1.Choose a data set (the number of data attributes should be more than 5), explain why it is important or interesting for you. 2.Formulate research questions (for which you expect to find the answers) 3.Make some visualizations for the formulated questions. Prepare a presentation (where you explain the data, questions, problems, results) and upload it.
getwd()
## [1] "C:/Users/antanas.kaminskas/Desktop"
duom <- read.csv2("C:/Users/antanas.kaminskas/Desktop/forestfires.csv",
header = TRUE, sep = ";", dec = ".")
str(duom)
## 'data.frame': 517 obs. of 13 variables:
## $ X : int 7 7 7 8 8 8 8 8 8 7 ...
## $ Y : int 5 4 4 6 6 6 6 6 6 5 ...
## $ month: chr "mar" "oct" "oct" "mar" ...
## $ day : chr "fri" "tue" "sat" "fri" ...
## $ FFMC : num 86.2 90.6 90.6 91.7 89.3 92.3 92.3 91.5 91 92.5 ...
## $ DMC : num 26.2 35.4 43.7 33.3 51.3 ...
## $ DC : num 94.3 669.1 686.9 77.5 102.2 ...
## $ ISI : num 5.1 6.7 6.7 9 9.6 14.7 8.5 10.7 7 7.1 ...
## $ temp : num 8.2 18 14.6 8.3 11.4 22.2 24.1 8 13.1 22.8 ...
## $ RH : int 51 33 33 97 99 29 27 86 63 40 ...
## $ wind : num 6.7 0.9 1.3 4 1.8 5.4 3.1 2.2 5.4 4 ...
## $ rain : num 0 0 0 0.2 0 0 0 0 0 0 ...
## $ area : num 0 0 0 0 0 0 0 0 0 0 ...
#install.packages("ggpubr")
library(ggpubr)
## Įkeliamas reikalingas paketas: ggplot2
ggplot(data = duom, mapping = aes(x = DMC , y = ISI )) +
geom_point() +
geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
ggplot(duom, aes(x = FFMC, y = RH, color = day)) +
geom_boxplot()
ggplot(data = duom) +
geom_point(mapping = aes(x = wind,
y = area , color = month))
ggplot(data = duom) +
stat_summary(
mapping = aes(x = FFMC, y = temp),
fun.min = min,
fun.max = max,
fun = median)
ggplot(data = duom) +
geom_point(mapping = aes(x = ISI , y = temp , color = month))