.020047e+08
## 59 59 548117296 1.084789e+08 7.434038e+08
## 60 60 523097613 9.645958e+07 7.804428e+08
## 61 61 501921095 8.487493e+07 8.132040e+08
## 62 62 484076488 7.402144e+07 8.419021e+08
## 63 63 469088002 6.407545e+07 8.668365e+08
## 64 64 456527797 5.511940e+07 8.883528e+08
## 65 65 446019988 4.716705e+07 9.068130e+08
## 66 66 437239591 4.018535e+07 9.225751e+08
## 67 67 429908740 3.411188e+07 9.359794e+08
## 68 68 423791696 2.886792e+07 9.473404e+08
## 69 69 418689550 2.436786e+07 9.569426e+08
## 70 70 414435098 2.052556e+07 9.650393e+08
## 71 71 410888182 1.725847e+07 9.718533e+08
## 72 72 407931519 1.448997e+07 9.775785e+08
## 73 73 405467099 1.215058e+07 9.823823e+08
## 74 74 403413091 1.017842e+07 9.864085e+08
## 75 75 401701212 8.519066e+06 9.897797e+08
## 76 76 400274509 7.125142e+06 9.926003e+08
## 77 77 399085495 5.955753e+06 9.949588e+08
## 78 78 398094580 4.975819e+06 9.969296e+08
## 79 79 397268763 4.155402e+06 9.985758e+08
## 80 80 396580538 3.469061e+06 9.999504e+08
## 81 81 396006982 2.895252e+06 1.001098e+09
## 82 82 395528989 2.415777e+06 1.002055e+09
## 83 83 395130636 2.015305e+06 1.002854e+09
## 84 84 394798655 1.680941e+06 1.003520e+09
## 85 85 394521985 1.401858e+06 1.004076e+09
## 86 86 394291412 1.168976e+06 1.004540e+09
## 87 87 394099255 9.746878e+05 1.004926e+09
## 88 88 393939113 8.126258e+05 1.005248e+09
## 89 89 393805652 6.774646e+05 1.005517e+09
## 90 90 393694427 5.647529e+05 1.005741e+09
##
## $params
## $params$beta
## beta
## 0.6384639
##
## $params$gamma
## gamma
## 0.3615361
##
## $params$R0
## R0
## 1.765975
generate.SIR.model(data,"Libya",tot.population=6800000)
## ################################################################################
## This is an experimental feature, being currently under active development!
## Please check the development version of the package for the latest updates on it
## ################################################################################
## Processing... LIBYA
## [1] 0 0 0 0 0 0 0 0 0 0
## [11] 0 0 0 0 0 0 0 0 0 0
## [21] 0 0 0 0 0 0 0 0 0 0
## [31] 0 0 0 0 0 0 0 0 0 0
## [41] 0 0 0 0 0 0 0 0 0 0
## [51] 0 0 0 0 0 0 0 0 0 0
## [61] 0 0 1 1 1 1 3 8 8 10
## [71] 10 11 11 18 18 19 20 21 24 24
## [81] 24 25 26 35 48 49 49 49 51 51
## [91] 51 59 60 61 61 61 61 61 61 61
## [101] 63 63 63 63 63 64 64 64 64 64
## [111] 64 64 64 64 64 65 65 65 68 69
## [121] 71 72 75 75 75 77 99 105 118 130
## [131] 156 168 182 196 209 239 256 256 332 359
## [141] 378 393 409 418 454 467 484 500 510 520
## [151] 544 571 595 639 670 698 713 727 762 802
## [161] 824 874 891 918 989 1046 1117 1182 1268 1342
## [171] 1342 1389 1433 1512 1563 1589 1652 1704 1791 1866
## [181] 1980 2088 2176 2314 2424 2547 2669 2827 3017 3222
## [191] 3438 3621 3691 3837 4063 4224 4475 4879 5079 5232
## [201] 5451 5929 6302 6611 7050 7327 7738 8172 8579 9068
## [211] 9463 9707 10121 10437 10437 11009 11281 11834 12274 12629
## [221] 12958 13423 13966 14624 15156 15773 16445 17094 17749 18834
## [231] 19583 20462 20939 21908 22348 22781 23515 24144 24936 25822
## [241] 26438 27234 27949 28796 29446 30097 30632 31290 31828 32364
## [251] 33213 34014 34525 35208 35717 36087 36809 37437 38468 39513
## [261] 40292 41368 41686 42712 43821 44985 45821 46676 47845 47845
## [271] 48790 49949 50906 51625 52620 53384 54374 56013 57223 57975
## [281] 58874 59656 60628 61095 62045 62907 63688 64587 65440 66444
## [291] 67039 68117 69040 70010 70885 71804 72628 72628 73602 74324
## [301] 74936 75465 76006 76808 76808 77823 78473 79180 79797 80407
## [311] 81273 81273 82430 82809 83417 84087 84849 85529 85529 86580
## [321] 87097 87986 88522 89183 89880 89880 90779 91357 92017 92577
## [331] 93283 93772 93772 94560 95200 95706 96346 97192 97653 97653
## [341] 98381 98913 99350 99935 100277 100744 100744 101414 101975 102456
## [351] 102880 103515 104002 104002 104745 105378 106030 106670 107434 108017
## [361] 108017 109088 109869 110465 111124 111746 112540 112540 113688 114429
## [371] 115299 116064 116779 117650 117650 118631 119402 120434 121243 122013
## [381] 122894 122894 124026 124882 125561 126028 126361 126881 126881 127354
## [391] 127705 128036 128348 128740 129325 129325 129797 130212 130701 131262
## [401] 131833 132458 132458 133338 134127 134967 135585 136587 137482 137482
## [411] 138640 139658 140688 141598 142671 143643 143643 144993 146080 147121
## [421] 148175 149207 150341 150341 151605 152510 153411 154320 155232 156116
## [431] 156116 156849 157545 158251 158957 159980 161088 161088 162294 163442
## [441] 164318 165287 166156 166888 166888 167825 168676 169504 170045 170558
## [451] 171131 171131 171880 172464 173089 173683 174216 174752 174752 175286
## [461] 175753 176254 176701 177072 177508 177508 177871 178335 178672 178927
## [471] 179193 179697 179697 179970 180226 180692 180945 181179 181179 181179
## [481] 181410 181714 182012 182350 182649 182899 182899 183311 183592 183932
## [491] 184151 184472 184815 184815 185181 185776 186072 186323 186567 186953
## [501] 186953 187281 187685 187928 188157 188386 188762 188762 189059 189284
## [511] 189555 189888 190146 190426 190426 190748 191038 191253 191476 191660
## [521] 192129 192129 192470 192786 193238 193474 193905 194323 194323 195042
## [531] 195824 196894 198142 199526 201236 201236 204090 206769 209409 212013
## [541] 214568 217434 217434 221495 224920 226701 226701 227433 229604 229604
## [551] 233449 236961 240309 243470 246200 249114 249114 253436 256328 258467
## [561] 260951 262948 264827 264827 267846 269847 271981 274453 276739 279099
## [571] 279099 281930 284618 286894 289219 291168 293532 293532 295254 296879
## [581] 298773 300455 302177 303790 303790 305793 307471 308972 310637 312116
## [591] 313504 313504 315418 316797 318069 319568 321370 322487 322487 323930
## [601] 325221 326370 327803 328856 329824 329824 