Dosen Pengampu : Prof. Dr. Suhartono, M.Kom
Mata Kuliah : Linear Algebra
Prodi : Teknik Informatika
Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang”
Inflow merupakan masuknya sejumlah dana luar negeri kedalam suatu negara untuk tujuan investasi.
Outflow merupakan transaksi pembelian asset dari luar negeri. Pembelian asset negara asing akan mengeluarkan dana untuk membayar pembelian asset tersebut.
Berikut ini contoh penerapan komparasi visualisasi prediksi data Inflow-Outflow Uang Kartal antara Jambi dan Kepulauan Bangka Belitung menggunakan bahasa pemograman R.
library(readxl)
datainflow <- read_excel(path = "C:/Users/DELL LATITUDE 7280/Documents/KULIAH/SEMESTER 2/LINEAR ALGEBRA/Inflow Outflow/datainflow.xlsx")
datainflow
## # A tibble: 10 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 57900. 2308. 23238. 9385. 3012. 1426.
## 2 2012 65911. 2620. 25981. 11192. 4447. 2236.
## 3 2013 98369. 36337. 18120. 14056. 8933. 3378.
## 4 2014 86024. 4567. 30503. 14103. 6358. 2563.
## 5 2015 86549. 4710. 30254. 13309. 7156. 3218.
## 6 2016 97764. 5775. 34427. 14078. 8211. 4317.
## 7 2017 103748. 5514. 35617. 15312. 8553. 4412.
## 8 2018 117495. 5799. 41769. 15058. 10730. 5134.
## 9 2019 133762. 7509. 47112. 14750. 10915. 6077.
## 10 2020 109345. 6641. 36609. 10696. 9148. 6175.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path ="C:/Users/DELL LATITUDE 7280/Documents/KULIAH/SEMESTER 2/LINEAR ALGEBRA/Inflow Outflow/dataoutflow.xlsx")
dataoutflow
## # A tibble: 10 x 12
## Tahun Sumatera Aceh `Sumatera Utara` `Sumatera Barat` Riau `Kep. Riau`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2011 80092. 6338. 22176. 5300. 12434. 5819.
## 2 2012 85235. 6378. 22495. 6434. 13014. 6966.
## 3 2013 103288. 23278. 19235. 6511. 15460. 8747.
## 4 2014 102338. 8630. 26391. 7060. 15158. 10122.
## 5 2015 109186. 9637. 27877. 7471. 15789. 9803.
## 6 2016 121992. 11311. 31959. 9198. 17645. 10068.
## 7 2017 133606. 11760. 35243. 10754. 18128. 10749.
## 8 2018 135676. 11450. 36908. 8447. 17926. 12597.
## 9 2019 153484. 13087. 44051. 9465. 19277. 12644.
## 10 2020 140589. 12874. 39758. 8763. 19139. 8461.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## # Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
plot(datainflow$Tahun,datainflow$'Jambi',type = "l", col= "antiquewhite4")
lines(datainflow$Tahun,datainflow$'Kep. Bangka Belitung',col="deepskyblue4")
legend("top",c("Inflow Jambi","Inflow Kep. Bangka Belitung"),fill=c("antiquewhite4","deepskyblue4"))
plot(dataoutflow$Tahun,dataoutflow$'Jambi',type = "l", col= "darkcyan")
lines(dataoutflow$Tahun,dataoutflow$'Kep. Bangka Belitung',col="grey")
legend("top",c("Outflow Jambi","Outflow Kep. Bangka Belitung"),fill=c("darkcyan","grey"))
plot(datainflow$Tahun,datainflow$'Jambi',type = "l", col= "antiquewhite4")
lines(datainflow$Tahun,datainflow$'Kep. Bangka Belitung',col="deepskyblue4")
lines(dataoutflow$Tahun,dataoutflow$'Jambi',col= "darkcyan")
lines(dataoutflow$Tahun,dataoutflow$'Kep. Bangka Belitung',col="grey")
legend("top",c("Inflow Jambi","Inflow Kep. Bangka Belitung","Outflow Jambi","Outflow Kep. Bangka Belitung"),fill=c("cornsilk4","deepskyblue4","darkcyan","grey"))
library(readxl)
datainflowperbulan <- read_excel(path = "C:/Users/DELL LATITUDE 7280/Documents/KULIAH/SEMESTER 2/LINEAR ALGEBRA/Inflow Outflow/inflowbulanan.xlsx")
## New names:
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "C:/Users/DELL LATITUDE 7280/Documents/KULIAH/SEMESTER 2/LINEAR ALGEBRA/Inflow Outflow/outflowbulanan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 13
## Bulan ...2 Sumatera Aceh `Sumatera Utara` `Sumatera Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 4164. 124. 2068. 545.
