Dosen Pengampu : Prof. Dr. Suhartono, M.Kom

Mata Kuliah : Linear Algebra

Prodi : Teknik Informatika

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang”

Pengertian Inflow Outflow Uang Kartal

Inflow merupakan masuknya sejumlah dana luar negeri kedalam suatu negara untuk tujuan investasi.

Outflow merupakan transaksi pembelian asset dari luar negeri. Pembelian asset negara asing akan mengeluarkan dana untuk membayar pembelian asset tersebut.

Berikut ini contoh penerapan komparasi visualisasi prediksi data Inflow-Outflow Uang Kartal antara Riau dan Kepulauan Riau menggunakan bahasa pemograman R.

library(readxl)
datainflow <- read_excel(path = "C:/Users/DELL LATITUDE 7280/Documents/KULIAH/SEMESTER 2/LINEAR ALGEBRA/Inflow Outflow/datainflow.xlsx")
datainflow
## # A tibble: 10 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   57900.  2308.           23238.            9385.  3012.       1426.
##  2  2012   65911.  2620.           25981.           11192.  4447.       2236.
##  3  2013   98369. 36337.           18120.           14056.  8933.       3378.
##  4  2014   86024.  4567.           30503.           14103.  6358.       2563.
##  5  2015   86549.  4710.           30254.           13309.  7156.       3218.
##  6  2016   97764.  5775.           34427.           14078.  8211.       4317.
##  7  2017  103748.  5514.           35617.           15312.  8553.       4412.
##  8  2018  117495.  5799.           41769.           15058. 10730.       5134.
##  9  2019  133762.  7509.           47112.           14750. 10915.       6077.
## 10  2020  109345.  6641.           36609.           10696.  9148.       6175.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>
library(readxl)
dataoutflow <- read_excel(path ="C:/Users/DELL LATITUDE 7280/Documents/KULIAH/SEMESTER 2/LINEAR ALGEBRA/Inflow Outflow/dataoutflow.xlsx")
dataoutflow
## # A tibble: 10 x 12
##    Tahun Sumatera   Aceh `Sumatera Utara` `Sumatera Barat`   Riau `Kep. Riau`
##    <dbl>    <dbl>  <dbl>            <dbl>            <dbl>  <dbl>       <dbl>
##  1  2011   80092.  6338.           22176.            5300. 12434.       5819.
##  2  2012   85235.  6378.           22495.            6434. 13014.       6966.
##  3  2013  103288. 23278.           19235.            6511. 15460.       8747.
##  4  2014  102338.  8630.           26391.            7060. 15158.      10122.
##  5  2015  109186.  9637.           27877.            7471. 15789.       9803.
##  6  2016  121992. 11311.           31959.            9198. 17645.      10068.
##  7  2017  133606. 11760.           35243.           10754. 18128.      10749.
##  8  2018  135676. 11450.           36908.            8447. 17926.      12597.
##  9  2019  153484. 13087.           44051.            9465. 19277.      12644.
## 10  2020  140589. 12874.           39758.            8763. 19139.       8461.
## # ... with 5 more variables: Jambi <dbl>, `Sumatera Selatan` <dbl>,
## #   Bengkulu <dbl>, Lampung <dbl>, `Kep. Bangka Belitung` <dbl>

1. Komparasi Visualisasi dan Prediksi Data Inflow Uang Kartal antara Riau dengan Kepulauan Riau Setiap Periode

plot(datainflow$Tahun,datainflow$'Riau',type = "l", col= "cornsilk4")
lines(datainflow$Tahun,datainflow$'Kep. Riau',col="deepskyblue4")
legend("top",c("Inflow Riau","Inflow Kepulauan Riau"),fill=c("cornsilk4","deepskyblue4"))

2. Komparasi Visualisasi dan Prediksi Data Outflow Uang Kartal antara Riau dengan Kepulauan Riau Setiap Periode

plot(dataoutflow$Tahun,dataoutflow$'Riau',type = "l", col= "darkseagreen")
lines(dataoutflow$Tahun,dataoutflow$'Kep. Riau',col="darkkhaki")
legend("top",c("Outflow Riau","Outflow Kepulauan Riau"),fill=c("darkseagreen","darkkhaki"))