330945 332026 333064 334049
## [611] 335055 335991 335991 336980 337890 338576 339269 340084 341091 341091
## [621] 341839 342558 343240 343932 344847 345451 345451 346176 346813 347364
## [631] 348088 348647 349210 349210 349990 350628 351224 351756 352192 352881
## [641] 352881 353626 354215 354866 355490 356086 356655 356655 357338 357964
## [651] 358463 359019 359667 360266 360266 360914 361709 362318 362915 363483
## [661] 364076 364076 364675 365237 365830 366238 366789 367218 367218 367811
## [671] 368392 368987 369455 370187 370787 370787 371571 372209 372636 373210
## [681] 373739 374280 374280 374989 375468 375869 376378 376873 377450 377450
## [691] 378105 378816 379328 379816 380464 381023 381023 381749 382341 382884
## [701] 383445 384005 384663 384663 385398 386279 386878 387543 388183 388734
## [711] 388734 389650 390284 390935 391633 392276 392868 392868 393447 393983
## [721] 394470 395069 395687 396452 396452 397319 398055 398940 400113 401444
## [731] 403144 403144 405425 407758 410821 413066 416223 419543 419543 425237
## [741] 429666 433932 438303 441959 445876 445876 450118 452950 456276 459548
## [751] 463321 466666 466666 470314 473114 475604 478488 480945 482153 482153
## [761] 484445 486752 488567 489940
## [1] 84
## [1] 35 48 49 49 49 51 51 51 59 60 61 61 61 61 61 61 61 63 63 63 63 63 64 64 64
## [26] 64
## ------------------------ Parameters used to create model ------------------------
## Region: LIBYA
## Time interval to consider: t0=84 - t1= ; tfinal=90
## t0: 2020-04-15 -- t1:
## Number of days considered for initial guess: 26
## Fatality rate: 0.02
## Population of the region: 6800000
## --------------------------------------------------------------------------------
## [1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"
## beta gamma
## 1.0000000 0.9690821
## R0 = 1.03190432034675
## Max nbr of infected: 514.58 ( 0.01 %)
## Max nbr of casualties, assuming 2% fatality rate: 10.29
## Max reached at day : 90 ==> 2020-07-14
## ================================================================================
## Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE): 1 y value
## <= 0 omitted from logarithmic plot

## $Infected
## [1] 35 48 49 49 49 51 51 51 59 60 61 61 61 61 61 61 61 63 63 63 63 63 64 64 64
## [26] 64
##
## $model
## time S I R
## 1 1 6799965 35.00000 0.00000
## 2 2 6799929 36.09875 34.44753
## 3 3 6799893 37.23179 69.97638
## 4 4 6799855 38.40019 106.62028
## 5 5 6799816 39.60503 144.41402
## 6 6 6799776 40.84744 183.39346
## 7 7 6799734 42.12856 223.59557
## 8 8 6799691 43.44960 265.05843
## 9 9 6799647 44.81178 307.82131
## 10 10 6799602 46.21635 351.92470
## 11 11 6799555 47.66463 397.41031
## 12 12 6799507 49.15795 444.32113
## 13 13 6799457 50.69768 492.70148
## 14 14 6799405 52.28526 542.59702
## 15 15 6799352 53.92213 594.05481
## 16 16 6799297 55.60981 647.12337
## 17 17 6799241 57.34984 701.85266
## 18 18 6799183 59.14381 758.29420
## 19 19 6799123 60.99338 816.50104
## 20 20 6799061 62.90022 876.52788
## 21 21 6798997 64.86607 938.43105
## 22 22 6798931 66.89273 1002.26862
## 23 23 6798863 68.98203 1068.10038
## 24 24 6798793 71.13586 1135.98796
## 25 25 6798721 73.35617 1205.99483
## 26 26 6798646 75.64497 1278.18638
## 27 27 6798569 78.00432 1352.62999
## 28 28 6798490 80.43633 1429.39503
## 29 29 6798409 82.94318 1508.55297
## 30 30 6798324 85.52712 1590.17742
## 31 31 6798237 88.19044 1674.34421
## 32 32 6798148 90.93553 1761.13139
## 33 33 6798056 93.76480 1850.61938
## 34 34 6797960 96.68077 1942.89098
## 35 35 6797862 99.68601 2038.03143
## 36 36 6797761 102.78316 2136.12852
## 37 37 6797657 105.97492 2237.27263
## 38 38 6797549 109.26411 2341.55679
## 39 39 6797438 112.65357 2449.07680
## 40 40 6797324 116.14625 2559.93124
## 41 41 6797206 119.74517 2674.22161
## 42 42 6797084 123.45343 2792.05235
## 43 43 6796959 127.27422 2913.53098
## 44 44 6796830 131.21081 3038.76810
## 45 45 6796697 135.26655 3167.87756
## 46 46 6796560 139.44488 3300.97648
## 47 47 6796418 143.74932 3438.18536
## 48 48 6796272 148.18351 3579.62818
## 49 49 6796122 152.75115 3725.43245
## 50 50 6795967 157.45605 3875.72934
## 51 51 6795807 162.30211 4030.65374
## 52 52 6795642 167.29333 4190.34437
## 53 53 6795473 172.43380 4354.94389
## 54 54 6795298 177.72772 4524.59896
## 55 55 6795117 183.17939 4699.46035
## 56 56 6794932 188.79319 4879.68306
## 57 57 6794740 194.57364 5065.42639
## 58 58 6794543 200.52535 5256.85405
## 59 59 6794339 206.65301 5454.13427
## 60 60 6794130 212.96146 5657.43992
## 61 61 6793914 219.45562 5866.94855
## 62 62 6793691 226.14053 6082.84256
## 63 63 6793462 233.02132 6305.30929
## 64 64 6793225 240.10325 6534.54110
## 65 65 6792982 247.39169 6770.73551
## 66 66 6792731 254.89210 7014.09528
## 67 67 6792473 262.61008 7264.82853
## 68 68 6792206 270.55132 7523.14885
## 69 69 6791932 278.72162 7789.27540
## 70 70 6791649 287.12690 8063.43302
## 71 71 6791358 295.77317 8345.85232
## 72 72 6791059 304.66658 8636.76982
## 73 73 6790750 313.81335 8936.42802
## 74 74 6790432 323.21983 9245.07551
## 75 75 6790104 332.89247 9562.96710
## 76 76 6789767 342.83781 9890.36387
## 77 77 6789419 353.06250 10227.53330
## 78 78 6789062 363.57327 10574.74937
## 79 79 6788693 374.37697 10932.29261
## 80 80 6788314 385.48051 11300.45025
## 81 81 6787924 396.89090 11679.51625
## 82 82 6787522 408.61524 12069.79140
## 83 83 6787108 420.66069 12471.58341
## 84 84 6786682 433.03449 12885.20696
## 85 85 6786243 445.74392 13310.98376
## 86 86 6785792 458.79636 13749.24266
## 87 87 6785327 472.19921 14200.31963
## 88 88 6784849 485.95992 14664.55786
## 89 89 6784358 500.08598 15142.30777
## 90 90 6783851 514.58490 15633.92705
##
## $params
## $params$beta
## beta
## 1
##
## $params$gamma
## gamma
## 0.9690821
##
## $params$R0
## R0
## 1.031904
generate.SIR.model(data,"Saudi Arabia", tot.population=33700000)