## 2 2011-02-01 00:00:00 NA 3338. 115. 1826. 450.
## 3 2011-03-01 00:00:00 NA 4878. 154. 2028. 849.
## 4 2011-04-01 00:00:00 NA 3157. 122. 1429. 539.
## 5 2011-05-01 00:00:00 NA 3821. 123. 1539. 692.
## 6 2011-06-01 00:00:00 NA 3686. 151. 1637. 592.
## 7 2011-07-01 00:00:00 NA 4370. 107. 1791. 800.
## 8 2011-08-01 00:00:00 NA 3668. 184. 1256. 586.
## 9 2011-09-01 00:00:00 NA 12875. 606. 4172. 2176.
## 10 2011-10-01 00:00:00 NA 4777. 158. 1941. 787.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## # Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 13
## Bulan ...2 Sumatera Aceh `Sumatera Utara` `Sumatera Barat`
## <dttm> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 2011-01-01 00:00:00 NA 3442. 350. 941. 307.
## 2 2011-02-01 00:00:00 NA 3989. 193. 990. 228.
## 3 2011-03-01 00:00:00 NA 4229. 230. 1209. 347.
## 4 2011-04-01 00:00:00 NA 6721. 529. 1653. 336.
## 5 2011-05-01 00:00:00 NA 5787. 523. 1465. 328.
## 6 2011-06-01 00:00:00 NA 7395. 406. 2167. 399.
## 7 2011-07-01 00:00:00 NA 7154. 958. 1695. 449.
## 8 2011-08-01 00:00:00 NA 16043. 1046. 4104. 1376.
## 9 2011-09-01 00:00:00 NA 1915. 124. 824. 148.
## 10 2011-10-01 00:00:00 NA 5174. 634. 1392. 299.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## # Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## # `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$'Jambi', type = "l", col = "darksalmon")
lines(datainflowperbulan$'Kep. Bangka Belitung',col="darkseagreen3")
lines(dataoutflowperbulan$'Jambi', col = "darkslategray2")
lines(dataoutflowperbulan$'Kep. Bangka Belitung',col="grey")
legend("top",c("Inflow Jambi","Inflow Kep. Bangka Belitung","Outflow Jambi","Outflow Kep. Bangka Belitung"),fill=c("darksalmon","darkseagreen3","darkslategray2","grey"))
Jambitimeseries <- datainflowperbulan$'Jambi'
Kep.BangkaBelitungtimeseries <- datainflowperbulan$'Kep. Bangka Belitung'
plot.ts(Jambitimeseries , type = "l", col = "red")
lines(Kep.BangkaBelitungtimeseries , type = "l", col = "gold")
legend("top",c("Jambi Timeseries","Kep.BangkaBelitung Timeseries"),fill=c("red","gold"))
logJambi <- log(datainflowperbulan$'Jambi')
logKepulauanBangkaBelitung <- log(datainflowperbulan$'Kep. Bangka Belitung')
plot.ts(logJambi, type = "l", col = "pink")
lines(logKepulauanBangkaBelitung , type = "l", col = "grey")
legend("top",c("log Jambi","log Kep.BangkaBelitung"),fill=c("pink","grey"))
library(TTR)
JambiSMA3 <- SMA(datainflowperbulan$'Jambi',n=3)
Kep.BangkaBelitungSMA3 <- SMA(datainflowperbulan$'Kep. Bangka Belitung',n=3)
plot.ts(JambiSMA3, type = "l", col = "pink")
lines(Kep.BangkaBelitungSMA3, type = "l", col = "brown")
legend("top",c("Jambi SMA3","Kep.BangkaBelitung SMA3"),fill=c("pink","brown"))
library(TTR)
JambiSMA3 <- SMA(datainflowperbulan$'Jambi',n=8)
Kep.BangkaBelitungSMA3 <- SMA(datainflowperbulan$'Kep. Bangka Belitung',n=8)
plot.ts(JambiSMA3, type = "l", col = "coral")
lines(Kep.BangkaBelitungSMA3, type = "l", col = "brown")
legend("top",c("JambiSMA3","Kep.BangkaBelitungSMA3"),fill=c("coral","brown"))
Jambiinflowtimeseries <- ts(datainflowperbulan$'Jambi', frequency=12, start=c(2011,1))
Kep.BangkaBelitunginflowtimeseries <- ts(datainflowperbulan$'Kep. Bangka Belitung', frequency=12, start=c(2011,1))
Jambiinflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 48.21238 39.91336 202.77581 76.36759 102.29337 80.38363
## 2012 214.78357 185.06614 118.25569 112.18712 176.73267 131.65442
## 2013 440.25724 250.16557 156.40296 131.70444 80.43460 90.88444
## 2014 648.84622 443.17728 218.60749 372.98546 277.49781 326.07002
## 2015 800.91577 310.67803 334.27000 339.99797 285.21811 266.80514
## 2016 723.86727 399.44327 227.89071 207.32596 294.89205 265.25147
## 2017 436.71704 349.18620 374.44420 291.87853 265.93193 109.35945
## 2018 850.92308 423.79251 432.57396 284.21732 331.44473 943.33760
## 2019 928.32921 508.44605 501.71263 395.87576 375.81227 1377.08370
## 2020 929.25223 453.21208 375.57835 488.00832 366.02264 926.36280
## 2021 1319.31010 533.89020 481.47669 442.30053 954.47189 568.16022
## Jul Aug Sep Oct Nov Dec
## 2011 118.45074 91.88117 618.33464 137.23519 238.83742 112.93547
## 2012 178.67562 446.70847 180.60249 96.89252 190.29249 106.61224
## 2013 150.73569 696.17818 239.01380 381.11280 240.84581 189.04884
## 2014 228.38825 1336.65537 383.31015 366.82210 328.60113 238.13597
## 2015 1033.05014 