Female Avoidance behaviour vs Aggressive males
Single mating with different male morph and female egg-laying checked over a lifetime
Question: Are fighter males more harmful to females, than scrambler males?
Fighters present a higher sexual conflict scenario for females post-copulatory by boosting fecundity earlier, higher in total fecundity, and decreasing longevity
Scramblers present a higher sexual conflict scenario for females post-copulatory by boosting fecundity earlier, higher in total fecundity, and decreasing longevity
All opposite is true
No changes between morphs
Individual 53,78,79
Note: day 0 is mating day
Note: day 0 is mating day
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ (day^2) * mate_type + (1 | indv)
## Data: fecund_egg
##
## REML criterion at convergence: 5952.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8497 -0.7262 -0.2215 0.5769 3.7265
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 90.02 9.488
## Residual 800.91 28.300
## Number of obs: 621, groups: indv, 70
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 44.88173 2.99194 179.83340 15.001 < 2e-16 ***
## day -0.79676 0.15172 498.33108 -5.251 2.24e-07 ***
## mate_typeS -0.91143 4.35154 178.23775 -0.209 0.834
## day:mate_typeS -0.01416 0.20946 516.13158 -0.068 0.946
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day mt_tyS
## day -0.642
## mate_typeS -0.688 0.441
## day:mt_typS 0.465 -0.724 -0.639
## $emtrends
## mate_type day^2.trend SE df lower.CL upper.CL
## F -0.0258 0.00496 491 -0.0355 -0.016
## S -0.0262 0.00471 529 -0.0355 -0.017
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 0.000458 0.00684 509 0.067 0.9466
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ (day^2) * mate_type + (1 | indv)
## Data: fecund_egg_noout
##
## REML criterion at convergence: 5275.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8036 -0.7354 -0.2085 0.6131 3.5515
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 46.62 6.828
## Residual 878.54 29.640
## Number of obs: 547, groups: indv, 67
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 49.5773 3.2535 250.8307 15.238 < 2e-16 ***
## day -1.1154 0.2074 456.5977 -5.378 1.2e-07 ***
## mate_typeS 1.9196 4.7507 249.1943 0.404 0.687
## day:mate_typeS -0.1073 0.2887 466.3030 -0.372 0.710
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day mt_tyS
## day -0.759
## mate_typeS -0.685 0.520
## day:mt_typS 0.545 -0.718 -0.753
## $emtrends
## mate_type day^2.trend SE df lower.CL upper.CL
## F -0.0426 0.00798 460 -0.0582 -0.0269
## S -0.0466 0.00772 479 -0.0618 -0.0315
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 0.00409 0.0111 469 0.368 0.7127
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_type + day + (1 | trial)
## Data: first.fecund
##
## REML criterion at convergence: 527.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1914 -0.6517 -0.2490 0.4268 4.0540
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 0.00 0.000
## Residual 86.78 9.315
## Number of obs: 73, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 14.8866 1.8187 70.0000 8.185 8.32e-12 ***
## mate_typeS -0.3123 2.2476 70.0000 -0.139 0.88989
## day -0.2751 0.1026 70.0000 -2.682 0.00912 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.399
## day -0.587 -0.224
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 11.4 1.50 3.21 6.80 16.0
## S 11.1 1.72 4.34 6.47 15.7
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 0.312 2.27 69.5 0.138 0.8909
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_type + egg_count + (1 | trial)
## Data: first.fecund
##
## REML criterion at convergence: 541.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4956 -0.8135 -0.2049 0.5082 3.0517