## ################################################################################
## This is an experimental feature, being currently under active development!
## Please check the development version of the package for the latest updates on it
## ################################################################################
## Processing... SAUDI ARABIA
## [1] 0 0 0 0 0 0 0 0 0 0
## [11] 0 0 0 0 0 0 0 0 0 0
## [21] 0 0 0 0 0 0 0 0 0 0
## [31] 0 0 0 0 0 0 0 0 0 0
## [41] 1 1 1 5 5 5 11 15 20 21
## [51] 45 86 103 103 118 171 171 274 344 392
## [61] 511 562 767 900 1012 1104 1203 1299 1453 1563
## [71] 1720 1885 2039 2179 2402 2605 2795 2932 3287 3651
## [81] 4033 4462 4934 5369 5862 6380 7142 8274 9362 10484
## [91] 11631 12772 13930 15102 16299 17522 18811 20077 21402 22753
## [101] 24097 25459 27011 28656 30251 31938 33731 35432 37136 39048
## [111] 41014 42925 44830 46869 49176 52016 54752 57345 59854 62545
## [121] 65077 67719 70161 72560 74795 76726 78541 80185 81766 83384
## [131] 85261 87142 89011 91182 93157 95748 98869 101914 105283 108571
## [141] 112288 116021 119942 123308 127541 132048 136315 141234 145991 150292
## [151] 154233 157612 161005 164144 167267 170639 174577 178504 182493 186436
## [161] 190823 194225 197608 201801 205929 209509 213716 217108 220144 223327
## [171] 226486 229480 232259 235111 237803 240474 243238 245851 248416 250920
## [181] 253349 255825 258156 260394 262772 264973 266941 268934 270831 272590
## [191] 274219 275905 277478 278835 280093 281456 282824 284226 285793 287262
## [201] 288690 289947 291468 293037 294519 295902 297315 298542 299914 301323
## [211] 302686 303973 305186 306370 307479 308654 309768 310836 311855 312924
## [221] 313911 314821 315772 316670 317486 318319 319141 319932 320688 321456
## [231] 322237 323012 323720 324407 325050 325651 326258 326930 327551 328144
## [241] 328720 329271 329754 330246 330798 331359 331857 332329 332790 333193
## [251] 333648 334187 334605 335097 335578 335997 336387 336766 337243 337711
## [261] 338132 338539 338944 339267 339615 340089 340590 341062 341495 341854
## [271] 342202 342583 342968 343373 343774 344157 344552 344875 345232 345631
## [281] 346047 346482 346880 347282 347656 348037 348510 348936 349386 349822
## [291] 350229 350592 350984 351455 351849 352160 352601 352950 353255 353556
## [301] 353918 354208 354527 354813 355034 355258 355489 355741 356067 356389
## [311] 356691 356911 357128 357360 357623 357872 358102 358336 358526 358713
## [321] 358922 359115 359274 359415 359583 359749 359888 360013 360155 360335
## [331] 360516 360690 360848 361010 361178 361359 361536 361725 361903 362066
## [341] 362220 362339 362488 362601 362741 362878 362979 363061 363155 363259
## [351] 363377 363485 363582 363692 363809 363949 364096 364271 364440 364613
## [361] 364753 364929 365099 365325 365563 365775 365988 366185 366371 366584
## [371] 366807 367023 367276 367543 367813 368074 368329 368639 368945 369248
## [381] 369575 369961 370278 370634 370987 371356 371720 372073 372410 372732
## [391] 373046 373368 373702 374029 374366 374691 375006 375333 375668 376021
## [401] 376377 376723 377061 377383 377700 378002 378333 378708 379092 379474
## [411] 379831 380182 380572 380958 381348 381708 382059 382407 382752 383106
## [421] 383499 383880 384271 384653 385020 385424 385834 386300 386782 387292
## [431] 387794 388325 388866 389422 390007 390597 391325 392009 392682 393377
## [441] 394169 394952 395854 396758 397636 398435 399277 400228 401157 402142
## [451] 403106 404054 404970 405940 407010 408038 409093 410191 411263 412216
## [461] 413174 414219 415281 416307 417363 418411 419348 420301 421300 422316
## [471] 423406 424445 425442 426384 427370 428369 429389 430505 431432 432269
## [481] 433094 433980 435027 436239 437569 438705 439847 440914 442071 443460
## [491] 444780 445963 447178 448284 449191 450436 451687 452956 454217 455418
## [501] 456562 457546 458707 459968 461242 461242 463703 464780 465797 466906
## [511] 468175 469414 470723 471959 473112 474191 475403 476882 478135 479390
## [521] 480702 482003 483221 484539 486106 487592 489126 490464 491612 492785
## [531] 494032 495309 496516 497773 498906 500083 501195 502439 503734 504960
## [541] 506125 507423 508521 509576 510869 512142 513284 514446 515693 516949
## [551] 518143 519395 520774 522108 522108 522108 525730 526814 526814 526814
## [561] 526814 526814 531935 531935 531935 531935 531935 531935 531935 537374
## [571] 537374 537374 539129 539129 539129 540244 540244 541201 541201 541994
## [581] 541994 541994 541994 543318 543318 543318 543318 543318 543318 543318
## [591] 543318 543318 545243 545243 545505 545505 545727 545829 545829 545829
## [601] 545829 545829 545829 546336 546411 546411 546411 546612 546681 546735
## [611] 546735 546735 546882 546926 546985 547035 547035 547134 547134 547134
## [621] 547134 547134 547357 547402 547449 547497 547532 547591 547649 547704
## [631] 547761 547797 547845 547890 547931 547969 548018 548065 548111 548162
## [641] 548205 548252 548303 548368 548423 548474 548530 548571 548617 548666
## [651] 548711 548760 548805 548848 548890 548930 548973 549022 549060 549103
## [661] 549148 549192 549222 549260 549297 549339 549377 549412 549443 549479
## [671] 549518 549556 549590 549618 549642 549671 549695 549720 549752 549786
## [681] 549810 549848 549877 549912 549955 549997 550043 550088 550136 550189
## [691] 550240 550304 550369 550457 550542 550622 550738 550842 550988 551210
## [701] 551462 551749 552081 552406 552795 553319 553921 554665 555417 556236
## [711] 557082 558106 559852 562437 565482 568650 572225 575293 