R Markdown

library(wooldridge)
library(rmarkdown)
data("bwght")
head(bwght)
##   faminc cigtax cigprice bwght fatheduc motheduc parity male white cigs
## 1   13.5   16.5    122.3   109       12       12      1    1     1    0
## 2    7.5   16.5    122.3   133        6       12      2    1     0    0
## 3    0.5   16.5    122.3   129       NA       12      2    0     0    0
## 4   15.5   16.5    122.3   126       12       12      2    1     0    0
## 5   27.5   16.5    122.3   134       14       12      2    1     1    0
## 6    7.5   16.5    122.3   118       12       14      6    1     0    0
##     lbwght bwghtlbs packs    lfaminc
## 1 4.691348   6.8125     0  2.6026897
## 2 4.890349   8.3125     0  2.0149031
## 3 4.859812   8.0625     0 -0.6931472
## 4 4.836282   7.8750     0  2.7408400
## 5 4.897840   8.3750     0  3.3141861
## 6 4.770685   7.3750     0  2.0149031
help(bwght)
## starting httpd help server ... done
ilkreg <- lm(bwght~ cigs,data = bwght)
ikincireg<- lm(bwght~ cigs+faminc,data = bwght)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
stargazer(list(ilkreg,ikincireg),type = "text")
## 
## =====================================================================
##                                    Dependent variable:               
##                     -------------------------------------------------
##                                           bwght                      
##                               (1)                      (2)           
## ---------------------------------------------------------------------
## cigs                       -0.514***                -0.463***        
##                             (0.090)                  (0.092)         
##                                                                      
## faminc                                               0.093***        
##                                                      (0.029)         
##                                                                      
## Constant                   119.772***               116.974***       
##                             (0.572)                  (1.049)         
##                                                                      
## ---------------------------------------------------------------------
## Observations                 1,388                    1,388          
## R2                           0.023                    0.030          
## Adjusted R2                  0.022                    0.028          
## Residual Std. Error    20.129 (df = 1386)       20.063 (df = 1385)   
## F Statistic         32.235*** (df = 1; 1386) 21.274*** (df = 2; 1385)
## =====================================================================
## Note:                                     *p<0.1; **p<0.05; ***p<0.01
data("discrim")
head(discrim)
##   psoda pfries pentree wagest nmgrs nregs hrsopen  emp psoda2 pfries2 pentree2
## 1  1.12   1.06    1.02   4.25     3     5    16.0 27.5   1.11    1.11     1.05
## 2  1.06   0.91    0.95   4.75     3     3    16.5 21.5   1.05    0.89     0.95
## 3  1.06   0.91    0.98   4.25     3     5    18.0 30.0   1.05    0.94     0.98
## 4  1.12   1.02    1.06   5.00     4     5    16.0 27.5   1.15    1.05     1.05
## 5  1.12     NA    0.49   5.00     3     3    16.0  5.0   1.04    1.01     0.58
## 6  1.06   0.95    1.01   4.25     4     4    15.0 17.5   1.05    0.94     1.00
##   wagest2 nmgrs2 nregs2 hrsopen2 emp2 compown chain density    crmrte state
## 1    5.05      5      5     15.0 27.0       1     3    4030 0.0528866     1
## 2    5.05      4      3     17.5 24.5       0     1    4030 0.0528866     1
## 3    5.05      4      5     17.5 25.0       0     1   11400 0.0360003     1
## 4    5.05      4      5     16.0   NA       0     3    8345 0.0484232     1
## 5    5.05      3      3     16.0 12.0       0     1     720 0.0615890     