473.13670 295.54859 329.75416 266.79923 241.96031
## 2016 1069.41796 211.81993 325.26906 251.99989 234.81316 186.17002
## 2017 1008.96424 331.35488 369.25742 288.45059 300.80490 277.28824
## 2018 555.66909 452.09732 390.12811 409.82051 356.98477 225.60052
## 2019 517.64046 582.60662 370.00861 477.26284 302.21112 149.17703
## 2020 418.88012 362.62433 363.94528 290.43227 404.08403 249.99980
## 2021 337.72947 342.40788
Kep.BangkaBelitunginflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2012 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2013 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2014 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2015 187.639957 33.147896 114.451087 78.250445 30.909939 92.942037
## 2016 340.792357 166.304876 85.640498 49.255930 114.320505 75.598373
## 2017 201.271938 110.302500 58.276958 28.704962 81.210205 41.263221
## 2018 306.662249 54.452683 55.611933 69.022908 54.486720 283.237018
## 2019 309.413941 301.696986 213.049668 247.041834 190.930447 725.701711
## 2020 458.198210 275.503586 153.561979 238.759146 253.398617 471.739983
## 2021 381.984491 92.951196 93.798544 91.820055 362.027685 84.895245
## Jul Aug Sep Oct Nov Dec
## 2011 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2012 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2013 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2014 0.000000 0.000000 0.000000 0.000000 8.583950 5.125127
## 2015 291.012814 36.621340 68.667292 128.247156 99.552693 15.140736
## 2016 449.106283 28.370724 133.889548 41.285099 25.777118 33.867005
## 2017 358.088421 58.774292 93.159671 41.415730 81.863243 9.175790
## 2018 192.789235 125.814197 83.299065 149.917111 76.593131 65.535710
## 2019 268.101638 294.219489 238.370988 181.142442 176.158614 119.275850
## 2020 179.706885 151.857426 129.829668 78.321303 126.068162 45.149398
## 2021 68.830158 82.902713
Jambioutflowtimeseries <- ts(dataoutflowperbulan$'Jambi', frequency=12, start=c(2011,1))
Kep.BangkaBelitungoutflowtimeseries <- ts(dataoutflowperbulan$'Kep. Bangka Belitung', frequency=12, start=c(2011,1))
Jambioutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 297.46348 280.08970 341.37188 474.26014 371.36905 540.43609
## 2012 133.61579 321.29557 315.41057 373.26078 441.58952 474.63459
## 2013 110.31731 184.50535 223.54744 235.42017 450.54670 349.51626
## 2014 351.35683 459.63127 637.62828 526.41165 683.34064 651.89272
## 2015 249.99472 486.10988 549.06994 721.86428 701.16932 931.14718
## 2016 229.69662 442.46621 487.32817 572.51965 587.13872 1610.89703
## 2017 394.17886 553.63581 500.03923 530.31764 570.86673 1961.91565
## 2018 275.03184 451.87980 498.71186 687.34280 1222.83919 1579.32715
## 2019 218.20233 534.52562 559.51510 895.65817 2018.12386 147.10847
## 2020 230.43948 421.99569 606.04929 713.68012 1262.75583 143.79548
## 2021 54.41456 487.87292 732.48101 1261.14201 1578.66374 642.31328
## Jul Aug Sep Oct Nov Dec
## 2011 428.10203 1056.05643 92.78528 295.39728 272.21261 767.15036
## 2012 330.20592 835.74847 221.85612 472.49384 299.07579 794.04754
## 2013 839.48154 339.88048 732.69193 819.24007 782.02490 1235.18658
## 2014 1929.38736 274.46904 553.86575 703.65271 588.68032 1000.86095
## 2015 1582.71912 395.76377 549.45261 479.75684 631.21748 1046.24662
## 2016 456.38157 430.25770 842.64910 521.69293 648.58138 944.35648
## 2017 212.49734 680.41258 470.55865 568.53590 820.95090 1169.98413
## 2018 391.43773 555.29629 475.32140 545.11918 735.03562 1042.05433
## 2019 717.81375 656.73797 617.28665 719.15618 727.75492 1392.15834
## 2020 633.64958 610.36918 689.06184 1124.09728 807.10093 1706.97368
## 2021 664.55917 624.91746
Kep.BangkaBelitungoutflowtimeseries
## Jan Feb Mar Apr May Jun
## 2011 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2012 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2013 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2014 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2015 7.212591 100.722316 88.242902 119.734077 108.562288 141.922856
## 2016 62.511019 74.673600 73.366989 137.419284 187.254674 593.621546
## 2017 99.053103 107.190457 154.892432 219.087363 237.040453 685.029330
## 2018 45.294821 141.372517 163.027297 210.937666 447.089850 545.359260
## 2019 213.935303 151.205232 311.646991 381.732526 1149.153997 78.513581
## 2020 125.859564 120.611445 