578753 583531
## [721] 588183 593545 599044 604672 609953 615430 620935 626808 632736 638327
## [731] 643211 647819 652354 657192 661733 666259 670997 675471 679384 683053
## [741] 687264 691125 695217 699069 702624 705637 708897 712644 715974 719136
## [751] 722002 724525 726251 728387 730614 732596 734389 735958 737334 738331
## [761] 739344 740396 741237 741864
## [1] 50
## [1] 21 45 86 103 103 118 171 171 274 344 392 511 562 767 900
## [16] 1012 1104 1203 1299 1453 1563 1720 1885 2039 2179 2402
## ------------------------ Parameters used to create model ------------------------
## Region: SAUDI ARABIA
## Time interval to consider: t0=50 - t1= ; tfinal=90
## t0: 2020-03-12 -- t1:
## Number of days considered for initial guess: 26
## Fatality rate: 0.02
## Population of the region: 33700000
## --------------------------------------------------------------------------------
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
## beta gamma
## 0.5994712 0.4005289
## R0 = 1.49669913525661
## Max nbr of infected: 2103442.7 ( 6.24 %)
## Max nbr of casualties, assuming 2% fatality rate: 42068.85
## Max reached at day : 67 ==> 2020-05-18
## ================================================================================
## Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE): 1 y value
## <= 0 omitted from logarithmic plot

## $Infected
## [1] 21 45 86 103 103 118 171 171 274 344 392 511 562 767 900
## [16] 1012 1104 1203 1299 1453 1563 1720 1885 2039 2179 2402
##
## $model
## time S I R
## 1 1 33699979 2.100000e+01 0.000000e+00
## 2 2 33699965 2.562233e+01 9.306122e+00
## 3 3 33699948 3.126208e+01 2.066063e+01
## 4 4 33699927 3.814319e+01 3.451437e+01
## 5 5 33699902 4.653888e+01 5.141747e+01
## 6 6 33699871 5.678253e+01 7.204114e+01
## 7 7 33699834 6.928085e+01 9.720422e+01
## 8 8 33699788 8.453008e+01 1.279059e+02
## 9 9 33699731 1.031357e+02 1.653652e+02
## 10 10 33699663 1.258364e+02 2.110696e+02
## 11 11 33699580 1.535335e+02 2.668337e+02
## 12 12 33699478 1.873264e+02 3.348716e+02
## 13 13 33699354 2.285568e+02 4.178847e+02
## 14 14 33699202 2.788612e+02 5.191688e+02
## 15 15 33699017 3.402365e+02 6.427449e+02
## 16 16 33698791 4.151185e+02 7.935189e+02
## 17 17 33698516 5.064789e+02 9.774761e+02
## 18 18 33698180 6.179427e+02 1.201918e+03
## 19 19 33697770 7.539321e+02 1.475754e+03
## 20 20 33697270 9.198410e+02 1.809851e+03
## 21 21 33696660 1.122248e+03 2.217467e+03
## 22 22 33695916 1.369178e+03 2.714774e+03
## 23 23 33695008 1.670416e+03 3.321500e+03
## 24 24 33693900 2.037894e+03 4.061707e+03
## 25 25 33692549 2.486160e+03 4.964743e+03
## 26 26 33690901 3.032948e+03 6.066402e+03
## 27 27 33688890 3.699872e+03 7.410329e+03
## 28 28 33686437 4.513270e+03 9.049745e+03
## 29 29 33683445 5.505224e+03 1.104953e+04
## 30 30 33679796 6.714800e+03 1.348877e+04
## 31 31 33675347 8.189549e+03 1.646383e+04
## 32 32 33669921 9.987317e+03 2.009214e+04
## 33 33 33663305 1.217843e+04 2.451670e+04
## 34 34 33655240 1.484832e+04 2.991161e+04
## 35 35 33645411 1.810066e+04 3.648874e+04
## 36 36 33633433 2.206112e+04 4.450572e+04
## 37 37 33618843 2.688180e+04 5.427568e+04
## 38 38 33601075 3.274648e+04 6.617882e+04
## 39 39 33579447 3.987669e+04 8.067627e+04
## 40 40 33553135 4.853880e+04 9.832665e+04
## 41 41 33521142 5.905197e+04 1.198055e+05
## 42 42 33482275 7.179711e+04 1.459284e+05
## 43 43 33435096 8.722643e+04 1.776772e+05
## 44 44 33377896 1.058735e+05 2.162310e+05
## 45 45 33308637 1.283628e+05 2.630005e+05
## 46 46 33224916 1.554183e+05 3.196662e+05
## 47 47 33123913 1.878682e+05 3.882193e+05
## 48 48 33002351 2.266455e+05 4.710038e+05
## 49 49 32856464 2.727787e+05 5.707571e+05
## 50 50 32681986 3.273702e+05 6.906443e+05
## 51 51 32474163 3.915564e+05 8.342805e+05
## 52 52 32227824 4.664432e+05 1.005733e+06
## 53 53 31937500 5.530110e+05 1.209489e+06
## 54 54 31597630 6.519857e+05 1.450384e+06
## 55 55 31202859 7.636742e+05 1.733467e+06
## 56 56 30748438 8.877706e+05 2.063791e+06
## 57 57 30230714 1.023152e+06 2.446133e+06
## 58 58 29647684 1.167693e+06 2.884623e+06
## 59 59 28999548 1.318136e+06 3.382316e+06
## 60 60 28289185 1.470082e+06 3.940733e+06
## 61 61 27522453 1.618126e+06 4.559421e+06
## 62 62 26708203 1.756183e+06 5.235615e+06
## 63 63 25857975 1.877972e+06 5.964053e+06
## 64 64 24985353 1.977627e+06 6.737020e+06
## 65 65 24105055 2.050307e+06 7.544638e+06
## 66 66 23231896 2.092720e+06 8.375384e+06
## 67 67 22379772 2.103443e+06 9.216785e+06
## 68 68 21560814 2.082996e+06 1.005619e+07
## 69 69 20784812 2.033668e+06 1.088152e+07
## 70 70 20058949 1.959145e+06 1.168191e+07
## 71 71 19387804 1.864038e+06 1.244816e+07
## 72 72 18773582 1.753385e+06 1.317303e+07
## 73 73 18216474 1.632208e+06 1.385132e+07
## 74 74 17715079 1.505172e+06 1.447975e+07
## 75 75 17266829 1.376356e+06 1.505682e+07
## 76 76 16868367 1.249128e+06 1.558251e+07
## 77 77 16515873 1.126120e+06 1.605801e+07
## 78 78 16205320 1.009262e+06 1.648542e+07
## 79 79 15932662 8.998565e+05 1.686748e+07
## 80 80 15693972 7.986744e+05 1.720735e+07
## 81 81 15485530 7.060597e+05 1.750841e+07
## 82 82 15303879 6.220259e+05 1.777410e+07
## 83 83 15145852 5.463430e+05 1.800780e+07
## 84 84 15008579 4.786118e+05 1.821281e+07
## 85 85 14889482 4.183239e+05 1.839219e+07
## 86 86 14786262 3.649091e+05 1.854883e+07
## 87 87 14696884 3.177708e+05 1.868535e+07
## 88 88 14619548 2.763123e+05 1.880414e+07
## 89 89 14552676 2.399554e+05 1.890737e+07
## 90 90 14494883 2.081518e+05 1.899697e+07
##
## $params
## $params$beta
## beta
## 0.5994712
##
## $params$gamma
## gamma
## 0.4005289
##
## $params$R0
## R0
## 1.496699
generate.SIR.model(data,"Egypt",tot.population=101463702)