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 0.0 0.00
## Residual 106.8 10.34
## Number of obs: 73, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 14.4733 2.2309 70.0000 6.488 1.06e-08 ***
## mate_typeS 4.3403 2.4397 70.0000 1.779 0.07957 .
## egg_count -0.3387 0.1263 70.0000 -2.682 0.00912 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.549
## egg_count -0.681 0.086
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 10.7 1.65 3.05 5.45 15.9
## S 15.0 1.88 4.13 9.83 20.2
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S -4.34 2.46 69.5 -1.764 0.0821
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_type + day + (1 | trial)
## Data: first.fecund.noout
##
## REML criterion at convergence: 506.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1951 -0.6554 -0.2482 0.4131 3.9873
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 6.900e-17 8.307e-09
## Residual 8.869e+01 9.418e+00
## Number of obs: 70, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 15.1102 1.9027 67.0000 7.941 3.07e-11 ***
## mate_typeS -0.3632 2.3039 67.0000 -0.158 0.8752
## day -0.2769 0.1126 67.0000 -2.460 0.0165 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.409
## day -0.610 -0.180
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 11.8 1.53 3.09 7.01 16.6
## S 11.4 1.79 4.45 6.67 16.2
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 0.363 2.33 66.6 0.156 0.8767
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_type + egg_count + (1 | trial)
## Data: first.fecund.noout
##
## REML criterion at convergence: 511.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4358 -0.8100 -0.2711 0.5454 2.5587
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 0.00 0.000
## Residual 95.83 9.789
## Number of obs: 70, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 13.9740 2.1631 67.0000 6.460 1.38e-08 ***
## mate_typeS 3.2779 2.3615 67.0000 1.388 0.1697
## egg_count -0.2991 0.1216 67.0000 -2.460 0.0165 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.530
## egg_count -0.689 0.071
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 10.5 1.58 2.95 5.42 15.6
## S 13.8 1.85 4.21 8.74 18.8
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S -3.28 2.39 66.7 -1.369 0.1755
##
## Degrees-of-freedom method: kenward-roger
#Model
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_type + day + (1 | trial)
## Data: peak.fecund.single
##
## REML criterion at convergence: 675.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.54961 -0.51241 0.00699 0.70239 1.99080
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 156.3 12.5
## Residual 1095.7 33.1
## Number of obs: 70, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 82.82853 11.73342 2.12851 7.059 0.0165 *
## mate_typeS -5.10166 7.99101 66.08017 -0.638 0.5254
## day 0.03635 0.65784 66.05110 0.055 0.9561
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.262
## day -0.466 -0.113
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 83.2 10.4 1.31 6.54 160
## S 78.1 10.6 1.41 8.35 148
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 5.1 8 66.1 0.638 0.5259
##
## Degrees-of-freedom method: kenward-roger
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_type + egg_count + (1 | trial)
## Data: peak.fecund.single
##
## REML criterion at convergence: 452
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2415 -0.5862 -0.1316 0.4825 6.0908
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 0.00 0.000
## Residual 37.85 6.152
## Number of obs: 70, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 8.055507 2.096774 67.000000 3.842 0.000274 ***
## mate_typeS 1.415769 1.475644 67.000000 0.959 0.340794
## egg_count 0.003208 0.021922 67.000000 0.146 0.884079
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.383
## egg_count -0.876 0.059
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 8.32 1.02 2.84 4.97 11.7
## S 9.73 1.13 3.24 6.28 13.2
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S -1.42 1.5 66.8 -0.945 0.3480
##
## Degrees-of-freedom method: kenward-roger
#Model - no outliers
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_type + day + (1 | trial)
