Here we activate all the packages necessary for data visualization in Rstudion using ggplot2
library(palmerpenguins)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.7
## v tidyr 1.1.4 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
data("diamonds")
library(ggplot2)
library(tidyr)
ggplot(data=penguins,aes(x=flipper_length_mm,y=body_mass_g))+
geom_point(alpha=0.5)+
geom_smooth(method=lm)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
ggplot(data=penguins,aes(x=flipper_length_mm,y=body_mass_g))+
geom_point(alpha=0.5)+
geom_smooth(method=lm)+
geom_point(color="purple")
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
## Removed 2 rows containing missing values (geom_point).
ggplot(data=penguins,aes(x=flipper_length_mm,y=body_mass_g))+
geom_point(alpha=0.5)+
geom_smooth(method=lm)+
geom_point(color="purple")+
labs(title = "Palmer Penguins: Body Mass vs Flipper Length")
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
## Removed 2 rows containing missing values (geom_point).
attach(diamonds)
head(diamonds,10)
tail(diamonds,10)
ggplot(data=diamonds)+
geom_bar(mapping = aes(x=cut,color=cut))
## Add color to the bar graphs
ggplot(data=diamonds)+
geom_bar(mapping = aes(x=cut),color="blue")
ggplot(data=diamonds)+
geom_bar(mapping = aes(x=cut,fill=cut))
ggplot(data=diamonds)+
geom_bar(mapping = aes(x=cut,fill=clarity))
ggplot(data=diamonds)+
geom_histogram(mapping=aes(x=price))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(data=diamonds)+
geom_histogram(mapping=aes(x=depth,color="red"))+
scale_x_continuous(limits = c(55,69))+
labs(title = "Histogram Showing Depth")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 64 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).
ggplot(data=diamonds, aes(depth)) +
geom_histogram(aes(y = ..density..),color="red")+
scale_x_continuous(limits = c(55,70))+
stat_function(fun = dnorm,
args = list(mean = mean(depth),
sd = sd(depth)),
col = "#1b98e0",
size = 1)+
labs(title = "Histogram Showing Depth")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 45 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).
ggplot(data=diamonds, aes(depth)) +
geom_histogram(aes(y = ..density..),color="red")+
scale_x_continuous(limits = c(55,70))+
stat_function(fun = dnorm,
args = list(mean = mean(depth),
sd = sd(depth)),
col = "#1b98e0",
size = 1)+
labs(title = "Histogram Showing Depth")+
facet_wrap(~cut)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 45 rows containing non-finite values (stat_bin).
## Warning: Removed 10 rows containing missing values (geom_bar).