3. Komparasi Visualisasi dan Prediksi Data Inflow-Outflow Uang Kartal antara Riau dengan Kepulauan Riau Setiap Periode

plot(datainflow$Tahun,datainflow$'Riau',type = "l", col= "cornsilk4")
lines(datainflow$Tahun,datainflow$'Kep. Riau',col="deepskyblue4")
lines(dataoutflow$Tahun,dataoutflow$'Riau',col= "darkseagreen")
lines(dataoutflow$Tahun,dataoutflow$'Kep. Riau',col="darkkhaki")
legend("top",c("Inflow Riau","Inflow Kepulauan Riau","Outflow Riau","Outflow Kepulauan Riau"),fill=c("cornsilk4","deepskyblue4","darkseagreen","darkkhaki"))

4. Komparasi Visualisasi dan Prediksi Data Inflow-Outflow Uang Kartal antara Riau dengan Kepulauan Riau Setiap Bulan

library(readxl)
datainflowperbulan <- read_excel(path = "C:/Users/DELL LATITUDE 7280/Documents/KULIAH/SEMESTER 2/LINEAR ALGEBRA/Inflow Outflow/inflowbulanan.xlsx")
## New names:
## * `` -> ...2
dataoutflowperbulan <- read_excel(path = "C:/Users/DELL LATITUDE 7280/Documents/KULIAH/SEMESTER 2/LINEAR ALGEBRA/Inflow Outflow/outflowbulanan.xlsx")
## New names:
## * `` -> ...2
datainflowperbulan
## # A tibble: 128 x 13
##    Bulan               ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       4164.  124.            2068.             545.
##  2 2011-02-01 00:00:00 NA       3338.  115.            1826.             450.
##  3 2011-03-01 00:00:00 NA       4878.  154.            2028.             849.
##  4 2011-04-01 00:00:00 NA       3157.  122.            1429.             539.
##  5 2011-05-01 00:00:00 NA       3821.  123.            1539.             692.
##  6 2011-06-01 00:00:00 NA       3686.  151.            1637.             592.
##  7 2011-07-01 00:00:00 NA       4370.  107.            1791.             800.
##  8 2011-08-01 00:00:00 NA       3668.  184.            1256.             586.
##  9 2011-09-01 00:00:00 NA      12875.  606.            4172.            2176.
## 10 2011-10-01 00:00:00 NA       4777.  158.            1941.             787.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## #   Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
dataoutflowperbulan
## # A tibble: 128 x 13
##    Bulan               ...2  Sumatera  Aceh `Sumatera Utara` `Sumatera Barat`
##    <dttm>              <lgl>    <dbl> <dbl>            <dbl>            <dbl>
##  1 2011-01-01 00:00:00 NA       3442.  350.             941.             307.
##  2 2011-02-01 00:00:00 NA       3989.  193.             990.             228.
##  3 2011-03-01 00:00:00 NA       4229.  230.            1209.             347.
##  4 2011-04-01 00:00:00 NA       6721.  529.            1653.             336.
##  5 2011-05-01 00:00:00 NA       5787.  523.            1465.             328.
##  6 2011-06-01 00:00:00 NA       7395.  406.            2167.             399.
##  7 2011-07-01 00:00:00 NA       7154.  958.            1695.             449.
##  8 2011-08-01 00:00:00 NA      16043. 1046.            4104.            1376.
##  9 2011-09-01 00:00:00 NA       1915.  124.             824.             148.
## 10 2011-10-01 00:00:00 NA       5174.  634.            1392.             299.
## # ... with 118 more rows, and 7 more variables: Riau <dbl>, `Kep. Riau` <dbl>,
## #   Jambi <dbl>, `Sumatera Selatan` <dbl>, Bengkulu <dbl>, Lampung <dbl>,
## #   `Kep. Bangka Belitung` <dbl>
plot(datainflowperbulan$'Riau', type = "l", col = "darksalmon")
lines(datainflowperbulan$'Kep. Riau',col="darkseagreen3")
lines(dataoutflowperbulan$'Riau', col = "darkslategray2")
lines(dataoutflowperbulan$'Kep. Riau',col="grey")
legend("top",c("Inflow Riau","Inflow Kepulauan Riau","Outflow Riau","Outflow Kepulauan Riau"),fill=c("darksalmon","darkseagreen3","darkslategray2","grey"))