## Data: peak.fecund.single.nout
##
## REML criterion at convergence: 623.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7729 -0.5785 0.0714 0.6150 2.1579
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 122.1 11.05
## Residual 784.1 28.00
## Number of obs: 67, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 64.1738 11.8557 3.5281 5.413 0.00803 **
## mate_typeS -2.3371 6.8874 63.1823 -0.339 0.73549
## day 2.5149 0.9044 63.9070 2.781 0.00712 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.290
## day -0.641 0.039
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 85.2 9.10 1.26 13.0 157
## S 82.9 9.35 1.38 19.3 147
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 2.34 6.91 63.2 0.338 0.7363
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_type + egg_count + (1 | trial)
## Data: peak.fecund.single.nout
##
## REML criterion at convergence: 366.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2746 -0.7398 -0.2650 0.4425 3.6480
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 0.07338 0.2709
## Residual 13.53192 3.6786
## Number of obs: 67, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.41317 1.42329 17.07040 3.101 0.00647 **
## mate_typeS -0.09495 0.90223 63.81009 -0.105 0.91652
## egg_count 0.04694 0.01482 37.02879 3.168 0.00308 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.319
## egg_count -0.892 0.029
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 8.41 0.644 2.26 5.92 10.9
## S 8.31 0.722 2.76 5.90 10.7
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 0.0949 0.918 63.8 0.103 0.9180
##
## Degrees-of-freedom method: kenward-roger
outlier indviduals 79,53,78
topeak_nooutlier <- to_peak_egg %>%
group_by(indv) %>%
mutate(rate_of_lay=(max(egg_count)-min(egg_count))/(max(day)-min(day))) %>%
filter(rate_of_lay!="NaN") %>%
filter(row_number(rate_of_lay) == 1)%>%
ungroup() %>%
filter(rate_of_lay<1)
to_peak_noout <- to_peak_egg %>%
filter(!indv %in% c(79,53, 78))
The rate of reaching peak fecundity significantly differs between fighters and scramblers
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ day * mate_type + (1 | indv)
## Data: to_peak_egg
##
## REML criterion at convergence: 2636.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0702 -0.6794 -0.0127 0.5443 3.1710
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 250.5 15.83
## Residual 702.2 26.50
## Number of obs: 276, groups: indv, 69
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 7.9004 5.3328 231.9258 1.481 0.14
## day 7.5980 0.7403 254.3682 10.263 < 2e-16 ***
## mate_typeS 33.7573 6.8939 186.0345 4.897 2.11e-06 ***
## day:mate_typeS -6.6871 0.8134 259.6822 -8.221 9.67e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day mt_tyS
## day -0.748
## mate_typeS -0.774 0.579
## day:mt_typS 0.681 -0.910 -0.661
## $emtrends
## mate_type day.trend SE df lower.CL upper.CL
## F 7.598 0.743 249 6.13 9.06
## S 0.911 0.341 272 0.24 1.58
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 6.69 0.818 256 8.180 <.0001
##
## Degrees-of-freedom method: kenward-roger
## $emtrends
## indv = 43.6:
## mate_type day.trend SE df lower.CL upper.CL
## F 0.562 0.33 271 -0.0864 1.21
## S 0.562 0.33 271 -0.0864 1.21
##
## Confidence level used: 0.95
##
## $contrasts
## indv = 43.6:
## contrast estimate SE df t.ratio p.value
## F - S 0 0 271 NaN NaN
Model - no outliers
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ day * mate_type + (1 | indv)
## Data: to_peak_noout
##
## REML criterion at convergence: 2321.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.34954 -0.69479 0.00582 0.54988 2.81162
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 148.9 12.20
## Residual 636.3 25.23
## Number of obs: 247, groups: indv, 66
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 9.2818 4.9076 222.1372 1.891 0.05988 .
## day 7.4054 0.6986 227.4714 10.600 < 2e-16 ***
## mate_typeS 16.4155 6.9510 209.4921 2.362 0.01911 *
## day:mate_typeS -2.6924 0.9454 233.9895 -2.848 0.00479 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day mt_tyS
## day -0.783
## mate_typeS -0.706 0.553
## day:mt_typS 0.579 -0.739 -0.758
## $emtrends
## mate_type day.trend SE df lower.CL upper.CL
## F 7.41 0.702 224 6.02 8.79
## S 4.71 0.642 239 3.45 5.98
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 2.69 0.951 232 2.830 0.0051