## ################################################################################
## This is an experimental feature, being currently under active development!
## Please check the development version of the package for the latest updates on it
## ################################################################################
## Processing... EGYPT
## [1] 0 0 0 0 0 0 0 0 0 0
## [11] 0 0 0 0 0 0 0 0 0 0
## [21] 0 0 0 1 1 1 1 1 1 1
## [31] 1 1 1 1 1 1 1 1 1 2
## [41] 2 2 2 3 15 15 49 55 59 60
## [51] 67 80 109 110 150 196 196 256 285 294
## [61] 327 366 402 456 495 536 576 609 656 710
## [71] 779 865 985 1070 1173 1322 1450 1560 1699 1794
## [81] 1939 2065 2190 2350 2505 2673 2844 3032 3144 3333
## [91] 3490 3659 3891 4092 4319 4534 4782 5042 5268 5537
## [101] 5895 6193 6465 6813 7201 7588 7981 8476 8964 9400
## [111] 9746 10093 10431 10829 11228 11719 12229 12764 13484 14229
## [121] 15003 15786 16513 17265 17967 18756 19666 20793 22082 23449
## [131] 24985 26384 27536 28615 29767 31115 32612 34079 35444 36829
## [141] 38284 39726 41303 42980 44598 46289 47856 49219 50437 52211
## [151] 53758 55233 56809 58141 59561 61130 62755 63923 65188 66754
## [161] 68311 69814 71299 72711 74035 75253 76222 77279 78304 79254
## [171] 80235 81158 82070 83001 83930 84843 85771 86474 87172 87775
## [181] 88402 89078 89745 90413 91072 91583 92062 92482 92947 93356
## [191] 93757 94078 94316 94483 94640 94752 94875 95006 95147 95314
## [201] 95492 95666 95834 95963 96108 96220 96336 96475 96590 96753
## [211] 96914 97025 97148 97237 97340 97478 97619 97825 98062 98285
## [221] 98497 98727 98939 99115 99280 99425 99582 99712 99863 100041
## [231] 100228 100403 100557 100708 100856 101009 101177 101340 101500 101641
## [241] 101772 101900 102015 102141 102254 102375 102513 102625 102736 102840
## [251] 102955 103079 103198 103317 103466 103575 103683 103781 103902 104035
## [261] 104156 104262 104387 104516 104648 104787 104915 105033 105159 105297
## [271] 105424 105547 105705 105883 106060 106230 106397 106540 106707 106877
## [281] 107030 107209 107376 107555 107736 107925 108122 108329 108530 108754
## [291] 108962 109201 109422 109654 109881 110095 110319 110547 110767 111009
## [301] 111284 111613 111955 112318 112676 113027 113381 113742 114107 114475
## [311] 114832 115183 115541 115911 116303 116724 117156 117583 118014 118432
## [321] 118847 119281 119702 120147 120611 121089 121575 122086 122609 123153
## [331] 123701 124280 124891 125555 126273 127061 127972 128993 130126 131315
## [341] 132541 133900 135233 136644 138062 139471 140878 142187 143464 144583
## [351] 145590 146809 147810 148799 149792 150753 151723 152719 153741 154620
## [361] 155507 156397 157275 158174 158963 159715 160463 161143 161817 162486
## [371] 163129 163761 164282 164871 165418 165951 166492 167013 167525 168057
## [381] 168597 169106 169640 170207 170780 171390 171993 172602 173202 173813
## [391] 174426 175059 175677 176333 176943 177543 178151 178774 179407 180051
## [401] 180640 181241 181829 182424 183010 183591 184168 184755 185334 185922
## [411] 186503 187094 187716 188361 189000 189639 190280 190924 191555 192195
## [421] 192840 193482 194127 194771 195418 196061 196709 197350 198011 198681
## [431] 199364 200050 200739 201432 202131 202843 203546 204256 204965 205732
## [441] 206510 207293 208082 208876 209677 210489 211307 212130 212961 213798
## [451] 214639 215484 216334 217186 218041 218902 219774 220658 221570 222523
## [461] 223514 224517 225528 226531 227552 228584 229635 230713 231803 232905
## [471] 234015 235140 236272 237410 238560 239740 240927 242120 243317 244520
## [481] 245721 246909 248078 249238 250391 251539 252690 253835 254984 256124
## [491] 257275 258407 259540 260659 261666 262650 263606 264557 265489 266350
## [501] 267171 267972 268754 269527 270292 271047 271780 272491 273182 273795
## [511] 274404 275010 275601 276190 276756 277288 277797 278295 278761 279184
## [521] 279596 280005 280394 280770 281031 281282 281524 281722 281903 282082
## [531] 282257 282421 282582 282737 282864 282985 283102 283212 283320 283409
## [541] 283490 283567 283636 283636 283762 283813 283862 283906 283947 283985
## [551] 284024 284059 284090 284128 284170 284215 284262 284311 284362 284415
## [561] 284472 284523 284580 284641 284706 284789 284875 284966 285061 285158
## [571] 285257 285358 285465 285577 285700 285831 285995 286168 286352 286541
## [581] 286735 286938 287159 287393 287644 287899 288162 288441 288732 289035
## [591] 289353 289684 290027 290395 290773 291172 291585 292018 292476 292957
## [601] 293448 293951 294482 295051 295639 296276 296929 297608 298296 298988
## [611] 299710 300278 300945 301625 302327 303045 303783 304524 305269 306030
## [621] 306798 307569 308347 309135 309934 310745 311576 312413 313259 314116
## [631] 314977 315842 316711 317585 318456 319339 320207 321084 321967 322852
## [641] 323733 324619 325508 326379 327286 328209 329136 330084 331017 331968
## [651] 332889 333840 334751 335673 336582 337485 338414 339335 340269 341188
## [661] 342097 343026 343026 344907 345848 346808 347719 348611 349513 350397
## [671] 351267 352123 353024 353923 354836 355767 356718 357629 358578 359516
## [681] 360435 361368 362260 363162 364033 364922 365831 366634 367456 368335
## [691] 369198 369198 370819 371698 372599 373509 374411 375330 376233 377081
## [701] 377960 378843 379654 380520 381343 382194 383003 383857 384728 385575
## [711] 386358 387159 387882 388651 389454 390294 391115 391945 392857 393808
## [721] 394740 395688 396699 397778 398879 400076 401308 