Riautimeseries <- datainflowperbulan$'Riau'
KepulauanRiautimeseries <- datainflowperbulan$'Kep. Riau'
plot.ts(Riautimeseries , type = "l", col = "coral")
lines(KepulauanRiautimeseries , type = "l", col = "brown")
legend("top",c("Riau Timeseries","Kepuluan Riau Timeseries"),fill=c("coral","brown"))

logRiau <- log(datainflowperbulan$'Riau')
logKepulauanRiau <- log(datainflowperbulan$'Kep. Riau')
plot.ts(logRiau, type = "l", col = "black")
lines(logKepulauanRiau , type = "l", col = "coral")
legend("top",c("log Riau","log Kepulauan Riau"),fill=c("black","brown"))

library(TTR)
RiauSMA3 <- SMA(datainflowperbulan$'Riau',n=3)
KepulauanRiauSMA3 <- SMA(datainflowperbulan$'Kep. Riau',n=3)
plot.ts(RiauSMA3, type = "l", col = "coral")
lines(KepulauanRiauSMA3, type = "l", col = "brown")
legend("top",c("Riau SMA3","Kepulauan Riau SMA3"),fill=c("coral","brown"))

library(TTR)
RiauSMA3 <- SMA(datainflowperbulan$'Riau',n=8)
KepulauanRiauSMA3 <- SMA(datainflowperbulan$'Kep. Riau',n=8)
plot.ts(RiauSMA3, type = "l", col = "coral")
lines(KepulauanRiauSMA3, type = "l", col = "brown")
legend("top",c("RiauSMA3","Kepulauan RiauSMA3"),fill=c("coral","brown"))