##
## Degrees-of-freedom method: kenward-roger
outlier indviduals 79,53,78
frompeak_nooutlier <- from_peak_egg %>%
group_by(indv) %>%
mutate(rate_of_lay=(max(egg_count)-min(egg_count))/(max(day)-min(day))) %>%
filter(rate_of_lay!="NaN") %>%
filter(row_number(rate_of_lay) == 1)%>%
ungroup() %>%
filter(rate_of_lay<1)
from_peak_noout <- from_peak_egg %>%
filter(!indv %in% c(79,53,78))
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ day * mate_type + (1 | indv)
## Data: from_peak_egg
##
## REML criterion at convergence: 4054.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.9177 -0.7361 -0.1730 0.5418 3.2581
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 110.0 10.49
## Residual 852.5 29.20
## Number of obs: 420, groups: indv, 68
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 54.7196 4.1580 198.5586 13.160 < 2e-16 ***
## day -1.2150 0.1904 299.0791 -6.381 6.69e-10 ***
## mate_typeS 8.4040 6.3533 141.6372 1.323 0.188
## day:mate_typeS -0.3936 0.2790 178.7381 -1.411 0.160
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day mt_tyS
## day -0.751
## mate_typeS -0.654 0.491
## day:mt_typS 0.513 -0.682 -0.773
## $emtrends
## mate_type day.trend SE df lower.CL upper.CL
## F -1.21 0.193 311 -1.60 -0.835
## S -1.61 0.207 128 -2.02 -1.199
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 0.394 0.283 193 1.391 0.1658
##
## Degrees-of-freedom method: kenward-roger
Model - no outliers
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ day * mate_type + (1 | indv)
## Data: from_peak_noout
##
## REML criterion at convergence: 3590.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2031 -0.7164 -0.1446 0.5789 3.0977
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 169.1 13.00
## Residual 825.6 28.73
## Number of obs: 372, groups: indv, 65
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 73.4936 5.3909 186.8642 13.633 < 2e-16 ***
## day -2.4362 0.2951 283.3514 -8.255 5.82e-15 ***
## mate_typeS -0.8038 7.7513 175.0252 -0.104 0.918
## day:mate_typeS 0.1775 0.4042 290.6595 0.439 0.661
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day mt_tyS
## day -0.818
## mate_typeS -0.695 0.569
## day:mt_typS 0.598 -0.730 -0.805
## $emtrends
## mate_type day.trend SE df lower.CL upper.CL
## F -2.44 0.298 312 -3.02 -1.85
## S -2.26 0.279 323 -2.81 -1.71
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S -0.178 0.408 317 -0.435 0.6638
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: total ~ mate_type + (1 | trial)
## Data: total.fecund
##
## REML criterion at convergence: 876.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.98237 -0.71989 -0.07264 0.85126 2.55591
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 5628 75.02
## Residual 24349 156.04
## Number of obs: 69, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 273.092 59.113 1.209 4.620 0.103
## mate_typeS -10.682 37.650 66.039 -0.284 0.778
##
## Correlation of Fixed Effects:
## (Intr)
## mate_typeS -0.302
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 273 59.1 1.21 -231 777
## S 262 59.8 1.26 -212 737
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 10.7 37.7 66 0.284 0.7776
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: total ~ mate_type + (1 | trial)
## Data: total.fecund.noout
##
## REML criterion at convergence: 830.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0108 -0.7765 -0.1444 0.8354 2.6907
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 6854 82.79
## Residual 21708 147.34
## Number of obs: 66, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 281.413 63.637 1.156 4.422 0.116
## mate_typeS -4.573 36.422 63.056 -0.126 0.900
##
## Correlation of Fixed Effects:
## (Intr)
## mate_typeS -0.266
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 281 63.6 1.16 -310 872
## S 277 64.4 1.21 -272 826
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 4.57 36.5 63.1 0.125 0.9006
##
## Degrees-of-freedom method: kenward-roger
While survival probability does not significantly differ between mate types (fighter or scrambler) the boost in fecundity does significantly decrease survivorship for females.