1
## 6    5.05      3      4     15.0 28.0       0     1    4424 0.0334823     1
##     prpblck    prppov   prpncar hseval nstores income county     lpsoda
## 1 0.1711542 0.0365789 0.0788428 148300       3  44534     18 0.11332869
## 2 0.1711542 0.0365789 0.0788428 148300       3  44534     18 0.05826885
## 3 0.0473602 0.0879072 0.2694298 169200       3  41164     12 0.05826885
## 4 0.0528394 0.0591227 0.1366903 171600       3  50366     10 0.11332869
## 5 0.0344800 0.0254145 0.0738020 249100       1  72287     10 0.11332869
## 6 0.0591327 0.0835001 0.1151341 148000       2  44515     18 0.05826885
##       lpfries  lhseval  lincome ldensity NJ BK KFC RR
## 1  0.05826885 11.90699 10.70401 8.301521  1  0   0  1
## 2 -0.09431065 11.90699 10.70401 8.301521  1  1   0  0
## 3 -0.09431065 12.03884 10.62532 9.341369  1  1   0  0
## 4  0.01980261 12.05292 10.82707 9.029418  1  0   0  1
## 5          NA 12.42561 11.18840 6.579251  1  1   0  0
## 6 -0.05129331 11.90497 10.70358 8.394799  1  1   0  0
help(discrim)
mean(discrim$prpblck)
## [1] NA
sd(discrim$prpblck)
## [1] NA
mean(discrim$income)
## [1] NA
sd(discrim$income)
## [1] NA
sum(is.na(discrim$prpblck))
## [1] 1
sum(is.na(discrim$income))
## [1] 1
mean(discrim$prpblck,na.rm = TRUE)
## [1] 0.1134864
sd(discrim$prpblck,na.rm = TRUE)
## [1] 0.1824165
mean(discrim$income, na.rm = TRUE)
## [1] 47053.78
sd(discrim$income, na.rm = TRUE)
## [1] 13179.29
library(vtable)
## Zorunlu paket yükleniyor: kableExtra
sumtable(discrim, summ=c('notNA(x)', 'countNA(x)', 'mean(x)','sd(x)'),out='return')
##    Variable NotNA CountNA       Mean        Sd
## 1     psoda   402       8      1.045     0.089
## 2    pfries   393      17      0.922     0.106
## 3   pentree   398      12      1.322     0.643
## 4    wagest   390      20      4.616     0.347
## 5     nmgrs   404       6       3.42     1.018
## 6     nregs   388      22      3.608     1.244
## 7   hrsopen   410       0     14.439      2.81
## 8       emp   404       6     17.622     9.423
## 9    psoda2   388      22      1.045     0.094
## 10  pfries2   382      28      0.941     0.109
## 11 pentree2   386      24      1.354      0.65
## 12  wagest2   389      21      4.996     0.253
## 13   nmgrs2   404       6      3.484      1.14
## 14   nregs2   388      22      3.608     1.244
## 15 hrsopen2   399      11     14.466     2.752
## 16     emp2   397      13     17.567     8.607
## 17  compown   410       0      0.344     0.476
## 18    chain   410       0      2.117      1.11
## 19  density   409       1   4561.803  5132.408
## 20   crmrte   409       1      0.053     0.047
## 21    state   410       0      1.193     0.395
## 22  prpblck   409       1      0.113     0.182
## 23   prppov   409       1      0.071     0.067
## 24  prpncar   409       1      0.115     0.117
## 25   hseval   409       1 147399.267 56070.468
## 26  nstores   410       0      3.139     1.809
## 27   income   409       1  47053.785 13179.286
## 28   county   410       0     13.659     8.045
## 29   lpsoda   402       8       0.04     0.085
## 30  lpfries   393      17     -0.088     0.115
## 31  lhseval   409       1     11.829     0.389
## 32  lincome   409       1      10.72     0.284
## 33 ldensity   409       1      7.959     0.996
## 34       NJ   410       0      0.807     0.395
## 35       BK   410       0      0.417     0.494
## 36      KFC   410       0      0.195     0.397
## 37       RR   410       0      0.241     0.428
discrimreg <- lm(psoda~prpblck+income, data = discrim)
summary(discrimreg)
## 
## Call:
## lm(formula = psoda ~ prpblck + income, data = discrim)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.29401 -0.05242  0.00333  0.04231  0.44322 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 9.563e-01  1.899e-02  50.354  < 2e-16 ***
## prpblck     1.150e-01  2.600e-02   4.423 1.26e-05 ***
## income      1.603e-06  3.618e-07   4.430 1.22e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08611 on 398 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.06422,    Adjusted R-squared:  0.05952 
## F-statistic: 13.66 on 2 and 398 DF,  p-value: 1.835e-06
basitdiscrimreg <- lm(psoda~prpblck, data = discrim)