5. Komparasi Visualisasi dan Prediksi Data Inflow-Outflow Time Series Uang Kartal antara Riau dengan Kepulauan Riau

Riauinflowtimeseries <- ts(datainflowperbulan$'Riau', frequency=12, start=c(2011,1))
KepulauanRiauinflowtimeseries <- ts(datainflowperbulan$'Kep. Riau', frequency=12, start=c(2011,1))
Riauinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   94.24460   96.39424  287.98845  160.06180  194.70583  100.67608
## 2012  445.71970  364.44861  274.48827  235.70588  341.36393  250.99083
## 2013 1548.75771  724.83408  666.22356 1146.69694  714.10313  628.70916
## 2014  897.55475  597.76572  391.46587  414.92963  399.11419  324.09467
## 2015 1095.88812  347.44105  369.02908  424.74718  505.67346  498.57889
## 2016 1332.16109  622.76483  564.49565  377.26617  501.64829  415.02464
## 2017 1228.76098  692.52354  787.21834  671.46804  700.20181  173.00907
## 2018 1545.34390  887.66466  697.71403  627.84201  422.92181 1972.65304
## 2019 1663.41486  723.68853  671.06970  670.02297  372.20685 2633.04629
## 2020 1566.80990  900.25231  656.60197  465.35740  832.48125 1646.18946
## 2021 2241.25936  910.24470  683.86349  608.93339 1522.46355  829.78643
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  143.32160  134.02960 1013.73676  341.22178  285.25779  160.83875
## 2012  390.91878  802.77936  408.83238  299.94057  391.02488  241.07860
## 2013  666.15895 1389.62436  454.88185  526.87296  302.26685  164.31963
## 2014  230.89241 1726.82385  377.03621  427.15336  334.94644  236.43117
## 2015 1399.11338  924.21942  357.65246  492.53688  457.74194  283.85194
## 2016 1858.40120  454.01158  563.71821  617.78181  426.00867  477.63763
## 2017 2114.71229  662.80534  502.47310  396.17308  428.57649  195.45782
## 2018 1293.01149  794.86546  685.77238  761.58086  774.35900  265.80837
## 2019  792.15569  841.10671  817.22178  825.61507  713.15676  192.69741
## 2020  754.19735  643.18320  372.80961  524.47867  611.53183  174.17311
## 2021  454.26751  518.24240
KepulauanRiauinflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011   84.22317   45.28489   87.19606  106.27655   79.41735   79.39071
## 2012  154.12964  248.64100  144.87430  208.13217  195.88684  142.58026
## 2013  386.21824  264.78916  225.74983  311.08538  210.63038  202.38804
## 2014  264.22703  270.00068  175.25704  142.22593  123.06405  103.56327
## 2015  527.48615  169.98619  240.82415  193.34540  234.14488  170.06052
## 2016  661.93008  385.82752  312.32158  276.09507  316.70196  150.48089
## 2017  512.43711  385.28011  383.55697  202.89962  208.91189  105.70146
## 2018  711.86420  353.76509  374.70466  387.21015  311.02800  979.33988
## 2019  845.27320  521.35431  474.60558  353.38377  268.14443 1193.95980
## 2020  731.48682  637.43455  386.64090  524.91472  379.63698  793.99943
## 2021 1078.46297  611.51858  423.88140  540.01754  976.15802  569.57964
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  120.99479   64.58641  369.70995  126.63637  168.11264   94.51409
## 2012  206.86457  315.89649  216.54585  155.27273  155.62754   91.58926
## 2013  294.45220  919.59500  181.59798  217.10630  110.05512   54.15557
## 2014   60.20677  631.73314  222.13537  258.28860  241.39837   70.90054
## 2015  561.93669  310.80650  164.20381  281.41579  249.20775  114.23718
## 2016  809.08819  262.15868  351.87129  328.02559  261.59397  200.41305
## 2017  839.30770  414.28185  388.93568  378.94493  384.83909  206.46159
## 2018  405.77807  331.14363  383.34951  308.45259  414.23273  172.78907
## 2019  533.39994  388.53399  422.87038  421.73089  397.68404  256.38430
## 2020  507.29098  486.49911  527.42384  414.62940  516.46748  269.03594
## 2021  393.47068  415.69709
Riauoutflowtimeseries <- ts(dataoutflowperbulan$'Riau', frequency=12, start=c(2011,1))