## Cox mixed-effects model fit by maximum likelihood
## Data: longevity
## events, n = 70, 70
## Iterations= 2 16
## NULL Integrated Fitted
## Log-likelihood -230.439 -221.8047 -221.7796
##
## Chisq df p AIC BIC
## Integrated loglik 17.27 4.00 0.0017139 9.27 0.27
## Penalized loglik 17.32 3.02 0.0006239 11.27 4.47
##
## Model: Surv(day) ~ mate_type * egg_count + (1 | indv)
## Fixed coefficients
## coef exp(coef) se(coef) z p
## mate_typeS -0.22215139 0.8007941 0.26734576 -0.83 0.4100
## egg_count 0.05239071 1.0537874 0.01782293 2.94 0.0033
## mate_typeS:egg_count 0.00699503 1.0070196 0.02120873 0.33 0.7400
##
## Random effects
## Group Variable Std Dev Variance
## indv Intercept 0.0199928009 0.0003997121
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
## mate_type emmean SE df asymp.LCL asymp.UCL
## F 0.0863 0.115 Inf -0.139 0.312
## S -0.0990 0.129 Inf -0.352 0.154
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df z.ratio p.value
## F - S 0.185 0.244 Inf 0.760 0.4475
##
## Results are given on the log (not the response) scale.
## chisq df p
## mate_type 0.101 1 0.751
## egg_count 3.202 1 0.074
## mate_type:egg_count 4.502 1 0.034
## GLOBAL 5.339 3 0.149
## Cox mixed-effects model fit by maximum likelihood
## Data: longevity.noout
## events, n = 67, 67
## Iterations= 2 16
## NULL Integrated Fitted
## Log-likelihood -217.7369 -209.8246 -209.8007
##
## Chisq df p AIC BIC
## Integrated loglik 15.82 4.00 0.0032637 7.82 -0.99
## Penalized loglik 15.87 3.02 0.0012339 9.83 3.16
##
## Model: Surv(day) ~ mate_type * egg_count + (1 | indv)
## Fixed coefficients
## coef exp(coef) se(coef) z p
## mate_typeS -0.19862947 0.8198536 0.27546953 -0.72 0.4700
## egg_count 0.04994957 1.0512181 0.01793231 2.79 0.0053
## mate_typeS:egg_count 0.00754370 1.0075722 0.02145639 0.35 0.7300
##
## Random effects
## Group Variable Std Dev Variance
## indv Intercept 0.019992349 0.000399694
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
## mate_type emmean SE df asymp.LCL asymp.UCL
## F 0.0712 0.116 Inf -0.156 0.298
## S -0.0860 0.134 Inf -0.349 0.177
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df z.ratio p.value
## F - S 0.157 0.25 Inf 0.629 0.5295
##
## Results are given on the log (not the response) scale.
## chisq df p
## mate_type 0.213 1 0.644
## egg_count 2.705 1 0.100
## mate_type:egg_count 3.961 1 0.047
## GLOBAL 4.729 3 0.193
lay_time_single <- read.csv("C:/Users/z5218946/OneDrive - UNSW/Research/Mites Fecundity/egg_count_lay.csv")
str(lay_time_single)
## 'data.frame': 517 obs. of 7 variables:
## $ ï..trial : int 1 1 1 1 1 1 1 1 1 1 ...
## $ mate_type: chr "F" "F" "F" "S" ...
## $ day : int 2 4 6 2 4 6 9 2 4 6 ...
## $ status : int 1 1 2 1 1 1 2 1 1 1 ...
## $ egg_count: int 28 0 13 35 81 0 1 22 60 64 ...
## $ rep : int 9 9 9 4 4 4 4 20 20 20 ...
## $ indv : int 3 3 3 4 4 4 4 5 5 5 ...
colnames(lay_time_single)[1]="trial"
lay_time_single$egg_count <- as.numeric(lay_time_single$egg_count)
lay_time_single$trial <- as.numeric(lay_time_single$trial)
lay_time_single$day <- as.numeric(lay_time_single$day)
lay_time_single$rep <- as.factor(lay_time_single$rep)
lay_time_single$indv <- as.numeric(lay_time_single$indv)
day_of_last_lay <- lay_time_single %>%
group_by(indv) %>%
top_n(1, day)
ggplot(day_of_last_lay, aes(mate_type,day)) + geom_boxplot()
mod_lay <- lmer(day~mate_type + egg_count + (1|trial), day_of_last_lay)
## boundary (singular) fit: see help('isSingular')
summary(mod_lay)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_type + egg_count + (1 | trial)
## Data: day_of_last_lay
##
## REML criterion at convergence: 499
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.9180 -0.7106 -0.1074 0.6363 3.2503
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 9.066e-20 3.011e-10
## Residual 7.744e+01 8.800e+00
## Number of obs: 70, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 19.25703 1.90144 67.00000 10.128 3.83e-15 ***
## mate_typeS 1.64587 2.15230 67.00000 0.765 0.4471
## egg_count -0.12653 0.05045 67.00000 -2.508 0.0146 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.644
## egg_count -0.649 0.204
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
hist(resid(mod_lay))
emmeans(mod_lay, pairwise~mate_type)
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 16.7 1.47 3.28 12.2 21.1
## S 18.3 1.64 3.68 13.6 23.1
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S -1.65 2.2 66.9 -0.749 0.4565
##
## Degrees-of-freedom method: kenward-roger