402611 403990 405393
## [731] 406926 408495 410098 411749 413558 415468 417453 419460 421478 423688
## [741] 425911 428202 430480 432761 435052 437350 439651 441923 444117 446308
## [751] 448497 450676 452821 452821 457081 459198 461299 463370 465423 467448
## [761] 469457 471460 473449 475341
## [1] 44
## [1] 3 15 15 49 55 59 60 67 80 109 110 150 196 196 256 285 294 327 366
## [20] 402 456 495 536 576 609 656
## ------------------------ Parameters used to create model ------------------------
## Region: EGYPT
## Time interval to consider: t0=44 - t1= ; tfinal=90
## t0: 2020-03-06 -- t1:
## Number of days considered for initial guess: 26
## Fatality rate: 0.02
## Population of the region: 101463702
## --------------------------------------------------------------------------------
## [1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"
## beta gamma
## 0.6134295 0.3865706
## R0 = 1.58684989175993
## Max nbr of infected: 7990478.47 ( 7.88 %)
## Max nbr of casualties, assuming 2% fatality rate: 159809.57
## Max reached at day : 73 ==> 2020-05-18
## ================================================================================
## Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE): 1 y value
## <= 0 omitted from logarithmic plot

## $Infected
## [1] 3 15 15 49 55 59 60 67 80 109 110 150 196 196 256 285 294 327 366
## [20] 402 456 495 536 576 609 656
##
## $model
## time S I R
## 1 1 101463699 3.000000e+00 0.000000e+00
## 2 2 101463697 3.763958e+00 1.301796e+00
## 3 3 101463694 4.722461e+00 2.935097e+00
## 4 4 101463691 5.925049e+00 4.984324e+00
## 5 5 101463687 7.433880e+00 7.555392e+00
## 6 6 101463682 9.326938e+00 1.078119e+01
## 7 7 101463675 1.170208e+01 1.482846e+01
## 8 8 101463667 1.468204e+01 1.990636e+01
## 9 9 101463657 1.842085e+01 2.627736e+01
## 10 10 101463645 2.311178e+01 3.427076e+01
## 11 11 101463629 2.899725e+01 4.429970e+01
## 12 12 101463609 3.638147e+01 5.688253e+01
## 13 13 101463584 4.564609e+01 7.266962e+01
## 14 14 101463552 5.726996e+01 9.247691e+01
## 15 15 101463513 7.185385e+01 1.173282e+02
## 16 16 101463463 9.015153e+01 1.485078e+02
## 17 17 101463401 1.131087e+02 1.876275e+02
## 18 18 101463323 1.419119e+02 2.367089e+02
## 19 19 101463226 1.780497e+02 2.982890e+02
## 20 20 101463103 2.233899e+02 3.755504e+02
## 21 21 101462949 2.802757e+02 4.724862e+02
## 22 22 101462756 3.516470e+02 5.941066e+02
## 23 23 101462514 4.411921e+02 7.466970e+02
## 24 24 101462210 5.535385e+02 9.381436e+02
## 25 25 101461829 6.944917e+02 1.178341e+03
## 26 26 101461351 8.713351e+02 1.479701e+03
## 27 27 101460751 1.093206e+03 1.857798e+03
## 28 28 101459998 1.371566e+03 2.332171e+03
## 29 29 101459054 1.720797e+03 2.927330e+03
## 30 30 101457869 2.158935e+03 3.674027e+03
## 31 31 101456383 2.708607e+03 4.610840e+03
## 32 32 101454518 3.398193e+03 5.786162e+03
## 33 33 101452178 4.263287e+03 7.260701e+03
## 34 34 101449243 5.348528e+03 9.110606e+03
## 35 35 101445561 6.709888e+03 1.143139e+04
## 36 36 101440942 8.417545e+03 1.434285e+04
## 37 37 101435147 1.055947e+04 1.799521e+04
## 38 38 101427879 1.324590e+04 2.257686e+04
## 39 39 101418763 1.661497e+04 2.832398e+04
## 40 40 101407330 2.083966e+04 3.553265e+04
## 41 41 101392992 2.613655e+04 4.457392e+04
## 42 42 101375013 3.277657e+04 5.591268e+04
## 43 43 101352472 4.109848e+04 7.013121e+04
## 44 44 101324218 5.152543e+04 8.795843e+04
## 45 45 101288810 6.458538e+04 1.103064e+05
## 46 46 101244450 8.093616e+04 1.383154e+05
## 47 47 101188896 1.013959e+05 1.734101e+05
## 48 48 101119354 1.269797e+05 2.173680e+05
## 49 49 101032354 1.589439e+05 2.724043e+05
## 50 50 100923591 1.988371e+05 3.412743e+05
## 51 51 100787744 2.485599e+05 4.273982e+05
## 52 52 100618261 3.104312e+05 5.350095e+05
## 53 53 100407112 3.872594e+05 6.693302e+05
## 54 54 100144515 4.824130e+05 8.367743e+05
## 55 55 99818643 5.998826e+05 1.045176e+06
## 56 56 99415342 7.443199e+05 1.304040e+06
## 57 57 98917874 9.210313e+05 1.624797e+06
## 58 58 98306765 1.135895e+06 2.021042e+06
## 59 59 97559815 1.395162e+06 2.508725e+06
## 60 60 96652395 1.705079e+06 3.106228e+06
## 61 61 95558151 2.071298e+06 3.834253e+06
## 62 62 94250262 2.498002e+06 4.715438e+06
## 63 63 92703367 2.986761e+06 5.773574e+06
## 64 64 90896210 3.535158e+06 7.032334e+06
## 65 65 88814878 4.135368e+06 8.513456e+06
## 66 66 86456307 4.772984e+06 1.023441e+07
## 67 67 83831483 5.426494e+06 1.220573e+07
## 68 68 80967539 6.067851e+06 1.442831e+07
## 69 69 77908010 6.664425e+06 1.689127e+07
## 70 70 74710724 7.182281e+06 1.957070e+07
## 71 71 71443390 7.590314e+06 2.243000e+07
## 72 72 68177551 7.864382e+06 2.542177e+07
## 73 73 64982073 7.990478e+06 2.849115e+07
## 74 74 61917409 7.966189e+06 3.158010e+07
## 75 75 59031625 7.800232e+06 3.463185e+07
## 76 76 56358548 7.510357e+06 3.759480e+07
## 77 77 53917922 7.120282e+06 4.042550e+07
## 78 78 51717017 6.656405e+06 4.309028e+07
## 79 79 49753067 6.144916e+06 4.556572e+07
## 80 80 48015926 5.609655e+06 4.783812e+07
## 81 81 46490568 5.070806e+06 4.990233e+07
## 82 82 45159173 4.544347e+06 5.176018e+07
## 83 83 44002748 4.042074e+06 5.341888e+07
## 84 84 43002284 3.571984e+06 5.488943e+07
## 85 85 42139536 3.138865e+06 5.618530e+07
## 86 86 41397489 2.744937e+06 5.732128e+07
## 87 87 40760605 2.390480e+06 5.831262e+07
## 88 88 40214921 2.074379e+06 5.917440e+07
## 89 89 39748029 1.794587e+06 5.992109e+07
## 90 90 39349007 1.548482e+06 6.056621e+07
##
## $params
## $params$beta
## beta
## 0.6134295
##
## $params$gamma
## gamma
## 0.3865706
##
## $params$R0
## R0
## 1.58685
generate.SIR.model(data,"Egypt",tot.population=101463702)