KepulauanRiauoutflowtimeseries <- ts(dataoutflowperbulan$'Kep. Riau', frequency=12, start=c(2011,1))
Riauoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  478.18402  400.24595  621.35321 1005.56107 1000.35374 1365.96130
## 2012  292.47450  399.76750  880.86006 1049.68113 1055.29479 1142.69911
## 2013  116.34632  569.05345 2345.35727  412.85210 1045.96329 1004.92649
## 2014  517.96101  526.24079 1089.97967 1000.53879 1182.86056 1199.39334
## 2015  133.58209  757.00411 1048.19275 1317.24918 1173.47065 1965.00327
## 2016  264.81101  670.51938  998.35476 1250.91662 1523.48445 4170.88866
## 2017  733.56292  981.17365 1359.41399 1239.79585 1413.94085 3856.69476
## 2018  233.11415 1118.03060 1545.86969 1215.64481 2476.59753 3343.03974
## 2019  455.48443 1012.74002 1340.33344 1521.82191 4902.80531  241.49091
## 2020  739.71921  831.87016 1264.41224 1774.60350 2925.82841  282.77052
## 2021  311.09352  805.14586 1430.24476 2632.46893 3111.28761 1073.67143
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  815.43379 2729.10217  154.42178  829.93388  873.64100 2159.95096
## 2012 1196.25287 2392.32861  381.04524  883.96286  968.57206 2370.85940
## 2013 1473.20994 1758.54800  892.49248 1341.31082 1558.92781 2941.37515
## 2014 3974.55298   13.89336  971.59826  969.79530 1076.07146 2634.65301
## 2015 3286.54673  393.89838  718.78270  935.00142 1054.45513 3005.38270
## 2016  515.04790 1100.53865 1629.71683 1273.01584 1438.08721 2809.65000
## 2017  330.25241 1530.30977  896.72821 1317.25781 1705.10587 2763.50350
## 2018  735.25593 1364.76585  955.53100 1303.13335 1240.43316 2394.18052
## 2019 1223.33771 1452.78989 1124.43995 1242.01385 1649.73723 3110.25361
## 2020 1530.19271 1470.10144 1394.12769 2017.60832 1409.04284 3498.29809
## 2021 1692.92089 1573.91533
KepulauanRiauoutflowtimeseries
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  189.20654  268.01656  208.80011  364.35734  447.61217  516.05275
## 2012  332.54370  239.53906  479.70454  362.89160  542.67878  658.10047
## 2013  119.26413  365.97218  463.90646  372.88312  673.61694  581.56634
## 2014  517.98070  246.77804  530.04786  715.09716  830.04557  997.34576
## 2015  192.79623  628.08355  542.19874  855.97355  724.82924 1138.74670
## 2016  256.75804  506.42349  672.97048  840.07221  983.30103 1966.97714
## 2017  410.59624  367.54302  749.04887  703.31521  964.80569 2092.64435
## 2018  229.17137  850.81662  993.83877  936.80576 1739.35274 1649.76547
## 2019  351.32570  533.80541 1070.37711 1147.55958 2819.62986  249.37983
## 2020  627.16179  494.16093  823.30668  707.72583  963.88952  220.66070
## 2021  140.35818  543.53780  588.91635 1222.73228 1161.79670  437.98386
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  584.09410 1311.58555   99.21788  270.28783  510.72809 1048.66737
## 2012  660.22824 1072.58101  276.95017  630.29531  519.38376 1190.73164
## 2013 1117.71986  754.58448  735.90065  919.20095  866.05783 1776.70961
## 2014 2056.31540  207.71173  816.86614 1059.52199  601.55529 1542.99310
## 2015 1695.67523  534.01001  678.06544  545.91971  784.86345 1481.35677
## 2016  604.40807  711.35343  871.77960  638.81776  828.88407 1185.88923
## 2017  461.27959 1028.34957  764.82488  906.81927 1121.10595 1179.11994
## 2018  941.81987 1152.64514  825.48506  895.10397  878.93357 1503.35024
## 2019  971.67306 1124.34920  811.30642  969.06768 1018.72975 1576.51468
## 2020  615.39884  525.84998  521.60564  967.01965  506.01366 1488.62254
## 2021  611.98142  420.24414
plot.ts(Riauinflowtimeseries,type = "l", col = "darkgoldenrod")
lines(KepulauanRiauinflowtimeseries, type = "l", col = "cornflowerblue")
legend("top",c("Riauinflowtimeseries","KepulauanRiauinflowtimeseries"),fill=c("darkgoldenrod","cornflowerblue"))