347.011532 292.171852 672.792344 28.320067
## 2021 38.406031 155.960921 473.816286 677.957705 731.426761 423.292681
## Jul Aug Sep Oct Nov Dec
## 2011 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2012 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2013 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## 2014 0.000000 0.000000 0.000000 0.000000 20.158561 301.925528
## 2015 461.459620 247.654498 145.109007 62.885310 180.503866 340.776774
## 2016 209.427034 276.657814 271.424057 153.904316 279.301232 364.232562
## 2017 31.018723 219.679759 53.315563 209.534771 226.055188 508.198084
## 2018 168.913022 197.022225 115.023134 225.510779 245.110586 233.024001
## 2019 354.451123 295.839540 171.788886 243.712926 269.138995 545.979144
## 2020 320.609406 136.901740 297.384179 471.479842 258.876760 826.532469
## 2021 494.593107 497.140310
plot.ts(Jambiinflowtimeseries,type = "l", col = "burlywood4")
lines(Kep.BangkaBelitunginflowtimeseries, type = "l", col = "darksalmon")
legend("top",c("Jambiinflowtimeseries","Kep.BangkaBelitunginflowtimeseries"),fill=c("burlywood4","darksalmon"))
plot.ts(Jambioutflowtimeseries,type = "l", col = "cadetblue")
lines(Kep.BangkaBelitungoutflowtimeseries, type = "l", col = "darkgrey")
legend("top",c("Jambioutflowtimeseries","Kep.BangkaBelitungoutflowtimeseries"),fill=c("cadetblue","darkgrey"))
Jambiintimeseriescomponents <- decompose(Jambiinflowtimeseries)
Kep.BangkaBelitungintimeseriescomponents <- decompose(Kep.BangkaBelitunginflowtimeseries)
Jambiintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2012 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2013 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2014 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2015 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2016 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2017 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2018 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2019 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2020 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## 2021 331.44588 -14.12609 -81.49621 -93.86719 -114.25191 104.66208
## Jul Aug Sep Oct Nov Dec
## 2011 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2012 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2013 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2014 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2015 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2016 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2017 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2018 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2019 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2020 156.97755 120.14214 -28.04183 -81.29134 -102.91768 -197.23539
## 2021 156.97755 120.14214
Kep.BangkaBelitungintimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2012 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2013 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2014 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2015 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2016 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2017 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2018 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2019 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2020 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## 2021 115.0550050 -0.7375573 -25.9024253 -23.4835202 -22.8496336 83.6050158
## Jul Aug Sep Oct Nov Dec
## 2011 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2012 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2013 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2014 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2015 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2016 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2017 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2018 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2019 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2020 78.2633854 -28.0302942 -23.6525417 -37.1146917 -41.5789170 -73.5738251
## 2021 78.2633854 -28.0302942
Jambiouttimeseriescomponents <- decompose(Jambioutflowtimeseries)
Kep.BangkaBelitungouttimeseriescomponents <- decompose(Kep.BangkaBelitungoutflowtimeseries)
Jambiouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2012 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2013 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2014 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2015 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2016 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2017 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2018 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2019 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2020 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## 2021 -429.76166 -219.28351 -144.71768 -53.62864 238.04681 221.42655
## Jul Aug Sep Oct Nov Dec
## 2011 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2012 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2013 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2014 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2015 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2016 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2017 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2018 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2019 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2020 120.11152 -48.40994 -109.85159 -14.39860 -16.35840 456.82513
## 2021 120.11152 -48.40994
Kep.BangkaBelitungouttimeseriescomponents$seasonal
## Jan Feb Mar Apr May Jun
## 2011 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2012 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2013 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2014 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2015 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2016 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2017 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2018 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2019 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2020 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## 2021 -116.451749 -94.637566 -27.708893 -6.502379 150.206433 64.167283
## Jul Aug Sep Oct Nov Dec
## 2011 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2012 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2013 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2014 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2015 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2016 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2017 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2018 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2019 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2020 1.650183 -16.372014 -50.967161 -24.467907 -19.128618 140.212388
## 2021 1.650183 -16.372014
plot(Jambiintimeseriescomponents$seasonal,type = "l", col = "antiquewhite4")
lines(Kep.BangkaBelitungintimeseriescomponents$seasonal,col="aquamarine3")
lines(Jambiouttimeseriescomponents$seasonal, type = "l", col = "purple")
lines(Kep.BangkaBelitungouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Jambi Inflow","Kep.Bangka Belitung Inflow", "Jambi Outflow","Kep.BangkaBelitung Outflow"),fill=c("antiquewhite4","aquamarine3","purple","blue"))
plot(Jambiintimeseriescomponents$trend,type = "l", col = "black")
lines(Kep.BangkaBelitungintimeseriescomponents$trend,col="brown")
lines(Jambiouttimeseriescomponents$trend, type = "l", col = "purple")
lines(Kep.BangkaBelitungouttimeseriescomponents$trend,col="blue")
legend("top",c("Jambi Inflow","Kep.Bangka Belitung Inflow", "Jambi Outflow","Kep.Bangka Belitung Outflow"),fill=c("black","brown","purple","blue"))
plot(Jambiintimeseriescomponents$random,type = "l", col = "black")
lines(Kep.BangkaBelitungintimeseriescomponents$random,col="brown")
lines(Jambiouttimeseriescomponents$random, type = "l", col = "purple")
lines(Kep.BangkaBelitungouttimeseriescomponents$random,col="blue")
legend("top",c("Jambi Inflow","Kep.BangkaBelitung Inflow", "Jambi Outflow","Kep.BangkaBelitung Outflow"),fill=c("black","brown","purple","blue"))
plot(Jambiintimeseriescomponents$figure,type = "l", col = "black")
lines(Kep.BangkaBelitungintimeseriescomponents$figure,col="brown")
lines(Jambiouttimeseriescomponents$figure, type = "l", col = "purple")
lines(Kep.BangkaBelitungouttimeseriescomponents$figure,col="blue")
legend("top",c("Jambi Inflow","Kep.BangkaBelitung Inflow", "Jambi Outflow","Kep.BangkaBelitung Outflow"),fill=c("black","brown","purple","blue"))