## ################################################################################
## This is an experimental feature, being currently under active development!
## Please check the development version of the package for the latest updates on it
## ################################################################################
## Processing... EGYPT
## [1] 0 0 0 0 0 0 0 0 0 0
## [11] 0 0 0 0 0 0 0 0 0 0
## [21] 0 0 0 1 1 1 1 1 1 1
## [31] 1 1 1 1 1 1 1 1 1 2
## [41] 2 2 2 3 15 15 49 55 59 60
## [51] 67 80 109 110 150 196 196 256 285 294
## [61] 327 366 402 456 495 536 576 609 656 710
## [71] 779 865 985 1070 1173 1322 1450 1560 1699 1794
## [81] 1939 2065 2190 2350 2505 2673 2844 3032 3144 3333
## [91] 3490 3659 3891 4092 4319 4534 4782 5042 5268 5537
## [101] 5895 6193 6465 6813 7201 7588 7981 8476 8964 9400
## [111] 9746 10093 10431 10829 11228 11719 12229 12764 13484 14229
## [121] 15003 15786 16513 17265 17967 18756 19666 20793 22082 23449
## [131] 24985 26384 27536 28615 29767 31115 32612 34079 35444 36829
## [141] 38284 39726 41303 42980 44598 46289 47856 49219 50437 52211
## [151] 53758 55233 56809 58141 59561 61130 62755 63923 65188 66754
## [161] 68311 69814 71299 72711 74035 75253 76222 77279 78304 79254
## [171] 80235 81158 82070 83001 83930 84843 85771 86474 87172 87775
## [181] 88402 89078 89745 90413 91072 91583 92062 92482 92947 93356
## [191] 93757 94078 94316 94483 94640 94752 94875 95006 95147 95314
## [201] 95492 95666 95834 95963 96108 96220 96336 96475 96590 96753
## [211] 96914 97025 97148 97237 97340 97478 97619 97825 98062 98285
## [221] 98497 98727 98939 99115 99280 99425 99582 99712 99863 100041
## [231] 100228 100403 100557 100708 100856 101009 101177 101340 101500 101641
## [241] 101772 101900 102015 102141 102254 102375 102513 102625 102736 102840
## [251] 102955 103079 103198 103317 103466 103575 103683 103781 103902 104035
## [261] 104156 104262 104387 104516 104648 104787 104915 105033 105159 105297
## [271] 105424 105547 105705 105883 106060 106230 106397 106540 106707 106877
## [281] 107030 107209 107376 107555 107736 107925 108122 108329 108530 108754
## [291] 108962 109201 109422 109654 109881 110095 110319 110547 110767 111009
## [301] 111284 111613 111955 112318 112676 113027 113381 113742 114107 114475
## [311] 114832 115183 115541 115911 116303 116724 117156 117583 118014 118432
## [321] 118847 119281 119702 120147 120611 121089 121575 122086 122609 123153
## [331] 123701 124280 124891 125555 126273 127061 127972 128993 130126 131315
## [341] 132541 133900 135233 136644 138062 139471 140878 142187 143464 144583
## [351] 145590 146809 147810 148799 149792 150753 151723 152719 153741 154620
## [361] 155507 156397 157275 158174 158963 159715 160463 161143 161817 162486
## [371] 163129 163761 164282 164871 165418 165951 166492 167013 167525 168057
## [381] 168597 169106 169640 170207 170780 171390 171993 172602 173202 173813
## [391] 174426 175059 175677 176333 176943 177543 178151 178774 179407 180051
## [401] 180640 181241 181829 182424 183010 183591 184168 184755 185334 185922
## [411] 186503 187094 187716 188361 189000 189639 190280 190924 191555 192195
## [421] 192840 193482 194127 194771 195418 196061 196709 197350 198011 198681
## [431] 199364 200050 200739 201432 202131 202843 203546 204256 204965 205732
## [441] 206510 207293 208082 208876 209677 210489 211307 212130 212961 213798
## [451] 214639 215484 216334 217186 218041 218902 219774 220658 221570 222523
## [461] 223514 224517 225528 226531 227552 228584 229635 230713 231803 232905
## [471] 234015 235140 236272 237410 238560 239740 240927 242120 243317 244520
## [481] 245721 246909 248078 249238 250391 251539 252690 253835 254984 256124
## [491] 257275 258407 259540 260659 261666 262650 263606 264557 265489 266350
## [501] 267171 267972 268754 269527 270292 271047 271780 272491 273182 273795
## [511] 274404 275010 275601 276190 276756 277288 277797 278295 278761 279184
## [521] 279596 280005 280394 280770 281031 281282 281524 281722 281903 282082
## [531] 282257 282421 282582 282737 282864 282985 283102 283212 283320 283409
## [541] 283490 283567 283636 283636 283762 283813 283862 283906 283947 283985
## [551] 284024 284059 284090 284128 284170 284215 284262 284311 284362 284415
## [561] 284472 284523 284580 284641 284706 284789 284875 284966 285061 285158
## [571] 285257 285358 285465 285577 285700 285831 285995 286168 286352 286541
## [581] 286735 286938 287159 287393 287644 287899 288162 288441 288732 289035
## [591] 289353 289684 290027 290395 290773 291172 291585 292018 292476 292957
## [601] 293448 293951 294482 295051 295639 296276 296929 297608 298296 298988
## [611] 299710 300278 300945 301625 302327 303045 303783 304524 305269 306030
## [621] 306798 307569 308347 309135 309934 310745 311576 312413 313259 314116
## [631] 314977 315842 316711 317585 318456 319339 320207 321084 321967 322852
## [641] 323733 324619 325508 326379 327286 328209 329136 330084 331017 331968
## [651] 332889 333840 334751 335673 336582 337485 338414 339335 340269 341188
## [661] 342097 343026 343026 344907 345848 346808 347719 348611 349513 350397
## [671] 351267 352123 353024 353923 354836 355767 356718 357629 358578 359516
## [681] 360435 361368 362260 363162 364033 364922 365831 366634 367456 368335
## [691] 369198 369198 370819 371698 372599 373509 374411 375330 376233 377081
## [701] 377960 378843 379654 380520 381343 382194 383003 383857 384728 385575
## [711] 386358 387159 387882 388651 389454 390294 391115 391945 392857 393808
## [721] 394740 395688 396699 397778 