summary(basitdiscrimreg)
## 
## Call:
## lm(formula = psoda ~ prpblck, data = discrim)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.30884 -0.05963  0.01135  0.03206  0.44840 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.03740    0.00519  199.87  < 2e-16 ***
## prpblck      0.06493    0.02396    2.71  0.00702 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0881 on 399 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.01808,    Adjusted R-squared:  0.01561 
## F-statistic: 7.345 on 1 and 399 DF,  p-value: 0.007015
logdiscrimreg <- lm(log(psoda)~prpblck+log(income), data = discrim)
summary(logdiscrimreg)
## 
## Call:
## lm(formula = log(psoda) ~ prpblck + log(income), data = discrim)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.33563 -0.04695  0.00658  0.04334  0.35413 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.79377    0.17943  -4.424 1.25e-05 ***
## prpblck      0.12158    0.02575   4.722 3.24e-06 ***
## log(income)  0.07651    0.01660   4.610 5.43e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0821 on 398 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.06809,    Adjusted R-squared:  0.06341 
## F-statistic: 14.54 on 2 and 398 DF,  p-value: 8.039e-07
logdiscrimregprpov <- lm(log(psoda)~prpblck+log(income)+prppov, data = discrim)
summary(logdiscrimregprpov)
## 
## Call:
## lm(formula = log(psoda) ~ prpblck + log(income) + prppov, data = discrim)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.32218 -0.04648  0.00651  0.04272  0.35622 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.46333    0.29371  -4.982  9.4e-07 ***
## prpblck      0.07281    0.03068   2.373   0.0181 *  
## log(income)  0.13696    0.02676   5.119  4.8e-07 ***
## prppov       0.38036    0.13279   2.864   0.0044 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08137 on 397 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.08696,    Adjusted R-squared:  0.08006 
## F-statistic:  12.6 on 3 and 397 DF,  p-value: 6.917e-08
cor(log(discrim$income), discrim$prppov, use = "complete.obs")
## [1] -0.838467
data("meapsingle")
paged_table(meapsingle)
basitreg3<- lm(math4~pctsgle, data = meapsingle)
summary(basitreg3)
## 
## Call:
## lm(formula = math4 ~ pctsgle, data = meapsingle)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -47.791  -8.310   1.600   8.092  50.317 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 96.77043    1.59680   60.60   <2e-16 ***
## pctsgle     -0.83288    0.07068  -11.78   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.48 on 227 degrees of freedom
## Multiple R-squared:  0.3795, Adjusted R-squared:  0.3768 
## F-statistic: 138.9 on 1 and 227 DF,  p-value: < 2.2e-16
coklureg3<- lm(math4~pctsgle+lmedinc+free, data = meapsingle)
summary(coklureg3)
## 
## Call:
## lm(formula = math4 ~ pctsgle + lmedinc + free, data = meapsingle)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -34.919  -7.195   0.931   7.313  50.152 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 51.72322   58.47814   0.884    0.377    
## pctsgle     -0.19965    0.15872  -1.258    0.210    
## lmedinc      3.56013    5.04170   0.706    0.481    
## free        -0.39642    0.07035  -5.635  5.2e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 11.7 on 225 degrees of freedom
## Multiple R-squared:  0.4598, Adjusted R-squared:  0.4526 
## F-statistic: 63.85 on 3 and 225 DF,  p-value: < 2.2e-16
cor(meapsingle$free,meapsingle$lmedinc)
## [1] -0.7469703
library(car)
## Zorunlu paket yükleniyor: carData
vif(coklureg3)
##  pctsgle  lmedinc     free 
## 5.740981 4.118812 3.188079