plot.ts(Riauoutflowtimeseries,type = "l", col = "cadetblue")
lines(KepulauanRiauoutflowtimeseries, type = "l", col = "darkgrey")
legend("top",c("Riauoutflowtimeseries","KepulauanRiauoutflowtimeseries"),fill=c("cadetblue","darkgrey"))

Riauintimeseriescomponents <- decompose(Riauinflowtimeseries)
KepulauanRiauintimeseriescomponents <- decompose(KepulauanRiauinflowtimeseries)
Riauintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2012  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2013  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2014  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2015  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2016  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2017  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2018  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2019  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2020  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
## 2021  657.38978  -24.91095 -126.73102 -129.53109 -159.03686  256.34435
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2012  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2013  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2014  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2015  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2016  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2017  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2018  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2019  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2020  306.31477  167.03441 -119.93753 -157.53528 -213.78634 -455.61424
## 2021  306.31477  167.03441
KepulauanRiauintimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2012  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2013  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2014  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2015  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2016  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2017  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2018  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2019  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2020  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
## 2021  230.03092   24.94082  -37.75013  -53.06279  -95.02471   79.65725
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2012  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2013  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2014  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2015  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2016  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2017  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2018  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2019  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2020  104.58593   76.67545  -16.74583  -53.76999  -58.44211 -201.09480
## 2021  104.58593   76.67545
Riauouttimeseriescomponents <- decompose(Riauoutflowtimeseries)
KepulauanRiauouttimeseriescomponents <- decompose(KepulauanRiauoutflowtimeseries)
Riauouttimeseriescomponents$seasonal
##              Jan         Feb         Mar         Apr         May         Jun
## 2011 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2012 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2013 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2014 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2015 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2016 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2017 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2018 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2019 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2020 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
## 2021 -1029.68788  -641.19116   -51.82000  -184.13231   576.46181   512.97160
##              Jul         Aug         Sep         Oct         Nov         Dec
## 2011   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2012   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2013   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2014   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2015   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2016   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2017   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2018   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2019   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2020   140.29335    51.92179  -461.87487  -172.60911  -102.07941  1361.74622
## 2021   140.29335    51.92179
KepulauanRiauouttimeseriescomponents$seasonal
##             Jan        Feb        Mar        Apr        May        Jun
## 2011 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2012 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2013 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2014 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2015 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2016 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2017 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2018 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2019 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2020 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
## 2021 -503.09067 -339.62254 -122.99077  -92.95804  303.81877  225.47459
##             Jul        Aug        Sep        Oct        Nov        Dec
## 2011  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2012  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2013  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2014  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2015  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2016  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2017  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2018  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2019  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2020  167.80534   38.30166 -166.53199  -31.68714  -54.81934  576.30014
## 2021  167.80534   38.30166
plot(Riauintimeseriescomponents$seasonal,type = "l", col = "antiquewhite4")
lines(KepulauanRiauintimeseriescomponents$seasonal,col="aquamarine3")
lines(Riauouttimeseriescomponents$seasonal, type = "l", col = "purple")
lines(KepulauanRiauouttimeseriescomponents$seasonal,col="blue")
legend("top",c("Riau Inflow","Kepulauan Riau Inflow", "Riau Outflow","Kepulauan Riau Outflow"),fill=c("antiquewhite4","aquamarine3","purple","blue"))

plot(Riauintimeseriescomponents$trend,type = "l", col = "black")
lines(KepulauanRiauintimeseriescomponents$trend,col="brown")
lines(Riauouttimeseriescomponents$trend, type = "l", col = "purple")
lines(KepulauanRiauouttimeseriescomponents$trend,col="blue")
legend("top",c("Riau Inflow","Kepulauan Riau Inflow", "Riau Outflow","Kepulauan Riau Outflow"),fill=c("black","brown","purple","blue"))

plot(Riauintimeseriescomponents$random,type = "l", col = "black")
lines(KepulauanRiauintimeseriescomponents$random,col="brown")
lines(Riauouttimeseriescomponents$random, type = "l", col = "purple")
lines(KepulauanRiauouttimeseriescomponents$random,col="blue")
legend("top",c("Riau Inflow","KepulauanRiau Inflow", "Riau Outflow","KepulauanRiau Outflow"),fill=c("black","brown","purple","blue"))

plot(Riauintimeseriescomponents$figure,type = "l", col = "black")
lines(KepulauanRiauintimeseriescomponents$figure,col="brown")
lines(Riauouttimeseriescomponents$figure, type = "l", col = "purple")
lines(KepulauanRiauouttimeseriescomponents$figure,col="blue")
legend("top",c("Riau Inflow","KepulauanRiau Inflow", "Riau Outflow","KepulauanRiau Outflow"),fill=c("black","brown","purple","blue"))

REFERENSI

https://www.bi.go.id/id/statistik/ekonomi-keuangan/ssp/indikator-pengedaran-uang.aspx

https://rpubs.com/suhartono-uinmaliki/861286

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiU4MDX4fz1AhU4SWwGHVoxCCsQFnoECAQQAQ&url=https%3A%2F%2Frepository.its.ac.id%2F63217%2F2%2F1312030072-Non_Degree.pdf&usg=AOvVaw1m8_VJUrSbsDtRUDWgJ4nf