398879 400076 401308 402611 403990 405393
## [731] 406926 408495 410098 411749 413558 415468 417453 419460 421478 423688
## [741] 425911 428202 430480 432761 435052 437350 439651 441923 444117 446308
## [751] 448497 450676 452821 452821 457081 459198 461299 463370 465423 467448
## [761] 469457 471460 473449 475341
## [1] 44
## [1] 3 15 15 49 55 59 60 67 80 109 110 150 196 196 256 285 294 327 366
## [20] 402 456 495 536 576 609 656
## ------------------------ Parameters used to create model ------------------------
## Region: EGYPT
## Time interval to consider: t0=44 - t1= ; tfinal=90
## t0: 2020-03-06 -- t1:
## Number of days considered for initial guess: 26
## Fatality rate: 0.02
## Population of the region: 101463702
## --------------------------------------------------------------------------------
## [1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"
## beta gamma
## 0.6134295 0.3865706
## R0 = 1.58684989175993
## Max nbr of infected: 7990478.47 ( 7.88 %)
## Max nbr of casualties, assuming 2% fatality rate: 159809.57
## Max reached at day : 73 ==> 2020-05-18
## ================================================================================
## Warning in xy.coords(x, y, xlabel, ylabel, log = log, recycle = TRUE): 1 y value
## <= 0 omitted from logarithmic plot

## $Infected
## [1] 3 15 15 49 55 59 60 67 80 109 110 150 196 196 256 285 294 327 366
## [20] 402 456 495 536 576 609 656
##
## $model
## time S I R
## 1 1 101463699 3.000000e+00 0.000000e+00
## 2 2 101463697 3.763958e+00 1.301796e+00
## 3 3 101463694 4.722461e+00 2.935097e+00
## 4 4 101463691 5.925049e+00 4.984324e+00
## 5 5 101463687 7.433880e+00 7.555392e+00
## 6 6 101463682 9.326938e+00 1.078119e+01
## 7 7 101463675 1.170208e+01 1.482846e+01
## 8 8 101463667 1.468204e+01 1.990636e+01
## 9 9 101463657 1.842085e+01 2.627736e+01
## 10 10 101463645 2.311178e+01 3.427076e+01
## 11 11 101463629 2.899725e+01 4.429970e+01
## 12 12 101463609 3.638147e+01 5.688253e+01
## 13 13 101463584 4.564609e+01 7.266962e+01
## 14 14 101463552 5.726996e+01 9.247691e+01
## 15 15 101463513 7.185385e+01 1.173282e+02
## 16 16 101463463 9.015153e+01 1.485078e+02
## 17 17 101463401 1.131087e+02 1.876275e+02
## 18 18 101463323 1.419119e+02 2.367089e+02
## 19 19 101463226 1.780497e+02 2.982890e+02
## 20 20 101463103 2.233899e+02 3.755504e+02
## 21 21 101462949 2.802757e+02 4.724862e+02
## 22 22 101462756 3.516470e+02 5.941066e+02
## 23 23 101462514 4.411921e+02 7.466970e+02
## 24 24 101462210 5.535385e+02 9.381436e+02
## 25 25 101461829 6.944917e+02 1.178341e+03
## 26 26 101461351 8.713351e+02 1.479701e+03
## 27 27 101460751 1.093206e+03 1.857798e+03
## 28 28 101459998 1.371566e+03 2.332171e+03
## 29 29 101459054 1.720797e+03 2.927330e+03
## 30 30 101457869 2.158935e+03 3.674027e+03
## 31 31 101456383 2.708607e+03 4.610840e+03
## 32 32 101454518 3.398193e+03 5.786162e+03
## 33 33 101452178 4.263287e+03 7.260701e+03
## 34 34 101449243 5.348528e+03 9.110606e+03
## 35 35 101445561 6.709888e+03 1.143139e+04
## 36 36 101440942 8.417545e+03 1.434285e+04
## 37 37 101435147 1.055947e+04 1.799521e+04
## 38 38 101427879 1.324590e+04 2.257686e+04
## 39 39 101418763 1.661497e+04 2.832398e+04
## 40 40 101407330 2.083966e+04 3.553265e+04
## 41 41 101392992 2.613655e+04 4.457392e+04
## 42 42 101375013 3.277657e+04 5.591268e+04
## 43 43 101352472 4.109848e+04 7.013121e+04
## 44 44 101324218 5.152543e+04 8.795843e+04
## 45 45 101288810 6.458538e+04 1.103064e+05
## 46 46 101244450 8.093616e+04 1.383154e+05
## 47 47 101188896 1.013959e+05 1.734101e+05
## 48 48 101119354 1.269797e+05 2.173680e+05
## 49 49 101032354 1.589439e+05 2.724043e+05
## 50 50 100923591 1.988371e+05 3.412743e+05
## 51 51 100787744 2.485599e+05 4.273982e+05
## 52 52 100618261 3.104312e+05 5.350095e+05
## 53 53 100407112 3.872594e+05 6.693302e+05
## 54 54 100144515 4.824130e+05 8.367743e+05
## 55 55 99818643 5.998826e+05 1.045176e+06
## 56 56 99415342 7.443199e+05 1.304040e+06
## 57 57 98917874 9.210313e+05 1.624797e+06
## 58 58 98306765 1.135895e+06 2.021042e+06
## 59 59 97559815 1.395162e+06 2.508725e+06
## 60 60 96652395 1.705079e+06 3.106228e+06
## 61 61 95558151 2.071298e+06 3.834253e+06
## 62 62 94250262 2.498002e+06 4.715438e+06
## 63 63 92703367 2.986761e+06 5.773574e+06
## 64 64 90896210 3.535158e+06 7.032334e+06
## 65 65 88814878 4.135368e+06 8.513456e+06
## 66 66 86456307 4.772984e+06 1.023441e+07
## 67 67 83831483 5.426494e+06 1.220573e+07
## 68 68 80967539 6.067851e+06 1.442831e+07
## 69 69 77908010 6.664425e+06 1.689127e+07
## 70 70 74710724 7.182281e+06 1.957070e+07
## 71 71 71443390 7.590314e+06 2.243000e+07
## 72 72 68177551 7.864382e+06 2.542177e+07
## 73 73 64982073 7.990478e+06 2.849115e+07
## 74 74 61917409 7.966189e+06 3.158010e+07
## 75 75 59031625 7.800232e+06 3.463185e+07
## 76 76 56358548 7.510357e+06 3.759480e+07
## 77 77 53917922 7.120282e+06 4.042550e+07
## 78 78 51717017 6.656405e+06 4.309028e+07
## 79 79 49753067 6.144916e+06 4.556572e+07
## 80 80 48015926 5.609655e+06 4.783812e+07
## 81 81 46490568 5.070806e+06 4.990233e+07
## 82 82 45159173 4.544347e+06 5.176018e+07
## 83 83 44002748 4.042074e+06 5.341888e+07
## 84 84 43002284 3.571984e+06 5.488943e+07
## 85 85 42139536 3.138865e+06 5.618530e+07
## 86 86 41397489 2.744937e+06 5.732128e+07
## 87 87 40760605 2.390480e+06 5.831262e+07
## 88 88 40214921 2.074379e+06 5.917440e+07
## 89 89 39748029 1.794587e+06 5.992109e+07
## 90 90 39349007 1.548482e+06 6.056621e+07
##
## $params
## $params$beta
## beta
## 0.6134295
##
## $params$gamma
## gamma
## 0.3865706
##
## $params$R0
## R0
## 1.58685